2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
92 #include <net/compat.h>
95 #include <linux/netfilter.h>
97 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
98 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
99 unsigned long nr_segs
, loff_t pos
);
100 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
101 unsigned long nr_segs
, loff_t pos
);
102 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
104 static int sock_close(struct inode
*inode
, struct file
*file
);
105 static unsigned int sock_poll(struct file
*file
,
106 struct poll_table_struct
*wait
);
107 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
109 static long compat_sock_ioctl(struct file
*file
,
110 unsigned int cmd
, unsigned long arg
);
112 static int sock_fasync(int fd
, struct file
*filp
, int on
);
113 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
114 int offset
, size_t size
, loff_t
*ppos
, int more
);
115 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
116 struct pipe_inode_info
*pipe
, size_t len
,
120 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
121 * in the operation structures but are done directly via the socketcall() multiplexor.
124 static const struct file_operations socket_file_ops
= {
125 .owner
= THIS_MODULE
,
127 .aio_read
= sock_aio_read
,
128 .aio_write
= sock_aio_write
,
130 .unlocked_ioctl
= sock_ioctl
,
132 .compat_ioctl
= compat_sock_ioctl
,
135 .open
= sock_no_open
, /* special open code to disallow open via /proc */
136 .release
= sock_close
,
137 .fasync
= sock_fasync
,
138 .sendpage
= sock_sendpage
,
139 .splice_write
= generic_splice_sendpage
,
140 .splice_read
= sock_splice_read
,
144 * The protocol list. Each protocol is registered in here.
147 static DEFINE_SPINLOCK(net_family_lock
);
148 static const struct net_proto_family
*net_families
[NPROTO
] __read_mostly
;
151 * Statistics counters of the socket lists
154 static DEFINE_PER_CPU(int, sockets_in_use
) = 0;
158 * Move socket addresses back and forth across the kernel/user
159 * divide and look after the messy bits.
162 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
163 16 for IP, 16 for IPX,
166 must be at least one bigger than
167 the AF_UNIX size (see net/unix/af_unix.c
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, void *kaddr
)
184 if (ulen
< 0 || ulen
> MAX_SOCK_ADDR
)
188 if (copy_from_user(kaddr
, uaddr
, ulen
))
190 return audit_sockaddr(ulen
, kaddr
);
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
210 int move_addr_to_user(void *kaddr
, int klen
, void __user
*uaddr
,
216 err
= get_user(len
, ulen
);
221 if (len
< 0 || len
> MAX_SOCK_ADDR
)
224 if (audit_sockaddr(klen
, kaddr
))
226 if (copy_to_user(uaddr
, kaddr
, len
))
230 * "fromlen shall refer to the value before truncation.."
233 return __put_user(klen
, ulen
);
236 #define SOCKFS_MAGIC 0x534F434B
238 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
240 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
242 struct socket_alloc
*ei
;
244 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
247 init_waitqueue_head(&ei
->socket
.wait
);
249 ei
->socket
.fasync_list
= NULL
;
250 ei
->socket
.state
= SS_UNCONNECTED
;
251 ei
->socket
.flags
= 0;
252 ei
->socket
.ops
= NULL
;
253 ei
->socket
.sk
= NULL
;
254 ei
->socket
.file
= NULL
;
256 return &ei
->vfs_inode
;
259 static void sock_destroy_inode(struct inode
*inode
)
261 kmem_cache_free(sock_inode_cachep
,
262 container_of(inode
, struct socket_alloc
, vfs_inode
));
265 static void init_once(struct kmem_cache
*cachep
, void *foo
)
267 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
269 inode_init_once(&ei
->vfs_inode
);
272 static int init_inodecache(void)
274 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
275 sizeof(struct socket_alloc
),
277 (SLAB_HWCACHE_ALIGN
|
278 SLAB_RECLAIM_ACCOUNT
|
281 if (sock_inode_cachep
== NULL
)
286 static struct super_operations sockfs_ops
= {
287 .alloc_inode
= sock_alloc_inode
,
288 .destroy_inode
=sock_destroy_inode
,
289 .statfs
= simple_statfs
,
292 static int sockfs_get_sb(struct file_system_type
*fs_type
,
293 int flags
, const char *dev_name
, void *data
,
294 struct vfsmount
*mnt
)
296 return get_sb_pseudo(fs_type
, "socket:", &sockfs_ops
, SOCKFS_MAGIC
,
300 static struct vfsmount
*sock_mnt __read_mostly
;
302 static struct file_system_type sock_fs_type
= {
304 .get_sb
= sockfs_get_sb
,
305 .kill_sb
= kill_anon_super
,
308 static int sockfs_delete_dentry(struct dentry
*dentry
)
311 * At creation time, we pretended this dentry was hashed
312 * (by clearing DCACHE_UNHASHED bit in d_flags)
313 * At delete time, we restore the truth : not hashed.
314 * (so that dput() can proceed correctly)
316 dentry
->d_flags
|= DCACHE_UNHASHED
;
321 * sockfs_dname() is called from d_path().
323 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
325 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
326 dentry
->d_inode
->i_ino
);
329 static struct dentry_operations sockfs_dentry_operations
= {
330 .d_delete
= sockfs_delete_dentry
,
331 .d_dname
= sockfs_dname
,
335 * Obtains the first available file descriptor and sets it up for use.
337 * These functions create file structures and maps them to fd space
338 * of the current process. On success it returns file descriptor
339 * and file struct implicitly stored in sock->file.
340 * Note that another thread may close file descriptor before we return
341 * from this function. We use the fact that now we do not refer
342 * to socket after mapping. If one day we will need it, this
343 * function will increment ref. count on file by 1.
345 * In any case returned fd MAY BE not valid!
346 * This race condition is unavoidable
347 * with shared fd spaces, we cannot solve it inside kernel,
348 * but we take care of internal coherence yet.
351 static int sock_alloc_fd(struct file
**filep
)
355 fd
= get_unused_fd();
356 if (likely(fd
>= 0)) {
357 struct file
*file
= get_empty_filp();
360 if (unlikely(!file
)) {
369 static int sock_attach_fd(struct socket
*sock
, struct file
*file
)
371 struct dentry
*dentry
;
372 struct qstr name
= { .name
= "" };
374 dentry
= d_alloc(sock_mnt
->mnt_sb
->s_root
, &name
);
375 if (unlikely(!dentry
))
378 dentry
->d_op
= &sockfs_dentry_operations
;
380 * We dont want to push this dentry into global dentry hash table.
381 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
382 * This permits a working /proc/$pid/fd/XXX on sockets
384 dentry
->d_flags
&= ~DCACHE_UNHASHED
;
385 d_instantiate(dentry
, SOCK_INODE(sock
));
388 init_file(file
, sock_mnt
, dentry
, FMODE_READ
| FMODE_WRITE
,
390 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
391 file
->f_flags
= O_RDWR
;
393 file
->private_data
= sock
;
398 int sock_map_fd(struct socket
*sock
)
400 struct file
*newfile
;
401 int fd
= sock_alloc_fd(&newfile
);
403 if (likely(fd
>= 0)) {
404 int err
= sock_attach_fd(sock
, newfile
);
406 if (unlikely(err
< 0)) {
411 fd_install(fd
, newfile
);
416 static struct socket
*sock_from_file(struct file
*file
, int *err
)
418 if (file
->f_op
== &socket_file_ops
)
419 return file
->private_data
; /* set in sock_map_fd */
426 * sockfd_lookup - Go from a file number to its socket slot
428 * @err: pointer to an error code return
430 * The file handle passed in is locked and the socket it is bound
431 * too is returned. If an error occurs the err pointer is overwritten
432 * with a negative errno code and NULL is returned. The function checks
433 * for both invalid handles and passing a handle which is not a socket.
435 * On a success the socket object pointer is returned.
438 struct socket
*sockfd_lookup(int fd
, int *err
)
449 sock
= sock_from_file(file
, err
);
455 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
461 file
= fget_light(fd
, fput_needed
);
463 sock
= sock_from_file(file
, err
);
466 fput_light(file
, *fput_needed
);
472 * sock_alloc - allocate a socket
474 * Allocate a new inode and socket object. The two are bound together
475 * and initialised. The socket is then returned. If we are out of inodes
479 static struct socket
*sock_alloc(void)
484 inode
= new_inode(sock_mnt
->mnt_sb
);
488 sock
= SOCKET_I(inode
);
490 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
491 inode
->i_uid
= current
->fsuid
;
492 inode
->i_gid
= current
->fsgid
;
494 get_cpu_var(sockets_in_use
)++;
495 put_cpu_var(sockets_in_use
);
500 * In theory you can't get an open on this inode, but /proc provides
501 * a back door. Remember to keep it shut otherwise you'll let the
502 * creepy crawlies in.
505 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
510 const struct file_operations bad_sock_fops
= {
511 .owner
= THIS_MODULE
,
512 .open
= sock_no_open
,
516 * sock_release - close a socket
517 * @sock: socket to close
519 * The socket is released from the protocol stack if it has a release
520 * callback, and the inode is then released if the socket is bound to
521 * an inode not a file.
524 void sock_release(struct socket
*sock
)
527 struct module
*owner
= sock
->ops
->owner
;
529 sock
->ops
->release(sock
);
534 if (sock
->fasync_list
)
535 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
537 get_cpu_var(sockets_in_use
)--;
538 put_cpu_var(sockets_in_use
);
540 iput(SOCK_INODE(sock
));
546 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
547 struct msghdr
*msg
, size_t size
)
549 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
557 err
= security_socket_sendmsg(sock
, msg
, size
);
561 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
564 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
567 struct sock_iocb siocb
;
570 init_sync_kiocb(&iocb
, NULL
);
571 iocb
.private = &siocb
;
572 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
573 if (-EIOCBQUEUED
== ret
)
574 ret
= wait_on_sync_kiocb(&iocb
);
578 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
579 struct kvec
*vec
, size_t num
, size_t size
)
581 mm_segment_t oldfs
= get_fs();
586 * the following is safe, since for compiler definitions of kvec and
587 * iovec are identical, yielding the same in-core layout and alignment
589 msg
->msg_iov
= (struct iovec
*)vec
;
590 msg
->msg_iovlen
= num
;
591 result
= sock_sendmsg(sock
, msg
, size
);
597 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
599 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
602 ktime_t kt
= skb
->tstamp
;
604 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
606 /* Race occurred between timestamp enabling and packet
607 receiving. Fill in the current time for now. */
609 kt
= ktime_get_real();
611 tv
= ktime_to_timeval(kt
);
612 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
, sizeof(tv
), &tv
);
615 /* Race occurred between timestamp enabling and packet
616 receiving. Fill in the current time for now. */
618 kt
= ktime_get_real();
620 ts
= ktime_to_timespec(kt
);
621 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
, sizeof(ts
), &ts
);
625 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
627 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
628 struct msghdr
*msg
, size_t size
, int flags
)
631 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
639 err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
643 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
646 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
647 size_t size
, int flags
)
650 struct sock_iocb siocb
;
653 init_sync_kiocb(&iocb
, NULL
);
654 iocb
.private = &siocb
;
655 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
656 if (-EIOCBQUEUED
== ret
)
657 ret
= wait_on_sync_kiocb(&iocb
);
661 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
662 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
664 mm_segment_t oldfs
= get_fs();
669 * the following is safe, since for compiler definitions of kvec and
670 * iovec are identical, yielding the same in-core layout and alignment
672 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
673 result
= sock_recvmsg(sock
, msg
, size
, flags
);
678 static void sock_aio_dtor(struct kiocb
*iocb
)
680 kfree(iocb
->private);
683 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
684 int offset
, size_t size
, loff_t
*ppos
, int more
)
689 sock
= file
->private_data
;
691 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
695 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
698 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
699 struct pipe_inode_info
*pipe
, size_t len
,
702 struct socket
*sock
= file
->private_data
;
704 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
707 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
708 struct sock_iocb
*siocb
)
710 if (!is_sync_kiocb(iocb
)) {
711 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
714 iocb
->ki_dtor
= sock_aio_dtor
;
718 iocb
->private = siocb
;
722 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
723 struct file
*file
, const struct iovec
*iov
,
724 unsigned long nr_segs
)
726 struct socket
*sock
= file
->private_data
;
730 for (i
= 0; i
< nr_segs
; i
++)
731 size
+= iov
[i
].iov_len
;
733 msg
->msg_name
= NULL
;
734 msg
->msg_namelen
= 0;
735 msg
->msg_control
= NULL
;
736 msg
->msg_controllen
= 0;
737 msg
->msg_iov
= (struct iovec
*)iov
;
738 msg
->msg_iovlen
= nr_segs
;
739 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
741 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
744 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
745 unsigned long nr_segs
, loff_t pos
)
747 struct sock_iocb siocb
, *x
;
752 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
756 x
= alloc_sock_iocb(iocb
, &siocb
);
759 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
762 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
763 struct file
*file
, const struct iovec
*iov
,
764 unsigned long nr_segs
)
766 struct socket
*sock
= file
->private_data
;
770 for (i
= 0; i
< nr_segs
; i
++)
771 size
+= iov
[i
].iov_len
;
773 msg
->msg_name
= NULL
;
774 msg
->msg_namelen
= 0;
775 msg
->msg_control
= NULL
;
776 msg
->msg_controllen
= 0;
777 msg
->msg_iov
= (struct iovec
*)iov
;
778 msg
->msg_iovlen
= nr_segs
;
779 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
780 if (sock
->type
== SOCK_SEQPACKET
)
781 msg
->msg_flags
|= MSG_EOR
;
783 return __sock_sendmsg(iocb
, sock
, msg
, size
);
786 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
787 unsigned long nr_segs
, loff_t pos
)
789 struct sock_iocb siocb
, *x
;
794 x
= alloc_sock_iocb(iocb
, &siocb
);
798 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
802 * Atomic setting of ioctl hooks to avoid race
803 * with module unload.
806 static DEFINE_MUTEX(br_ioctl_mutex
);
807 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
) = NULL
;
809 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
811 mutex_lock(&br_ioctl_mutex
);
812 br_ioctl_hook
= hook
;
813 mutex_unlock(&br_ioctl_mutex
);
816 EXPORT_SYMBOL(brioctl_set
);
818 static DEFINE_MUTEX(vlan_ioctl_mutex
);
819 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
821 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
823 mutex_lock(&vlan_ioctl_mutex
);
824 vlan_ioctl_hook
= hook
;
825 mutex_unlock(&vlan_ioctl_mutex
);
828 EXPORT_SYMBOL(vlan_ioctl_set
);
830 static DEFINE_MUTEX(dlci_ioctl_mutex
);
831 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
833 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
835 mutex_lock(&dlci_ioctl_mutex
);
836 dlci_ioctl_hook
= hook
;
837 mutex_unlock(&dlci_ioctl_mutex
);
840 EXPORT_SYMBOL(dlci_ioctl_set
);
843 * With an ioctl, arg may well be a user mode pointer, but we don't know
844 * what to do with it - that's up to the protocol still.
847 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
851 void __user
*argp
= (void __user
*)arg
;
855 sock
= file
->private_data
;
858 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
859 err
= dev_ioctl(net
, cmd
, argp
);
861 #ifdef CONFIG_WIRELESS_EXT
862 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
863 err
= dev_ioctl(net
, cmd
, argp
);
865 #endif /* CONFIG_WIRELESS_EXT */
870 if (get_user(pid
, (int __user
*)argp
))
872 err
= f_setown(sock
->file
, pid
, 1);
876 err
= put_user(f_getown(sock
->file
),
885 request_module("bridge");
887 mutex_lock(&br_ioctl_mutex
);
889 err
= br_ioctl_hook(net
, cmd
, argp
);
890 mutex_unlock(&br_ioctl_mutex
);
895 if (!vlan_ioctl_hook
)
896 request_module("8021q");
898 mutex_lock(&vlan_ioctl_mutex
);
900 err
= vlan_ioctl_hook(net
, argp
);
901 mutex_unlock(&vlan_ioctl_mutex
);
906 if (!dlci_ioctl_hook
)
907 request_module("dlci");
909 if (dlci_ioctl_hook
) {
910 mutex_lock(&dlci_ioctl_mutex
);
911 err
= dlci_ioctl_hook(cmd
, argp
);
912 mutex_unlock(&dlci_ioctl_mutex
);
916 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
919 * If this ioctl is unknown try to hand it down
922 if (err
== -ENOIOCTLCMD
)
923 err
= dev_ioctl(net
, cmd
, argp
);
929 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
932 struct socket
*sock
= NULL
;
934 err
= security_socket_create(family
, type
, protocol
, 1);
945 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
958 /* No kernel lock held - perfect */
959 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
964 * We can't return errors to poll, so it's either yes or no.
966 sock
= file
->private_data
;
967 return sock
->ops
->poll(file
, sock
, wait
);
970 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
972 struct socket
*sock
= file
->private_data
;
974 return sock
->ops
->mmap(file
, sock
, vma
);
977 static int sock_close(struct inode
*inode
, struct file
*filp
)
980 * It was possible the inode is NULL we were
981 * closing an unfinished socket.
985 printk(KERN_DEBUG
"sock_close: NULL inode\n");
988 sock_fasync(-1, filp
, 0);
989 sock_release(SOCKET_I(inode
));
994 * Update the socket async list
996 * Fasync_list locking strategy.
998 * 1. fasync_list is modified only under process context socket lock
999 * i.e. under semaphore.
1000 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1001 * or under socket lock.
1002 * 3. fasync_list can be used from softirq context, so that
1003 * modification under socket lock have to be enhanced with
1004 * write_lock_bh(&sk->sk_callback_lock).
1008 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1010 struct fasync_struct
*fa
, *fna
= NULL
, **prev
;
1011 struct socket
*sock
;
1015 fna
= kmalloc(sizeof(struct fasync_struct
), GFP_KERNEL
);
1020 sock
= filp
->private_data
;
1030 prev
= &(sock
->fasync_list
);
1032 for (fa
= *prev
; fa
!= NULL
; prev
= &fa
->fa_next
, fa
= *prev
)
1033 if (fa
->fa_file
== filp
)
1038 write_lock_bh(&sk
->sk_callback_lock
);
1040 write_unlock_bh(&sk
->sk_callback_lock
);
1045 fna
->fa_file
= filp
;
1047 fna
->magic
= FASYNC_MAGIC
;
1048 fna
->fa_next
= sock
->fasync_list
;
1049 write_lock_bh(&sk
->sk_callback_lock
);
1050 sock
->fasync_list
= fna
;
1051 write_unlock_bh(&sk
->sk_callback_lock
);
1054 write_lock_bh(&sk
->sk_callback_lock
);
1055 *prev
= fa
->fa_next
;
1056 write_unlock_bh(&sk
->sk_callback_lock
);
1062 release_sock(sock
->sk
);
1066 /* This function may be called only under socket lock or callback_lock */
1068 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1070 if (!sock
|| !sock
->fasync_list
)
1073 case SOCK_WAKE_WAITD
:
1074 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1077 case SOCK_WAKE_SPACE
:
1078 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1083 __kill_fasync(sock
->fasync_list
, SIGIO
, band
);
1086 __kill_fasync(sock
->fasync_list
, SIGURG
, band
);
1091 static int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1092 struct socket
**res
, int kern
)
1095 struct socket
*sock
;
1096 const struct net_proto_family
*pf
;
1099 * Check protocol is in range
1101 if (family
< 0 || family
>= NPROTO
)
1102 return -EAFNOSUPPORT
;
1103 if (type
< 0 || type
>= SOCK_MAX
)
1108 This uglymoron is moved from INET layer to here to avoid
1109 deadlock in module load.
1111 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1115 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1121 err
= security_socket_create(family
, type
, protocol
, kern
);
1126 * Allocate the socket and allow the family to set things up. if
1127 * the protocol is 0, the family is instructed to select an appropriate
1130 sock
= sock_alloc();
1132 if (net_ratelimit())
1133 printk(KERN_WARNING
"socket: no more sockets\n");
1134 return -ENFILE
; /* Not exactly a match, but its the
1135 closest posix thing */
1140 #if defined(CONFIG_KMOD)
1141 /* Attempt to load a protocol module if the find failed.
1143 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1144 * requested real, full-featured networking support upon configuration.
1145 * Otherwise module support will break!
1147 if (net_families
[family
] == NULL
)
1148 request_module("net-pf-%d", family
);
1152 pf
= rcu_dereference(net_families
[family
]);
1153 err
= -EAFNOSUPPORT
;
1158 * We will call the ->create function, that possibly is in a loadable
1159 * module, so we have to bump that loadable module refcnt first.
1161 if (!try_module_get(pf
->owner
))
1164 /* Now protected by module ref count */
1167 err
= pf
->create(net
, sock
, protocol
);
1169 goto out_module_put
;
1172 * Now to bump the refcnt of the [loadable] module that owns this
1173 * socket at sock_release time we decrement its refcnt.
1175 if (!try_module_get(sock
->ops
->owner
))
1176 goto out_module_busy
;
1179 * Now that we're done with the ->create function, the [loadable]
1180 * module can have its refcnt decremented
1182 module_put(pf
->owner
);
1183 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1185 goto out_sock_release
;
1191 err
= -EAFNOSUPPORT
;
1194 module_put(pf
->owner
);
1201 goto out_sock_release
;
1204 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1206 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1209 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1211 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1214 asmlinkage
long sys_socket(int family
, int type
, int protocol
)
1217 struct socket
*sock
;
1219 retval
= sock_create(family
, type
, protocol
, &sock
);
1223 retval
= sock_map_fd(sock
);
1228 /* It may be already another descriptor 8) Not kernel problem. */
1237 * Create a pair of connected sockets.
1240 asmlinkage
long sys_socketpair(int family
, int type
, int protocol
,
1241 int __user
*usockvec
)
1243 struct socket
*sock1
, *sock2
;
1245 struct file
*newfile1
, *newfile2
;
1248 * Obtain the first socket and check if the underlying protocol
1249 * supports the socketpair call.
1252 err
= sock_create(family
, type
, protocol
, &sock1
);
1256 err
= sock_create(family
, type
, protocol
, &sock2
);
1260 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1262 goto out_release_both
;
1264 fd1
= sock_alloc_fd(&newfile1
);
1265 if (unlikely(fd1
< 0)) {
1267 goto out_release_both
;
1270 fd2
= sock_alloc_fd(&newfile2
);
1271 if (unlikely(fd2
< 0)) {
1275 goto out_release_both
;
1278 err
= sock_attach_fd(sock1
, newfile1
);
1279 if (unlikely(err
< 0)) {
1283 err
= sock_attach_fd(sock2
, newfile2
);
1284 if (unlikely(err
< 0)) {
1289 err
= audit_fd_pair(fd1
, fd2
);
1296 fd_install(fd1
, newfile1
);
1297 fd_install(fd2
, newfile2
);
1298 /* fd1 and fd2 may be already another descriptors.
1299 * Not kernel problem.
1302 err
= put_user(fd1
, &usockvec
[0]);
1304 err
= put_user(fd2
, &usockvec
[1]);
1313 sock_release(sock2
);
1315 sock_release(sock1
);
1321 sock_release(sock1
);
1324 sock_release(sock2
);
1332 * Bind a name to a socket. Nothing much to do here since it's
1333 * the protocol's responsibility to handle the local address.
1335 * We move the socket address to kernel space before we call
1336 * the protocol layer (having also checked the address is ok).
1339 asmlinkage
long sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1341 struct socket
*sock
;
1342 char address
[MAX_SOCK_ADDR
];
1343 int err
, fput_needed
;
1345 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1347 err
= move_addr_to_kernel(umyaddr
, addrlen
, address
);
1349 err
= security_socket_bind(sock
,
1350 (struct sockaddr
*)address
,
1353 err
= sock
->ops
->bind(sock
,
1357 fput_light(sock
->file
, fput_needed
);
1363 * Perform a listen. Basically, we allow the protocol to do anything
1364 * necessary for a listen, and if that works, we mark the socket as
1365 * ready for listening.
1368 asmlinkage
long sys_listen(int fd
, int backlog
)
1370 struct socket
*sock
;
1371 int err
, fput_needed
;
1374 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1376 somaxconn
= sock
->sk
->sk_net
->sysctl_somaxconn
;
1377 if ((unsigned)backlog
> somaxconn
)
1378 backlog
= somaxconn
;
1380 err
= security_socket_listen(sock
, backlog
);
1382 err
= sock
->ops
->listen(sock
, backlog
);
1384 fput_light(sock
->file
, fput_needed
);
1390 * For accept, we attempt to create a new socket, set up the link
1391 * with the client, wake up the client, then return the new
1392 * connected fd. We collect the address of the connector in kernel
1393 * space and move it to user at the very end. This is unclean because
1394 * we open the socket then return an error.
1396 * 1003.1g adds the ability to recvmsg() to query connection pending
1397 * status to recvmsg. We need to add that support in a way thats
1398 * clean when we restucture accept also.
1401 asmlinkage
long sys_accept(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1402 int __user
*upeer_addrlen
)
1404 struct socket
*sock
, *newsock
;
1405 struct file
*newfile
;
1406 int err
, len
, newfd
, fput_needed
;
1407 char address
[MAX_SOCK_ADDR
];
1409 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1414 if (!(newsock
= sock_alloc()))
1417 newsock
->type
= sock
->type
;
1418 newsock
->ops
= sock
->ops
;
1421 * We don't need try_module_get here, as the listening socket (sock)
1422 * has the protocol module (sock->ops->owner) held.
1424 __module_get(newsock
->ops
->owner
);
1426 newfd
= sock_alloc_fd(&newfile
);
1427 if (unlikely(newfd
< 0)) {
1429 sock_release(newsock
);
1433 err
= sock_attach_fd(newsock
, newfile
);
1437 err
= security_socket_accept(sock
, newsock
);
1441 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1445 if (upeer_sockaddr
) {
1446 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)address
,
1448 err
= -ECONNABORTED
;
1451 err
= move_addr_to_user(address
, len
, upeer_sockaddr
,
1457 /* File flags are not inherited via accept() unlike another OSes. */
1459 fd_install(newfd
, newfile
);
1462 security_socket_post_accept(sock
, newsock
);
1465 fput_light(sock
->file
, fput_needed
);
1469 sock_release(newsock
);
1471 put_unused_fd(newfd
);
1475 put_unused_fd(newfd
);
1480 * Attempt to connect to a socket with the server address. The address
1481 * is in user space so we verify it is OK and move it to kernel space.
1483 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1486 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1487 * other SEQPACKET protocols that take time to connect() as it doesn't
1488 * include the -EINPROGRESS status for such sockets.
1491 asmlinkage
long sys_connect(int fd
, struct sockaddr __user
*uservaddr
,
1494 struct socket
*sock
;
1495 char address
[MAX_SOCK_ADDR
];
1496 int err
, fput_needed
;
1498 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1501 err
= move_addr_to_kernel(uservaddr
, addrlen
, address
);
1506 security_socket_connect(sock
, (struct sockaddr
*)address
, addrlen
);
1510 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)address
, addrlen
,
1511 sock
->file
->f_flags
);
1513 fput_light(sock
->file
, fput_needed
);
1519 * Get the local address ('name') of a socket object. Move the obtained
1520 * name to user space.
1523 asmlinkage
long sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1524 int __user
*usockaddr_len
)
1526 struct socket
*sock
;
1527 char address
[MAX_SOCK_ADDR
];
1528 int len
, err
, fput_needed
;
1530 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1534 err
= security_socket_getsockname(sock
);
1538 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
, 0);
1541 err
= move_addr_to_user(address
, len
, usockaddr
, usockaddr_len
);
1544 fput_light(sock
->file
, fput_needed
);
1550 * Get the remote address ('name') of a socket object. Move the obtained
1551 * name to user space.
1554 asmlinkage
long sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1555 int __user
*usockaddr_len
)
1557 struct socket
*sock
;
1558 char address
[MAX_SOCK_ADDR
];
1559 int len
, err
, fput_needed
;
1561 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1563 err
= security_socket_getpeername(sock
);
1565 fput_light(sock
->file
, fput_needed
);
1570 sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
,
1573 err
= move_addr_to_user(address
, len
, usockaddr
,
1575 fput_light(sock
->file
, fput_needed
);
1581 * Send a datagram to a given address. We move the address into kernel
1582 * space and check the user space data area is readable before invoking
1586 asmlinkage
long sys_sendto(int fd
, void __user
*buff
, size_t len
,
1587 unsigned flags
, struct sockaddr __user
*addr
,
1590 struct socket
*sock
;
1591 char address
[MAX_SOCK_ADDR
];
1597 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1601 iov
.iov_base
= buff
;
1603 msg
.msg_name
= NULL
;
1606 msg
.msg_control
= NULL
;
1607 msg
.msg_controllen
= 0;
1608 msg
.msg_namelen
= 0;
1610 err
= move_addr_to_kernel(addr
, addr_len
, address
);
1613 msg
.msg_name
= address
;
1614 msg
.msg_namelen
= addr_len
;
1616 if (sock
->file
->f_flags
& O_NONBLOCK
)
1617 flags
|= MSG_DONTWAIT
;
1618 msg
.msg_flags
= flags
;
1619 err
= sock_sendmsg(sock
, &msg
, len
);
1622 fput_light(sock
->file
, fput_needed
);
1628 * Send a datagram down a socket.
1631 asmlinkage
long sys_send(int fd
, void __user
*buff
, size_t len
, unsigned flags
)
1633 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1637 * Receive a frame from the socket and optionally record the address of the
1638 * sender. We verify the buffers are writable and if needed move the
1639 * sender address from kernel to user space.
1642 asmlinkage
long sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
,
1643 unsigned flags
, struct sockaddr __user
*addr
,
1644 int __user
*addr_len
)
1646 struct socket
*sock
;
1649 char address
[MAX_SOCK_ADDR
];
1653 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1657 msg
.msg_control
= NULL
;
1658 msg
.msg_controllen
= 0;
1662 iov
.iov_base
= ubuf
;
1663 msg
.msg_name
= address
;
1664 msg
.msg_namelen
= MAX_SOCK_ADDR
;
1665 if (sock
->file
->f_flags
& O_NONBLOCK
)
1666 flags
|= MSG_DONTWAIT
;
1667 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1669 if (err
>= 0 && addr
!= NULL
) {
1670 err2
= move_addr_to_user(address
, msg
.msg_namelen
, addr
, addr_len
);
1675 fput_light(sock
->file
, fput_needed
);
1681 * Receive a datagram from a socket.
1684 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1687 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1691 * Set a socket option. Because we don't know the option lengths we have
1692 * to pass the user mode parameter for the protocols to sort out.
1695 asmlinkage
long sys_setsockopt(int fd
, int level
, int optname
,
1696 char __user
*optval
, int optlen
)
1698 int err
, fput_needed
;
1699 struct socket
*sock
;
1704 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1706 err
= security_socket_setsockopt(sock
, level
, optname
);
1710 if (level
== SOL_SOCKET
)
1712 sock_setsockopt(sock
, level
, optname
, optval
,
1716 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1719 fput_light(sock
->file
, fput_needed
);
1725 * Get a socket option. Because we don't know the option lengths we have
1726 * to pass a user mode parameter for the protocols to sort out.
1729 asmlinkage
long sys_getsockopt(int fd
, int level
, int optname
,
1730 char __user
*optval
, int __user
*optlen
)
1732 int err
, fput_needed
;
1733 struct socket
*sock
;
1735 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1737 err
= security_socket_getsockopt(sock
, level
, optname
);
1741 if (level
== SOL_SOCKET
)
1743 sock_getsockopt(sock
, level
, optname
, optval
,
1747 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1750 fput_light(sock
->file
, fput_needed
);
1756 * Shutdown a socket.
1759 asmlinkage
long sys_shutdown(int fd
, int how
)
1761 int err
, fput_needed
;
1762 struct socket
*sock
;
1764 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1766 err
= security_socket_shutdown(sock
, how
);
1768 err
= sock
->ops
->shutdown(sock
, how
);
1769 fput_light(sock
->file
, fput_needed
);
1774 /* A couple of helpful macros for getting the address of the 32/64 bit
1775 * fields which are the same type (int / unsigned) on our platforms.
1777 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1778 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1779 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1782 * BSD sendmsg interface
1785 asmlinkage
long sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
1787 struct compat_msghdr __user
*msg_compat
=
1788 (struct compat_msghdr __user
*)msg
;
1789 struct socket
*sock
;
1790 char address
[MAX_SOCK_ADDR
];
1791 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1792 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1793 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1794 /* 20 is size of ipv6_pktinfo */
1795 unsigned char *ctl_buf
= ctl
;
1796 struct msghdr msg_sys
;
1797 int err
, ctl_len
, iov_size
, total_len
;
1801 if (MSG_CMSG_COMPAT
& flags
) {
1802 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1805 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1808 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1812 /* do not move before msg_sys is valid */
1814 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1817 /* Check whether to allocate the iovec area */
1819 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1820 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1821 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1826 /* This will also move the address data into kernel space */
1827 if (MSG_CMSG_COMPAT
& flags
) {
1828 err
= verify_compat_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1830 err
= verify_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1837 if (msg_sys
.msg_controllen
> INT_MAX
)
1839 ctl_len
= msg_sys
.msg_controllen
;
1840 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1842 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1846 ctl_buf
= msg_sys
.msg_control
;
1847 ctl_len
= msg_sys
.msg_controllen
;
1848 } else if (ctl_len
) {
1849 if (ctl_len
> sizeof(ctl
)) {
1850 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1851 if (ctl_buf
== NULL
)
1856 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1857 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1858 * checking falls down on this.
1860 if (copy_from_user(ctl_buf
, (void __user
*)msg_sys
.msg_control
,
1863 msg_sys
.msg_control
= ctl_buf
;
1865 msg_sys
.msg_flags
= flags
;
1867 if (sock
->file
->f_flags
& O_NONBLOCK
)
1868 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1869 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1873 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1875 if (iov
!= iovstack
)
1876 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1878 fput_light(sock
->file
, fput_needed
);
1884 * BSD recvmsg interface
1887 asmlinkage
long sys_recvmsg(int fd
, struct msghdr __user
*msg
,
1890 struct compat_msghdr __user
*msg_compat
=
1891 (struct compat_msghdr __user
*)msg
;
1892 struct socket
*sock
;
1893 struct iovec iovstack
[UIO_FASTIOV
];
1894 struct iovec
*iov
= iovstack
;
1895 struct msghdr msg_sys
;
1896 unsigned long cmsg_ptr
;
1897 int err
, iov_size
, total_len
, len
;
1900 /* kernel mode address */
1901 char addr
[MAX_SOCK_ADDR
];
1903 /* user mode address pointers */
1904 struct sockaddr __user
*uaddr
;
1905 int __user
*uaddr_len
;
1907 if (MSG_CMSG_COMPAT
& flags
) {
1908 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1911 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1914 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1919 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1922 /* Check whether to allocate the iovec area */
1924 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1925 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1926 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1932 * Save the user-mode address (verify_iovec will change the
1933 * kernel msghdr to use the kernel address space)
1936 uaddr
= (__force
void __user
*)msg_sys
.msg_name
;
1937 uaddr_len
= COMPAT_NAMELEN(msg
);
1938 if (MSG_CMSG_COMPAT
& flags
) {
1939 err
= verify_compat_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1941 err
= verify_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1946 cmsg_ptr
= (unsigned long)msg_sys
.msg_control
;
1947 msg_sys
.msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
1949 if (sock
->file
->f_flags
& O_NONBLOCK
)
1950 flags
|= MSG_DONTWAIT
;
1951 err
= sock_recvmsg(sock
, &msg_sys
, total_len
, flags
);
1956 if (uaddr
!= NULL
) {
1957 err
= move_addr_to_user(addr
, msg_sys
.msg_namelen
, uaddr
,
1962 err
= __put_user((msg_sys
.msg_flags
& ~MSG_CMSG_COMPAT
),
1966 if (MSG_CMSG_COMPAT
& flags
)
1967 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1968 &msg_compat
->msg_controllen
);
1970 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1971 &msg
->msg_controllen
);
1977 if (iov
!= iovstack
)
1978 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1980 fput_light(sock
->file
, fput_needed
);
1985 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1987 /* Argument list sizes for sys_socketcall */
1988 #define AL(x) ((x) * sizeof(unsigned long))
1989 static const unsigned char nargs
[18]={
1990 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1991 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1992 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1998 * System call vectors.
2000 * Argument checking cleaned up. Saved 20% in size.
2001 * This function doesn't need to set the kernel lock because
2002 * it is set by the callees.
2005 asmlinkage
long sys_socketcall(int call
, unsigned long __user
*args
)
2008 unsigned long a0
, a1
;
2011 if (call
< 1 || call
> SYS_RECVMSG
)
2014 /* copy_from_user should be SMP safe. */
2015 if (copy_from_user(a
, args
, nargs
[call
]))
2018 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2027 err
= sys_socket(a0
, a1
, a
[2]);
2030 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2033 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2036 err
= sys_listen(a0
, a1
);
2040 sys_accept(a0
, (struct sockaddr __user
*)a1
,
2041 (int __user
*)a
[2]);
2043 case SYS_GETSOCKNAME
:
2045 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2046 (int __user
*)a
[2]);
2048 case SYS_GETPEERNAME
:
2050 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2051 (int __user
*)a
[2]);
2053 case SYS_SOCKETPAIR
:
2054 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2057 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2060 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2061 (struct sockaddr __user
*)a
[4], a
[5]);
2064 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2067 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2068 (struct sockaddr __user
*)a
[4],
2069 (int __user
*)a
[5]);
2072 err
= sys_shutdown(a0
, a1
);
2074 case SYS_SETSOCKOPT
:
2075 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2077 case SYS_GETSOCKOPT
:
2079 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2080 (int __user
*)a
[4]);
2083 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2086 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2095 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2098 * sock_register - add a socket protocol handler
2099 * @ops: description of protocol
2101 * This function is called by a protocol handler that wants to
2102 * advertise its address family, and have it linked into the
2103 * socket interface. The value ops->family coresponds to the
2104 * socket system call protocol family.
2106 int sock_register(const struct net_proto_family
*ops
)
2110 if (ops
->family
>= NPROTO
) {
2111 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2116 spin_lock(&net_family_lock
);
2117 if (net_families
[ops
->family
])
2120 net_families
[ops
->family
] = ops
;
2123 spin_unlock(&net_family_lock
);
2125 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2130 * sock_unregister - remove a protocol handler
2131 * @family: protocol family to remove
2133 * This function is called by a protocol handler that wants to
2134 * remove its address family, and have it unlinked from the
2135 * new socket creation.
2137 * If protocol handler is a module, then it can use module reference
2138 * counts to protect against new references. If protocol handler is not
2139 * a module then it needs to provide its own protection in
2140 * the ops->create routine.
2142 void sock_unregister(int family
)
2144 BUG_ON(family
< 0 || family
>= NPROTO
);
2146 spin_lock(&net_family_lock
);
2147 net_families
[family
] = NULL
;
2148 spin_unlock(&net_family_lock
);
2152 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2155 static int __init
sock_init(void)
2158 * Initialize sock SLAB cache.
2164 * Initialize skbuff SLAB cache
2169 * Initialize the protocols module.
2173 register_filesystem(&sock_fs_type
);
2174 sock_mnt
= kern_mount(&sock_fs_type
);
2176 /* The real protocol initialization is performed in later initcalls.
2179 #ifdef CONFIG_NETFILTER
2186 core_initcall(sock_init
); /* early initcall */
2188 #ifdef CONFIG_PROC_FS
2189 void socket_seq_show(struct seq_file
*seq
)
2194 for_each_possible_cpu(cpu
)
2195 counter
+= per_cpu(sockets_in_use
, cpu
);
2197 /* It can be negative, by the way. 8) */
2201 seq_printf(seq
, "sockets: used %d\n", counter
);
2203 #endif /* CONFIG_PROC_FS */
2205 #ifdef CONFIG_COMPAT
2206 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
2209 struct socket
*sock
= file
->private_data
;
2210 int ret
= -ENOIOCTLCMD
;
2212 if (sock
->ops
->compat_ioctl
)
2213 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
2219 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
2221 return sock
->ops
->bind(sock
, addr
, addrlen
);
2224 int kernel_listen(struct socket
*sock
, int backlog
)
2226 return sock
->ops
->listen(sock
, backlog
);
2229 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
2231 struct sock
*sk
= sock
->sk
;
2234 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
2239 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
2241 sock_release(*newsock
);
2246 (*newsock
)->ops
= sock
->ops
;
2252 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
2255 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
2258 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
2261 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
2264 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
2267 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
2270 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
2271 char *optval
, int *optlen
)
2273 mm_segment_t oldfs
= get_fs();
2277 if (level
== SOL_SOCKET
)
2278 err
= sock_getsockopt(sock
, level
, optname
, optval
, optlen
);
2280 err
= sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2286 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
2287 char *optval
, int optlen
)
2289 mm_segment_t oldfs
= get_fs();
2293 if (level
== SOL_SOCKET
)
2294 err
= sock_setsockopt(sock
, level
, optname
, optval
, optlen
);
2296 err
= sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2302 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
2303 size_t size
, int flags
)
2305 if (sock
->ops
->sendpage
)
2306 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
2308 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
2311 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
2313 mm_segment_t oldfs
= get_fs();
2317 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
2323 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
2325 return sock
->ops
->shutdown(sock
, how
);
2328 /* ABI emulation layers need these two */
2329 EXPORT_SYMBOL(move_addr_to_kernel
);
2330 EXPORT_SYMBOL(move_addr_to_user
);
2331 EXPORT_SYMBOL(sock_create
);
2332 EXPORT_SYMBOL(sock_create_kern
);
2333 EXPORT_SYMBOL(sock_create_lite
);
2334 EXPORT_SYMBOL(sock_map_fd
);
2335 EXPORT_SYMBOL(sock_recvmsg
);
2336 EXPORT_SYMBOL(sock_register
);
2337 EXPORT_SYMBOL(sock_release
);
2338 EXPORT_SYMBOL(sock_sendmsg
);
2339 EXPORT_SYMBOL(sock_unregister
);
2340 EXPORT_SYMBOL(sock_wake_async
);
2341 EXPORT_SYMBOL(sockfd_lookup
);
2342 EXPORT_SYMBOL(kernel_sendmsg
);
2343 EXPORT_SYMBOL(kernel_recvmsg
);
2344 EXPORT_SYMBOL(kernel_bind
);
2345 EXPORT_SYMBOL(kernel_listen
);
2346 EXPORT_SYMBOL(kernel_accept
);
2347 EXPORT_SYMBOL(kernel_connect
);
2348 EXPORT_SYMBOL(kernel_getsockname
);
2349 EXPORT_SYMBOL(kernel_getpeername
);
2350 EXPORT_SYMBOL(kernel_getsockopt
);
2351 EXPORT_SYMBOL(kernel_setsockopt
);
2352 EXPORT_SYMBOL(kernel_sendpage
);
2353 EXPORT_SYMBOL(kernel_sock_ioctl
);
2354 EXPORT_SYMBOL(kernel_sock_shutdown
);