time: prevent the loop in timespec_add_ns() from being optimised away
[linux-2.6/zen-sources.git] / mm / swap_state.c
blobec42f01a8d02669fb5bd2c73dcffefb5bb619f6c
1 /*
2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
21 #include <asm/pgtable.h>
24 * swapper_space is a fiction, retained to simplify the path through
25 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
26 * future use of radix_tree tags in the swap cache.
28 static const struct address_space_operations swap_aops = {
29 .writepage = swap_writepage,
30 .sync_page = block_sync_page,
31 .set_page_dirty = __set_page_dirty_nobuffers,
32 .migratepage = migrate_page,
35 static struct backing_dev_info swap_backing_dev_info = {
36 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
37 .unplug_io_fn = swap_unplug_io_fn,
40 struct address_space swapper_space = {
41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 .tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock),
43 .a_ops = &swap_aops,
44 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
45 .backing_dev_info = &swap_backing_dev_info,
48 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
50 static struct {
51 unsigned long add_total;
52 unsigned long del_total;
53 unsigned long find_success;
54 unsigned long find_total;
55 } swap_cache_info;
57 void show_swap_cache_info(void)
59 printk("Swap cache: add %lu, delete %lu, find %lu/%lu\n",
60 swap_cache_info.add_total, swap_cache_info.del_total,
61 swap_cache_info.find_success, swap_cache_info.find_total);
62 printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
63 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
67 * add_to_swap_cache resembles add_to_page_cache on swapper_space,
68 * but sets SwapCache flag and private instead of mapping and index.
70 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
72 int error;
74 BUG_ON(!PageLocked(page));
75 BUG_ON(PageSwapCache(page));
76 BUG_ON(PagePrivate(page));
77 error = radix_tree_preload(gfp_mask);
78 if (!error) {
79 write_lock_irq(&swapper_space.tree_lock);
80 error = radix_tree_insert(&swapper_space.page_tree,
81 entry.val, page);
82 if (!error) {
83 page_cache_get(page);
84 SetPageSwapCache(page);
85 set_page_private(page, entry.val);
86 total_swapcache_pages++;
87 __inc_zone_page_state(page, NR_FILE_PAGES);
88 INC_CACHE_INFO(add_total);
90 write_unlock_irq(&swapper_space.tree_lock);
91 radix_tree_preload_end();
93 return error;
97 * This must be called only on pages that have
98 * been verified to be in the swap cache.
100 void __delete_from_swap_cache(struct page *page)
102 BUG_ON(!PageLocked(page));
103 BUG_ON(!PageSwapCache(page));
104 BUG_ON(PageWriteback(page));
105 BUG_ON(PagePrivate(page));
107 radix_tree_delete(&swapper_space.page_tree, page_private(page));
108 set_page_private(page, 0);
109 ClearPageSwapCache(page);
110 total_swapcache_pages--;
111 __dec_zone_page_state(page, NR_FILE_PAGES);
112 INC_CACHE_INFO(del_total);
116 * add_to_swap - allocate swap space for a page
117 * @page: page we want to move to swap
119 * Allocate swap space for the page and add the page to the
120 * swap cache. Caller needs to hold the page lock.
122 int add_to_swap(struct page * page, gfp_t gfp_mask)
124 swp_entry_t entry;
125 int err;
127 BUG_ON(!PageLocked(page));
128 BUG_ON(!PageUptodate(page));
130 for (;;) {
131 entry = get_swap_page();
132 if (!entry.val)
133 return 0;
136 * Radix-tree node allocations from PF_MEMALLOC contexts could
137 * completely exhaust the page allocator. __GFP_NOMEMALLOC
138 * stops emergency reserves from being allocated.
140 * TODO: this could cause a theoretical memory reclaim
141 * deadlock in the swap out path.
144 * Add it to the swap cache and mark it dirty
146 err = add_to_swap_cache(page, entry,
147 gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
149 switch (err) {
150 case 0: /* Success */
151 SetPageDirty(page);
152 return 1;
153 case -EEXIST:
154 /* Raced with "speculative" read_swap_cache_async */
155 swap_free(entry);
156 continue;
157 default:
158 /* -ENOMEM radix-tree allocation failure */
159 swap_free(entry);
160 return 0;
166 * This must be called only on pages that have
167 * been verified to be in the swap cache and locked.
168 * It will never put the page into the free list,
169 * the caller has a reference on the page.
171 void delete_from_swap_cache(struct page *page)
173 swp_entry_t entry;
175 entry.val = page_private(page);
177 write_lock_irq(&swapper_space.tree_lock);
178 __delete_from_swap_cache(page);
179 write_unlock_irq(&swapper_space.tree_lock);
181 swap_free(entry);
182 page_cache_release(page);
186 * If we are the only user, then try to free up the swap cache.
188 * Its ok to check for PageSwapCache without the page lock
189 * here because we are going to recheck again inside
190 * exclusive_swap_page() _with_ the lock.
191 * - Marcelo
193 static inline void free_swap_cache(struct page *page)
195 if (PageSwapCache(page) && !TestSetPageLocked(page)) {
196 remove_exclusive_swap_page(page);
197 unlock_page(page);
202 * Perform a free_page(), also freeing any swap cache associated with
203 * this page if it is the last user of the page.
205 void free_page_and_swap_cache(struct page *page)
207 free_swap_cache(page);
208 page_cache_release(page);
212 * Passed an array of pages, drop them all from swapcache and then release
213 * them. They are removed from the LRU and freed if this is their last use.
215 void free_pages_and_swap_cache(struct page **pages, int nr)
217 struct page **pagep = pages;
219 lru_add_drain();
220 while (nr) {
221 int todo = min(nr, PAGEVEC_SIZE);
222 int i;
224 for (i = 0; i < todo; i++)
225 free_swap_cache(pagep[i]);
226 release_pages(pagep, todo, 0);
227 pagep += todo;
228 nr -= todo;
233 * Lookup a swap entry in the swap cache. A found page will be returned
234 * unlocked and with its refcount incremented - we rely on the kernel
235 * lock getting page table operations atomic even if we drop the page
236 * lock before returning.
238 struct page * lookup_swap_cache(swp_entry_t entry)
240 struct page *page;
242 page = find_get_page(&swapper_space, entry.val);
244 if (page)
245 INC_CACHE_INFO(find_success);
247 INC_CACHE_INFO(find_total);
248 return page;
252 * Locate a page of swap in physical memory, reserving swap cache space
253 * and reading the disk if it is not already cached.
254 * A failure return means that either the page allocation failed or that
255 * the swap entry is no longer in use.
257 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
258 struct vm_area_struct *vma, unsigned long addr)
260 struct page *found_page, *new_page = NULL;
261 int err;
263 do {
265 * First check the swap cache. Since this is normally
266 * called after lookup_swap_cache() failed, re-calling
267 * that would confuse statistics.
269 found_page = find_get_page(&swapper_space, entry.val);
270 if (found_page)
271 break;
274 * Get a new page to read into from swap.
276 if (!new_page) {
277 new_page = alloc_page_vma(gfp_mask, vma, addr);
278 if (!new_page)
279 break; /* Out of memory */
283 * Swap entry may have been freed since our caller observed it.
285 if (!swap_duplicate(entry))
286 break;
289 * Associate the page with swap entry in the swap cache.
290 * May fail (-EEXIST) if there is already a page associated
291 * with this entry in the swap cache: added by a racing
292 * read_swap_cache_async, or add_to_swap or shmem_writepage
293 * re-using the just freed swap entry for an existing page.
294 * May fail (-ENOMEM) if radix-tree node allocation failed.
296 SetPageLocked(new_page);
297 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
298 if (!err) {
300 * Initiate read into locked page and return.
302 lru_cache_add_active(new_page);
303 swap_readpage(NULL, new_page);
304 return new_page;
306 ClearPageLocked(new_page);
307 swap_free(entry);
308 } while (err != -ENOMEM);
310 if (new_page)
311 page_cache_release(new_page);
312 return found_page;
316 * swapin_readahead - swap in pages in hope we need them soon
317 * @entry: swap entry of this memory
318 * @vma: user vma this address belongs to
319 * @addr: target address for mempolicy
321 * Returns the struct page for entry and addr, after queueing swapin.
323 * Primitive swap readahead code. We simply read an aligned block of
324 * (1 << page_cluster) entries in the swap area. This method is chosen
325 * because it doesn't cost us any seek time. We also make sure to queue
326 * the 'original' request together with the readahead ones...
328 * This has been extended to use the NUMA policies from the mm triggering
329 * the readahead.
331 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
333 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
334 struct vm_area_struct *vma, unsigned long addr)
336 int nr_pages;
337 struct page *page;
338 unsigned long offset;
339 unsigned long end_offset;
342 * Get starting offset for readaround, and number of pages to read.
343 * Adjust starting address by readbehind (for NUMA interleave case)?
344 * No, it's very unlikely that swap layout would follow vma layout,
345 * more likely that neighbouring swap pages came from the same node:
346 * so use the same "addr" to choose the same node for each swap read.
348 nr_pages = valid_swaphandles(entry, &offset);
349 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
350 /* Ok, do the async read-ahead now */
351 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
352 gfp_mask, vma, addr);
353 if (!page)
354 break;
355 page_cache_release(page);
357 lru_add_drain(); /* Push any new pages onto the LRU now */
358 return read_swap_cache_async(entry, gfp_mask, vma, addr);