sgi-xp: isolate xpc_vars structure to sn2 only
[linux-2.6/zen-sources.git] / drivers / md / raid5.c
blob55e7c56045a0b4e48474f0cf9d507c22a73217b3
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
58 * Stripe cache
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 * The following can be used to debug the driver
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
104 static inline int raid6_next_disk(int disk, int raid_disks)
106 disk++;
107 return (disk < raid_disks) ? disk : 0;
110 static void return_io(struct bio *return_bi)
112 struct bio *bi = return_bi;
113 while (bi) {
115 return_bi = bi->bi_next;
116 bi->bi_next = NULL;
117 bi->bi_size = 0;
118 bio_endio(bi, 0);
119 bi = return_bi;
123 static void print_raid5_conf (raid5_conf_t *conf);
125 static int stripe_operations_active(struct stripe_head *sh)
127 return sh->check_state || sh->reconstruct_state ||
128 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
129 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
132 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
134 if (atomic_dec_and_test(&sh->count)) {
135 BUG_ON(!list_empty(&sh->lru));
136 BUG_ON(atomic_read(&conf->active_stripes)==0);
137 if (test_bit(STRIPE_HANDLE, &sh->state)) {
138 if (test_bit(STRIPE_DELAYED, &sh->state)) {
139 list_add_tail(&sh->lru, &conf->delayed_list);
140 blk_plug_device(conf->mddev->queue);
141 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
142 sh->bm_seq - conf->seq_write > 0) {
143 list_add_tail(&sh->lru, &conf->bitmap_list);
144 blk_plug_device(conf->mddev->queue);
145 } else {
146 clear_bit(STRIPE_BIT_DELAY, &sh->state);
147 list_add_tail(&sh->lru, &conf->handle_list);
149 md_wakeup_thread(conf->mddev->thread);
150 } else {
151 BUG_ON(stripe_operations_active(sh));
152 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
153 atomic_dec(&conf->preread_active_stripes);
154 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
155 md_wakeup_thread(conf->mddev->thread);
157 atomic_dec(&conf->active_stripes);
158 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
159 list_add_tail(&sh->lru, &conf->inactive_list);
160 wake_up(&conf->wait_for_stripe);
161 if (conf->retry_read_aligned)
162 md_wakeup_thread(conf->mddev->thread);
167 static void release_stripe(struct stripe_head *sh)
169 raid5_conf_t *conf = sh->raid_conf;
170 unsigned long flags;
172 spin_lock_irqsave(&conf->device_lock, flags);
173 __release_stripe(conf, sh);
174 spin_unlock_irqrestore(&conf->device_lock, flags);
177 static inline void remove_hash(struct stripe_head *sh)
179 pr_debug("remove_hash(), stripe %llu\n",
180 (unsigned long long)sh->sector);
182 hlist_del_init(&sh->hash);
185 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
187 struct hlist_head *hp = stripe_hash(conf, sh->sector);
189 pr_debug("insert_hash(), stripe %llu\n",
190 (unsigned long long)sh->sector);
192 CHECK_DEVLOCK();
193 hlist_add_head(&sh->hash, hp);
197 /* find an idle stripe, make sure it is unhashed, and return it. */
198 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
200 struct stripe_head *sh = NULL;
201 struct list_head *first;
203 CHECK_DEVLOCK();
204 if (list_empty(&conf->inactive_list))
205 goto out;
206 first = conf->inactive_list.next;
207 sh = list_entry(first, struct stripe_head, lru);
208 list_del_init(first);
209 remove_hash(sh);
210 atomic_inc(&conf->active_stripes);
211 out:
212 return sh;
215 static void shrink_buffers(struct stripe_head *sh, int num)
217 struct page *p;
218 int i;
220 for (i=0; i<num ; i++) {
221 p = sh->dev[i].page;
222 if (!p)
223 continue;
224 sh->dev[i].page = NULL;
225 put_page(p);
229 static int grow_buffers(struct stripe_head *sh, int num)
231 int i;
233 for (i=0; i<num; i++) {
234 struct page *page;
236 if (!(page = alloc_page(GFP_KERNEL))) {
237 return 1;
239 sh->dev[i].page = page;
241 return 0;
244 static void raid5_build_block (struct stripe_head *sh, int i);
246 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
248 raid5_conf_t *conf = sh->raid_conf;
249 int i;
251 BUG_ON(atomic_read(&sh->count) != 0);
252 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
253 BUG_ON(stripe_operations_active(sh));
255 CHECK_DEVLOCK();
256 pr_debug("init_stripe called, stripe %llu\n",
257 (unsigned long long)sh->sector);
259 remove_hash(sh);
261 sh->sector = sector;
262 sh->pd_idx = pd_idx;
263 sh->state = 0;
265 sh->disks = disks;
267 for (i = sh->disks; i--; ) {
268 struct r5dev *dev = &sh->dev[i];
270 if (dev->toread || dev->read || dev->towrite || dev->written ||
271 test_bit(R5_LOCKED, &dev->flags)) {
272 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
273 (unsigned long long)sh->sector, i, dev->toread,
274 dev->read, dev->towrite, dev->written,
275 test_bit(R5_LOCKED, &dev->flags));
276 BUG();
278 dev->flags = 0;
279 raid5_build_block(sh, i);
281 insert_hash(conf, sh);
284 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
286 struct stripe_head *sh;
287 struct hlist_node *hn;
289 CHECK_DEVLOCK();
290 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
291 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
292 if (sh->sector == sector && sh->disks == disks)
293 return sh;
294 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
295 return NULL;
298 static void unplug_slaves(mddev_t *mddev);
299 static void raid5_unplug_device(struct request_queue *q);
301 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
302 int pd_idx, int noblock)
304 struct stripe_head *sh;
306 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
308 spin_lock_irq(&conf->device_lock);
310 do {
311 wait_event_lock_irq(conf->wait_for_stripe,
312 conf->quiesce == 0,
313 conf->device_lock, /* nothing */);
314 sh = __find_stripe(conf, sector, disks);
315 if (!sh) {
316 if (!conf->inactive_blocked)
317 sh = get_free_stripe(conf);
318 if (noblock && sh == NULL)
319 break;
320 if (!sh) {
321 conf->inactive_blocked = 1;
322 wait_event_lock_irq(conf->wait_for_stripe,
323 !list_empty(&conf->inactive_list) &&
324 (atomic_read(&conf->active_stripes)
325 < (conf->max_nr_stripes *3/4)
326 || !conf->inactive_blocked),
327 conf->device_lock,
328 raid5_unplug_device(conf->mddev->queue)
330 conf->inactive_blocked = 0;
331 } else
332 init_stripe(sh, sector, pd_idx, disks);
333 } else {
334 if (atomic_read(&sh->count)) {
335 BUG_ON(!list_empty(&sh->lru));
336 } else {
337 if (!test_bit(STRIPE_HANDLE, &sh->state))
338 atomic_inc(&conf->active_stripes);
339 if (list_empty(&sh->lru) &&
340 !test_bit(STRIPE_EXPANDING, &sh->state))
341 BUG();
342 list_del_init(&sh->lru);
345 } while (sh == NULL);
347 if (sh)
348 atomic_inc(&sh->count);
350 spin_unlock_irq(&conf->device_lock);
351 return sh;
354 static void
355 raid5_end_read_request(struct bio *bi, int error);
356 static void
357 raid5_end_write_request(struct bio *bi, int error);
359 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
361 raid5_conf_t *conf = sh->raid_conf;
362 int i, disks = sh->disks;
364 might_sleep();
366 for (i = disks; i--; ) {
367 int rw;
368 struct bio *bi;
369 mdk_rdev_t *rdev;
370 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
371 rw = WRITE;
372 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
373 rw = READ;
374 else
375 continue;
377 bi = &sh->dev[i].req;
379 bi->bi_rw = rw;
380 if (rw == WRITE)
381 bi->bi_end_io = raid5_end_write_request;
382 else
383 bi->bi_end_io = raid5_end_read_request;
385 rcu_read_lock();
386 rdev = rcu_dereference(conf->disks[i].rdev);
387 if (rdev && test_bit(Faulty, &rdev->flags))
388 rdev = NULL;
389 if (rdev)
390 atomic_inc(&rdev->nr_pending);
391 rcu_read_unlock();
393 if (rdev) {
394 if (s->syncing || s->expanding || s->expanded)
395 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
397 set_bit(STRIPE_IO_STARTED, &sh->state);
399 bi->bi_bdev = rdev->bdev;
400 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
401 __func__, (unsigned long long)sh->sector,
402 bi->bi_rw, i);
403 atomic_inc(&sh->count);
404 bi->bi_sector = sh->sector + rdev->data_offset;
405 bi->bi_flags = 1 << BIO_UPTODATE;
406 bi->bi_vcnt = 1;
407 bi->bi_max_vecs = 1;
408 bi->bi_idx = 0;
409 bi->bi_io_vec = &sh->dev[i].vec;
410 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
411 bi->bi_io_vec[0].bv_offset = 0;
412 bi->bi_size = STRIPE_SIZE;
413 bi->bi_next = NULL;
414 if (rw == WRITE &&
415 test_bit(R5_ReWrite, &sh->dev[i].flags))
416 atomic_add(STRIPE_SECTORS,
417 &rdev->corrected_errors);
418 generic_make_request(bi);
419 } else {
420 if (rw == WRITE)
421 set_bit(STRIPE_DEGRADED, &sh->state);
422 pr_debug("skip op %ld on disc %d for sector %llu\n",
423 bi->bi_rw, i, (unsigned long long)sh->sector);
424 clear_bit(R5_LOCKED, &sh->dev[i].flags);
425 set_bit(STRIPE_HANDLE, &sh->state);
430 static struct dma_async_tx_descriptor *
431 async_copy_data(int frombio, struct bio *bio, struct page *page,
432 sector_t sector, struct dma_async_tx_descriptor *tx)
434 struct bio_vec *bvl;
435 struct page *bio_page;
436 int i;
437 int page_offset;
439 if (bio->bi_sector >= sector)
440 page_offset = (signed)(bio->bi_sector - sector) * 512;
441 else
442 page_offset = (signed)(sector - bio->bi_sector) * -512;
443 bio_for_each_segment(bvl, bio, i) {
444 int len = bio_iovec_idx(bio, i)->bv_len;
445 int clen;
446 int b_offset = 0;
448 if (page_offset < 0) {
449 b_offset = -page_offset;
450 page_offset += b_offset;
451 len -= b_offset;
454 if (len > 0 && page_offset + len > STRIPE_SIZE)
455 clen = STRIPE_SIZE - page_offset;
456 else
457 clen = len;
459 if (clen > 0) {
460 b_offset += bio_iovec_idx(bio, i)->bv_offset;
461 bio_page = bio_iovec_idx(bio, i)->bv_page;
462 if (frombio)
463 tx = async_memcpy(page, bio_page, page_offset,
464 b_offset, clen,
465 ASYNC_TX_DEP_ACK,
466 tx, NULL, NULL);
467 else
468 tx = async_memcpy(bio_page, page, b_offset,
469 page_offset, clen,
470 ASYNC_TX_DEP_ACK,
471 tx, NULL, NULL);
473 if (clen < len) /* hit end of page */
474 break;
475 page_offset += len;
478 return tx;
481 static void ops_complete_biofill(void *stripe_head_ref)
483 struct stripe_head *sh = stripe_head_ref;
484 struct bio *return_bi = NULL;
485 raid5_conf_t *conf = sh->raid_conf;
486 int i;
488 pr_debug("%s: stripe %llu\n", __func__,
489 (unsigned long long)sh->sector);
491 /* clear completed biofills */
492 spin_lock_irq(&conf->device_lock);
493 for (i = sh->disks; i--; ) {
494 struct r5dev *dev = &sh->dev[i];
496 /* acknowledge completion of a biofill operation */
497 /* and check if we need to reply to a read request,
498 * new R5_Wantfill requests are held off until
499 * !STRIPE_BIOFILL_RUN
501 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
502 struct bio *rbi, *rbi2;
504 BUG_ON(!dev->read);
505 rbi = dev->read;
506 dev->read = NULL;
507 while (rbi && rbi->bi_sector <
508 dev->sector + STRIPE_SECTORS) {
509 rbi2 = r5_next_bio(rbi, dev->sector);
510 if (--rbi->bi_phys_segments == 0) {
511 rbi->bi_next = return_bi;
512 return_bi = rbi;
514 rbi = rbi2;
518 spin_unlock_irq(&conf->device_lock);
519 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
521 return_io(return_bi);
523 set_bit(STRIPE_HANDLE, &sh->state);
524 release_stripe(sh);
527 static void ops_run_biofill(struct stripe_head *sh)
529 struct dma_async_tx_descriptor *tx = NULL;
530 raid5_conf_t *conf = sh->raid_conf;
531 int i;
533 pr_debug("%s: stripe %llu\n", __func__,
534 (unsigned long long)sh->sector);
536 for (i = sh->disks; i--; ) {
537 struct r5dev *dev = &sh->dev[i];
538 if (test_bit(R5_Wantfill, &dev->flags)) {
539 struct bio *rbi;
540 spin_lock_irq(&conf->device_lock);
541 dev->read = rbi = dev->toread;
542 dev->toread = NULL;
543 spin_unlock_irq(&conf->device_lock);
544 while (rbi && rbi->bi_sector <
545 dev->sector + STRIPE_SECTORS) {
546 tx = async_copy_data(0, rbi, dev->page,
547 dev->sector, tx);
548 rbi = r5_next_bio(rbi, dev->sector);
553 atomic_inc(&sh->count);
554 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
555 ops_complete_biofill, sh);
558 static void ops_complete_compute5(void *stripe_head_ref)
560 struct stripe_head *sh = stripe_head_ref;
561 int target = sh->ops.target;
562 struct r5dev *tgt = &sh->dev[target];
564 pr_debug("%s: stripe %llu\n", __func__,
565 (unsigned long long)sh->sector);
567 set_bit(R5_UPTODATE, &tgt->flags);
568 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
569 clear_bit(R5_Wantcompute, &tgt->flags);
570 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
571 if (sh->check_state == check_state_compute_run)
572 sh->check_state = check_state_compute_result;
573 set_bit(STRIPE_HANDLE, &sh->state);
574 release_stripe(sh);
577 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
579 /* kernel stack size limits the total number of disks */
580 int disks = sh->disks;
581 struct page *xor_srcs[disks];
582 int target = sh->ops.target;
583 struct r5dev *tgt = &sh->dev[target];
584 struct page *xor_dest = tgt->page;
585 int count = 0;
586 struct dma_async_tx_descriptor *tx;
587 int i;
589 pr_debug("%s: stripe %llu block: %d\n",
590 __func__, (unsigned long long)sh->sector, target);
591 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
593 for (i = disks; i--; )
594 if (i != target)
595 xor_srcs[count++] = sh->dev[i].page;
597 atomic_inc(&sh->count);
599 if (unlikely(count == 1))
600 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
601 0, NULL, ops_complete_compute5, sh);
602 else
603 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
604 ASYNC_TX_XOR_ZERO_DST, NULL,
605 ops_complete_compute5, sh);
607 return tx;
610 static void ops_complete_prexor(void *stripe_head_ref)
612 struct stripe_head *sh = stripe_head_ref;
614 pr_debug("%s: stripe %llu\n", __func__,
615 (unsigned long long)sh->sector);
618 static struct dma_async_tx_descriptor *
619 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
621 /* kernel stack size limits the total number of disks */
622 int disks = sh->disks;
623 struct page *xor_srcs[disks];
624 int count = 0, pd_idx = sh->pd_idx, i;
626 /* existing parity data subtracted */
627 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
629 pr_debug("%s: stripe %llu\n", __func__,
630 (unsigned long long)sh->sector);
632 for (i = disks; i--; ) {
633 struct r5dev *dev = &sh->dev[i];
634 /* Only process blocks that are known to be uptodate */
635 if (test_bit(R5_Wantdrain, &dev->flags))
636 xor_srcs[count++] = dev->page;
639 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
640 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
641 ops_complete_prexor, sh);
643 return tx;
646 static struct dma_async_tx_descriptor *
647 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
649 int disks = sh->disks;
650 int i;
652 pr_debug("%s: stripe %llu\n", __func__,
653 (unsigned long long)sh->sector);
655 for (i = disks; i--; ) {
656 struct r5dev *dev = &sh->dev[i];
657 struct bio *chosen;
659 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
660 struct bio *wbi;
662 spin_lock(&sh->lock);
663 chosen = dev->towrite;
664 dev->towrite = NULL;
665 BUG_ON(dev->written);
666 wbi = dev->written = chosen;
667 spin_unlock(&sh->lock);
669 while (wbi && wbi->bi_sector <
670 dev->sector + STRIPE_SECTORS) {
671 tx = async_copy_data(1, wbi, dev->page,
672 dev->sector, tx);
673 wbi = r5_next_bio(wbi, dev->sector);
678 return tx;
681 static void ops_complete_postxor(void *stripe_head_ref)
683 struct stripe_head *sh = stripe_head_ref;
684 int disks = sh->disks, i, pd_idx = sh->pd_idx;
686 pr_debug("%s: stripe %llu\n", __func__,
687 (unsigned long long)sh->sector);
689 for (i = disks; i--; ) {
690 struct r5dev *dev = &sh->dev[i];
691 if (dev->written || i == pd_idx)
692 set_bit(R5_UPTODATE, &dev->flags);
695 if (sh->reconstruct_state == reconstruct_state_drain_run)
696 sh->reconstruct_state = reconstruct_state_drain_result;
697 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
698 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
699 else {
700 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
701 sh->reconstruct_state = reconstruct_state_result;
704 set_bit(STRIPE_HANDLE, &sh->state);
705 release_stripe(sh);
708 static void
709 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
711 /* kernel stack size limits the total number of disks */
712 int disks = sh->disks;
713 struct page *xor_srcs[disks];
715 int count = 0, pd_idx = sh->pd_idx, i;
716 struct page *xor_dest;
717 int prexor = 0;
718 unsigned long flags;
720 pr_debug("%s: stripe %llu\n", __func__,
721 (unsigned long long)sh->sector);
723 /* check if prexor is active which means only process blocks
724 * that are part of a read-modify-write (written)
726 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
727 prexor = 1;
728 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
729 for (i = disks; i--; ) {
730 struct r5dev *dev = &sh->dev[i];
731 if (dev->written)
732 xor_srcs[count++] = dev->page;
734 } else {
735 xor_dest = sh->dev[pd_idx].page;
736 for (i = disks; i--; ) {
737 struct r5dev *dev = &sh->dev[i];
738 if (i != pd_idx)
739 xor_srcs[count++] = dev->page;
743 /* 1/ if we prexor'd then the dest is reused as a source
744 * 2/ if we did not prexor then we are redoing the parity
745 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
746 * for the synchronous xor case
748 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
749 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
751 atomic_inc(&sh->count);
753 if (unlikely(count == 1)) {
754 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
755 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
756 flags, tx, ops_complete_postxor, sh);
757 } else
758 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
759 flags, tx, ops_complete_postxor, sh);
762 static void ops_complete_check(void *stripe_head_ref)
764 struct stripe_head *sh = stripe_head_ref;
766 pr_debug("%s: stripe %llu\n", __func__,
767 (unsigned long long)sh->sector);
769 sh->check_state = check_state_check_result;
770 set_bit(STRIPE_HANDLE, &sh->state);
771 release_stripe(sh);
774 static void ops_run_check(struct stripe_head *sh)
776 /* kernel stack size limits the total number of disks */
777 int disks = sh->disks;
778 struct page *xor_srcs[disks];
779 struct dma_async_tx_descriptor *tx;
781 int count = 0, pd_idx = sh->pd_idx, i;
782 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
784 pr_debug("%s: stripe %llu\n", __func__,
785 (unsigned long long)sh->sector);
787 for (i = disks; i--; ) {
788 struct r5dev *dev = &sh->dev[i];
789 if (i != pd_idx)
790 xor_srcs[count++] = dev->page;
793 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
794 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
796 atomic_inc(&sh->count);
797 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
798 ops_complete_check, sh);
801 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
803 int overlap_clear = 0, i, disks = sh->disks;
804 struct dma_async_tx_descriptor *tx = NULL;
806 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
807 ops_run_biofill(sh);
808 overlap_clear++;
811 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
812 tx = ops_run_compute5(sh);
813 /* terminate the chain if postxor is not set to be run */
814 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
815 async_tx_ack(tx);
818 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
819 tx = ops_run_prexor(sh, tx);
821 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
822 tx = ops_run_biodrain(sh, tx);
823 overlap_clear++;
826 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
827 ops_run_postxor(sh, tx);
829 if (test_bit(STRIPE_OP_CHECK, &ops_request))
830 ops_run_check(sh);
832 if (overlap_clear)
833 for (i = disks; i--; ) {
834 struct r5dev *dev = &sh->dev[i];
835 if (test_and_clear_bit(R5_Overlap, &dev->flags))
836 wake_up(&sh->raid_conf->wait_for_overlap);
840 static int grow_one_stripe(raid5_conf_t *conf)
842 struct stripe_head *sh;
843 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
844 if (!sh)
845 return 0;
846 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
847 sh->raid_conf = conf;
848 spin_lock_init(&sh->lock);
850 if (grow_buffers(sh, conf->raid_disks)) {
851 shrink_buffers(sh, conf->raid_disks);
852 kmem_cache_free(conf->slab_cache, sh);
853 return 0;
855 sh->disks = conf->raid_disks;
856 /* we just created an active stripe so... */
857 atomic_set(&sh->count, 1);
858 atomic_inc(&conf->active_stripes);
859 INIT_LIST_HEAD(&sh->lru);
860 release_stripe(sh);
861 return 1;
864 static int grow_stripes(raid5_conf_t *conf, int num)
866 struct kmem_cache *sc;
867 int devs = conf->raid_disks;
869 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
870 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
871 conf->active_name = 0;
872 sc = kmem_cache_create(conf->cache_name[conf->active_name],
873 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
874 0, 0, NULL);
875 if (!sc)
876 return 1;
877 conf->slab_cache = sc;
878 conf->pool_size = devs;
879 while (num--)
880 if (!grow_one_stripe(conf))
881 return 1;
882 return 0;
885 #ifdef CONFIG_MD_RAID5_RESHAPE
886 static int resize_stripes(raid5_conf_t *conf, int newsize)
888 /* Make all the stripes able to hold 'newsize' devices.
889 * New slots in each stripe get 'page' set to a new page.
891 * This happens in stages:
892 * 1/ create a new kmem_cache and allocate the required number of
893 * stripe_heads.
894 * 2/ gather all the old stripe_heads and tranfer the pages across
895 * to the new stripe_heads. This will have the side effect of
896 * freezing the array as once all stripe_heads have been collected,
897 * no IO will be possible. Old stripe heads are freed once their
898 * pages have been transferred over, and the old kmem_cache is
899 * freed when all stripes are done.
900 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
901 * we simple return a failre status - no need to clean anything up.
902 * 4/ allocate new pages for the new slots in the new stripe_heads.
903 * If this fails, we don't bother trying the shrink the
904 * stripe_heads down again, we just leave them as they are.
905 * As each stripe_head is processed the new one is released into
906 * active service.
908 * Once step2 is started, we cannot afford to wait for a write,
909 * so we use GFP_NOIO allocations.
911 struct stripe_head *osh, *nsh;
912 LIST_HEAD(newstripes);
913 struct disk_info *ndisks;
914 int err;
915 struct kmem_cache *sc;
916 int i;
918 if (newsize <= conf->pool_size)
919 return 0; /* never bother to shrink */
921 err = md_allow_write(conf->mddev);
922 if (err)
923 return err;
925 /* Step 1 */
926 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
927 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
928 0, 0, NULL);
929 if (!sc)
930 return -ENOMEM;
932 for (i = conf->max_nr_stripes; i; i--) {
933 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
934 if (!nsh)
935 break;
937 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
939 nsh->raid_conf = conf;
940 spin_lock_init(&nsh->lock);
942 list_add(&nsh->lru, &newstripes);
944 if (i) {
945 /* didn't get enough, give up */
946 while (!list_empty(&newstripes)) {
947 nsh = list_entry(newstripes.next, struct stripe_head, lru);
948 list_del(&nsh->lru);
949 kmem_cache_free(sc, nsh);
951 kmem_cache_destroy(sc);
952 return -ENOMEM;
954 /* Step 2 - Must use GFP_NOIO now.
955 * OK, we have enough stripes, start collecting inactive
956 * stripes and copying them over
958 list_for_each_entry(nsh, &newstripes, lru) {
959 spin_lock_irq(&conf->device_lock);
960 wait_event_lock_irq(conf->wait_for_stripe,
961 !list_empty(&conf->inactive_list),
962 conf->device_lock,
963 unplug_slaves(conf->mddev)
965 osh = get_free_stripe(conf);
966 spin_unlock_irq(&conf->device_lock);
967 atomic_set(&nsh->count, 1);
968 for(i=0; i<conf->pool_size; i++)
969 nsh->dev[i].page = osh->dev[i].page;
970 for( ; i<newsize; i++)
971 nsh->dev[i].page = NULL;
972 kmem_cache_free(conf->slab_cache, osh);
974 kmem_cache_destroy(conf->slab_cache);
976 /* Step 3.
977 * At this point, we are holding all the stripes so the array
978 * is completely stalled, so now is a good time to resize
979 * conf->disks.
981 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
982 if (ndisks) {
983 for (i=0; i<conf->raid_disks; i++)
984 ndisks[i] = conf->disks[i];
985 kfree(conf->disks);
986 conf->disks = ndisks;
987 } else
988 err = -ENOMEM;
990 /* Step 4, return new stripes to service */
991 while(!list_empty(&newstripes)) {
992 nsh = list_entry(newstripes.next, struct stripe_head, lru);
993 list_del_init(&nsh->lru);
994 for (i=conf->raid_disks; i < newsize; i++)
995 if (nsh->dev[i].page == NULL) {
996 struct page *p = alloc_page(GFP_NOIO);
997 nsh->dev[i].page = p;
998 if (!p)
999 err = -ENOMEM;
1001 release_stripe(nsh);
1003 /* critical section pass, GFP_NOIO no longer needed */
1005 conf->slab_cache = sc;
1006 conf->active_name = 1-conf->active_name;
1007 conf->pool_size = newsize;
1008 return err;
1010 #endif
1012 static int drop_one_stripe(raid5_conf_t *conf)
1014 struct stripe_head *sh;
1016 spin_lock_irq(&conf->device_lock);
1017 sh = get_free_stripe(conf);
1018 spin_unlock_irq(&conf->device_lock);
1019 if (!sh)
1020 return 0;
1021 BUG_ON(atomic_read(&sh->count));
1022 shrink_buffers(sh, conf->pool_size);
1023 kmem_cache_free(conf->slab_cache, sh);
1024 atomic_dec(&conf->active_stripes);
1025 return 1;
1028 static void shrink_stripes(raid5_conf_t *conf)
1030 while (drop_one_stripe(conf))
1033 if (conf->slab_cache)
1034 kmem_cache_destroy(conf->slab_cache);
1035 conf->slab_cache = NULL;
1038 static void raid5_end_read_request(struct bio * bi, int error)
1040 struct stripe_head *sh = bi->bi_private;
1041 raid5_conf_t *conf = sh->raid_conf;
1042 int disks = sh->disks, i;
1043 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1044 char b[BDEVNAME_SIZE];
1045 mdk_rdev_t *rdev;
1048 for (i=0 ; i<disks; i++)
1049 if (bi == &sh->dev[i].req)
1050 break;
1052 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1053 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1054 uptodate);
1055 if (i == disks) {
1056 BUG();
1057 return;
1060 if (uptodate) {
1061 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1062 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1063 rdev = conf->disks[i].rdev;
1064 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1065 " (%lu sectors at %llu on %s)\n",
1066 mdname(conf->mddev), STRIPE_SECTORS,
1067 (unsigned long long)(sh->sector
1068 + rdev->data_offset),
1069 bdevname(rdev->bdev, b));
1070 clear_bit(R5_ReadError, &sh->dev[i].flags);
1071 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1073 if (atomic_read(&conf->disks[i].rdev->read_errors))
1074 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1075 } else {
1076 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1077 int retry = 0;
1078 rdev = conf->disks[i].rdev;
1080 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1081 atomic_inc(&rdev->read_errors);
1082 if (conf->mddev->degraded)
1083 printk_rl(KERN_WARNING
1084 "raid5:%s: read error not correctable "
1085 "(sector %llu on %s).\n",
1086 mdname(conf->mddev),
1087 (unsigned long long)(sh->sector
1088 + rdev->data_offset),
1089 bdn);
1090 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1091 /* Oh, no!!! */
1092 printk_rl(KERN_WARNING
1093 "raid5:%s: read error NOT corrected!! "
1094 "(sector %llu on %s).\n",
1095 mdname(conf->mddev),
1096 (unsigned long long)(sh->sector
1097 + rdev->data_offset),
1098 bdn);
1099 else if (atomic_read(&rdev->read_errors)
1100 > conf->max_nr_stripes)
1101 printk(KERN_WARNING
1102 "raid5:%s: Too many read errors, failing device %s.\n",
1103 mdname(conf->mddev), bdn);
1104 else
1105 retry = 1;
1106 if (retry)
1107 set_bit(R5_ReadError, &sh->dev[i].flags);
1108 else {
1109 clear_bit(R5_ReadError, &sh->dev[i].flags);
1110 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1111 md_error(conf->mddev, rdev);
1114 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1115 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1116 set_bit(STRIPE_HANDLE, &sh->state);
1117 release_stripe(sh);
1120 static void raid5_end_write_request (struct bio *bi, int error)
1122 struct stripe_head *sh = bi->bi_private;
1123 raid5_conf_t *conf = sh->raid_conf;
1124 int disks = sh->disks, i;
1125 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1127 for (i=0 ; i<disks; i++)
1128 if (bi == &sh->dev[i].req)
1129 break;
1131 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1132 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1133 uptodate);
1134 if (i == disks) {
1135 BUG();
1136 return;
1139 if (!uptodate)
1140 md_error(conf->mddev, conf->disks[i].rdev);
1142 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1144 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1145 set_bit(STRIPE_HANDLE, &sh->state);
1146 release_stripe(sh);
1150 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1152 static void raid5_build_block (struct stripe_head *sh, int i)
1154 struct r5dev *dev = &sh->dev[i];
1156 bio_init(&dev->req);
1157 dev->req.bi_io_vec = &dev->vec;
1158 dev->req.bi_vcnt++;
1159 dev->req.bi_max_vecs++;
1160 dev->vec.bv_page = dev->page;
1161 dev->vec.bv_len = STRIPE_SIZE;
1162 dev->vec.bv_offset = 0;
1164 dev->req.bi_sector = sh->sector;
1165 dev->req.bi_private = sh;
1167 dev->flags = 0;
1168 dev->sector = compute_blocknr(sh, i);
1171 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1173 char b[BDEVNAME_SIZE];
1174 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1175 pr_debug("raid5: error called\n");
1177 if (!test_bit(Faulty, &rdev->flags)) {
1178 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1179 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1180 unsigned long flags;
1181 spin_lock_irqsave(&conf->device_lock, flags);
1182 mddev->degraded++;
1183 spin_unlock_irqrestore(&conf->device_lock, flags);
1185 * if recovery was running, make sure it aborts.
1187 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1189 set_bit(Faulty, &rdev->flags);
1190 printk (KERN_ALERT
1191 "raid5: Disk failure on %s, disabling device.\n"
1192 "raid5: Operation continuing on %d devices.\n",
1193 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1198 * Input: a 'big' sector number,
1199 * Output: index of the data and parity disk, and the sector # in them.
1201 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1202 unsigned int data_disks, unsigned int * dd_idx,
1203 unsigned int * pd_idx, raid5_conf_t *conf)
1205 long stripe;
1206 unsigned long chunk_number;
1207 unsigned int chunk_offset;
1208 sector_t new_sector;
1209 int sectors_per_chunk = conf->chunk_size >> 9;
1211 /* First compute the information on this sector */
1214 * Compute the chunk number and the sector offset inside the chunk
1216 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1217 chunk_number = r_sector;
1218 BUG_ON(r_sector != chunk_number);
1221 * Compute the stripe number
1223 stripe = chunk_number / data_disks;
1226 * Compute the data disk and parity disk indexes inside the stripe
1228 *dd_idx = chunk_number % data_disks;
1231 * Select the parity disk based on the user selected algorithm.
1233 switch(conf->level) {
1234 case 4:
1235 *pd_idx = data_disks;
1236 break;
1237 case 5:
1238 switch (conf->algorithm) {
1239 case ALGORITHM_LEFT_ASYMMETRIC:
1240 *pd_idx = data_disks - stripe % raid_disks;
1241 if (*dd_idx >= *pd_idx)
1242 (*dd_idx)++;
1243 break;
1244 case ALGORITHM_RIGHT_ASYMMETRIC:
1245 *pd_idx = stripe % raid_disks;
1246 if (*dd_idx >= *pd_idx)
1247 (*dd_idx)++;
1248 break;
1249 case ALGORITHM_LEFT_SYMMETRIC:
1250 *pd_idx = data_disks - stripe % raid_disks;
1251 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1252 break;
1253 case ALGORITHM_RIGHT_SYMMETRIC:
1254 *pd_idx = stripe % raid_disks;
1255 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1256 break;
1257 default:
1258 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1259 conf->algorithm);
1261 break;
1262 case 6:
1264 /**** FIX THIS ****/
1265 switch (conf->algorithm) {
1266 case ALGORITHM_LEFT_ASYMMETRIC:
1267 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1268 if (*pd_idx == raid_disks-1)
1269 (*dd_idx)++; /* Q D D D P */
1270 else if (*dd_idx >= *pd_idx)
1271 (*dd_idx) += 2; /* D D P Q D */
1272 break;
1273 case ALGORITHM_RIGHT_ASYMMETRIC:
1274 *pd_idx = stripe % raid_disks;
1275 if (*pd_idx == raid_disks-1)
1276 (*dd_idx)++; /* Q D D D P */
1277 else if (*dd_idx >= *pd_idx)
1278 (*dd_idx) += 2; /* D D P Q D */
1279 break;
1280 case ALGORITHM_LEFT_SYMMETRIC:
1281 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1282 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1283 break;
1284 case ALGORITHM_RIGHT_SYMMETRIC:
1285 *pd_idx = stripe % raid_disks;
1286 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1287 break;
1288 default:
1289 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1290 conf->algorithm);
1292 break;
1296 * Finally, compute the new sector number
1298 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1299 return new_sector;
1303 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1305 raid5_conf_t *conf = sh->raid_conf;
1306 int raid_disks = sh->disks;
1307 int data_disks = raid_disks - conf->max_degraded;
1308 sector_t new_sector = sh->sector, check;
1309 int sectors_per_chunk = conf->chunk_size >> 9;
1310 sector_t stripe;
1311 int chunk_offset;
1312 int chunk_number, dummy1, dummy2, dd_idx = i;
1313 sector_t r_sector;
1316 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1317 stripe = new_sector;
1318 BUG_ON(new_sector != stripe);
1320 if (i == sh->pd_idx)
1321 return 0;
1322 switch(conf->level) {
1323 case 4: break;
1324 case 5:
1325 switch (conf->algorithm) {
1326 case ALGORITHM_LEFT_ASYMMETRIC:
1327 case ALGORITHM_RIGHT_ASYMMETRIC:
1328 if (i > sh->pd_idx)
1329 i--;
1330 break;
1331 case ALGORITHM_LEFT_SYMMETRIC:
1332 case ALGORITHM_RIGHT_SYMMETRIC:
1333 if (i < sh->pd_idx)
1334 i += raid_disks;
1335 i -= (sh->pd_idx + 1);
1336 break;
1337 default:
1338 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1339 conf->algorithm);
1341 break;
1342 case 6:
1343 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1344 return 0; /* It is the Q disk */
1345 switch (conf->algorithm) {
1346 case ALGORITHM_LEFT_ASYMMETRIC:
1347 case ALGORITHM_RIGHT_ASYMMETRIC:
1348 if (sh->pd_idx == raid_disks-1)
1349 i--; /* Q D D D P */
1350 else if (i > sh->pd_idx)
1351 i -= 2; /* D D P Q D */
1352 break;
1353 case ALGORITHM_LEFT_SYMMETRIC:
1354 case ALGORITHM_RIGHT_SYMMETRIC:
1355 if (sh->pd_idx == raid_disks-1)
1356 i--; /* Q D D D P */
1357 else {
1358 /* D D P Q D */
1359 if (i < sh->pd_idx)
1360 i += raid_disks;
1361 i -= (sh->pd_idx + 2);
1363 break;
1364 default:
1365 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1366 conf->algorithm);
1368 break;
1371 chunk_number = stripe * data_disks + i;
1372 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1374 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1375 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1376 printk(KERN_ERR "compute_blocknr: map not correct\n");
1377 return 0;
1379 return r_sector;
1385 * Copy data between a page in the stripe cache, and one or more bion
1386 * The page could align with the middle of the bio, or there could be
1387 * several bion, each with several bio_vecs, which cover part of the page
1388 * Multiple bion are linked together on bi_next. There may be extras
1389 * at the end of this list. We ignore them.
1391 static void copy_data(int frombio, struct bio *bio,
1392 struct page *page,
1393 sector_t sector)
1395 char *pa = page_address(page);
1396 struct bio_vec *bvl;
1397 int i;
1398 int page_offset;
1400 if (bio->bi_sector >= sector)
1401 page_offset = (signed)(bio->bi_sector - sector) * 512;
1402 else
1403 page_offset = (signed)(sector - bio->bi_sector) * -512;
1404 bio_for_each_segment(bvl, bio, i) {
1405 int len = bio_iovec_idx(bio,i)->bv_len;
1406 int clen;
1407 int b_offset = 0;
1409 if (page_offset < 0) {
1410 b_offset = -page_offset;
1411 page_offset += b_offset;
1412 len -= b_offset;
1415 if (len > 0 && page_offset + len > STRIPE_SIZE)
1416 clen = STRIPE_SIZE - page_offset;
1417 else clen = len;
1419 if (clen > 0) {
1420 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1421 if (frombio)
1422 memcpy(pa+page_offset, ba+b_offset, clen);
1423 else
1424 memcpy(ba+b_offset, pa+page_offset, clen);
1425 __bio_kunmap_atomic(ba, KM_USER0);
1427 if (clen < len) /* hit end of page */
1428 break;
1429 page_offset += len;
1433 #define check_xor() do { \
1434 if (count == MAX_XOR_BLOCKS) { \
1435 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1436 count = 0; \
1438 } while(0)
1440 static void compute_parity6(struct stripe_head *sh, int method)
1442 raid6_conf_t *conf = sh->raid_conf;
1443 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1444 struct bio *chosen;
1445 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1446 void *ptrs[disks];
1448 qd_idx = raid6_next_disk(pd_idx, disks);
1449 d0_idx = raid6_next_disk(qd_idx, disks);
1451 pr_debug("compute_parity, stripe %llu, method %d\n",
1452 (unsigned long long)sh->sector, method);
1454 switch(method) {
1455 case READ_MODIFY_WRITE:
1456 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1457 case RECONSTRUCT_WRITE:
1458 for (i= disks; i-- ;)
1459 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1460 chosen = sh->dev[i].towrite;
1461 sh->dev[i].towrite = NULL;
1463 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1464 wake_up(&conf->wait_for_overlap);
1466 BUG_ON(sh->dev[i].written);
1467 sh->dev[i].written = chosen;
1469 break;
1470 case CHECK_PARITY:
1471 BUG(); /* Not implemented yet */
1474 for (i = disks; i--;)
1475 if (sh->dev[i].written) {
1476 sector_t sector = sh->dev[i].sector;
1477 struct bio *wbi = sh->dev[i].written;
1478 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1479 copy_data(1, wbi, sh->dev[i].page, sector);
1480 wbi = r5_next_bio(wbi, sector);
1483 set_bit(R5_LOCKED, &sh->dev[i].flags);
1484 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1487 // switch(method) {
1488 // case RECONSTRUCT_WRITE:
1489 // case CHECK_PARITY:
1490 // case UPDATE_PARITY:
1491 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1492 /* FIX: Is this ordering of drives even remotely optimal? */
1493 count = 0;
1494 i = d0_idx;
1495 do {
1496 ptrs[count++] = page_address(sh->dev[i].page);
1497 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1498 printk("block %d/%d not uptodate on parity calc\n", i,count);
1499 i = raid6_next_disk(i, disks);
1500 } while ( i != d0_idx );
1501 // break;
1502 // }
1504 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1506 switch(method) {
1507 case RECONSTRUCT_WRITE:
1508 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1509 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1510 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1511 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1512 break;
1513 case UPDATE_PARITY:
1514 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1515 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1516 break;
1521 /* Compute one missing block */
1522 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1524 int i, count, disks = sh->disks;
1525 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1526 int pd_idx = sh->pd_idx;
1527 int qd_idx = raid6_next_disk(pd_idx, disks);
1529 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1530 (unsigned long long)sh->sector, dd_idx);
1532 if ( dd_idx == qd_idx ) {
1533 /* We're actually computing the Q drive */
1534 compute_parity6(sh, UPDATE_PARITY);
1535 } else {
1536 dest = page_address(sh->dev[dd_idx].page);
1537 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1538 count = 0;
1539 for (i = disks ; i--; ) {
1540 if (i == dd_idx || i == qd_idx)
1541 continue;
1542 p = page_address(sh->dev[i].page);
1543 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1544 ptr[count++] = p;
1545 else
1546 printk("compute_block() %d, stripe %llu, %d"
1547 " not present\n", dd_idx,
1548 (unsigned long long)sh->sector, i);
1550 check_xor();
1552 if (count)
1553 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1554 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1555 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1559 /* Compute two missing blocks */
1560 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1562 int i, count, disks = sh->disks;
1563 int pd_idx = sh->pd_idx;
1564 int qd_idx = raid6_next_disk(pd_idx, disks);
1565 int d0_idx = raid6_next_disk(qd_idx, disks);
1566 int faila, failb;
1568 /* faila and failb are disk numbers relative to d0_idx */
1569 /* pd_idx become disks-2 and qd_idx become disks-1 */
1570 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1571 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1573 BUG_ON(faila == failb);
1574 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1576 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1577 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1579 if ( failb == disks-1 ) {
1580 /* Q disk is one of the missing disks */
1581 if ( faila == disks-2 ) {
1582 /* Missing P+Q, just recompute */
1583 compute_parity6(sh, UPDATE_PARITY);
1584 return;
1585 } else {
1586 /* We're missing D+Q; recompute D from P */
1587 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1588 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1589 return;
1593 /* We're missing D+P or D+D; build pointer table */
1595 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1596 void *ptrs[disks];
1598 count = 0;
1599 i = d0_idx;
1600 do {
1601 ptrs[count++] = page_address(sh->dev[i].page);
1602 i = raid6_next_disk(i, disks);
1603 if (i != dd_idx1 && i != dd_idx2 &&
1604 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1605 printk("compute_2 with missing block %d/%d\n", count, i);
1606 } while ( i != d0_idx );
1608 if ( failb == disks-2 ) {
1609 /* We're missing D+P. */
1610 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1611 } else {
1612 /* We're missing D+D. */
1613 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1616 /* Both the above update both missing blocks */
1617 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1618 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1622 static void
1623 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1624 int rcw, int expand)
1626 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1628 if (rcw) {
1629 /* if we are not expanding this is a proper write request, and
1630 * there will be bios with new data to be drained into the
1631 * stripe cache
1633 if (!expand) {
1634 sh->reconstruct_state = reconstruct_state_drain_run;
1635 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1636 } else
1637 sh->reconstruct_state = reconstruct_state_run;
1639 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1641 for (i = disks; i--; ) {
1642 struct r5dev *dev = &sh->dev[i];
1644 if (dev->towrite) {
1645 set_bit(R5_LOCKED, &dev->flags);
1646 set_bit(R5_Wantdrain, &dev->flags);
1647 if (!expand)
1648 clear_bit(R5_UPTODATE, &dev->flags);
1649 s->locked++;
1652 if (s->locked + 1 == disks)
1653 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1654 atomic_inc(&sh->raid_conf->pending_full_writes);
1655 } else {
1656 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1657 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1659 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1660 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1661 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1662 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1664 for (i = disks; i--; ) {
1665 struct r5dev *dev = &sh->dev[i];
1666 if (i == pd_idx)
1667 continue;
1669 if (dev->towrite &&
1670 (test_bit(R5_UPTODATE, &dev->flags) ||
1671 test_bit(R5_Wantcompute, &dev->flags))) {
1672 set_bit(R5_Wantdrain, &dev->flags);
1673 set_bit(R5_LOCKED, &dev->flags);
1674 clear_bit(R5_UPTODATE, &dev->flags);
1675 s->locked++;
1680 /* keep the parity disk locked while asynchronous operations
1681 * are in flight
1683 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1684 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1685 s->locked++;
1687 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1688 __func__, (unsigned long long)sh->sector,
1689 s->locked, s->ops_request);
1693 * Each stripe/dev can have one or more bion attached.
1694 * toread/towrite point to the first in a chain.
1695 * The bi_next chain must be in order.
1697 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1699 struct bio **bip;
1700 raid5_conf_t *conf = sh->raid_conf;
1701 int firstwrite=0;
1703 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1704 (unsigned long long)bi->bi_sector,
1705 (unsigned long long)sh->sector);
1708 spin_lock(&sh->lock);
1709 spin_lock_irq(&conf->device_lock);
1710 if (forwrite) {
1711 bip = &sh->dev[dd_idx].towrite;
1712 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1713 firstwrite = 1;
1714 } else
1715 bip = &sh->dev[dd_idx].toread;
1716 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1717 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1718 goto overlap;
1719 bip = & (*bip)->bi_next;
1721 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1722 goto overlap;
1724 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1725 if (*bip)
1726 bi->bi_next = *bip;
1727 *bip = bi;
1728 bi->bi_phys_segments ++;
1729 spin_unlock_irq(&conf->device_lock);
1730 spin_unlock(&sh->lock);
1732 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1733 (unsigned long long)bi->bi_sector,
1734 (unsigned long long)sh->sector, dd_idx);
1736 if (conf->mddev->bitmap && firstwrite) {
1737 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1738 STRIPE_SECTORS, 0);
1739 sh->bm_seq = conf->seq_flush+1;
1740 set_bit(STRIPE_BIT_DELAY, &sh->state);
1743 if (forwrite) {
1744 /* check if page is covered */
1745 sector_t sector = sh->dev[dd_idx].sector;
1746 for (bi=sh->dev[dd_idx].towrite;
1747 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1748 bi && bi->bi_sector <= sector;
1749 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1750 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1751 sector = bi->bi_sector + (bi->bi_size>>9);
1753 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1754 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1756 return 1;
1758 overlap:
1759 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1760 spin_unlock_irq(&conf->device_lock);
1761 spin_unlock(&sh->lock);
1762 return 0;
1765 static void end_reshape(raid5_conf_t *conf);
1767 static int page_is_zero(struct page *p)
1769 char *a = page_address(p);
1770 return ((*(u32*)a) == 0 &&
1771 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1774 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1776 int sectors_per_chunk = conf->chunk_size >> 9;
1777 int pd_idx, dd_idx;
1778 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1780 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1781 *sectors_per_chunk + chunk_offset,
1782 disks, disks - conf->max_degraded,
1783 &dd_idx, &pd_idx, conf);
1784 return pd_idx;
1787 static void
1788 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
1789 struct stripe_head_state *s, int disks,
1790 struct bio **return_bi)
1792 int i;
1793 for (i = disks; i--; ) {
1794 struct bio *bi;
1795 int bitmap_end = 0;
1797 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1798 mdk_rdev_t *rdev;
1799 rcu_read_lock();
1800 rdev = rcu_dereference(conf->disks[i].rdev);
1801 if (rdev && test_bit(In_sync, &rdev->flags))
1802 /* multiple read failures in one stripe */
1803 md_error(conf->mddev, rdev);
1804 rcu_read_unlock();
1806 spin_lock_irq(&conf->device_lock);
1807 /* fail all writes first */
1808 bi = sh->dev[i].towrite;
1809 sh->dev[i].towrite = NULL;
1810 if (bi) {
1811 s->to_write--;
1812 bitmap_end = 1;
1815 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1816 wake_up(&conf->wait_for_overlap);
1818 while (bi && bi->bi_sector <
1819 sh->dev[i].sector + STRIPE_SECTORS) {
1820 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1821 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1822 if (--bi->bi_phys_segments == 0) {
1823 md_write_end(conf->mddev);
1824 bi->bi_next = *return_bi;
1825 *return_bi = bi;
1827 bi = nextbi;
1829 /* and fail all 'written' */
1830 bi = sh->dev[i].written;
1831 sh->dev[i].written = NULL;
1832 if (bi) bitmap_end = 1;
1833 while (bi && bi->bi_sector <
1834 sh->dev[i].sector + STRIPE_SECTORS) {
1835 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1836 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1837 if (--bi->bi_phys_segments == 0) {
1838 md_write_end(conf->mddev);
1839 bi->bi_next = *return_bi;
1840 *return_bi = bi;
1842 bi = bi2;
1845 /* fail any reads if this device is non-operational and
1846 * the data has not reached the cache yet.
1848 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1849 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1850 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1851 bi = sh->dev[i].toread;
1852 sh->dev[i].toread = NULL;
1853 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1854 wake_up(&conf->wait_for_overlap);
1855 if (bi) s->to_read--;
1856 while (bi && bi->bi_sector <
1857 sh->dev[i].sector + STRIPE_SECTORS) {
1858 struct bio *nextbi =
1859 r5_next_bio(bi, sh->dev[i].sector);
1860 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1861 if (--bi->bi_phys_segments == 0) {
1862 bi->bi_next = *return_bi;
1863 *return_bi = bi;
1865 bi = nextbi;
1868 spin_unlock_irq(&conf->device_lock);
1869 if (bitmap_end)
1870 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1871 STRIPE_SECTORS, 0, 0);
1874 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1875 if (atomic_dec_and_test(&conf->pending_full_writes))
1876 md_wakeup_thread(conf->mddev->thread);
1879 /* fetch_block5 - checks the given member device to see if its data needs
1880 * to be read or computed to satisfy a request.
1882 * Returns 1 when no more member devices need to be checked, otherwise returns
1883 * 0 to tell the loop in handle_stripe_fill5 to continue
1885 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
1886 int disk_idx, int disks)
1888 struct r5dev *dev = &sh->dev[disk_idx];
1889 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1891 /* is the data in this block needed, and can we get it? */
1892 if (!test_bit(R5_LOCKED, &dev->flags) &&
1893 !test_bit(R5_UPTODATE, &dev->flags) &&
1894 (dev->toread ||
1895 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1896 s->syncing || s->expanding ||
1897 (s->failed &&
1898 (failed_dev->toread ||
1899 (failed_dev->towrite &&
1900 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
1901 /* We would like to get this block, possibly by computing it,
1902 * otherwise read it if the backing disk is insync
1904 if ((s->uptodate == disks - 1) &&
1905 (s->failed && disk_idx == s->failed_num)) {
1906 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1907 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
1908 set_bit(R5_Wantcompute, &dev->flags);
1909 sh->ops.target = disk_idx;
1910 s->req_compute = 1;
1911 /* Careful: from this point on 'uptodate' is in the eye
1912 * of raid5_run_ops which services 'compute' operations
1913 * before writes. R5_Wantcompute flags a block that will
1914 * be R5_UPTODATE by the time it is needed for a
1915 * subsequent operation.
1917 s->uptodate++;
1918 return 1; /* uptodate + compute == disks */
1919 } else if (test_bit(R5_Insync, &dev->flags)) {
1920 set_bit(R5_LOCKED, &dev->flags);
1921 set_bit(R5_Wantread, &dev->flags);
1922 s->locked++;
1923 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
1924 s->syncing);
1928 return 0;
1932 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
1934 static void handle_stripe_fill5(struct stripe_head *sh,
1935 struct stripe_head_state *s, int disks)
1937 int i;
1939 /* look for blocks to read/compute, skip this if a compute
1940 * is already in flight, or if the stripe contents are in the
1941 * midst of changing due to a write
1943 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1944 !sh->reconstruct_state)
1945 for (i = disks; i--; )
1946 if (fetch_block5(sh, s, i, disks))
1947 break;
1948 set_bit(STRIPE_HANDLE, &sh->state);
1951 static void handle_stripe_fill6(struct stripe_head *sh,
1952 struct stripe_head_state *s, struct r6_state *r6s,
1953 int disks)
1955 int i;
1956 for (i = disks; i--; ) {
1957 struct r5dev *dev = &sh->dev[i];
1958 if (!test_bit(R5_LOCKED, &dev->flags) &&
1959 !test_bit(R5_UPTODATE, &dev->flags) &&
1960 (dev->toread || (dev->towrite &&
1961 !test_bit(R5_OVERWRITE, &dev->flags)) ||
1962 s->syncing || s->expanding ||
1963 (s->failed >= 1 &&
1964 (sh->dev[r6s->failed_num[0]].toread ||
1965 s->to_write)) ||
1966 (s->failed >= 2 &&
1967 (sh->dev[r6s->failed_num[1]].toread ||
1968 s->to_write)))) {
1969 /* we would like to get this block, possibly
1970 * by computing it, but we might not be able to
1972 if ((s->uptodate == disks - 1) &&
1973 (s->failed && (i == r6s->failed_num[0] ||
1974 i == r6s->failed_num[1]))) {
1975 pr_debug("Computing stripe %llu block %d\n",
1976 (unsigned long long)sh->sector, i);
1977 compute_block_1(sh, i, 0);
1978 s->uptodate++;
1979 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
1980 /* Computing 2-failure is *very* expensive; only
1981 * do it if failed >= 2
1983 int other;
1984 for (other = disks; other--; ) {
1985 if (other == i)
1986 continue;
1987 if (!test_bit(R5_UPTODATE,
1988 &sh->dev[other].flags))
1989 break;
1991 BUG_ON(other < 0);
1992 pr_debug("Computing stripe %llu blocks %d,%d\n",
1993 (unsigned long long)sh->sector,
1994 i, other);
1995 compute_block_2(sh, i, other);
1996 s->uptodate += 2;
1997 } else if (test_bit(R5_Insync, &dev->flags)) {
1998 set_bit(R5_LOCKED, &dev->flags);
1999 set_bit(R5_Wantread, &dev->flags);
2000 s->locked++;
2001 pr_debug("Reading block %d (sync=%d)\n",
2002 i, s->syncing);
2006 set_bit(STRIPE_HANDLE, &sh->state);
2010 /* handle_stripe_clean_event
2011 * any written block on an uptodate or failed drive can be returned.
2012 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2013 * never LOCKED, so we don't need to test 'failed' directly.
2015 static void handle_stripe_clean_event(raid5_conf_t *conf,
2016 struct stripe_head *sh, int disks, struct bio **return_bi)
2018 int i;
2019 struct r5dev *dev;
2021 for (i = disks; i--; )
2022 if (sh->dev[i].written) {
2023 dev = &sh->dev[i];
2024 if (!test_bit(R5_LOCKED, &dev->flags) &&
2025 test_bit(R5_UPTODATE, &dev->flags)) {
2026 /* We can return any write requests */
2027 struct bio *wbi, *wbi2;
2028 int bitmap_end = 0;
2029 pr_debug("Return write for disc %d\n", i);
2030 spin_lock_irq(&conf->device_lock);
2031 wbi = dev->written;
2032 dev->written = NULL;
2033 while (wbi && wbi->bi_sector <
2034 dev->sector + STRIPE_SECTORS) {
2035 wbi2 = r5_next_bio(wbi, dev->sector);
2036 if (--wbi->bi_phys_segments == 0) {
2037 md_write_end(conf->mddev);
2038 wbi->bi_next = *return_bi;
2039 *return_bi = wbi;
2041 wbi = wbi2;
2043 if (dev->towrite == NULL)
2044 bitmap_end = 1;
2045 spin_unlock_irq(&conf->device_lock);
2046 if (bitmap_end)
2047 bitmap_endwrite(conf->mddev->bitmap,
2048 sh->sector,
2049 STRIPE_SECTORS,
2050 !test_bit(STRIPE_DEGRADED, &sh->state),
2055 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2056 if (atomic_dec_and_test(&conf->pending_full_writes))
2057 md_wakeup_thread(conf->mddev->thread);
2060 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2061 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2063 int rmw = 0, rcw = 0, i;
2064 for (i = disks; i--; ) {
2065 /* would I have to read this buffer for read_modify_write */
2066 struct r5dev *dev = &sh->dev[i];
2067 if ((dev->towrite || i == sh->pd_idx) &&
2068 !test_bit(R5_LOCKED, &dev->flags) &&
2069 !(test_bit(R5_UPTODATE, &dev->flags) ||
2070 test_bit(R5_Wantcompute, &dev->flags))) {
2071 if (test_bit(R5_Insync, &dev->flags))
2072 rmw++;
2073 else
2074 rmw += 2*disks; /* cannot read it */
2076 /* Would I have to read this buffer for reconstruct_write */
2077 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2078 !test_bit(R5_LOCKED, &dev->flags) &&
2079 !(test_bit(R5_UPTODATE, &dev->flags) ||
2080 test_bit(R5_Wantcompute, &dev->flags))) {
2081 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2082 else
2083 rcw += 2*disks;
2086 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2087 (unsigned long long)sh->sector, rmw, rcw);
2088 set_bit(STRIPE_HANDLE, &sh->state);
2089 if (rmw < rcw && rmw > 0)
2090 /* prefer read-modify-write, but need to get some data */
2091 for (i = disks; i--; ) {
2092 struct r5dev *dev = &sh->dev[i];
2093 if ((dev->towrite || i == sh->pd_idx) &&
2094 !test_bit(R5_LOCKED, &dev->flags) &&
2095 !(test_bit(R5_UPTODATE, &dev->flags) ||
2096 test_bit(R5_Wantcompute, &dev->flags)) &&
2097 test_bit(R5_Insync, &dev->flags)) {
2098 if (
2099 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2100 pr_debug("Read_old block "
2101 "%d for r-m-w\n", i);
2102 set_bit(R5_LOCKED, &dev->flags);
2103 set_bit(R5_Wantread, &dev->flags);
2104 s->locked++;
2105 } else {
2106 set_bit(STRIPE_DELAYED, &sh->state);
2107 set_bit(STRIPE_HANDLE, &sh->state);
2111 if (rcw <= rmw && rcw > 0)
2112 /* want reconstruct write, but need to get some data */
2113 for (i = disks; i--; ) {
2114 struct r5dev *dev = &sh->dev[i];
2115 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2116 i != sh->pd_idx &&
2117 !test_bit(R5_LOCKED, &dev->flags) &&
2118 !(test_bit(R5_UPTODATE, &dev->flags) ||
2119 test_bit(R5_Wantcompute, &dev->flags)) &&
2120 test_bit(R5_Insync, &dev->flags)) {
2121 if (
2122 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2123 pr_debug("Read_old block "
2124 "%d for Reconstruct\n", i);
2125 set_bit(R5_LOCKED, &dev->flags);
2126 set_bit(R5_Wantread, &dev->flags);
2127 s->locked++;
2128 } else {
2129 set_bit(STRIPE_DELAYED, &sh->state);
2130 set_bit(STRIPE_HANDLE, &sh->state);
2134 /* now if nothing is locked, and if we have enough data,
2135 * we can start a write request
2137 /* since handle_stripe can be called at any time we need to handle the
2138 * case where a compute block operation has been submitted and then a
2139 * subsequent call wants to start a write request. raid5_run_ops only
2140 * handles the case where compute block and postxor are requested
2141 * simultaneously. If this is not the case then new writes need to be
2142 * held off until the compute completes.
2144 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2145 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2146 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2147 schedule_reconstruction5(sh, s, rcw == 0, 0);
2150 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2151 struct stripe_head *sh, struct stripe_head_state *s,
2152 struct r6_state *r6s, int disks)
2154 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2155 int qd_idx = r6s->qd_idx;
2156 for (i = disks; i--; ) {
2157 struct r5dev *dev = &sh->dev[i];
2158 /* Would I have to read this buffer for reconstruct_write */
2159 if (!test_bit(R5_OVERWRITE, &dev->flags)
2160 && i != pd_idx && i != qd_idx
2161 && (!test_bit(R5_LOCKED, &dev->flags)
2162 ) &&
2163 !test_bit(R5_UPTODATE, &dev->flags)) {
2164 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2165 else {
2166 pr_debug("raid6: must_compute: "
2167 "disk %d flags=%#lx\n", i, dev->flags);
2168 must_compute++;
2172 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2173 (unsigned long long)sh->sector, rcw, must_compute);
2174 set_bit(STRIPE_HANDLE, &sh->state);
2176 if (rcw > 0)
2177 /* want reconstruct write, but need to get some data */
2178 for (i = disks; i--; ) {
2179 struct r5dev *dev = &sh->dev[i];
2180 if (!test_bit(R5_OVERWRITE, &dev->flags)
2181 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2182 && !test_bit(R5_LOCKED, &dev->flags) &&
2183 !test_bit(R5_UPTODATE, &dev->flags) &&
2184 test_bit(R5_Insync, &dev->flags)) {
2185 if (
2186 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2187 pr_debug("Read_old stripe %llu "
2188 "block %d for Reconstruct\n",
2189 (unsigned long long)sh->sector, i);
2190 set_bit(R5_LOCKED, &dev->flags);
2191 set_bit(R5_Wantread, &dev->flags);
2192 s->locked++;
2193 } else {
2194 pr_debug("Request delayed stripe %llu "
2195 "block %d for Reconstruct\n",
2196 (unsigned long long)sh->sector, i);
2197 set_bit(STRIPE_DELAYED, &sh->state);
2198 set_bit(STRIPE_HANDLE, &sh->state);
2202 /* now if nothing is locked, and if we have enough data, we can start a
2203 * write request
2205 if (s->locked == 0 && rcw == 0 &&
2206 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2207 if (must_compute > 0) {
2208 /* We have failed blocks and need to compute them */
2209 switch (s->failed) {
2210 case 0:
2211 BUG();
2212 case 1:
2213 compute_block_1(sh, r6s->failed_num[0], 0);
2214 break;
2215 case 2:
2216 compute_block_2(sh, r6s->failed_num[0],
2217 r6s->failed_num[1]);
2218 break;
2219 default: /* This request should have been failed? */
2220 BUG();
2224 pr_debug("Computing parity for stripe %llu\n",
2225 (unsigned long long)sh->sector);
2226 compute_parity6(sh, RECONSTRUCT_WRITE);
2227 /* now every locked buffer is ready to be written */
2228 for (i = disks; i--; )
2229 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2230 pr_debug("Writing stripe %llu block %d\n",
2231 (unsigned long long)sh->sector, i);
2232 s->locked++;
2233 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2235 if (s->locked == disks)
2236 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2237 atomic_inc(&conf->pending_full_writes);
2238 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2239 set_bit(STRIPE_INSYNC, &sh->state);
2241 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2242 atomic_dec(&conf->preread_active_stripes);
2243 if (atomic_read(&conf->preread_active_stripes) <
2244 IO_THRESHOLD)
2245 md_wakeup_thread(conf->mddev->thread);
2250 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2251 struct stripe_head_state *s, int disks)
2253 struct r5dev *dev = NULL;
2255 set_bit(STRIPE_HANDLE, &sh->state);
2257 switch (sh->check_state) {
2258 case check_state_idle:
2259 /* start a new check operation if there are no failures */
2260 if (s->failed == 0) {
2261 BUG_ON(s->uptodate != disks);
2262 sh->check_state = check_state_run;
2263 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2264 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2265 s->uptodate--;
2266 break;
2268 dev = &sh->dev[s->failed_num];
2269 /* fall through */
2270 case check_state_compute_result:
2271 sh->check_state = check_state_idle;
2272 if (!dev)
2273 dev = &sh->dev[sh->pd_idx];
2275 /* check that a write has not made the stripe insync */
2276 if (test_bit(STRIPE_INSYNC, &sh->state))
2277 break;
2279 /* either failed parity check, or recovery is happening */
2280 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2281 BUG_ON(s->uptodate != disks);
2283 set_bit(R5_LOCKED, &dev->flags);
2284 s->locked++;
2285 set_bit(R5_Wantwrite, &dev->flags);
2287 clear_bit(STRIPE_DEGRADED, &sh->state);
2288 set_bit(STRIPE_INSYNC, &sh->state);
2289 break;
2290 case check_state_run:
2291 break; /* we will be called again upon completion */
2292 case check_state_check_result:
2293 sh->check_state = check_state_idle;
2295 /* if a failure occurred during the check operation, leave
2296 * STRIPE_INSYNC not set and let the stripe be handled again
2298 if (s->failed)
2299 break;
2301 /* handle a successful check operation, if parity is correct
2302 * we are done. Otherwise update the mismatch count and repair
2303 * parity if !MD_RECOVERY_CHECK
2305 if (sh->ops.zero_sum_result == 0)
2306 /* parity is correct (on disc,
2307 * not in buffer any more)
2309 set_bit(STRIPE_INSYNC, &sh->state);
2310 else {
2311 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2312 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2313 /* don't try to repair!! */
2314 set_bit(STRIPE_INSYNC, &sh->state);
2315 else {
2316 sh->check_state = check_state_compute_run;
2317 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2318 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2319 set_bit(R5_Wantcompute,
2320 &sh->dev[sh->pd_idx].flags);
2321 sh->ops.target = sh->pd_idx;
2322 s->uptodate++;
2325 break;
2326 case check_state_compute_run:
2327 break;
2328 default:
2329 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2330 __func__, sh->check_state,
2331 (unsigned long long) sh->sector);
2332 BUG();
2337 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2338 struct stripe_head_state *s,
2339 struct r6_state *r6s, struct page *tmp_page,
2340 int disks)
2342 int update_p = 0, update_q = 0;
2343 struct r5dev *dev;
2344 int pd_idx = sh->pd_idx;
2345 int qd_idx = r6s->qd_idx;
2347 set_bit(STRIPE_HANDLE, &sh->state);
2349 BUG_ON(s->failed > 2);
2350 BUG_ON(s->uptodate < disks);
2351 /* Want to check and possibly repair P and Q.
2352 * However there could be one 'failed' device, in which
2353 * case we can only check one of them, possibly using the
2354 * other to generate missing data
2357 /* If !tmp_page, we cannot do the calculations,
2358 * but as we have set STRIPE_HANDLE, we will soon be called
2359 * by stripe_handle with a tmp_page - just wait until then.
2361 if (tmp_page) {
2362 if (s->failed == r6s->q_failed) {
2363 /* The only possible failed device holds 'Q', so it
2364 * makes sense to check P (If anything else were failed,
2365 * we would have used P to recreate it).
2367 compute_block_1(sh, pd_idx, 1);
2368 if (!page_is_zero(sh->dev[pd_idx].page)) {
2369 compute_block_1(sh, pd_idx, 0);
2370 update_p = 1;
2373 if (!r6s->q_failed && s->failed < 2) {
2374 /* q is not failed, and we didn't use it to generate
2375 * anything, so it makes sense to check it
2377 memcpy(page_address(tmp_page),
2378 page_address(sh->dev[qd_idx].page),
2379 STRIPE_SIZE);
2380 compute_parity6(sh, UPDATE_PARITY);
2381 if (memcmp(page_address(tmp_page),
2382 page_address(sh->dev[qd_idx].page),
2383 STRIPE_SIZE) != 0) {
2384 clear_bit(STRIPE_INSYNC, &sh->state);
2385 update_q = 1;
2388 if (update_p || update_q) {
2389 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2390 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2391 /* don't try to repair!! */
2392 update_p = update_q = 0;
2395 /* now write out any block on a failed drive,
2396 * or P or Q if they need it
2399 if (s->failed == 2) {
2400 dev = &sh->dev[r6s->failed_num[1]];
2401 s->locked++;
2402 set_bit(R5_LOCKED, &dev->flags);
2403 set_bit(R5_Wantwrite, &dev->flags);
2405 if (s->failed >= 1) {
2406 dev = &sh->dev[r6s->failed_num[0]];
2407 s->locked++;
2408 set_bit(R5_LOCKED, &dev->flags);
2409 set_bit(R5_Wantwrite, &dev->flags);
2412 if (update_p) {
2413 dev = &sh->dev[pd_idx];
2414 s->locked++;
2415 set_bit(R5_LOCKED, &dev->flags);
2416 set_bit(R5_Wantwrite, &dev->flags);
2418 if (update_q) {
2419 dev = &sh->dev[qd_idx];
2420 s->locked++;
2421 set_bit(R5_LOCKED, &dev->flags);
2422 set_bit(R5_Wantwrite, &dev->flags);
2424 clear_bit(STRIPE_DEGRADED, &sh->state);
2426 set_bit(STRIPE_INSYNC, &sh->state);
2430 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2431 struct r6_state *r6s)
2433 int i;
2435 /* We have read all the blocks in this stripe and now we need to
2436 * copy some of them into a target stripe for expand.
2438 struct dma_async_tx_descriptor *tx = NULL;
2439 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2440 for (i = 0; i < sh->disks; i++)
2441 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2442 int dd_idx, pd_idx, j;
2443 struct stripe_head *sh2;
2445 sector_t bn = compute_blocknr(sh, i);
2446 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2447 conf->raid_disks -
2448 conf->max_degraded, &dd_idx,
2449 &pd_idx, conf);
2450 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2451 pd_idx, 1);
2452 if (sh2 == NULL)
2453 /* so far only the early blocks of this stripe
2454 * have been requested. When later blocks
2455 * get requested, we will try again
2457 continue;
2458 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2459 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2460 /* must have already done this block */
2461 release_stripe(sh2);
2462 continue;
2465 /* place all the copies on one channel */
2466 tx = async_memcpy(sh2->dev[dd_idx].page,
2467 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2468 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2470 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2471 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2472 for (j = 0; j < conf->raid_disks; j++)
2473 if (j != sh2->pd_idx &&
2474 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2475 sh2->disks)) &&
2476 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2477 break;
2478 if (j == conf->raid_disks) {
2479 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2480 set_bit(STRIPE_HANDLE, &sh2->state);
2482 release_stripe(sh2);
2485 /* done submitting copies, wait for them to complete */
2486 if (tx) {
2487 async_tx_ack(tx);
2488 dma_wait_for_async_tx(tx);
2494 * handle_stripe - do things to a stripe.
2496 * We lock the stripe and then examine the state of various bits
2497 * to see what needs to be done.
2498 * Possible results:
2499 * return some read request which now have data
2500 * return some write requests which are safely on disc
2501 * schedule a read on some buffers
2502 * schedule a write of some buffers
2503 * return confirmation of parity correctness
2505 * buffers are taken off read_list or write_list, and bh_cache buffers
2506 * get BH_Lock set before the stripe lock is released.
2510 static void handle_stripe5(struct stripe_head *sh)
2512 raid5_conf_t *conf = sh->raid_conf;
2513 int disks = sh->disks, i;
2514 struct bio *return_bi = NULL;
2515 struct stripe_head_state s;
2516 struct r5dev *dev;
2517 mdk_rdev_t *blocked_rdev = NULL;
2518 int prexor;
2520 memset(&s, 0, sizeof(s));
2521 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2522 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2523 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2524 sh->reconstruct_state);
2526 spin_lock(&sh->lock);
2527 clear_bit(STRIPE_HANDLE, &sh->state);
2528 clear_bit(STRIPE_DELAYED, &sh->state);
2530 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2531 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2532 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2534 /* Now to look around and see what can be done */
2535 rcu_read_lock();
2536 for (i=disks; i--; ) {
2537 mdk_rdev_t *rdev;
2538 struct r5dev *dev = &sh->dev[i];
2539 clear_bit(R5_Insync, &dev->flags);
2541 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2542 "written %p\n", i, dev->flags, dev->toread, dev->read,
2543 dev->towrite, dev->written);
2545 /* maybe we can request a biofill operation
2547 * new wantfill requests are only permitted while
2548 * ops_complete_biofill is guaranteed to be inactive
2550 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2551 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2552 set_bit(R5_Wantfill, &dev->flags);
2554 /* now count some things */
2555 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2556 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2557 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2559 if (test_bit(R5_Wantfill, &dev->flags))
2560 s.to_fill++;
2561 else if (dev->toread)
2562 s.to_read++;
2563 if (dev->towrite) {
2564 s.to_write++;
2565 if (!test_bit(R5_OVERWRITE, &dev->flags))
2566 s.non_overwrite++;
2568 if (dev->written)
2569 s.written++;
2570 rdev = rcu_dereference(conf->disks[i].rdev);
2571 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2572 blocked_rdev = rdev;
2573 atomic_inc(&rdev->nr_pending);
2574 break;
2576 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2577 /* The ReadError flag will just be confusing now */
2578 clear_bit(R5_ReadError, &dev->flags);
2579 clear_bit(R5_ReWrite, &dev->flags);
2581 if (!rdev || !test_bit(In_sync, &rdev->flags)
2582 || test_bit(R5_ReadError, &dev->flags)) {
2583 s.failed++;
2584 s.failed_num = i;
2585 } else
2586 set_bit(R5_Insync, &dev->flags);
2588 rcu_read_unlock();
2590 if (unlikely(blocked_rdev)) {
2591 set_bit(STRIPE_HANDLE, &sh->state);
2592 goto unlock;
2595 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2596 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2597 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2600 pr_debug("locked=%d uptodate=%d to_read=%d"
2601 " to_write=%d failed=%d failed_num=%d\n",
2602 s.locked, s.uptodate, s.to_read, s.to_write,
2603 s.failed, s.failed_num);
2604 /* check if the array has lost two devices and, if so, some requests might
2605 * need to be failed
2607 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2608 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2609 if (s.failed > 1 && s.syncing) {
2610 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2611 clear_bit(STRIPE_SYNCING, &sh->state);
2612 s.syncing = 0;
2615 /* might be able to return some write requests if the parity block
2616 * is safe, or on a failed drive
2618 dev = &sh->dev[sh->pd_idx];
2619 if ( s.written &&
2620 ((test_bit(R5_Insync, &dev->flags) &&
2621 !test_bit(R5_LOCKED, &dev->flags) &&
2622 test_bit(R5_UPTODATE, &dev->flags)) ||
2623 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2624 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2626 /* Now we might consider reading some blocks, either to check/generate
2627 * parity, or to satisfy requests
2628 * or to load a block that is being partially written.
2630 if (s.to_read || s.non_overwrite ||
2631 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2632 handle_stripe_fill5(sh, &s, disks);
2634 /* Now we check to see if any write operations have recently
2635 * completed
2637 prexor = 0;
2638 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2639 prexor = 1;
2640 if (sh->reconstruct_state == reconstruct_state_drain_result ||
2641 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2642 sh->reconstruct_state = reconstruct_state_idle;
2644 /* All the 'written' buffers and the parity block are ready to
2645 * be written back to disk
2647 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2648 for (i = disks; i--; ) {
2649 dev = &sh->dev[i];
2650 if (test_bit(R5_LOCKED, &dev->flags) &&
2651 (i == sh->pd_idx || dev->written)) {
2652 pr_debug("Writing block %d\n", i);
2653 set_bit(R5_Wantwrite, &dev->flags);
2654 if (prexor)
2655 continue;
2656 if (!test_bit(R5_Insync, &dev->flags) ||
2657 (i == sh->pd_idx && s.failed == 0))
2658 set_bit(STRIPE_INSYNC, &sh->state);
2661 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2662 atomic_dec(&conf->preread_active_stripes);
2663 if (atomic_read(&conf->preread_active_stripes) <
2664 IO_THRESHOLD)
2665 md_wakeup_thread(conf->mddev->thread);
2669 /* Now to consider new write requests and what else, if anything
2670 * should be read. We do not handle new writes when:
2671 * 1/ A 'write' operation (copy+xor) is already in flight.
2672 * 2/ A 'check' operation is in flight, as it may clobber the parity
2673 * block.
2675 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2676 handle_stripe_dirtying5(conf, sh, &s, disks);
2678 /* maybe we need to check and possibly fix the parity for this stripe
2679 * Any reads will already have been scheduled, so we just see if enough
2680 * data is available. The parity check is held off while parity
2681 * dependent operations are in flight.
2683 if (sh->check_state ||
2684 (s.syncing && s.locked == 0 &&
2685 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2686 !test_bit(STRIPE_INSYNC, &sh->state)))
2687 handle_parity_checks5(conf, sh, &s, disks);
2689 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2690 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2691 clear_bit(STRIPE_SYNCING, &sh->state);
2694 /* If the failed drive is just a ReadError, then we might need to progress
2695 * the repair/check process
2697 if (s.failed == 1 && !conf->mddev->ro &&
2698 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2699 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2700 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2702 dev = &sh->dev[s.failed_num];
2703 if (!test_bit(R5_ReWrite, &dev->flags)) {
2704 set_bit(R5_Wantwrite, &dev->flags);
2705 set_bit(R5_ReWrite, &dev->flags);
2706 set_bit(R5_LOCKED, &dev->flags);
2707 s.locked++;
2708 } else {
2709 /* let's read it back */
2710 set_bit(R5_Wantread, &dev->flags);
2711 set_bit(R5_LOCKED, &dev->flags);
2712 s.locked++;
2716 /* Finish reconstruct operations initiated by the expansion process */
2717 if (sh->reconstruct_state == reconstruct_state_result) {
2718 sh->reconstruct_state = reconstruct_state_idle;
2719 clear_bit(STRIPE_EXPANDING, &sh->state);
2720 for (i = conf->raid_disks; i--; )
2721 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2722 set_bit(R5_LOCKED, &dev->flags);
2723 s.locked++;
2726 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2727 !sh->reconstruct_state) {
2728 /* Need to write out all blocks after computing parity */
2729 sh->disks = conf->raid_disks;
2730 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2731 conf->raid_disks);
2732 schedule_reconstruction5(sh, &s, 1, 1);
2733 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2734 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2735 atomic_dec(&conf->reshape_stripes);
2736 wake_up(&conf->wait_for_overlap);
2737 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2740 if (s.expanding && s.locked == 0 &&
2741 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2742 handle_stripe_expansion(conf, sh, NULL);
2744 unlock:
2745 spin_unlock(&sh->lock);
2747 /* wait for this device to become unblocked */
2748 if (unlikely(blocked_rdev))
2749 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2751 if (s.ops_request)
2752 raid5_run_ops(sh, s.ops_request);
2754 ops_run_io(sh, &s);
2756 return_io(return_bi);
2759 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2761 raid6_conf_t *conf = sh->raid_conf;
2762 int disks = sh->disks;
2763 struct bio *return_bi = NULL;
2764 int i, pd_idx = sh->pd_idx;
2765 struct stripe_head_state s;
2766 struct r6_state r6s;
2767 struct r5dev *dev, *pdev, *qdev;
2768 mdk_rdev_t *blocked_rdev = NULL;
2770 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2771 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2772 "pd_idx=%d, qd_idx=%d\n",
2773 (unsigned long long)sh->sector, sh->state,
2774 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2775 memset(&s, 0, sizeof(s));
2777 spin_lock(&sh->lock);
2778 clear_bit(STRIPE_HANDLE, &sh->state);
2779 clear_bit(STRIPE_DELAYED, &sh->state);
2781 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2782 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2783 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2784 /* Now to look around and see what can be done */
2786 rcu_read_lock();
2787 for (i=disks; i--; ) {
2788 mdk_rdev_t *rdev;
2789 dev = &sh->dev[i];
2790 clear_bit(R5_Insync, &dev->flags);
2792 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2793 i, dev->flags, dev->toread, dev->towrite, dev->written);
2794 /* maybe we can reply to a read */
2795 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2796 struct bio *rbi, *rbi2;
2797 pr_debug("Return read for disc %d\n", i);
2798 spin_lock_irq(&conf->device_lock);
2799 rbi = dev->toread;
2800 dev->toread = NULL;
2801 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2802 wake_up(&conf->wait_for_overlap);
2803 spin_unlock_irq(&conf->device_lock);
2804 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2805 copy_data(0, rbi, dev->page, dev->sector);
2806 rbi2 = r5_next_bio(rbi, dev->sector);
2807 spin_lock_irq(&conf->device_lock);
2808 if (--rbi->bi_phys_segments == 0) {
2809 rbi->bi_next = return_bi;
2810 return_bi = rbi;
2812 spin_unlock_irq(&conf->device_lock);
2813 rbi = rbi2;
2817 /* now count some things */
2818 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2819 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2822 if (dev->toread)
2823 s.to_read++;
2824 if (dev->towrite) {
2825 s.to_write++;
2826 if (!test_bit(R5_OVERWRITE, &dev->flags))
2827 s.non_overwrite++;
2829 if (dev->written)
2830 s.written++;
2831 rdev = rcu_dereference(conf->disks[i].rdev);
2832 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2833 blocked_rdev = rdev;
2834 atomic_inc(&rdev->nr_pending);
2835 break;
2837 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2838 /* The ReadError flag will just be confusing now */
2839 clear_bit(R5_ReadError, &dev->flags);
2840 clear_bit(R5_ReWrite, &dev->flags);
2842 if (!rdev || !test_bit(In_sync, &rdev->flags)
2843 || test_bit(R5_ReadError, &dev->flags)) {
2844 if (s.failed < 2)
2845 r6s.failed_num[s.failed] = i;
2846 s.failed++;
2847 } else
2848 set_bit(R5_Insync, &dev->flags);
2850 rcu_read_unlock();
2852 if (unlikely(blocked_rdev)) {
2853 set_bit(STRIPE_HANDLE, &sh->state);
2854 goto unlock;
2856 pr_debug("locked=%d uptodate=%d to_read=%d"
2857 " to_write=%d failed=%d failed_num=%d,%d\n",
2858 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2859 r6s.failed_num[0], r6s.failed_num[1]);
2860 /* check if the array has lost >2 devices and, if so, some requests
2861 * might need to be failed
2863 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2864 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2865 if (s.failed > 2 && s.syncing) {
2866 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2867 clear_bit(STRIPE_SYNCING, &sh->state);
2868 s.syncing = 0;
2872 * might be able to return some write requests if the parity blocks
2873 * are safe, or on a failed drive
2875 pdev = &sh->dev[pd_idx];
2876 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2877 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2878 qdev = &sh->dev[r6s.qd_idx];
2879 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2880 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2882 if ( s.written &&
2883 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2884 && !test_bit(R5_LOCKED, &pdev->flags)
2885 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2886 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2887 && !test_bit(R5_LOCKED, &qdev->flags)
2888 && test_bit(R5_UPTODATE, &qdev->flags)))))
2889 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2891 /* Now we might consider reading some blocks, either to check/generate
2892 * parity, or to satisfy requests
2893 * or to load a block that is being partially written.
2895 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2896 (s.syncing && (s.uptodate < disks)) || s.expanding)
2897 handle_stripe_fill6(sh, &s, &r6s, disks);
2899 /* now to consider writing and what else, if anything should be read */
2900 if (s.to_write)
2901 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
2903 /* maybe we need to check and possibly fix the parity for this stripe
2904 * Any reads will already have been scheduled, so we just see if enough
2905 * data is available
2907 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2908 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
2910 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2911 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2912 clear_bit(STRIPE_SYNCING, &sh->state);
2915 /* If the failed drives are just a ReadError, then we might need
2916 * to progress the repair/check process
2918 if (s.failed <= 2 && !conf->mddev->ro)
2919 for (i = 0; i < s.failed; i++) {
2920 dev = &sh->dev[r6s.failed_num[i]];
2921 if (test_bit(R5_ReadError, &dev->flags)
2922 && !test_bit(R5_LOCKED, &dev->flags)
2923 && test_bit(R5_UPTODATE, &dev->flags)
2925 if (!test_bit(R5_ReWrite, &dev->flags)) {
2926 set_bit(R5_Wantwrite, &dev->flags);
2927 set_bit(R5_ReWrite, &dev->flags);
2928 set_bit(R5_LOCKED, &dev->flags);
2929 } else {
2930 /* let's read it back */
2931 set_bit(R5_Wantread, &dev->flags);
2932 set_bit(R5_LOCKED, &dev->flags);
2937 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
2938 /* Need to write out all blocks after computing P&Q */
2939 sh->disks = conf->raid_disks;
2940 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2941 conf->raid_disks);
2942 compute_parity6(sh, RECONSTRUCT_WRITE);
2943 for (i = conf->raid_disks ; i-- ; ) {
2944 set_bit(R5_LOCKED, &sh->dev[i].flags);
2945 s.locked++;
2946 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2948 clear_bit(STRIPE_EXPANDING, &sh->state);
2949 } else if (s.expanded) {
2950 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2951 atomic_dec(&conf->reshape_stripes);
2952 wake_up(&conf->wait_for_overlap);
2953 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2956 if (s.expanding && s.locked == 0 &&
2957 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2958 handle_stripe_expansion(conf, sh, &r6s);
2960 unlock:
2961 spin_unlock(&sh->lock);
2963 /* wait for this device to become unblocked */
2964 if (unlikely(blocked_rdev))
2965 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2967 ops_run_io(sh, &s);
2969 return_io(return_bi);
2972 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2974 if (sh->raid_conf->level == 6)
2975 handle_stripe6(sh, tmp_page);
2976 else
2977 handle_stripe5(sh);
2982 static void raid5_activate_delayed(raid5_conf_t *conf)
2984 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2985 while (!list_empty(&conf->delayed_list)) {
2986 struct list_head *l = conf->delayed_list.next;
2987 struct stripe_head *sh;
2988 sh = list_entry(l, struct stripe_head, lru);
2989 list_del_init(l);
2990 clear_bit(STRIPE_DELAYED, &sh->state);
2991 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2992 atomic_inc(&conf->preread_active_stripes);
2993 list_add_tail(&sh->lru, &conf->hold_list);
2995 } else
2996 blk_plug_device(conf->mddev->queue);
2999 static void activate_bit_delay(raid5_conf_t *conf)
3001 /* device_lock is held */
3002 struct list_head head;
3003 list_add(&head, &conf->bitmap_list);
3004 list_del_init(&conf->bitmap_list);
3005 while (!list_empty(&head)) {
3006 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3007 list_del_init(&sh->lru);
3008 atomic_inc(&sh->count);
3009 __release_stripe(conf, sh);
3013 static void unplug_slaves(mddev_t *mddev)
3015 raid5_conf_t *conf = mddev_to_conf(mddev);
3016 int i;
3018 rcu_read_lock();
3019 for (i=0; i<mddev->raid_disks; i++) {
3020 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3021 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3022 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3024 atomic_inc(&rdev->nr_pending);
3025 rcu_read_unlock();
3027 blk_unplug(r_queue);
3029 rdev_dec_pending(rdev, mddev);
3030 rcu_read_lock();
3033 rcu_read_unlock();
3036 static void raid5_unplug_device(struct request_queue *q)
3038 mddev_t *mddev = q->queuedata;
3039 raid5_conf_t *conf = mddev_to_conf(mddev);
3040 unsigned long flags;
3042 spin_lock_irqsave(&conf->device_lock, flags);
3044 if (blk_remove_plug(q)) {
3045 conf->seq_flush++;
3046 raid5_activate_delayed(conf);
3048 md_wakeup_thread(mddev->thread);
3050 spin_unlock_irqrestore(&conf->device_lock, flags);
3052 unplug_slaves(mddev);
3055 static int raid5_congested(void *data, int bits)
3057 mddev_t *mddev = data;
3058 raid5_conf_t *conf = mddev_to_conf(mddev);
3060 /* No difference between reads and writes. Just check
3061 * how busy the stripe_cache is
3063 if (conf->inactive_blocked)
3064 return 1;
3065 if (conf->quiesce)
3066 return 1;
3067 if (list_empty_careful(&conf->inactive_list))
3068 return 1;
3070 return 0;
3073 /* We want read requests to align with chunks where possible,
3074 * but write requests don't need to.
3076 static int raid5_mergeable_bvec(struct request_queue *q,
3077 struct bvec_merge_data *bvm,
3078 struct bio_vec *biovec)
3080 mddev_t *mddev = q->queuedata;
3081 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3082 int max;
3083 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3084 unsigned int bio_sectors = bvm->bi_size >> 9;
3086 if ((bvm->bi_rw & 1) == WRITE)
3087 return biovec->bv_len; /* always allow writes to be mergeable */
3089 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3090 if (max < 0) max = 0;
3091 if (max <= biovec->bv_len && bio_sectors == 0)
3092 return biovec->bv_len;
3093 else
3094 return max;
3098 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3100 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3101 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3102 unsigned int bio_sectors = bio->bi_size >> 9;
3104 return chunk_sectors >=
3105 ((sector & (chunk_sectors - 1)) + bio_sectors);
3109 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3110 * later sampled by raid5d.
3112 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3114 unsigned long flags;
3116 spin_lock_irqsave(&conf->device_lock, flags);
3118 bi->bi_next = conf->retry_read_aligned_list;
3119 conf->retry_read_aligned_list = bi;
3121 spin_unlock_irqrestore(&conf->device_lock, flags);
3122 md_wakeup_thread(conf->mddev->thread);
3126 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3128 struct bio *bi;
3130 bi = conf->retry_read_aligned;
3131 if (bi) {
3132 conf->retry_read_aligned = NULL;
3133 return bi;
3135 bi = conf->retry_read_aligned_list;
3136 if(bi) {
3137 conf->retry_read_aligned_list = bi->bi_next;
3138 bi->bi_next = NULL;
3139 bi->bi_phys_segments = 1; /* biased count of active stripes */
3140 bi->bi_hw_segments = 0; /* count of processed stripes */
3143 return bi;
3148 * The "raid5_align_endio" should check if the read succeeded and if it
3149 * did, call bio_endio on the original bio (having bio_put the new bio
3150 * first).
3151 * If the read failed..
3153 static void raid5_align_endio(struct bio *bi, int error)
3155 struct bio* raid_bi = bi->bi_private;
3156 mddev_t *mddev;
3157 raid5_conf_t *conf;
3158 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3159 mdk_rdev_t *rdev;
3161 bio_put(bi);
3163 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3164 conf = mddev_to_conf(mddev);
3165 rdev = (void*)raid_bi->bi_next;
3166 raid_bi->bi_next = NULL;
3168 rdev_dec_pending(rdev, conf->mddev);
3170 if (!error && uptodate) {
3171 bio_endio(raid_bi, 0);
3172 if (atomic_dec_and_test(&conf->active_aligned_reads))
3173 wake_up(&conf->wait_for_stripe);
3174 return;
3178 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3180 add_bio_to_retry(raid_bi, conf);
3183 static int bio_fits_rdev(struct bio *bi)
3185 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3187 if ((bi->bi_size>>9) > q->max_sectors)
3188 return 0;
3189 blk_recount_segments(q, bi);
3190 if (bi->bi_phys_segments > q->max_phys_segments ||
3191 bi->bi_hw_segments > q->max_hw_segments)
3192 return 0;
3194 if (q->merge_bvec_fn)
3195 /* it's too hard to apply the merge_bvec_fn at this stage,
3196 * just just give up
3198 return 0;
3200 return 1;
3204 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3206 mddev_t *mddev = q->queuedata;
3207 raid5_conf_t *conf = mddev_to_conf(mddev);
3208 const unsigned int raid_disks = conf->raid_disks;
3209 const unsigned int data_disks = raid_disks - conf->max_degraded;
3210 unsigned int dd_idx, pd_idx;
3211 struct bio* align_bi;
3212 mdk_rdev_t *rdev;
3214 if (!in_chunk_boundary(mddev, raid_bio)) {
3215 pr_debug("chunk_aligned_read : non aligned\n");
3216 return 0;
3219 * use bio_clone to make a copy of the bio
3221 align_bi = bio_clone(raid_bio, GFP_NOIO);
3222 if (!align_bi)
3223 return 0;
3225 * set bi_end_io to a new function, and set bi_private to the
3226 * original bio.
3228 align_bi->bi_end_io = raid5_align_endio;
3229 align_bi->bi_private = raid_bio;
3231 * compute position
3233 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3234 raid_disks,
3235 data_disks,
3236 &dd_idx,
3237 &pd_idx,
3238 conf);
3240 rcu_read_lock();
3241 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3242 if (rdev && test_bit(In_sync, &rdev->flags)) {
3243 atomic_inc(&rdev->nr_pending);
3244 rcu_read_unlock();
3245 raid_bio->bi_next = (void*)rdev;
3246 align_bi->bi_bdev = rdev->bdev;
3247 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3248 align_bi->bi_sector += rdev->data_offset;
3250 if (!bio_fits_rdev(align_bi)) {
3251 /* too big in some way */
3252 bio_put(align_bi);
3253 rdev_dec_pending(rdev, mddev);
3254 return 0;
3257 spin_lock_irq(&conf->device_lock);
3258 wait_event_lock_irq(conf->wait_for_stripe,
3259 conf->quiesce == 0,
3260 conf->device_lock, /* nothing */);
3261 atomic_inc(&conf->active_aligned_reads);
3262 spin_unlock_irq(&conf->device_lock);
3264 generic_make_request(align_bi);
3265 return 1;
3266 } else {
3267 rcu_read_unlock();
3268 bio_put(align_bi);
3269 return 0;
3273 /* __get_priority_stripe - get the next stripe to process
3275 * Full stripe writes are allowed to pass preread active stripes up until
3276 * the bypass_threshold is exceeded. In general the bypass_count
3277 * increments when the handle_list is handled before the hold_list; however, it
3278 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3279 * stripe with in flight i/o. The bypass_count will be reset when the
3280 * head of the hold_list has changed, i.e. the head was promoted to the
3281 * handle_list.
3283 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3285 struct stripe_head *sh;
3287 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3288 __func__,
3289 list_empty(&conf->handle_list) ? "empty" : "busy",
3290 list_empty(&conf->hold_list) ? "empty" : "busy",
3291 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3293 if (!list_empty(&conf->handle_list)) {
3294 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3296 if (list_empty(&conf->hold_list))
3297 conf->bypass_count = 0;
3298 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3299 if (conf->hold_list.next == conf->last_hold)
3300 conf->bypass_count++;
3301 else {
3302 conf->last_hold = conf->hold_list.next;
3303 conf->bypass_count -= conf->bypass_threshold;
3304 if (conf->bypass_count < 0)
3305 conf->bypass_count = 0;
3308 } else if (!list_empty(&conf->hold_list) &&
3309 ((conf->bypass_threshold &&
3310 conf->bypass_count > conf->bypass_threshold) ||
3311 atomic_read(&conf->pending_full_writes) == 0)) {
3312 sh = list_entry(conf->hold_list.next,
3313 typeof(*sh), lru);
3314 conf->bypass_count -= conf->bypass_threshold;
3315 if (conf->bypass_count < 0)
3316 conf->bypass_count = 0;
3317 } else
3318 return NULL;
3320 list_del_init(&sh->lru);
3321 atomic_inc(&sh->count);
3322 BUG_ON(atomic_read(&sh->count) != 1);
3323 return sh;
3326 static int make_request(struct request_queue *q, struct bio * bi)
3328 mddev_t *mddev = q->queuedata;
3329 raid5_conf_t *conf = mddev_to_conf(mddev);
3330 unsigned int dd_idx, pd_idx;
3331 sector_t new_sector;
3332 sector_t logical_sector, last_sector;
3333 struct stripe_head *sh;
3334 const int rw = bio_data_dir(bi);
3335 int remaining;
3337 if (unlikely(bio_barrier(bi))) {
3338 bio_endio(bi, -EOPNOTSUPP);
3339 return 0;
3342 md_write_start(mddev, bi);
3344 disk_stat_inc(mddev->gendisk, ios[rw]);
3345 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3347 if (rw == READ &&
3348 mddev->reshape_position == MaxSector &&
3349 chunk_aligned_read(q,bi))
3350 return 0;
3352 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3353 last_sector = bi->bi_sector + (bi->bi_size>>9);
3354 bi->bi_next = NULL;
3355 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3357 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3358 DEFINE_WAIT(w);
3359 int disks, data_disks;
3361 retry:
3362 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3363 if (likely(conf->expand_progress == MaxSector))
3364 disks = conf->raid_disks;
3365 else {
3366 /* spinlock is needed as expand_progress may be
3367 * 64bit on a 32bit platform, and so it might be
3368 * possible to see a half-updated value
3369 * Ofcourse expand_progress could change after
3370 * the lock is dropped, so once we get a reference
3371 * to the stripe that we think it is, we will have
3372 * to check again.
3374 spin_lock_irq(&conf->device_lock);
3375 disks = conf->raid_disks;
3376 if (logical_sector >= conf->expand_progress)
3377 disks = conf->previous_raid_disks;
3378 else {
3379 if (logical_sector >= conf->expand_lo) {
3380 spin_unlock_irq(&conf->device_lock);
3381 schedule();
3382 goto retry;
3385 spin_unlock_irq(&conf->device_lock);
3387 data_disks = disks - conf->max_degraded;
3389 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3390 &dd_idx, &pd_idx, conf);
3391 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3392 (unsigned long long)new_sector,
3393 (unsigned long long)logical_sector);
3395 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3396 if (sh) {
3397 if (unlikely(conf->expand_progress != MaxSector)) {
3398 /* expansion might have moved on while waiting for a
3399 * stripe, so we must do the range check again.
3400 * Expansion could still move past after this
3401 * test, but as we are holding a reference to
3402 * 'sh', we know that if that happens,
3403 * STRIPE_EXPANDING will get set and the expansion
3404 * won't proceed until we finish with the stripe.
3406 int must_retry = 0;
3407 spin_lock_irq(&conf->device_lock);
3408 if (logical_sector < conf->expand_progress &&
3409 disks == conf->previous_raid_disks)
3410 /* mismatch, need to try again */
3411 must_retry = 1;
3412 spin_unlock_irq(&conf->device_lock);
3413 if (must_retry) {
3414 release_stripe(sh);
3415 goto retry;
3418 /* FIXME what if we get a false positive because these
3419 * are being updated.
3421 if (logical_sector >= mddev->suspend_lo &&
3422 logical_sector < mddev->suspend_hi) {
3423 release_stripe(sh);
3424 schedule();
3425 goto retry;
3428 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3429 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3430 /* Stripe is busy expanding or
3431 * add failed due to overlap. Flush everything
3432 * and wait a while
3434 raid5_unplug_device(mddev->queue);
3435 release_stripe(sh);
3436 schedule();
3437 goto retry;
3439 finish_wait(&conf->wait_for_overlap, &w);
3440 set_bit(STRIPE_HANDLE, &sh->state);
3441 clear_bit(STRIPE_DELAYED, &sh->state);
3442 release_stripe(sh);
3443 } else {
3444 /* cannot get stripe for read-ahead, just give-up */
3445 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3446 finish_wait(&conf->wait_for_overlap, &w);
3447 break;
3451 spin_lock_irq(&conf->device_lock);
3452 remaining = --bi->bi_phys_segments;
3453 spin_unlock_irq(&conf->device_lock);
3454 if (remaining == 0) {
3456 if ( rw == WRITE )
3457 md_write_end(mddev);
3459 bio_endio(bi, 0);
3461 return 0;
3464 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3466 /* reshaping is quite different to recovery/resync so it is
3467 * handled quite separately ... here.
3469 * On each call to sync_request, we gather one chunk worth of
3470 * destination stripes and flag them as expanding.
3471 * Then we find all the source stripes and request reads.
3472 * As the reads complete, handle_stripe will copy the data
3473 * into the destination stripe and release that stripe.
3475 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3476 struct stripe_head *sh;
3477 int pd_idx;
3478 sector_t first_sector, last_sector;
3479 int raid_disks = conf->previous_raid_disks;
3480 int data_disks = raid_disks - conf->max_degraded;
3481 int new_data_disks = conf->raid_disks - conf->max_degraded;
3482 int i;
3483 int dd_idx;
3484 sector_t writepos, safepos, gap;
3486 if (sector_nr == 0 &&
3487 conf->expand_progress != 0) {
3488 /* restarting in the middle, skip the initial sectors */
3489 sector_nr = conf->expand_progress;
3490 sector_div(sector_nr, new_data_disks);
3491 *skipped = 1;
3492 return sector_nr;
3495 /* we update the metadata when there is more than 3Meg
3496 * in the block range (that is rather arbitrary, should
3497 * probably be time based) or when the data about to be
3498 * copied would over-write the source of the data at
3499 * the front of the range.
3500 * i.e. one new_stripe forward from expand_progress new_maps
3501 * to after where expand_lo old_maps to
3503 writepos = conf->expand_progress +
3504 conf->chunk_size/512*(new_data_disks);
3505 sector_div(writepos, new_data_disks);
3506 safepos = conf->expand_lo;
3507 sector_div(safepos, data_disks);
3508 gap = conf->expand_progress - conf->expand_lo;
3510 if (writepos >= safepos ||
3511 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3512 /* Cannot proceed until we've updated the superblock... */
3513 wait_event(conf->wait_for_overlap,
3514 atomic_read(&conf->reshape_stripes)==0);
3515 mddev->reshape_position = conf->expand_progress;
3516 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3517 md_wakeup_thread(mddev->thread);
3518 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3519 kthread_should_stop());
3520 spin_lock_irq(&conf->device_lock);
3521 conf->expand_lo = mddev->reshape_position;
3522 spin_unlock_irq(&conf->device_lock);
3523 wake_up(&conf->wait_for_overlap);
3526 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3527 int j;
3528 int skipped = 0;
3529 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3530 sh = get_active_stripe(conf, sector_nr+i,
3531 conf->raid_disks, pd_idx, 0);
3532 set_bit(STRIPE_EXPANDING, &sh->state);
3533 atomic_inc(&conf->reshape_stripes);
3534 /* If any of this stripe is beyond the end of the old
3535 * array, then we need to zero those blocks
3537 for (j=sh->disks; j--;) {
3538 sector_t s;
3539 if (j == sh->pd_idx)
3540 continue;
3541 if (conf->level == 6 &&
3542 j == raid6_next_disk(sh->pd_idx, sh->disks))
3543 continue;
3544 s = compute_blocknr(sh, j);
3545 if (s < mddev->array_sectors) {
3546 skipped = 1;
3547 continue;
3549 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3550 set_bit(R5_Expanded, &sh->dev[j].flags);
3551 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3553 if (!skipped) {
3554 set_bit(STRIPE_EXPAND_READY, &sh->state);
3555 set_bit(STRIPE_HANDLE, &sh->state);
3557 release_stripe(sh);
3559 spin_lock_irq(&conf->device_lock);
3560 conf->expand_progress = (sector_nr + i) * new_data_disks;
3561 spin_unlock_irq(&conf->device_lock);
3562 /* Ok, those stripe are ready. We can start scheduling
3563 * reads on the source stripes.
3564 * The source stripes are determined by mapping the first and last
3565 * block on the destination stripes.
3567 first_sector =
3568 raid5_compute_sector(sector_nr*(new_data_disks),
3569 raid_disks, data_disks,
3570 &dd_idx, &pd_idx, conf);
3571 last_sector =
3572 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3573 *(new_data_disks) -1,
3574 raid_disks, data_disks,
3575 &dd_idx, &pd_idx, conf);
3576 if (last_sector >= (mddev->size<<1))
3577 last_sector = (mddev->size<<1)-1;
3578 while (first_sector <= last_sector) {
3579 pd_idx = stripe_to_pdidx(first_sector, conf,
3580 conf->previous_raid_disks);
3581 sh = get_active_stripe(conf, first_sector,
3582 conf->previous_raid_disks, pd_idx, 0);
3583 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3584 set_bit(STRIPE_HANDLE, &sh->state);
3585 release_stripe(sh);
3586 first_sector += STRIPE_SECTORS;
3588 /* If this takes us to the resync_max point where we have to pause,
3589 * then we need to write out the superblock.
3591 sector_nr += conf->chunk_size>>9;
3592 if (sector_nr >= mddev->resync_max) {
3593 /* Cannot proceed until we've updated the superblock... */
3594 wait_event(conf->wait_for_overlap,
3595 atomic_read(&conf->reshape_stripes) == 0);
3596 mddev->reshape_position = conf->expand_progress;
3597 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3598 md_wakeup_thread(mddev->thread);
3599 wait_event(mddev->sb_wait,
3600 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3601 || kthread_should_stop());
3602 spin_lock_irq(&conf->device_lock);
3603 conf->expand_lo = mddev->reshape_position;
3604 spin_unlock_irq(&conf->device_lock);
3605 wake_up(&conf->wait_for_overlap);
3607 return conf->chunk_size>>9;
3610 /* FIXME go_faster isn't used */
3611 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3613 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3614 struct stripe_head *sh;
3615 int pd_idx;
3616 int raid_disks = conf->raid_disks;
3617 sector_t max_sector = mddev->size << 1;
3618 int sync_blocks;
3619 int still_degraded = 0;
3620 int i;
3622 if (sector_nr >= max_sector) {
3623 /* just being told to finish up .. nothing much to do */
3624 unplug_slaves(mddev);
3625 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3626 end_reshape(conf);
3627 return 0;
3630 if (mddev->curr_resync < max_sector) /* aborted */
3631 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3632 &sync_blocks, 1);
3633 else /* completed sync */
3634 conf->fullsync = 0;
3635 bitmap_close_sync(mddev->bitmap);
3637 return 0;
3640 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3641 return reshape_request(mddev, sector_nr, skipped);
3643 /* No need to check resync_max as we never do more than one
3644 * stripe, and as resync_max will always be on a chunk boundary,
3645 * if the check in md_do_sync didn't fire, there is no chance
3646 * of overstepping resync_max here
3649 /* if there is too many failed drives and we are trying
3650 * to resync, then assert that we are finished, because there is
3651 * nothing we can do.
3653 if (mddev->degraded >= conf->max_degraded &&
3654 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3655 sector_t rv = (mddev->size << 1) - sector_nr;
3656 *skipped = 1;
3657 return rv;
3659 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3660 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3661 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3662 /* we can skip this block, and probably more */
3663 sync_blocks /= STRIPE_SECTORS;
3664 *skipped = 1;
3665 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3669 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3671 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3672 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3673 if (sh == NULL) {
3674 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3675 /* make sure we don't swamp the stripe cache if someone else
3676 * is trying to get access
3678 schedule_timeout_uninterruptible(1);
3680 /* Need to check if array will still be degraded after recovery/resync
3681 * We don't need to check the 'failed' flag as when that gets set,
3682 * recovery aborts.
3684 for (i=0; i<mddev->raid_disks; i++)
3685 if (conf->disks[i].rdev == NULL)
3686 still_degraded = 1;
3688 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3690 spin_lock(&sh->lock);
3691 set_bit(STRIPE_SYNCING, &sh->state);
3692 clear_bit(STRIPE_INSYNC, &sh->state);
3693 spin_unlock(&sh->lock);
3695 handle_stripe(sh, NULL);
3696 release_stripe(sh);
3698 return STRIPE_SECTORS;
3701 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3703 /* We may not be able to submit a whole bio at once as there
3704 * may not be enough stripe_heads available.
3705 * We cannot pre-allocate enough stripe_heads as we may need
3706 * more than exist in the cache (if we allow ever large chunks).
3707 * So we do one stripe head at a time and record in
3708 * ->bi_hw_segments how many have been done.
3710 * We *know* that this entire raid_bio is in one chunk, so
3711 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3713 struct stripe_head *sh;
3714 int dd_idx, pd_idx;
3715 sector_t sector, logical_sector, last_sector;
3716 int scnt = 0;
3717 int remaining;
3718 int handled = 0;
3720 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3721 sector = raid5_compute_sector( logical_sector,
3722 conf->raid_disks,
3723 conf->raid_disks - conf->max_degraded,
3724 &dd_idx,
3725 &pd_idx,
3726 conf);
3727 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3729 for (; logical_sector < last_sector;
3730 logical_sector += STRIPE_SECTORS,
3731 sector += STRIPE_SECTORS,
3732 scnt++) {
3734 if (scnt < raid_bio->bi_hw_segments)
3735 /* already done this stripe */
3736 continue;
3738 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3740 if (!sh) {
3741 /* failed to get a stripe - must wait */
3742 raid_bio->bi_hw_segments = scnt;
3743 conf->retry_read_aligned = raid_bio;
3744 return handled;
3747 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3748 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3749 release_stripe(sh);
3750 raid_bio->bi_hw_segments = scnt;
3751 conf->retry_read_aligned = raid_bio;
3752 return handled;
3755 handle_stripe(sh, NULL);
3756 release_stripe(sh);
3757 handled++;
3759 spin_lock_irq(&conf->device_lock);
3760 remaining = --raid_bio->bi_phys_segments;
3761 spin_unlock_irq(&conf->device_lock);
3762 if (remaining == 0)
3763 bio_endio(raid_bio, 0);
3764 if (atomic_dec_and_test(&conf->active_aligned_reads))
3765 wake_up(&conf->wait_for_stripe);
3766 return handled;
3772 * This is our raid5 kernel thread.
3774 * We scan the hash table for stripes which can be handled now.
3775 * During the scan, completed stripes are saved for us by the interrupt
3776 * handler, so that they will not have to wait for our next wakeup.
3778 static void raid5d(mddev_t *mddev)
3780 struct stripe_head *sh;
3781 raid5_conf_t *conf = mddev_to_conf(mddev);
3782 int handled;
3784 pr_debug("+++ raid5d active\n");
3786 md_check_recovery(mddev);
3788 handled = 0;
3789 spin_lock_irq(&conf->device_lock);
3790 while (1) {
3791 struct bio *bio;
3793 if (conf->seq_flush != conf->seq_write) {
3794 int seq = conf->seq_flush;
3795 spin_unlock_irq(&conf->device_lock);
3796 bitmap_unplug(mddev->bitmap);
3797 spin_lock_irq(&conf->device_lock);
3798 conf->seq_write = seq;
3799 activate_bit_delay(conf);
3802 while ((bio = remove_bio_from_retry(conf))) {
3803 int ok;
3804 spin_unlock_irq(&conf->device_lock);
3805 ok = retry_aligned_read(conf, bio);
3806 spin_lock_irq(&conf->device_lock);
3807 if (!ok)
3808 break;
3809 handled++;
3812 sh = __get_priority_stripe(conf);
3814 if (!sh) {
3815 async_tx_issue_pending_all();
3816 break;
3818 spin_unlock_irq(&conf->device_lock);
3820 handled++;
3821 handle_stripe(sh, conf->spare_page);
3822 release_stripe(sh);
3824 spin_lock_irq(&conf->device_lock);
3826 pr_debug("%d stripes handled\n", handled);
3828 spin_unlock_irq(&conf->device_lock);
3830 unplug_slaves(mddev);
3832 pr_debug("--- raid5d inactive\n");
3835 static ssize_t
3836 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3838 raid5_conf_t *conf = mddev_to_conf(mddev);
3839 if (conf)
3840 return sprintf(page, "%d\n", conf->max_nr_stripes);
3841 else
3842 return 0;
3845 static ssize_t
3846 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3848 raid5_conf_t *conf = mddev_to_conf(mddev);
3849 unsigned long new;
3850 int err;
3852 if (len >= PAGE_SIZE)
3853 return -EINVAL;
3854 if (!conf)
3855 return -ENODEV;
3857 if (strict_strtoul(page, 10, &new))
3858 return -EINVAL;
3859 if (new <= 16 || new > 32768)
3860 return -EINVAL;
3861 while (new < conf->max_nr_stripes) {
3862 if (drop_one_stripe(conf))
3863 conf->max_nr_stripes--;
3864 else
3865 break;
3867 err = md_allow_write(mddev);
3868 if (err)
3869 return err;
3870 while (new > conf->max_nr_stripes) {
3871 if (grow_one_stripe(conf))
3872 conf->max_nr_stripes++;
3873 else break;
3875 return len;
3878 static struct md_sysfs_entry
3879 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3880 raid5_show_stripe_cache_size,
3881 raid5_store_stripe_cache_size);
3883 static ssize_t
3884 raid5_show_preread_threshold(mddev_t *mddev, char *page)
3886 raid5_conf_t *conf = mddev_to_conf(mddev);
3887 if (conf)
3888 return sprintf(page, "%d\n", conf->bypass_threshold);
3889 else
3890 return 0;
3893 static ssize_t
3894 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3896 raid5_conf_t *conf = mddev_to_conf(mddev);
3897 unsigned long new;
3898 if (len >= PAGE_SIZE)
3899 return -EINVAL;
3900 if (!conf)
3901 return -ENODEV;
3903 if (strict_strtoul(page, 10, &new))
3904 return -EINVAL;
3905 if (new > conf->max_nr_stripes)
3906 return -EINVAL;
3907 conf->bypass_threshold = new;
3908 return len;
3911 static struct md_sysfs_entry
3912 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
3913 S_IRUGO | S_IWUSR,
3914 raid5_show_preread_threshold,
3915 raid5_store_preread_threshold);
3917 static ssize_t
3918 stripe_cache_active_show(mddev_t *mddev, char *page)
3920 raid5_conf_t *conf = mddev_to_conf(mddev);
3921 if (conf)
3922 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3923 else
3924 return 0;
3927 static struct md_sysfs_entry
3928 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3930 static struct attribute *raid5_attrs[] = {
3931 &raid5_stripecache_size.attr,
3932 &raid5_stripecache_active.attr,
3933 &raid5_preread_bypass_threshold.attr,
3934 NULL,
3936 static struct attribute_group raid5_attrs_group = {
3937 .name = NULL,
3938 .attrs = raid5_attrs,
3941 static int run(mddev_t *mddev)
3943 raid5_conf_t *conf;
3944 int raid_disk, memory;
3945 mdk_rdev_t *rdev;
3946 struct disk_info *disk;
3947 struct list_head *tmp;
3948 int working_disks = 0;
3950 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3951 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3952 mdname(mddev), mddev->level);
3953 return -EIO;
3956 if (mddev->reshape_position != MaxSector) {
3957 /* Check that we can continue the reshape.
3958 * Currently only disks can change, it must
3959 * increase, and we must be past the point where
3960 * a stripe over-writes itself
3962 sector_t here_new, here_old;
3963 int old_disks;
3964 int max_degraded = (mddev->level == 5 ? 1 : 2);
3966 if (mddev->new_level != mddev->level ||
3967 mddev->new_layout != mddev->layout ||
3968 mddev->new_chunk != mddev->chunk_size) {
3969 printk(KERN_ERR "raid5: %s: unsupported reshape "
3970 "required - aborting.\n",
3971 mdname(mddev));
3972 return -EINVAL;
3974 if (mddev->delta_disks <= 0) {
3975 printk(KERN_ERR "raid5: %s: unsupported reshape "
3976 "(reduce disks) required - aborting.\n",
3977 mdname(mddev));
3978 return -EINVAL;
3980 old_disks = mddev->raid_disks - mddev->delta_disks;
3981 /* reshape_position must be on a new-stripe boundary, and one
3982 * further up in new geometry must map after here in old
3983 * geometry.
3985 here_new = mddev->reshape_position;
3986 if (sector_div(here_new, (mddev->chunk_size>>9)*
3987 (mddev->raid_disks - max_degraded))) {
3988 printk(KERN_ERR "raid5: reshape_position not "
3989 "on a stripe boundary\n");
3990 return -EINVAL;
3992 /* here_new is the stripe we will write to */
3993 here_old = mddev->reshape_position;
3994 sector_div(here_old, (mddev->chunk_size>>9)*
3995 (old_disks-max_degraded));
3996 /* here_old is the first stripe that we might need to read
3997 * from */
3998 if (here_new >= here_old) {
3999 /* Reading from the same stripe as writing to - bad */
4000 printk(KERN_ERR "raid5: reshape_position too early for "
4001 "auto-recovery - aborting.\n");
4002 return -EINVAL;
4004 printk(KERN_INFO "raid5: reshape will continue\n");
4005 /* OK, we should be able to continue; */
4009 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4010 if ((conf = mddev->private) == NULL)
4011 goto abort;
4012 if (mddev->reshape_position == MaxSector) {
4013 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4014 } else {
4015 conf->raid_disks = mddev->raid_disks;
4016 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4019 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4020 GFP_KERNEL);
4021 if (!conf->disks)
4022 goto abort;
4024 conf->mddev = mddev;
4026 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4027 goto abort;
4029 if (mddev->level == 6) {
4030 conf->spare_page = alloc_page(GFP_KERNEL);
4031 if (!conf->spare_page)
4032 goto abort;
4034 spin_lock_init(&conf->device_lock);
4035 mddev->queue->queue_lock = &conf->device_lock;
4036 init_waitqueue_head(&conf->wait_for_stripe);
4037 init_waitqueue_head(&conf->wait_for_overlap);
4038 INIT_LIST_HEAD(&conf->handle_list);
4039 INIT_LIST_HEAD(&conf->hold_list);
4040 INIT_LIST_HEAD(&conf->delayed_list);
4041 INIT_LIST_HEAD(&conf->bitmap_list);
4042 INIT_LIST_HEAD(&conf->inactive_list);
4043 atomic_set(&conf->active_stripes, 0);
4044 atomic_set(&conf->preread_active_stripes, 0);
4045 atomic_set(&conf->active_aligned_reads, 0);
4046 conf->bypass_threshold = BYPASS_THRESHOLD;
4048 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4050 rdev_for_each(rdev, tmp, mddev) {
4051 raid_disk = rdev->raid_disk;
4052 if (raid_disk >= conf->raid_disks
4053 || raid_disk < 0)
4054 continue;
4055 disk = conf->disks + raid_disk;
4057 disk->rdev = rdev;
4059 if (test_bit(In_sync, &rdev->flags)) {
4060 char b[BDEVNAME_SIZE];
4061 printk(KERN_INFO "raid5: device %s operational as raid"
4062 " disk %d\n", bdevname(rdev->bdev,b),
4063 raid_disk);
4064 working_disks++;
4065 } else
4066 /* Cannot rely on bitmap to complete recovery */
4067 conf->fullsync = 1;
4071 * 0 for a fully functional array, 1 or 2 for a degraded array.
4073 mddev->degraded = conf->raid_disks - working_disks;
4074 conf->mddev = mddev;
4075 conf->chunk_size = mddev->chunk_size;
4076 conf->level = mddev->level;
4077 if (conf->level == 6)
4078 conf->max_degraded = 2;
4079 else
4080 conf->max_degraded = 1;
4081 conf->algorithm = mddev->layout;
4082 conf->max_nr_stripes = NR_STRIPES;
4083 conf->expand_progress = mddev->reshape_position;
4085 /* device size must be a multiple of chunk size */
4086 mddev->size &= ~(mddev->chunk_size/1024 -1);
4087 mddev->resync_max_sectors = mddev->size << 1;
4089 if (conf->level == 6 && conf->raid_disks < 4) {
4090 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4091 mdname(mddev), conf->raid_disks);
4092 goto abort;
4094 if (!conf->chunk_size || conf->chunk_size % 4) {
4095 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4096 conf->chunk_size, mdname(mddev));
4097 goto abort;
4099 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4100 printk(KERN_ERR
4101 "raid5: unsupported parity algorithm %d for %s\n",
4102 conf->algorithm, mdname(mddev));
4103 goto abort;
4105 if (mddev->degraded > conf->max_degraded) {
4106 printk(KERN_ERR "raid5: not enough operational devices for %s"
4107 " (%d/%d failed)\n",
4108 mdname(mddev), mddev->degraded, conf->raid_disks);
4109 goto abort;
4112 if (mddev->degraded > 0 &&
4113 mddev->recovery_cp != MaxSector) {
4114 if (mddev->ok_start_degraded)
4115 printk(KERN_WARNING
4116 "raid5: starting dirty degraded array: %s"
4117 "- data corruption possible.\n",
4118 mdname(mddev));
4119 else {
4120 printk(KERN_ERR
4121 "raid5: cannot start dirty degraded array for %s\n",
4122 mdname(mddev));
4123 goto abort;
4128 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4129 if (!mddev->thread) {
4130 printk(KERN_ERR
4131 "raid5: couldn't allocate thread for %s\n",
4132 mdname(mddev));
4133 goto abort;
4136 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4137 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4138 if (grow_stripes(conf, conf->max_nr_stripes)) {
4139 printk(KERN_ERR
4140 "raid5: couldn't allocate %dkB for buffers\n", memory);
4141 shrink_stripes(conf);
4142 md_unregister_thread(mddev->thread);
4143 goto abort;
4144 } else
4145 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4146 memory, mdname(mddev));
4148 if (mddev->degraded == 0)
4149 printk("raid5: raid level %d set %s active with %d out of %d"
4150 " devices, algorithm %d\n", conf->level, mdname(mddev),
4151 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4152 conf->algorithm);
4153 else
4154 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4155 " out of %d devices, algorithm %d\n", conf->level,
4156 mdname(mddev), mddev->raid_disks - mddev->degraded,
4157 mddev->raid_disks, conf->algorithm);
4159 print_raid5_conf(conf);
4161 if (conf->expand_progress != MaxSector) {
4162 printk("...ok start reshape thread\n");
4163 conf->expand_lo = conf->expand_progress;
4164 atomic_set(&conf->reshape_stripes, 0);
4165 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4166 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4167 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4168 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4169 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4170 "%s_reshape");
4173 /* read-ahead size must cover two whole stripes, which is
4174 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4177 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4178 int stripe = data_disks *
4179 (mddev->chunk_size / PAGE_SIZE);
4180 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4181 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4184 /* Ok, everything is just fine now */
4185 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4186 printk(KERN_WARNING
4187 "raid5: failed to create sysfs attributes for %s\n",
4188 mdname(mddev));
4190 mddev->queue->unplug_fn = raid5_unplug_device;
4191 mddev->queue->backing_dev_info.congested_data = mddev;
4192 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4194 mddev->array_sectors = 2 * mddev->size * (conf->previous_raid_disks -
4195 conf->max_degraded);
4197 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4199 return 0;
4200 abort:
4201 if (conf) {
4202 print_raid5_conf(conf);
4203 safe_put_page(conf->spare_page);
4204 kfree(conf->disks);
4205 kfree(conf->stripe_hashtbl);
4206 kfree(conf);
4208 mddev->private = NULL;
4209 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4210 return -EIO;
4215 static int stop(mddev_t *mddev)
4217 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4219 md_unregister_thread(mddev->thread);
4220 mddev->thread = NULL;
4221 shrink_stripes(conf);
4222 kfree(conf->stripe_hashtbl);
4223 mddev->queue->backing_dev_info.congested_fn = NULL;
4224 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4225 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4226 kfree(conf->disks);
4227 kfree(conf);
4228 mddev->private = NULL;
4229 return 0;
4232 #ifdef DEBUG
4233 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4235 int i;
4237 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4238 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4239 seq_printf(seq, "sh %llu, count %d.\n",
4240 (unsigned long long)sh->sector, atomic_read(&sh->count));
4241 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4242 for (i = 0; i < sh->disks; i++) {
4243 seq_printf(seq, "(cache%d: %p %ld) ",
4244 i, sh->dev[i].page, sh->dev[i].flags);
4246 seq_printf(seq, "\n");
4249 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4251 struct stripe_head *sh;
4252 struct hlist_node *hn;
4253 int i;
4255 spin_lock_irq(&conf->device_lock);
4256 for (i = 0; i < NR_HASH; i++) {
4257 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4258 if (sh->raid_conf != conf)
4259 continue;
4260 print_sh(seq, sh);
4263 spin_unlock_irq(&conf->device_lock);
4265 #endif
4267 static void status (struct seq_file *seq, mddev_t *mddev)
4269 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4270 int i;
4272 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4273 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4274 for (i = 0; i < conf->raid_disks; i++)
4275 seq_printf (seq, "%s",
4276 conf->disks[i].rdev &&
4277 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4278 seq_printf (seq, "]");
4279 #ifdef DEBUG
4280 seq_printf (seq, "\n");
4281 printall(seq, conf);
4282 #endif
4285 static void print_raid5_conf (raid5_conf_t *conf)
4287 int i;
4288 struct disk_info *tmp;
4290 printk("RAID5 conf printout:\n");
4291 if (!conf) {
4292 printk("(conf==NULL)\n");
4293 return;
4295 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4296 conf->raid_disks - conf->mddev->degraded);
4298 for (i = 0; i < conf->raid_disks; i++) {
4299 char b[BDEVNAME_SIZE];
4300 tmp = conf->disks + i;
4301 if (tmp->rdev)
4302 printk(" disk %d, o:%d, dev:%s\n",
4303 i, !test_bit(Faulty, &tmp->rdev->flags),
4304 bdevname(tmp->rdev->bdev,b));
4308 static int raid5_spare_active(mddev_t *mddev)
4310 int i;
4311 raid5_conf_t *conf = mddev->private;
4312 struct disk_info *tmp;
4314 for (i = 0; i < conf->raid_disks; i++) {
4315 tmp = conf->disks + i;
4316 if (tmp->rdev
4317 && !test_bit(Faulty, &tmp->rdev->flags)
4318 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4319 unsigned long flags;
4320 spin_lock_irqsave(&conf->device_lock, flags);
4321 mddev->degraded--;
4322 spin_unlock_irqrestore(&conf->device_lock, flags);
4325 print_raid5_conf(conf);
4326 return 0;
4329 static int raid5_remove_disk(mddev_t *mddev, int number)
4331 raid5_conf_t *conf = mddev->private;
4332 int err = 0;
4333 mdk_rdev_t *rdev;
4334 struct disk_info *p = conf->disks + number;
4336 print_raid5_conf(conf);
4337 rdev = p->rdev;
4338 if (rdev) {
4339 if (test_bit(In_sync, &rdev->flags) ||
4340 atomic_read(&rdev->nr_pending)) {
4341 err = -EBUSY;
4342 goto abort;
4344 /* Only remove non-faulty devices if recovery
4345 * isn't possible.
4347 if (!test_bit(Faulty, &rdev->flags) &&
4348 mddev->degraded <= conf->max_degraded) {
4349 err = -EBUSY;
4350 goto abort;
4352 p->rdev = NULL;
4353 synchronize_rcu();
4354 if (atomic_read(&rdev->nr_pending)) {
4355 /* lost the race, try later */
4356 err = -EBUSY;
4357 p->rdev = rdev;
4360 abort:
4362 print_raid5_conf(conf);
4363 return err;
4366 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4368 raid5_conf_t *conf = mddev->private;
4369 int err = -EEXIST;
4370 int disk;
4371 struct disk_info *p;
4372 int first = 0;
4373 int last = conf->raid_disks - 1;
4375 if (mddev->degraded > conf->max_degraded)
4376 /* no point adding a device */
4377 return -EINVAL;
4379 if (rdev->raid_disk >= 0)
4380 first = last = rdev->raid_disk;
4383 * find the disk ... but prefer rdev->saved_raid_disk
4384 * if possible.
4386 if (rdev->saved_raid_disk >= 0 &&
4387 rdev->saved_raid_disk >= first &&
4388 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4389 disk = rdev->saved_raid_disk;
4390 else
4391 disk = first;
4392 for ( ; disk <= last ; disk++)
4393 if ((p=conf->disks + disk)->rdev == NULL) {
4394 clear_bit(In_sync, &rdev->flags);
4395 rdev->raid_disk = disk;
4396 err = 0;
4397 if (rdev->saved_raid_disk != disk)
4398 conf->fullsync = 1;
4399 rcu_assign_pointer(p->rdev, rdev);
4400 break;
4402 print_raid5_conf(conf);
4403 return err;
4406 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4408 /* no resync is happening, and there is enough space
4409 * on all devices, so we can resize.
4410 * We need to make sure resync covers any new space.
4411 * If the array is shrinking we should possibly wait until
4412 * any io in the removed space completes, but it hardly seems
4413 * worth it.
4415 raid5_conf_t *conf = mddev_to_conf(mddev);
4417 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4418 mddev->array_sectors = sectors * (mddev->raid_disks
4419 - conf->max_degraded);
4420 set_capacity(mddev->gendisk, mddev->array_sectors);
4421 mddev->changed = 1;
4422 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4423 mddev->recovery_cp = mddev->size << 1;
4424 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4426 mddev->size = sectors /2;
4427 mddev->resync_max_sectors = sectors;
4428 return 0;
4431 #ifdef CONFIG_MD_RAID5_RESHAPE
4432 static int raid5_check_reshape(mddev_t *mddev)
4434 raid5_conf_t *conf = mddev_to_conf(mddev);
4435 int err;
4437 if (mddev->delta_disks < 0 ||
4438 mddev->new_level != mddev->level)
4439 return -EINVAL; /* Cannot shrink array or change level yet */
4440 if (mddev->delta_disks == 0)
4441 return 0; /* nothing to do */
4443 /* Can only proceed if there are plenty of stripe_heads.
4444 * We need a minimum of one full stripe,, and for sensible progress
4445 * it is best to have about 4 times that.
4446 * If we require 4 times, then the default 256 4K stripe_heads will
4447 * allow for chunk sizes up to 256K, which is probably OK.
4448 * If the chunk size is greater, user-space should request more
4449 * stripe_heads first.
4451 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4452 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4453 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4454 (mddev->chunk_size / STRIPE_SIZE)*4);
4455 return -ENOSPC;
4458 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4459 if (err)
4460 return err;
4462 if (mddev->degraded > conf->max_degraded)
4463 return -EINVAL;
4464 /* looks like we might be able to manage this */
4465 return 0;
4468 static int raid5_start_reshape(mddev_t *mddev)
4470 raid5_conf_t *conf = mddev_to_conf(mddev);
4471 mdk_rdev_t *rdev;
4472 struct list_head *rtmp;
4473 int spares = 0;
4474 int added_devices = 0;
4475 unsigned long flags;
4477 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4478 return -EBUSY;
4480 rdev_for_each(rdev, rtmp, mddev)
4481 if (rdev->raid_disk < 0 &&
4482 !test_bit(Faulty, &rdev->flags))
4483 spares++;
4485 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4486 /* Not enough devices even to make a degraded array
4487 * of that size
4489 return -EINVAL;
4491 atomic_set(&conf->reshape_stripes, 0);
4492 spin_lock_irq(&conf->device_lock);
4493 conf->previous_raid_disks = conf->raid_disks;
4494 conf->raid_disks += mddev->delta_disks;
4495 conf->expand_progress = 0;
4496 conf->expand_lo = 0;
4497 spin_unlock_irq(&conf->device_lock);
4499 /* Add some new drives, as many as will fit.
4500 * We know there are enough to make the newly sized array work.
4502 rdev_for_each(rdev, rtmp, mddev)
4503 if (rdev->raid_disk < 0 &&
4504 !test_bit(Faulty, &rdev->flags)) {
4505 if (raid5_add_disk(mddev, rdev) == 0) {
4506 char nm[20];
4507 set_bit(In_sync, &rdev->flags);
4508 added_devices++;
4509 rdev->recovery_offset = 0;
4510 sprintf(nm, "rd%d", rdev->raid_disk);
4511 if (sysfs_create_link(&mddev->kobj,
4512 &rdev->kobj, nm))
4513 printk(KERN_WARNING
4514 "raid5: failed to create "
4515 " link %s for %s\n",
4516 nm, mdname(mddev));
4517 } else
4518 break;
4521 spin_lock_irqsave(&conf->device_lock, flags);
4522 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4523 spin_unlock_irqrestore(&conf->device_lock, flags);
4524 mddev->raid_disks = conf->raid_disks;
4525 mddev->reshape_position = 0;
4526 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4528 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4529 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4530 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4531 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4532 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4533 "%s_reshape");
4534 if (!mddev->sync_thread) {
4535 mddev->recovery = 0;
4536 spin_lock_irq(&conf->device_lock);
4537 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4538 conf->expand_progress = MaxSector;
4539 spin_unlock_irq(&conf->device_lock);
4540 return -EAGAIN;
4542 md_wakeup_thread(mddev->sync_thread);
4543 md_new_event(mddev);
4544 return 0;
4546 #endif
4548 static void end_reshape(raid5_conf_t *conf)
4550 struct block_device *bdev;
4552 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4553 conf->mddev->array_sectors = 2 * conf->mddev->size *
4554 (conf->raid_disks - conf->max_degraded);
4555 set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
4556 conf->mddev->changed = 1;
4558 bdev = bdget_disk(conf->mddev->gendisk, 0);
4559 if (bdev) {
4560 mutex_lock(&bdev->bd_inode->i_mutex);
4561 i_size_write(bdev->bd_inode,
4562 (loff_t)conf->mddev->array_sectors << 9);
4563 mutex_unlock(&bdev->bd_inode->i_mutex);
4564 bdput(bdev);
4566 spin_lock_irq(&conf->device_lock);
4567 conf->expand_progress = MaxSector;
4568 spin_unlock_irq(&conf->device_lock);
4569 conf->mddev->reshape_position = MaxSector;
4571 /* read-ahead size must cover two whole stripes, which is
4572 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4575 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4576 int stripe = data_disks *
4577 (conf->mddev->chunk_size / PAGE_SIZE);
4578 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4579 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4584 static void raid5_quiesce(mddev_t *mddev, int state)
4586 raid5_conf_t *conf = mddev_to_conf(mddev);
4588 switch(state) {
4589 case 2: /* resume for a suspend */
4590 wake_up(&conf->wait_for_overlap);
4591 break;
4593 case 1: /* stop all writes */
4594 spin_lock_irq(&conf->device_lock);
4595 conf->quiesce = 1;
4596 wait_event_lock_irq(conf->wait_for_stripe,
4597 atomic_read(&conf->active_stripes) == 0 &&
4598 atomic_read(&conf->active_aligned_reads) == 0,
4599 conf->device_lock, /* nothing */);
4600 spin_unlock_irq(&conf->device_lock);
4601 break;
4603 case 0: /* re-enable writes */
4604 spin_lock_irq(&conf->device_lock);
4605 conf->quiesce = 0;
4606 wake_up(&conf->wait_for_stripe);
4607 wake_up(&conf->wait_for_overlap);
4608 spin_unlock_irq(&conf->device_lock);
4609 break;
4613 static struct mdk_personality raid6_personality =
4615 .name = "raid6",
4616 .level = 6,
4617 .owner = THIS_MODULE,
4618 .make_request = make_request,
4619 .run = run,
4620 .stop = stop,
4621 .status = status,
4622 .error_handler = error,
4623 .hot_add_disk = raid5_add_disk,
4624 .hot_remove_disk= raid5_remove_disk,
4625 .spare_active = raid5_spare_active,
4626 .sync_request = sync_request,
4627 .resize = raid5_resize,
4628 #ifdef CONFIG_MD_RAID5_RESHAPE
4629 .check_reshape = raid5_check_reshape,
4630 .start_reshape = raid5_start_reshape,
4631 #endif
4632 .quiesce = raid5_quiesce,
4634 static struct mdk_personality raid5_personality =
4636 .name = "raid5",
4637 .level = 5,
4638 .owner = THIS_MODULE,
4639 .make_request = make_request,
4640 .run = run,
4641 .stop = stop,
4642 .status = status,
4643 .error_handler = error,
4644 .hot_add_disk = raid5_add_disk,
4645 .hot_remove_disk= raid5_remove_disk,
4646 .spare_active = raid5_spare_active,
4647 .sync_request = sync_request,
4648 .resize = raid5_resize,
4649 #ifdef CONFIG_MD_RAID5_RESHAPE
4650 .check_reshape = raid5_check_reshape,
4651 .start_reshape = raid5_start_reshape,
4652 #endif
4653 .quiesce = raid5_quiesce,
4656 static struct mdk_personality raid4_personality =
4658 .name = "raid4",
4659 .level = 4,
4660 .owner = THIS_MODULE,
4661 .make_request = make_request,
4662 .run = run,
4663 .stop = stop,
4664 .status = status,
4665 .error_handler = error,
4666 .hot_add_disk = raid5_add_disk,
4667 .hot_remove_disk= raid5_remove_disk,
4668 .spare_active = raid5_spare_active,
4669 .sync_request = sync_request,
4670 .resize = raid5_resize,
4671 #ifdef CONFIG_MD_RAID5_RESHAPE
4672 .check_reshape = raid5_check_reshape,
4673 .start_reshape = raid5_start_reshape,
4674 #endif
4675 .quiesce = raid5_quiesce,
4678 static int __init raid5_init(void)
4680 int e;
4682 e = raid6_select_algo();
4683 if ( e )
4684 return e;
4685 register_md_personality(&raid6_personality);
4686 register_md_personality(&raid5_personality);
4687 register_md_personality(&raid4_personality);
4688 return 0;
4691 static void raid5_exit(void)
4693 unregister_md_personality(&raid6_personality);
4694 unregister_md_personality(&raid5_personality);
4695 unregister_md_personality(&raid4_personality);
4698 module_init(raid5_init);
4699 module_exit(raid5_exit);
4700 MODULE_LICENSE("GPL");
4701 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4702 MODULE_ALIAS("md-raid5");
4703 MODULE_ALIAS("md-raid4");
4704 MODULE_ALIAS("md-level-5");
4705 MODULE_ALIAS("md-level-4");
4706 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4707 MODULE_ALIAS("md-raid6");
4708 MODULE_ALIAS("md-level-6");
4710 /* This used to be two separate modules, they were: */
4711 MODULE_ALIAS("raid5");
4712 MODULE_ALIAS("raid6");