2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 * The following can be used to debug the driver
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
89 # define CHECK_DEVLOCK()
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
104 static inline int raid6_next_disk(int disk
, int raid_disks
)
107 return (disk
< raid_disks
) ? disk
: 0;
110 static void return_io(struct bio
*return_bi
)
112 struct bio
*bi
= return_bi
;
115 return_bi
= bi
->bi_next
;
123 static void print_raid5_conf (raid5_conf_t
*conf
);
125 static int stripe_operations_active(struct stripe_head
*sh
)
127 return sh
->check_state
|| sh
->reconstruct_state
||
128 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
129 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
132 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
134 if (atomic_dec_and_test(&sh
->count
)) {
135 BUG_ON(!list_empty(&sh
->lru
));
136 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
137 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
138 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
139 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
140 blk_plug_device(conf
->mddev
->queue
);
141 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
142 sh
->bm_seq
- conf
->seq_write
> 0) {
143 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
144 blk_plug_device(conf
->mddev
->queue
);
146 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
147 list_add_tail(&sh
->lru
, &conf
->handle_list
);
149 md_wakeup_thread(conf
->mddev
->thread
);
151 BUG_ON(stripe_operations_active(sh
));
152 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
153 atomic_dec(&conf
->preread_active_stripes
);
154 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
155 md_wakeup_thread(conf
->mddev
->thread
);
157 atomic_dec(&conf
->active_stripes
);
158 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
159 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
160 wake_up(&conf
->wait_for_stripe
);
161 if (conf
->retry_read_aligned
)
162 md_wakeup_thread(conf
->mddev
->thread
);
167 static void release_stripe(struct stripe_head
*sh
)
169 raid5_conf_t
*conf
= sh
->raid_conf
;
172 spin_lock_irqsave(&conf
->device_lock
, flags
);
173 __release_stripe(conf
, sh
);
174 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
177 static inline void remove_hash(struct stripe_head
*sh
)
179 pr_debug("remove_hash(), stripe %llu\n",
180 (unsigned long long)sh
->sector
);
182 hlist_del_init(&sh
->hash
);
185 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
187 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
189 pr_debug("insert_hash(), stripe %llu\n",
190 (unsigned long long)sh
->sector
);
193 hlist_add_head(&sh
->hash
, hp
);
197 /* find an idle stripe, make sure it is unhashed, and return it. */
198 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
200 struct stripe_head
*sh
= NULL
;
201 struct list_head
*first
;
204 if (list_empty(&conf
->inactive_list
))
206 first
= conf
->inactive_list
.next
;
207 sh
= list_entry(first
, struct stripe_head
, lru
);
208 list_del_init(first
);
210 atomic_inc(&conf
->active_stripes
);
215 static void shrink_buffers(struct stripe_head
*sh
, int num
)
220 for (i
=0; i
<num
; i
++) {
224 sh
->dev
[i
].page
= NULL
;
229 static int grow_buffers(struct stripe_head
*sh
, int num
)
233 for (i
=0; i
<num
; i
++) {
236 if (!(page
= alloc_page(GFP_KERNEL
))) {
239 sh
->dev
[i
].page
= page
;
244 static void raid5_build_block (struct stripe_head
*sh
, int i
);
246 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
, int disks
)
248 raid5_conf_t
*conf
= sh
->raid_conf
;
251 BUG_ON(atomic_read(&sh
->count
) != 0);
252 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
253 BUG_ON(stripe_operations_active(sh
));
256 pr_debug("init_stripe called, stripe %llu\n",
257 (unsigned long long)sh
->sector
);
267 for (i
= sh
->disks
; i
--; ) {
268 struct r5dev
*dev
= &sh
->dev
[i
];
270 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
271 test_bit(R5_LOCKED
, &dev
->flags
)) {
272 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
273 (unsigned long long)sh
->sector
, i
, dev
->toread
,
274 dev
->read
, dev
->towrite
, dev
->written
,
275 test_bit(R5_LOCKED
, &dev
->flags
));
279 raid5_build_block(sh
, i
);
281 insert_hash(conf
, sh
);
284 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
)
286 struct stripe_head
*sh
;
287 struct hlist_node
*hn
;
290 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
291 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
292 if (sh
->sector
== sector
&& sh
->disks
== disks
)
294 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
298 static void unplug_slaves(mddev_t
*mddev
);
299 static void raid5_unplug_device(struct request_queue
*q
);
301 static struct stripe_head
*get_active_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
,
302 int pd_idx
, int noblock
)
304 struct stripe_head
*sh
;
306 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
308 spin_lock_irq(&conf
->device_lock
);
311 wait_event_lock_irq(conf
->wait_for_stripe
,
313 conf
->device_lock
, /* nothing */);
314 sh
= __find_stripe(conf
, sector
, disks
);
316 if (!conf
->inactive_blocked
)
317 sh
= get_free_stripe(conf
);
318 if (noblock
&& sh
== NULL
)
321 conf
->inactive_blocked
= 1;
322 wait_event_lock_irq(conf
->wait_for_stripe
,
323 !list_empty(&conf
->inactive_list
) &&
324 (atomic_read(&conf
->active_stripes
)
325 < (conf
->max_nr_stripes
*3/4)
326 || !conf
->inactive_blocked
),
328 raid5_unplug_device(conf
->mddev
->queue
)
330 conf
->inactive_blocked
= 0;
332 init_stripe(sh
, sector
, pd_idx
, disks
);
334 if (atomic_read(&sh
->count
)) {
335 BUG_ON(!list_empty(&sh
->lru
));
337 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
338 atomic_inc(&conf
->active_stripes
);
339 if (list_empty(&sh
->lru
) &&
340 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
342 list_del_init(&sh
->lru
);
345 } while (sh
== NULL
);
348 atomic_inc(&sh
->count
);
350 spin_unlock_irq(&conf
->device_lock
);
355 raid5_end_read_request(struct bio
*bi
, int error
);
357 raid5_end_write_request(struct bio
*bi
, int error
);
359 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
361 raid5_conf_t
*conf
= sh
->raid_conf
;
362 int i
, disks
= sh
->disks
;
366 for (i
= disks
; i
--; ) {
370 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
372 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
377 bi
= &sh
->dev
[i
].req
;
381 bi
->bi_end_io
= raid5_end_write_request
;
383 bi
->bi_end_io
= raid5_end_read_request
;
386 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
387 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
390 atomic_inc(&rdev
->nr_pending
);
394 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
395 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
397 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
399 bi
->bi_bdev
= rdev
->bdev
;
400 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
401 __func__
, (unsigned long long)sh
->sector
,
403 atomic_inc(&sh
->count
);
404 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
405 bi
->bi_flags
= 1 << BIO_UPTODATE
;
409 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
410 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
411 bi
->bi_io_vec
[0].bv_offset
= 0;
412 bi
->bi_size
= STRIPE_SIZE
;
415 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
416 atomic_add(STRIPE_SECTORS
,
417 &rdev
->corrected_errors
);
418 generic_make_request(bi
);
421 set_bit(STRIPE_DEGRADED
, &sh
->state
);
422 pr_debug("skip op %ld on disc %d for sector %llu\n",
423 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
424 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
425 set_bit(STRIPE_HANDLE
, &sh
->state
);
430 static struct dma_async_tx_descriptor
*
431 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
432 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
435 struct page
*bio_page
;
439 if (bio
->bi_sector
>= sector
)
440 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
442 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
443 bio_for_each_segment(bvl
, bio
, i
) {
444 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
448 if (page_offset
< 0) {
449 b_offset
= -page_offset
;
450 page_offset
+= b_offset
;
454 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
455 clen
= STRIPE_SIZE
- page_offset
;
460 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
461 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
463 tx
= async_memcpy(page
, bio_page
, page_offset
,
468 tx
= async_memcpy(bio_page
, page
, b_offset
,
473 if (clen
< len
) /* hit end of page */
481 static void ops_complete_biofill(void *stripe_head_ref
)
483 struct stripe_head
*sh
= stripe_head_ref
;
484 struct bio
*return_bi
= NULL
;
485 raid5_conf_t
*conf
= sh
->raid_conf
;
488 pr_debug("%s: stripe %llu\n", __func__
,
489 (unsigned long long)sh
->sector
);
491 /* clear completed biofills */
492 spin_lock_irq(&conf
->device_lock
);
493 for (i
= sh
->disks
; i
--; ) {
494 struct r5dev
*dev
= &sh
->dev
[i
];
496 /* acknowledge completion of a biofill operation */
497 /* and check if we need to reply to a read request,
498 * new R5_Wantfill requests are held off until
499 * !STRIPE_BIOFILL_RUN
501 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
502 struct bio
*rbi
, *rbi2
;
507 while (rbi
&& rbi
->bi_sector
<
508 dev
->sector
+ STRIPE_SECTORS
) {
509 rbi2
= r5_next_bio(rbi
, dev
->sector
);
510 if (--rbi
->bi_phys_segments
== 0) {
511 rbi
->bi_next
= return_bi
;
518 spin_unlock_irq(&conf
->device_lock
);
519 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
521 return_io(return_bi
);
523 set_bit(STRIPE_HANDLE
, &sh
->state
);
527 static void ops_run_biofill(struct stripe_head
*sh
)
529 struct dma_async_tx_descriptor
*tx
= NULL
;
530 raid5_conf_t
*conf
= sh
->raid_conf
;
533 pr_debug("%s: stripe %llu\n", __func__
,
534 (unsigned long long)sh
->sector
);
536 for (i
= sh
->disks
; i
--; ) {
537 struct r5dev
*dev
= &sh
->dev
[i
];
538 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
540 spin_lock_irq(&conf
->device_lock
);
541 dev
->read
= rbi
= dev
->toread
;
543 spin_unlock_irq(&conf
->device_lock
);
544 while (rbi
&& rbi
->bi_sector
<
545 dev
->sector
+ STRIPE_SECTORS
) {
546 tx
= async_copy_data(0, rbi
, dev
->page
,
548 rbi
= r5_next_bio(rbi
, dev
->sector
);
553 atomic_inc(&sh
->count
);
554 async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
555 ops_complete_biofill
, sh
);
558 static void ops_complete_compute5(void *stripe_head_ref
)
560 struct stripe_head
*sh
= stripe_head_ref
;
561 int target
= sh
->ops
.target
;
562 struct r5dev
*tgt
= &sh
->dev
[target
];
564 pr_debug("%s: stripe %llu\n", __func__
,
565 (unsigned long long)sh
->sector
);
567 set_bit(R5_UPTODATE
, &tgt
->flags
);
568 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
569 clear_bit(R5_Wantcompute
, &tgt
->flags
);
570 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
571 if (sh
->check_state
== check_state_compute_run
)
572 sh
->check_state
= check_state_compute_result
;
573 set_bit(STRIPE_HANDLE
, &sh
->state
);
577 static struct dma_async_tx_descriptor
*ops_run_compute5(struct stripe_head
*sh
)
579 /* kernel stack size limits the total number of disks */
580 int disks
= sh
->disks
;
581 struct page
*xor_srcs
[disks
];
582 int target
= sh
->ops
.target
;
583 struct r5dev
*tgt
= &sh
->dev
[target
];
584 struct page
*xor_dest
= tgt
->page
;
586 struct dma_async_tx_descriptor
*tx
;
589 pr_debug("%s: stripe %llu block: %d\n",
590 __func__
, (unsigned long long)sh
->sector
, target
);
591 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
593 for (i
= disks
; i
--; )
595 xor_srcs
[count
++] = sh
->dev
[i
].page
;
597 atomic_inc(&sh
->count
);
599 if (unlikely(count
== 1))
600 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
601 0, NULL
, ops_complete_compute5
, sh
);
603 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
604 ASYNC_TX_XOR_ZERO_DST
, NULL
,
605 ops_complete_compute5
, sh
);
610 static void ops_complete_prexor(void *stripe_head_ref
)
612 struct stripe_head
*sh
= stripe_head_ref
;
614 pr_debug("%s: stripe %llu\n", __func__
,
615 (unsigned long long)sh
->sector
);
618 static struct dma_async_tx_descriptor
*
619 ops_run_prexor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
621 /* kernel stack size limits the total number of disks */
622 int disks
= sh
->disks
;
623 struct page
*xor_srcs
[disks
];
624 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
626 /* existing parity data subtracted */
627 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
629 pr_debug("%s: stripe %llu\n", __func__
,
630 (unsigned long long)sh
->sector
);
632 for (i
= disks
; i
--; ) {
633 struct r5dev
*dev
= &sh
->dev
[i
];
634 /* Only process blocks that are known to be uptodate */
635 if (test_bit(R5_Wantdrain
, &dev
->flags
))
636 xor_srcs
[count
++] = dev
->page
;
639 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
640 ASYNC_TX_DEP_ACK
| ASYNC_TX_XOR_DROP_DST
, tx
,
641 ops_complete_prexor
, sh
);
646 static struct dma_async_tx_descriptor
*
647 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
649 int disks
= sh
->disks
;
652 pr_debug("%s: stripe %llu\n", __func__
,
653 (unsigned long long)sh
->sector
);
655 for (i
= disks
; i
--; ) {
656 struct r5dev
*dev
= &sh
->dev
[i
];
659 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
662 spin_lock(&sh
->lock
);
663 chosen
= dev
->towrite
;
665 BUG_ON(dev
->written
);
666 wbi
= dev
->written
= chosen
;
667 spin_unlock(&sh
->lock
);
669 while (wbi
&& wbi
->bi_sector
<
670 dev
->sector
+ STRIPE_SECTORS
) {
671 tx
= async_copy_data(1, wbi
, dev
->page
,
673 wbi
= r5_next_bio(wbi
, dev
->sector
);
681 static void ops_complete_postxor(void *stripe_head_ref
)
683 struct stripe_head
*sh
= stripe_head_ref
;
684 int disks
= sh
->disks
, i
, pd_idx
= sh
->pd_idx
;
686 pr_debug("%s: stripe %llu\n", __func__
,
687 (unsigned long long)sh
->sector
);
689 for (i
= disks
; i
--; ) {
690 struct r5dev
*dev
= &sh
->dev
[i
];
691 if (dev
->written
|| i
== pd_idx
)
692 set_bit(R5_UPTODATE
, &dev
->flags
);
695 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
696 sh
->reconstruct_state
= reconstruct_state_drain_result
;
697 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
698 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
700 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
701 sh
->reconstruct_state
= reconstruct_state_result
;
704 set_bit(STRIPE_HANDLE
, &sh
->state
);
709 ops_run_postxor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
711 /* kernel stack size limits the total number of disks */
712 int disks
= sh
->disks
;
713 struct page
*xor_srcs
[disks
];
715 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
716 struct page
*xor_dest
;
720 pr_debug("%s: stripe %llu\n", __func__
,
721 (unsigned long long)sh
->sector
);
723 /* check if prexor is active which means only process blocks
724 * that are part of a read-modify-write (written)
726 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
728 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
729 for (i
= disks
; i
--; ) {
730 struct r5dev
*dev
= &sh
->dev
[i
];
732 xor_srcs
[count
++] = dev
->page
;
735 xor_dest
= sh
->dev
[pd_idx
].page
;
736 for (i
= disks
; i
--; ) {
737 struct r5dev
*dev
= &sh
->dev
[i
];
739 xor_srcs
[count
++] = dev
->page
;
743 /* 1/ if we prexor'd then the dest is reused as a source
744 * 2/ if we did not prexor then we are redoing the parity
745 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
746 * for the synchronous xor case
748 flags
= ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
|
749 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
751 atomic_inc(&sh
->count
);
753 if (unlikely(count
== 1)) {
754 flags
&= ~(ASYNC_TX_XOR_DROP_DST
| ASYNC_TX_XOR_ZERO_DST
);
755 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
756 flags
, tx
, ops_complete_postxor
, sh
);
758 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
759 flags
, tx
, ops_complete_postxor
, sh
);
762 static void ops_complete_check(void *stripe_head_ref
)
764 struct stripe_head
*sh
= stripe_head_ref
;
766 pr_debug("%s: stripe %llu\n", __func__
,
767 (unsigned long long)sh
->sector
);
769 sh
->check_state
= check_state_check_result
;
770 set_bit(STRIPE_HANDLE
, &sh
->state
);
774 static void ops_run_check(struct stripe_head
*sh
)
776 /* kernel stack size limits the total number of disks */
777 int disks
= sh
->disks
;
778 struct page
*xor_srcs
[disks
];
779 struct dma_async_tx_descriptor
*tx
;
781 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
782 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
784 pr_debug("%s: stripe %llu\n", __func__
,
785 (unsigned long long)sh
->sector
);
787 for (i
= disks
; i
--; ) {
788 struct r5dev
*dev
= &sh
->dev
[i
];
790 xor_srcs
[count
++] = dev
->page
;
793 tx
= async_xor_zero_sum(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
794 &sh
->ops
.zero_sum_result
, 0, NULL
, NULL
, NULL
);
796 atomic_inc(&sh
->count
);
797 tx
= async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
798 ops_complete_check
, sh
);
801 static void raid5_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
803 int overlap_clear
= 0, i
, disks
= sh
->disks
;
804 struct dma_async_tx_descriptor
*tx
= NULL
;
806 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
811 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
812 tx
= ops_run_compute5(sh
);
813 /* terminate the chain if postxor is not set to be run */
814 if (tx
&& !test_bit(STRIPE_OP_POSTXOR
, &ops_request
))
818 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
819 tx
= ops_run_prexor(sh
, tx
);
821 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
822 tx
= ops_run_biodrain(sh
, tx
);
826 if (test_bit(STRIPE_OP_POSTXOR
, &ops_request
))
827 ops_run_postxor(sh
, tx
);
829 if (test_bit(STRIPE_OP_CHECK
, &ops_request
))
833 for (i
= disks
; i
--; ) {
834 struct r5dev
*dev
= &sh
->dev
[i
];
835 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
836 wake_up(&sh
->raid_conf
->wait_for_overlap
);
840 static int grow_one_stripe(raid5_conf_t
*conf
)
842 struct stripe_head
*sh
;
843 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
846 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
847 sh
->raid_conf
= conf
;
848 spin_lock_init(&sh
->lock
);
850 if (grow_buffers(sh
, conf
->raid_disks
)) {
851 shrink_buffers(sh
, conf
->raid_disks
);
852 kmem_cache_free(conf
->slab_cache
, sh
);
855 sh
->disks
= conf
->raid_disks
;
856 /* we just created an active stripe so... */
857 atomic_set(&sh
->count
, 1);
858 atomic_inc(&conf
->active_stripes
);
859 INIT_LIST_HEAD(&sh
->lru
);
864 static int grow_stripes(raid5_conf_t
*conf
, int num
)
866 struct kmem_cache
*sc
;
867 int devs
= conf
->raid_disks
;
869 sprintf(conf
->cache_name
[0], "raid5-%s", mdname(conf
->mddev
));
870 sprintf(conf
->cache_name
[1], "raid5-%s-alt", mdname(conf
->mddev
));
871 conf
->active_name
= 0;
872 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
873 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
877 conf
->slab_cache
= sc
;
878 conf
->pool_size
= devs
;
880 if (!grow_one_stripe(conf
))
885 #ifdef CONFIG_MD_RAID5_RESHAPE
886 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
888 /* Make all the stripes able to hold 'newsize' devices.
889 * New slots in each stripe get 'page' set to a new page.
891 * This happens in stages:
892 * 1/ create a new kmem_cache and allocate the required number of
894 * 2/ gather all the old stripe_heads and tranfer the pages across
895 * to the new stripe_heads. This will have the side effect of
896 * freezing the array as once all stripe_heads have been collected,
897 * no IO will be possible. Old stripe heads are freed once their
898 * pages have been transferred over, and the old kmem_cache is
899 * freed when all stripes are done.
900 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
901 * we simple return a failre status - no need to clean anything up.
902 * 4/ allocate new pages for the new slots in the new stripe_heads.
903 * If this fails, we don't bother trying the shrink the
904 * stripe_heads down again, we just leave them as they are.
905 * As each stripe_head is processed the new one is released into
908 * Once step2 is started, we cannot afford to wait for a write,
909 * so we use GFP_NOIO allocations.
911 struct stripe_head
*osh
, *nsh
;
912 LIST_HEAD(newstripes
);
913 struct disk_info
*ndisks
;
915 struct kmem_cache
*sc
;
918 if (newsize
<= conf
->pool_size
)
919 return 0; /* never bother to shrink */
921 err
= md_allow_write(conf
->mddev
);
926 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
927 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
932 for (i
= conf
->max_nr_stripes
; i
; i
--) {
933 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
937 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
939 nsh
->raid_conf
= conf
;
940 spin_lock_init(&nsh
->lock
);
942 list_add(&nsh
->lru
, &newstripes
);
945 /* didn't get enough, give up */
946 while (!list_empty(&newstripes
)) {
947 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
949 kmem_cache_free(sc
, nsh
);
951 kmem_cache_destroy(sc
);
954 /* Step 2 - Must use GFP_NOIO now.
955 * OK, we have enough stripes, start collecting inactive
956 * stripes and copying them over
958 list_for_each_entry(nsh
, &newstripes
, lru
) {
959 spin_lock_irq(&conf
->device_lock
);
960 wait_event_lock_irq(conf
->wait_for_stripe
,
961 !list_empty(&conf
->inactive_list
),
963 unplug_slaves(conf
->mddev
)
965 osh
= get_free_stripe(conf
);
966 spin_unlock_irq(&conf
->device_lock
);
967 atomic_set(&nsh
->count
, 1);
968 for(i
=0; i
<conf
->pool_size
; i
++)
969 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
970 for( ; i
<newsize
; i
++)
971 nsh
->dev
[i
].page
= NULL
;
972 kmem_cache_free(conf
->slab_cache
, osh
);
974 kmem_cache_destroy(conf
->slab_cache
);
977 * At this point, we are holding all the stripes so the array
978 * is completely stalled, so now is a good time to resize
981 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
983 for (i
=0; i
<conf
->raid_disks
; i
++)
984 ndisks
[i
] = conf
->disks
[i
];
986 conf
->disks
= ndisks
;
990 /* Step 4, return new stripes to service */
991 while(!list_empty(&newstripes
)) {
992 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
993 list_del_init(&nsh
->lru
);
994 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
995 if (nsh
->dev
[i
].page
== NULL
) {
996 struct page
*p
= alloc_page(GFP_NOIO
);
997 nsh
->dev
[i
].page
= p
;
1001 release_stripe(nsh
);
1003 /* critical section pass, GFP_NOIO no longer needed */
1005 conf
->slab_cache
= sc
;
1006 conf
->active_name
= 1-conf
->active_name
;
1007 conf
->pool_size
= newsize
;
1012 static int drop_one_stripe(raid5_conf_t
*conf
)
1014 struct stripe_head
*sh
;
1016 spin_lock_irq(&conf
->device_lock
);
1017 sh
= get_free_stripe(conf
);
1018 spin_unlock_irq(&conf
->device_lock
);
1021 BUG_ON(atomic_read(&sh
->count
));
1022 shrink_buffers(sh
, conf
->pool_size
);
1023 kmem_cache_free(conf
->slab_cache
, sh
);
1024 atomic_dec(&conf
->active_stripes
);
1028 static void shrink_stripes(raid5_conf_t
*conf
)
1030 while (drop_one_stripe(conf
))
1033 if (conf
->slab_cache
)
1034 kmem_cache_destroy(conf
->slab_cache
);
1035 conf
->slab_cache
= NULL
;
1038 static void raid5_end_read_request(struct bio
* bi
, int error
)
1040 struct stripe_head
*sh
= bi
->bi_private
;
1041 raid5_conf_t
*conf
= sh
->raid_conf
;
1042 int disks
= sh
->disks
, i
;
1043 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1044 char b
[BDEVNAME_SIZE
];
1048 for (i
=0 ; i
<disks
; i
++)
1049 if (bi
== &sh
->dev
[i
].req
)
1052 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1053 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1061 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1062 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1063 rdev
= conf
->disks
[i
].rdev
;
1064 printk_rl(KERN_INFO
"raid5:%s: read error corrected"
1065 " (%lu sectors at %llu on %s)\n",
1066 mdname(conf
->mddev
), STRIPE_SECTORS
,
1067 (unsigned long long)(sh
->sector
1068 + rdev
->data_offset
),
1069 bdevname(rdev
->bdev
, b
));
1070 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1071 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1073 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1074 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1076 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1078 rdev
= conf
->disks
[i
].rdev
;
1080 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1081 atomic_inc(&rdev
->read_errors
);
1082 if (conf
->mddev
->degraded
)
1083 printk_rl(KERN_WARNING
1084 "raid5:%s: read error not correctable "
1085 "(sector %llu on %s).\n",
1086 mdname(conf
->mddev
),
1087 (unsigned long long)(sh
->sector
1088 + rdev
->data_offset
),
1090 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1092 printk_rl(KERN_WARNING
1093 "raid5:%s: read error NOT corrected!! "
1094 "(sector %llu on %s).\n",
1095 mdname(conf
->mddev
),
1096 (unsigned long long)(sh
->sector
1097 + rdev
->data_offset
),
1099 else if (atomic_read(&rdev
->read_errors
)
1100 > conf
->max_nr_stripes
)
1102 "raid5:%s: Too many read errors, failing device %s.\n",
1103 mdname(conf
->mddev
), bdn
);
1107 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1109 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1110 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1111 md_error(conf
->mddev
, rdev
);
1114 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1115 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1116 set_bit(STRIPE_HANDLE
, &sh
->state
);
1120 static void raid5_end_write_request (struct bio
*bi
, int error
)
1122 struct stripe_head
*sh
= bi
->bi_private
;
1123 raid5_conf_t
*conf
= sh
->raid_conf
;
1124 int disks
= sh
->disks
, i
;
1125 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1127 for (i
=0 ; i
<disks
; i
++)
1128 if (bi
== &sh
->dev
[i
].req
)
1131 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1132 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1140 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1142 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1144 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1145 set_bit(STRIPE_HANDLE
, &sh
->state
);
1150 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
1152 static void raid5_build_block (struct stripe_head
*sh
, int i
)
1154 struct r5dev
*dev
= &sh
->dev
[i
];
1156 bio_init(&dev
->req
);
1157 dev
->req
.bi_io_vec
= &dev
->vec
;
1159 dev
->req
.bi_max_vecs
++;
1160 dev
->vec
.bv_page
= dev
->page
;
1161 dev
->vec
.bv_len
= STRIPE_SIZE
;
1162 dev
->vec
.bv_offset
= 0;
1164 dev
->req
.bi_sector
= sh
->sector
;
1165 dev
->req
.bi_private
= sh
;
1168 dev
->sector
= compute_blocknr(sh
, i
);
1171 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1173 char b
[BDEVNAME_SIZE
];
1174 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1175 pr_debug("raid5: error called\n");
1177 if (!test_bit(Faulty
, &rdev
->flags
)) {
1178 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1179 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1180 unsigned long flags
;
1181 spin_lock_irqsave(&conf
->device_lock
, flags
);
1183 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1185 * if recovery was running, make sure it aborts.
1187 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1189 set_bit(Faulty
, &rdev
->flags
);
1191 "raid5: Disk failure on %s, disabling device.\n"
1192 "raid5: Operation continuing on %d devices.\n",
1193 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1198 * Input: a 'big' sector number,
1199 * Output: index of the data and parity disk, and the sector # in them.
1201 static sector_t
raid5_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
1202 unsigned int data_disks
, unsigned int * dd_idx
,
1203 unsigned int * pd_idx
, raid5_conf_t
*conf
)
1206 unsigned long chunk_number
;
1207 unsigned int chunk_offset
;
1208 sector_t new_sector
;
1209 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1211 /* First compute the information on this sector */
1214 * Compute the chunk number and the sector offset inside the chunk
1216 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1217 chunk_number
= r_sector
;
1218 BUG_ON(r_sector
!= chunk_number
);
1221 * Compute the stripe number
1223 stripe
= chunk_number
/ data_disks
;
1226 * Compute the data disk and parity disk indexes inside the stripe
1228 *dd_idx
= chunk_number
% data_disks
;
1231 * Select the parity disk based on the user selected algorithm.
1233 switch(conf
->level
) {
1235 *pd_idx
= data_disks
;
1238 switch (conf
->algorithm
) {
1239 case ALGORITHM_LEFT_ASYMMETRIC
:
1240 *pd_idx
= data_disks
- stripe
% raid_disks
;
1241 if (*dd_idx
>= *pd_idx
)
1244 case ALGORITHM_RIGHT_ASYMMETRIC
:
1245 *pd_idx
= stripe
% raid_disks
;
1246 if (*dd_idx
>= *pd_idx
)
1249 case ALGORITHM_LEFT_SYMMETRIC
:
1250 *pd_idx
= data_disks
- stripe
% raid_disks
;
1251 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1253 case ALGORITHM_RIGHT_SYMMETRIC
:
1254 *pd_idx
= stripe
% raid_disks
;
1255 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1258 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1264 /**** FIX THIS ****/
1265 switch (conf
->algorithm
) {
1266 case ALGORITHM_LEFT_ASYMMETRIC
:
1267 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1268 if (*pd_idx
== raid_disks
-1)
1269 (*dd_idx
)++; /* Q D D D P */
1270 else if (*dd_idx
>= *pd_idx
)
1271 (*dd_idx
) += 2; /* D D P Q D */
1273 case ALGORITHM_RIGHT_ASYMMETRIC
:
1274 *pd_idx
= stripe
% raid_disks
;
1275 if (*pd_idx
== raid_disks
-1)
1276 (*dd_idx
)++; /* Q D D D P */
1277 else if (*dd_idx
>= *pd_idx
)
1278 (*dd_idx
) += 2; /* D D P Q D */
1280 case ALGORITHM_LEFT_SYMMETRIC
:
1281 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1282 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1284 case ALGORITHM_RIGHT_SYMMETRIC
:
1285 *pd_idx
= stripe
% raid_disks
;
1286 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1289 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1296 * Finally, compute the new sector number
1298 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1303 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
1305 raid5_conf_t
*conf
= sh
->raid_conf
;
1306 int raid_disks
= sh
->disks
;
1307 int data_disks
= raid_disks
- conf
->max_degraded
;
1308 sector_t new_sector
= sh
->sector
, check
;
1309 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1312 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
1316 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1317 stripe
= new_sector
;
1318 BUG_ON(new_sector
!= stripe
);
1320 if (i
== sh
->pd_idx
)
1322 switch(conf
->level
) {
1325 switch (conf
->algorithm
) {
1326 case ALGORITHM_LEFT_ASYMMETRIC
:
1327 case ALGORITHM_RIGHT_ASYMMETRIC
:
1331 case ALGORITHM_LEFT_SYMMETRIC
:
1332 case ALGORITHM_RIGHT_SYMMETRIC
:
1335 i
-= (sh
->pd_idx
+ 1);
1338 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1343 if (i
== raid6_next_disk(sh
->pd_idx
, raid_disks
))
1344 return 0; /* It is the Q disk */
1345 switch (conf
->algorithm
) {
1346 case ALGORITHM_LEFT_ASYMMETRIC
:
1347 case ALGORITHM_RIGHT_ASYMMETRIC
:
1348 if (sh
->pd_idx
== raid_disks
-1)
1349 i
--; /* Q D D D P */
1350 else if (i
> sh
->pd_idx
)
1351 i
-= 2; /* D D P Q D */
1353 case ALGORITHM_LEFT_SYMMETRIC
:
1354 case ALGORITHM_RIGHT_SYMMETRIC
:
1355 if (sh
->pd_idx
== raid_disks
-1)
1356 i
--; /* Q D D D P */
1361 i
-= (sh
->pd_idx
+ 2);
1365 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1371 chunk_number
= stripe
* data_disks
+ i
;
1372 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1374 check
= raid5_compute_sector (r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
1375 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
1376 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1385 * Copy data between a page in the stripe cache, and one or more bion
1386 * The page could align with the middle of the bio, or there could be
1387 * several bion, each with several bio_vecs, which cover part of the page
1388 * Multiple bion are linked together on bi_next. There may be extras
1389 * at the end of this list. We ignore them.
1391 static void copy_data(int frombio
, struct bio
*bio
,
1395 char *pa
= page_address(page
);
1396 struct bio_vec
*bvl
;
1400 if (bio
->bi_sector
>= sector
)
1401 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
1403 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
1404 bio_for_each_segment(bvl
, bio
, i
) {
1405 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
1409 if (page_offset
< 0) {
1410 b_offset
= -page_offset
;
1411 page_offset
+= b_offset
;
1415 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1416 clen
= STRIPE_SIZE
- page_offset
;
1420 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
1422 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
1424 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
1425 __bio_kunmap_atomic(ba
, KM_USER0
);
1427 if (clen
< len
) /* hit end of page */
1433 #define check_xor() do { \
1434 if (count == MAX_XOR_BLOCKS) { \
1435 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1440 static void compute_parity6(struct stripe_head
*sh
, int method
)
1442 raid6_conf_t
*conf
= sh
->raid_conf
;
1443 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= sh
->disks
, count
;
1445 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1448 qd_idx
= raid6_next_disk(pd_idx
, disks
);
1449 d0_idx
= raid6_next_disk(qd_idx
, disks
);
1451 pr_debug("compute_parity, stripe %llu, method %d\n",
1452 (unsigned long long)sh
->sector
, method
);
1455 case READ_MODIFY_WRITE
:
1456 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1457 case RECONSTRUCT_WRITE
:
1458 for (i
= disks
; i
-- ;)
1459 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1460 chosen
= sh
->dev
[i
].towrite
;
1461 sh
->dev
[i
].towrite
= NULL
;
1463 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1464 wake_up(&conf
->wait_for_overlap
);
1466 BUG_ON(sh
->dev
[i
].written
);
1467 sh
->dev
[i
].written
= chosen
;
1471 BUG(); /* Not implemented yet */
1474 for (i
= disks
; i
--;)
1475 if (sh
->dev
[i
].written
) {
1476 sector_t sector
= sh
->dev
[i
].sector
;
1477 struct bio
*wbi
= sh
->dev
[i
].written
;
1478 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1479 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1480 wbi
= r5_next_bio(wbi
, sector
);
1483 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1484 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1488 // case RECONSTRUCT_WRITE:
1489 // case CHECK_PARITY:
1490 // case UPDATE_PARITY:
1491 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1492 /* FIX: Is this ordering of drives even remotely optimal? */
1496 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1497 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1498 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
1499 i
= raid6_next_disk(i
, disks
);
1500 } while ( i
!= d0_idx
);
1504 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
1507 case RECONSTRUCT_WRITE
:
1508 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1509 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1510 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1511 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1514 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1515 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1521 /* Compute one missing block */
1522 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1524 int i
, count
, disks
= sh
->disks
;
1525 void *ptr
[MAX_XOR_BLOCKS
], *dest
, *p
;
1526 int pd_idx
= sh
->pd_idx
;
1527 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1529 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1530 (unsigned long long)sh
->sector
, dd_idx
);
1532 if ( dd_idx
== qd_idx
) {
1533 /* We're actually computing the Q drive */
1534 compute_parity6(sh
, UPDATE_PARITY
);
1536 dest
= page_address(sh
->dev
[dd_idx
].page
);
1537 if (!nozero
) memset(dest
, 0, STRIPE_SIZE
);
1539 for (i
= disks
; i
--; ) {
1540 if (i
== dd_idx
|| i
== qd_idx
)
1542 p
= page_address(sh
->dev
[i
].page
);
1543 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1546 printk("compute_block() %d, stripe %llu, %d"
1547 " not present\n", dd_idx
,
1548 (unsigned long long)sh
->sector
, i
);
1553 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1554 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1555 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1559 /* Compute two missing blocks */
1560 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1562 int i
, count
, disks
= sh
->disks
;
1563 int pd_idx
= sh
->pd_idx
;
1564 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1565 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
1568 /* faila and failb are disk numbers relative to d0_idx */
1569 /* pd_idx become disks-2 and qd_idx become disks-1 */
1570 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
1571 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
1573 BUG_ON(faila
== failb
);
1574 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1576 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1577 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
1579 if ( failb
== disks
-1 ) {
1580 /* Q disk is one of the missing disks */
1581 if ( faila
== disks
-2 ) {
1582 /* Missing P+Q, just recompute */
1583 compute_parity6(sh
, UPDATE_PARITY
);
1586 /* We're missing D+Q; recompute D from P */
1587 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
, 0);
1588 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1593 /* We're missing D+P or D+D; build pointer table */
1595 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1601 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1602 i
= raid6_next_disk(i
, disks
);
1603 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
1604 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1605 printk("compute_2 with missing block %d/%d\n", count
, i
);
1606 } while ( i
!= d0_idx
);
1608 if ( failb
== disks
-2 ) {
1609 /* We're missing D+P. */
1610 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
1612 /* We're missing D+D. */
1613 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
1616 /* Both the above update both missing blocks */
1617 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1618 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1623 schedule_reconstruction5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
1624 int rcw
, int expand
)
1626 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1629 /* if we are not expanding this is a proper write request, and
1630 * there will be bios with new data to be drained into the
1634 sh
->reconstruct_state
= reconstruct_state_drain_run
;
1635 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1637 sh
->reconstruct_state
= reconstruct_state_run
;
1639 set_bit(STRIPE_OP_POSTXOR
, &s
->ops_request
);
1641 for (i
= disks
; i
--; ) {
1642 struct r5dev
*dev
= &sh
->dev
[i
];
1645 set_bit(R5_LOCKED
, &dev
->flags
);
1646 set_bit(R5_Wantdrain
, &dev
->flags
);
1648 clear_bit(R5_UPTODATE
, &dev
->flags
);
1652 if (s
->locked
+ 1 == disks
)
1653 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
1654 atomic_inc(&sh
->raid_conf
->pending_full_writes
);
1656 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
1657 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
1659 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
1660 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
1661 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1662 set_bit(STRIPE_OP_POSTXOR
, &s
->ops_request
);
1664 for (i
= disks
; i
--; ) {
1665 struct r5dev
*dev
= &sh
->dev
[i
];
1670 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
1671 test_bit(R5_Wantcompute
, &dev
->flags
))) {
1672 set_bit(R5_Wantdrain
, &dev
->flags
);
1673 set_bit(R5_LOCKED
, &dev
->flags
);
1674 clear_bit(R5_UPTODATE
, &dev
->flags
);
1680 /* keep the parity disk locked while asynchronous operations
1683 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1684 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1687 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1688 __func__
, (unsigned long long)sh
->sector
,
1689 s
->locked
, s
->ops_request
);
1693 * Each stripe/dev can have one or more bion attached.
1694 * toread/towrite point to the first in a chain.
1695 * The bi_next chain must be in order.
1697 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1700 raid5_conf_t
*conf
= sh
->raid_conf
;
1703 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1704 (unsigned long long)bi
->bi_sector
,
1705 (unsigned long long)sh
->sector
);
1708 spin_lock(&sh
->lock
);
1709 spin_lock_irq(&conf
->device_lock
);
1711 bip
= &sh
->dev
[dd_idx
].towrite
;
1712 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1715 bip
= &sh
->dev
[dd_idx
].toread
;
1716 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1717 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1719 bip
= & (*bip
)->bi_next
;
1721 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1724 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1728 bi
->bi_phys_segments
++;
1729 spin_unlock_irq(&conf
->device_lock
);
1730 spin_unlock(&sh
->lock
);
1732 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1733 (unsigned long long)bi
->bi_sector
,
1734 (unsigned long long)sh
->sector
, dd_idx
);
1736 if (conf
->mddev
->bitmap
&& firstwrite
) {
1737 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1739 sh
->bm_seq
= conf
->seq_flush
+1;
1740 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1744 /* check if page is covered */
1745 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1746 for (bi
=sh
->dev
[dd_idx
].towrite
;
1747 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1748 bi
&& bi
->bi_sector
<= sector
;
1749 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1750 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1751 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1753 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1754 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1759 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1760 spin_unlock_irq(&conf
->device_lock
);
1761 spin_unlock(&sh
->lock
);
1765 static void end_reshape(raid5_conf_t
*conf
);
1767 static int page_is_zero(struct page
*p
)
1769 char *a
= page_address(p
);
1770 return ((*(u32
*)a
) == 0 &&
1771 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1774 static int stripe_to_pdidx(sector_t stripe
, raid5_conf_t
*conf
, int disks
)
1776 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1778 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
1780 raid5_compute_sector(stripe
* (disks
- conf
->max_degraded
)
1781 *sectors_per_chunk
+ chunk_offset
,
1782 disks
, disks
- conf
->max_degraded
,
1783 &dd_idx
, &pd_idx
, conf
);
1788 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
1789 struct stripe_head_state
*s
, int disks
,
1790 struct bio
**return_bi
)
1793 for (i
= disks
; i
--; ) {
1797 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1800 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1801 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
1802 /* multiple read failures in one stripe */
1803 md_error(conf
->mddev
, rdev
);
1806 spin_lock_irq(&conf
->device_lock
);
1807 /* fail all writes first */
1808 bi
= sh
->dev
[i
].towrite
;
1809 sh
->dev
[i
].towrite
= NULL
;
1815 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1816 wake_up(&conf
->wait_for_overlap
);
1818 while (bi
&& bi
->bi_sector
<
1819 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1820 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1821 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1822 if (--bi
->bi_phys_segments
== 0) {
1823 md_write_end(conf
->mddev
);
1824 bi
->bi_next
= *return_bi
;
1829 /* and fail all 'written' */
1830 bi
= sh
->dev
[i
].written
;
1831 sh
->dev
[i
].written
= NULL
;
1832 if (bi
) bitmap_end
= 1;
1833 while (bi
&& bi
->bi_sector
<
1834 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1835 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1836 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1837 if (--bi
->bi_phys_segments
== 0) {
1838 md_write_end(conf
->mddev
);
1839 bi
->bi_next
= *return_bi
;
1845 /* fail any reads if this device is non-operational and
1846 * the data has not reached the cache yet.
1848 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
1849 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
1850 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
1851 bi
= sh
->dev
[i
].toread
;
1852 sh
->dev
[i
].toread
= NULL
;
1853 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1854 wake_up(&conf
->wait_for_overlap
);
1855 if (bi
) s
->to_read
--;
1856 while (bi
&& bi
->bi_sector
<
1857 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1858 struct bio
*nextbi
=
1859 r5_next_bio(bi
, sh
->dev
[i
].sector
);
1860 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1861 if (--bi
->bi_phys_segments
== 0) {
1862 bi
->bi_next
= *return_bi
;
1868 spin_unlock_irq(&conf
->device_lock
);
1870 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1871 STRIPE_SECTORS
, 0, 0);
1874 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
1875 if (atomic_dec_and_test(&conf
->pending_full_writes
))
1876 md_wakeup_thread(conf
->mddev
->thread
);
1879 /* fetch_block5 - checks the given member device to see if its data needs
1880 * to be read or computed to satisfy a request.
1882 * Returns 1 when no more member devices need to be checked, otherwise returns
1883 * 0 to tell the loop in handle_stripe_fill5 to continue
1885 static int fetch_block5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
1886 int disk_idx
, int disks
)
1888 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
1889 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
1891 /* is the data in this block needed, and can we get it? */
1892 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1893 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1895 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1896 s
->syncing
|| s
->expanding
||
1898 (failed_dev
->toread
||
1899 (failed_dev
->towrite
&&
1900 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)))))) {
1901 /* We would like to get this block, possibly by computing it,
1902 * otherwise read it if the backing disk is insync
1904 if ((s
->uptodate
== disks
- 1) &&
1905 (s
->failed
&& disk_idx
== s
->failed_num
)) {
1906 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1907 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
1908 set_bit(R5_Wantcompute
, &dev
->flags
);
1909 sh
->ops
.target
= disk_idx
;
1911 /* Careful: from this point on 'uptodate' is in the eye
1912 * of raid5_run_ops which services 'compute' operations
1913 * before writes. R5_Wantcompute flags a block that will
1914 * be R5_UPTODATE by the time it is needed for a
1915 * subsequent operation.
1918 return 1; /* uptodate + compute == disks */
1919 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
1920 set_bit(R5_LOCKED
, &dev
->flags
);
1921 set_bit(R5_Wantread
, &dev
->flags
);
1923 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
1932 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
1934 static void handle_stripe_fill5(struct stripe_head
*sh
,
1935 struct stripe_head_state
*s
, int disks
)
1939 /* look for blocks to read/compute, skip this if a compute
1940 * is already in flight, or if the stripe contents are in the
1941 * midst of changing due to a write
1943 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
1944 !sh
->reconstruct_state
)
1945 for (i
= disks
; i
--; )
1946 if (fetch_block5(sh
, s
, i
, disks
))
1948 set_bit(STRIPE_HANDLE
, &sh
->state
);
1951 static void handle_stripe_fill6(struct stripe_head
*sh
,
1952 struct stripe_head_state
*s
, struct r6_state
*r6s
,
1956 for (i
= disks
; i
--; ) {
1957 struct r5dev
*dev
= &sh
->dev
[i
];
1958 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1959 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1960 (dev
->toread
|| (dev
->towrite
&&
1961 !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1962 s
->syncing
|| s
->expanding
||
1964 (sh
->dev
[r6s
->failed_num
[0]].toread
||
1967 (sh
->dev
[r6s
->failed_num
[1]].toread
||
1969 /* we would like to get this block, possibly
1970 * by computing it, but we might not be able to
1972 if ((s
->uptodate
== disks
- 1) &&
1973 (s
->failed
&& (i
== r6s
->failed_num
[0] ||
1974 i
== r6s
->failed_num
[1]))) {
1975 pr_debug("Computing stripe %llu block %d\n",
1976 (unsigned long long)sh
->sector
, i
);
1977 compute_block_1(sh
, i
, 0);
1979 } else if ( s
->uptodate
== disks
-2 && s
->failed
>= 2 ) {
1980 /* Computing 2-failure is *very* expensive; only
1981 * do it if failed >= 2
1984 for (other
= disks
; other
--; ) {
1987 if (!test_bit(R5_UPTODATE
,
1988 &sh
->dev
[other
].flags
))
1992 pr_debug("Computing stripe %llu blocks %d,%d\n",
1993 (unsigned long long)sh
->sector
,
1995 compute_block_2(sh
, i
, other
);
1997 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
1998 set_bit(R5_LOCKED
, &dev
->flags
);
1999 set_bit(R5_Wantread
, &dev
->flags
);
2001 pr_debug("Reading block %d (sync=%d)\n",
2006 set_bit(STRIPE_HANDLE
, &sh
->state
);
2010 /* handle_stripe_clean_event
2011 * any written block on an uptodate or failed drive can be returned.
2012 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2013 * never LOCKED, so we don't need to test 'failed' directly.
2015 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2016 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2021 for (i
= disks
; i
--; )
2022 if (sh
->dev
[i
].written
) {
2024 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2025 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2026 /* We can return any write requests */
2027 struct bio
*wbi
, *wbi2
;
2029 pr_debug("Return write for disc %d\n", i
);
2030 spin_lock_irq(&conf
->device_lock
);
2032 dev
->written
= NULL
;
2033 while (wbi
&& wbi
->bi_sector
<
2034 dev
->sector
+ STRIPE_SECTORS
) {
2035 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2036 if (--wbi
->bi_phys_segments
== 0) {
2037 md_write_end(conf
->mddev
);
2038 wbi
->bi_next
= *return_bi
;
2043 if (dev
->towrite
== NULL
)
2045 spin_unlock_irq(&conf
->device_lock
);
2047 bitmap_endwrite(conf
->mddev
->bitmap
,
2050 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2055 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2056 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2057 md_wakeup_thread(conf
->mddev
->thread
);
2060 static void handle_stripe_dirtying5(raid5_conf_t
*conf
,
2061 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2063 int rmw
= 0, rcw
= 0, i
;
2064 for (i
= disks
; i
--; ) {
2065 /* would I have to read this buffer for read_modify_write */
2066 struct r5dev
*dev
= &sh
->dev
[i
];
2067 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2068 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2069 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2070 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2071 if (test_bit(R5_Insync
, &dev
->flags
))
2074 rmw
+= 2*disks
; /* cannot read it */
2076 /* Would I have to read this buffer for reconstruct_write */
2077 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2078 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2079 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2080 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2081 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2086 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2087 (unsigned long long)sh
->sector
, rmw
, rcw
);
2088 set_bit(STRIPE_HANDLE
, &sh
->state
);
2089 if (rmw
< rcw
&& rmw
> 0)
2090 /* prefer read-modify-write, but need to get some data */
2091 for (i
= disks
; i
--; ) {
2092 struct r5dev
*dev
= &sh
->dev
[i
];
2093 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2094 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2095 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2096 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2097 test_bit(R5_Insync
, &dev
->flags
)) {
2099 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2100 pr_debug("Read_old block "
2101 "%d for r-m-w\n", i
);
2102 set_bit(R5_LOCKED
, &dev
->flags
);
2103 set_bit(R5_Wantread
, &dev
->flags
);
2106 set_bit(STRIPE_DELAYED
, &sh
->state
);
2107 set_bit(STRIPE_HANDLE
, &sh
->state
);
2111 if (rcw
<= rmw
&& rcw
> 0)
2112 /* want reconstruct write, but need to get some data */
2113 for (i
= disks
; i
--; ) {
2114 struct r5dev
*dev
= &sh
->dev
[i
];
2115 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2117 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2118 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2119 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2120 test_bit(R5_Insync
, &dev
->flags
)) {
2122 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2123 pr_debug("Read_old block "
2124 "%d for Reconstruct\n", i
);
2125 set_bit(R5_LOCKED
, &dev
->flags
);
2126 set_bit(R5_Wantread
, &dev
->flags
);
2129 set_bit(STRIPE_DELAYED
, &sh
->state
);
2130 set_bit(STRIPE_HANDLE
, &sh
->state
);
2134 /* now if nothing is locked, and if we have enough data,
2135 * we can start a write request
2137 /* since handle_stripe can be called at any time we need to handle the
2138 * case where a compute block operation has been submitted and then a
2139 * subsequent call wants to start a write request. raid5_run_ops only
2140 * handles the case where compute block and postxor are requested
2141 * simultaneously. If this is not the case then new writes need to be
2142 * held off until the compute completes.
2144 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2145 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2146 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2147 schedule_reconstruction5(sh
, s
, rcw
== 0, 0);
2150 static void handle_stripe_dirtying6(raid5_conf_t
*conf
,
2151 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2152 struct r6_state
*r6s
, int disks
)
2154 int rcw
= 0, must_compute
= 0, pd_idx
= sh
->pd_idx
, i
;
2155 int qd_idx
= r6s
->qd_idx
;
2156 for (i
= disks
; i
--; ) {
2157 struct r5dev
*dev
= &sh
->dev
[i
];
2158 /* Would I have to read this buffer for reconstruct_write */
2159 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2160 && i
!= pd_idx
&& i
!= qd_idx
2161 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2163 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2164 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2166 pr_debug("raid6: must_compute: "
2167 "disk %d flags=%#lx\n", i
, dev
->flags
);
2172 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2173 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2174 set_bit(STRIPE_HANDLE
, &sh
->state
);
2177 /* want reconstruct write, but need to get some data */
2178 for (i
= disks
; i
--; ) {
2179 struct r5dev
*dev
= &sh
->dev
[i
];
2180 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2181 && !(s
->failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2182 && !test_bit(R5_LOCKED
, &dev
->flags
) &&
2183 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2184 test_bit(R5_Insync
, &dev
->flags
)) {
2186 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2187 pr_debug("Read_old stripe %llu "
2188 "block %d for Reconstruct\n",
2189 (unsigned long long)sh
->sector
, i
);
2190 set_bit(R5_LOCKED
, &dev
->flags
);
2191 set_bit(R5_Wantread
, &dev
->flags
);
2194 pr_debug("Request delayed stripe %llu "
2195 "block %d for Reconstruct\n",
2196 (unsigned long long)sh
->sector
, i
);
2197 set_bit(STRIPE_DELAYED
, &sh
->state
);
2198 set_bit(STRIPE_HANDLE
, &sh
->state
);
2202 /* now if nothing is locked, and if we have enough data, we can start a
2205 if (s
->locked
== 0 && rcw
== 0 &&
2206 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2207 if (must_compute
> 0) {
2208 /* We have failed blocks and need to compute them */
2209 switch (s
->failed
) {
2213 compute_block_1(sh
, r6s
->failed_num
[0], 0);
2216 compute_block_2(sh
, r6s
->failed_num
[0],
2217 r6s
->failed_num
[1]);
2219 default: /* This request should have been failed? */
2224 pr_debug("Computing parity for stripe %llu\n",
2225 (unsigned long long)sh
->sector
);
2226 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2227 /* now every locked buffer is ready to be written */
2228 for (i
= disks
; i
--; )
2229 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2230 pr_debug("Writing stripe %llu block %d\n",
2231 (unsigned long long)sh
->sector
, i
);
2233 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2235 if (s
->locked
== disks
)
2236 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2237 atomic_inc(&conf
->pending_full_writes
);
2238 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2239 set_bit(STRIPE_INSYNC
, &sh
->state
);
2241 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2242 atomic_dec(&conf
->preread_active_stripes
);
2243 if (atomic_read(&conf
->preread_active_stripes
) <
2245 md_wakeup_thread(conf
->mddev
->thread
);
2250 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2251 struct stripe_head_state
*s
, int disks
)
2253 struct r5dev
*dev
= NULL
;
2255 set_bit(STRIPE_HANDLE
, &sh
->state
);
2257 switch (sh
->check_state
) {
2258 case check_state_idle
:
2259 /* start a new check operation if there are no failures */
2260 if (s
->failed
== 0) {
2261 BUG_ON(s
->uptodate
!= disks
);
2262 sh
->check_state
= check_state_run
;
2263 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2264 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2268 dev
= &sh
->dev
[s
->failed_num
];
2270 case check_state_compute_result
:
2271 sh
->check_state
= check_state_idle
;
2273 dev
= &sh
->dev
[sh
->pd_idx
];
2275 /* check that a write has not made the stripe insync */
2276 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2279 /* either failed parity check, or recovery is happening */
2280 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2281 BUG_ON(s
->uptodate
!= disks
);
2283 set_bit(R5_LOCKED
, &dev
->flags
);
2285 set_bit(R5_Wantwrite
, &dev
->flags
);
2287 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2288 set_bit(STRIPE_INSYNC
, &sh
->state
);
2290 case check_state_run
:
2291 break; /* we will be called again upon completion */
2292 case check_state_check_result
:
2293 sh
->check_state
= check_state_idle
;
2295 /* if a failure occurred during the check operation, leave
2296 * STRIPE_INSYNC not set and let the stripe be handled again
2301 /* handle a successful check operation, if parity is correct
2302 * we are done. Otherwise update the mismatch count and repair
2303 * parity if !MD_RECOVERY_CHECK
2305 if (sh
->ops
.zero_sum_result
== 0)
2306 /* parity is correct (on disc,
2307 * not in buffer any more)
2309 set_bit(STRIPE_INSYNC
, &sh
->state
);
2311 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2312 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2313 /* don't try to repair!! */
2314 set_bit(STRIPE_INSYNC
, &sh
->state
);
2316 sh
->check_state
= check_state_compute_run
;
2317 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2318 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2319 set_bit(R5_Wantcompute
,
2320 &sh
->dev
[sh
->pd_idx
].flags
);
2321 sh
->ops
.target
= sh
->pd_idx
;
2326 case check_state_compute_run
:
2329 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2330 __func__
, sh
->check_state
,
2331 (unsigned long long) sh
->sector
);
2337 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2338 struct stripe_head_state
*s
,
2339 struct r6_state
*r6s
, struct page
*tmp_page
,
2342 int update_p
= 0, update_q
= 0;
2344 int pd_idx
= sh
->pd_idx
;
2345 int qd_idx
= r6s
->qd_idx
;
2347 set_bit(STRIPE_HANDLE
, &sh
->state
);
2349 BUG_ON(s
->failed
> 2);
2350 BUG_ON(s
->uptodate
< disks
);
2351 /* Want to check and possibly repair P and Q.
2352 * However there could be one 'failed' device, in which
2353 * case we can only check one of them, possibly using the
2354 * other to generate missing data
2357 /* If !tmp_page, we cannot do the calculations,
2358 * but as we have set STRIPE_HANDLE, we will soon be called
2359 * by stripe_handle with a tmp_page - just wait until then.
2362 if (s
->failed
== r6s
->q_failed
) {
2363 /* The only possible failed device holds 'Q', so it
2364 * makes sense to check P (If anything else were failed,
2365 * we would have used P to recreate it).
2367 compute_block_1(sh
, pd_idx
, 1);
2368 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2369 compute_block_1(sh
, pd_idx
, 0);
2373 if (!r6s
->q_failed
&& s
->failed
< 2) {
2374 /* q is not failed, and we didn't use it to generate
2375 * anything, so it makes sense to check it
2377 memcpy(page_address(tmp_page
),
2378 page_address(sh
->dev
[qd_idx
].page
),
2380 compute_parity6(sh
, UPDATE_PARITY
);
2381 if (memcmp(page_address(tmp_page
),
2382 page_address(sh
->dev
[qd_idx
].page
),
2383 STRIPE_SIZE
) != 0) {
2384 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2388 if (update_p
|| update_q
) {
2389 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2390 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2391 /* don't try to repair!! */
2392 update_p
= update_q
= 0;
2395 /* now write out any block on a failed drive,
2396 * or P or Q if they need it
2399 if (s
->failed
== 2) {
2400 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2402 set_bit(R5_LOCKED
, &dev
->flags
);
2403 set_bit(R5_Wantwrite
, &dev
->flags
);
2405 if (s
->failed
>= 1) {
2406 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2408 set_bit(R5_LOCKED
, &dev
->flags
);
2409 set_bit(R5_Wantwrite
, &dev
->flags
);
2413 dev
= &sh
->dev
[pd_idx
];
2415 set_bit(R5_LOCKED
, &dev
->flags
);
2416 set_bit(R5_Wantwrite
, &dev
->flags
);
2419 dev
= &sh
->dev
[qd_idx
];
2421 set_bit(R5_LOCKED
, &dev
->flags
);
2422 set_bit(R5_Wantwrite
, &dev
->flags
);
2424 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2426 set_bit(STRIPE_INSYNC
, &sh
->state
);
2430 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2431 struct r6_state
*r6s
)
2435 /* We have read all the blocks in this stripe and now we need to
2436 * copy some of them into a target stripe for expand.
2438 struct dma_async_tx_descriptor
*tx
= NULL
;
2439 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2440 for (i
= 0; i
< sh
->disks
; i
++)
2441 if (i
!= sh
->pd_idx
&& (!r6s
|| i
!= r6s
->qd_idx
)) {
2442 int dd_idx
, pd_idx
, j
;
2443 struct stripe_head
*sh2
;
2445 sector_t bn
= compute_blocknr(sh
, i
);
2446 sector_t s
= raid5_compute_sector(bn
, conf
->raid_disks
,
2448 conf
->max_degraded
, &dd_idx
,
2450 sh2
= get_active_stripe(conf
, s
, conf
->raid_disks
,
2453 /* so far only the early blocks of this stripe
2454 * have been requested. When later blocks
2455 * get requested, we will try again
2458 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2459 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2460 /* must have already done this block */
2461 release_stripe(sh2
);
2465 /* place all the copies on one channel */
2466 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2467 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2468 ASYNC_TX_DEP_ACK
, tx
, NULL
, NULL
);
2470 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2471 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2472 for (j
= 0; j
< conf
->raid_disks
; j
++)
2473 if (j
!= sh2
->pd_idx
&&
2474 (!r6s
|| j
!= raid6_next_disk(sh2
->pd_idx
,
2476 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2478 if (j
== conf
->raid_disks
) {
2479 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2480 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2482 release_stripe(sh2
);
2485 /* done submitting copies, wait for them to complete */
2488 dma_wait_for_async_tx(tx
);
2494 * handle_stripe - do things to a stripe.
2496 * We lock the stripe and then examine the state of various bits
2497 * to see what needs to be done.
2499 * return some read request which now have data
2500 * return some write requests which are safely on disc
2501 * schedule a read on some buffers
2502 * schedule a write of some buffers
2503 * return confirmation of parity correctness
2505 * buffers are taken off read_list or write_list, and bh_cache buffers
2506 * get BH_Lock set before the stripe lock is released.
2510 static void handle_stripe5(struct stripe_head
*sh
)
2512 raid5_conf_t
*conf
= sh
->raid_conf
;
2513 int disks
= sh
->disks
, i
;
2514 struct bio
*return_bi
= NULL
;
2515 struct stripe_head_state s
;
2517 mdk_rdev_t
*blocked_rdev
= NULL
;
2520 memset(&s
, 0, sizeof(s
));
2521 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2522 "reconstruct:%d\n", (unsigned long long)sh
->sector
, sh
->state
,
2523 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->check_state
,
2524 sh
->reconstruct_state
);
2526 spin_lock(&sh
->lock
);
2527 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2528 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2530 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2531 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2532 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2534 /* Now to look around and see what can be done */
2536 for (i
=disks
; i
--; ) {
2538 struct r5dev
*dev
= &sh
->dev
[i
];
2539 clear_bit(R5_Insync
, &dev
->flags
);
2541 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2542 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2543 dev
->towrite
, dev
->written
);
2545 /* maybe we can request a biofill operation
2547 * new wantfill requests are only permitted while
2548 * ops_complete_biofill is guaranteed to be inactive
2550 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2551 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
2552 set_bit(R5_Wantfill
, &dev
->flags
);
2554 /* now count some things */
2555 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2556 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2557 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2559 if (test_bit(R5_Wantfill
, &dev
->flags
))
2561 else if (dev
->toread
)
2565 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2570 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2571 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
2572 blocked_rdev
= rdev
;
2573 atomic_inc(&rdev
->nr_pending
);
2576 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2577 /* The ReadError flag will just be confusing now */
2578 clear_bit(R5_ReadError
, &dev
->flags
);
2579 clear_bit(R5_ReWrite
, &dev
->flags
);
2581 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2582 || test_bit(R5_ReadError
, &dev
->flags
)) {
2586 set_bit(R5_Insync
, &dev
->flags
);
2590 if (unlikely(blocked_rdev
)) {
2591 set_bit(STRIPE_HANDLE
, &sh
->state
);
2595 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
2596 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
2597 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
2600 pr_debug("locked=%d uptodate=%d to_read=%d"
2601 " to_write=%d failed=%d failed_num=%d\n",
2602 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
2603 s
.failed
, s
.failed_num
);
2604 /* check if the array has lost two devices and, if so, some requests might
2607 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
2608 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
2609 if (s
.failed
> 1 && s
.syncing
) {
2610 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2611 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2615 /* might be able to return some write requests if the parity block
2616 * is safe, or on a failed drive
2618 dev
= &sh
->dev
[sh
->pd_idx
];
2620 ((test_bit(R5_Insync
, &dev
->flags
) &&
2621 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2622 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
2623 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
2624 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
2626 /* Now we might consider reading some blocks, either to check/generate
2627 * parity, or to satisfy requests
2628 * or to load a block that is being partially written.
2630 if (s
.to_read
|| s
.non_overwrite
||
2631 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
2632 handle_stripe_fill5(sh
, &s
, disks
);
2634 /* Now we check to see if any write operations have recently
2638 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
2640 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
2641 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
2642 sh
->reconstruct_state
= reconstruct_state_idle
;
2644 /* All the 'written' buffers and the parity block are ready to
2645 * be written back to disk
2647 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
2648 for (i
= disks
; i
--; ) {
2650 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
2651 (i
== sh
->pd_idx
|| dev
->written
)) {
2652 pr_debug("Writing block %d\n", i
);
2653 set_bit(R5_Wantwrite
, &dev
->flags
);
2656 if (!test_bit(R5_Insync
, &dev
->flags
) ||
2657 (i
== sh
->pd_idx
&& s
.failed
== 0))
2658 set_bit(STRIPE_INSYNC
, &sh
->state
);
2661 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2662 atomic_dec(&conf
->preread_active_stripes
);
2663 if (atomic_read(&conf
->preread_active_stripes
) <
2665 md_wakeup_thread(conf
->mddev
->thread
);
2669 /* Now to consider new write requests and what else, if anything
2670 * should be read. We do not handle new writes when:
2671 * 1/ A 'write' operation (copy+xor) is already in flight.
2672 * 2/ A 'check' operation is in flight, as it may clobber the parity
2675 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
2676 handle_stripe_dirtying5(conf
, sh
, &s
, disks
);
2678 /* maybe we need to check and possibly fix the parity for this stripe
2679 * Any reads will already have been scheduled, so we just see if enough
2680 * data is available. The parity check is held off while parity
2681 * dependent operations are in flight.
2683 if (sh
->check_state
||
2684 (s
.syncing
&& s
.locked
== 0 &&
2685 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
2686 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
2687 handle_parity_checks5(conf
, sh
, &s
, disks
);
2689 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2690 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2691 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2694 /* If the failed drive is just a ReadError, then we might need to progress
2695 * the repair/check process
2697 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
2698 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
2699 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
2700 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
2702 dev
= &sh
->dev
[s
.failed_num
];
2703 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2704 set_bit(R5_Wantwrite
, &dev
->flags
);
2705 set_bit(R5_ReWrite
, &dev
->flags
);
2706 set_bit(R5_LOCKED
, &dev
->flags
);
2709 /* let's read it back */
2710 set_bit(R5_Wantread
, &dev
->flags
);
2711 set_bit(R5_LOCKED
, &dev
->flags
);
2716 /* Finish reconstruct operations initiated by the expansion process */
2717 if (sh
->reconstruct_state
== reconstruct_state_result
) {
2718 sh
->reconstruct_state
= reconstruct_state_idle
;
2719 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2720 for (i
= conf
->raid_disks
; i
--; )
2721 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2722 set_bit(R5_LOCKED
, &dev
->flags
);
2726 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
2727 !sh
->reconstruct_state
) {
2728 /* Need to write out all blocks after computing parity */
2729 sh
->disks
= conf
->raid_disks
;
2730 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
2732 schedule_reconstruction5(sh
, &s
, 1, 1);
2733 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
2734 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2735 atomic_dec(&conf
->reshape_stripes
);
2736 wake_up(&conf
->wait_for_overlap
);
2737 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
2740 if (s
.expanding
&& s
.locked
== 0 &&
2741 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
2742 handle_stripe_expansion(conf
, sh
, NULL
);
2745 spin_unlock(&sh
->lock
);
2747 /* wait for this device to become unblocked */
2748 if (unlikely(blocked_rdev
))
2749 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
2752 raid5_run_ops(sh
, s
.ops_request
);
2756 return_io(return_bi
);
2759 static void handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
2761 raid6_conf_t
*conf
= sh
->raid_conf
;
2762 int disks
= sh
->disks
;
2763 struct bio
*return_bi
= NULL
;
2764 int i
, pd_idx
= sh
->pd_idx
;
2765 struct stripe_head_state s
;
2766 struct r6_state r6s
;
2767 struct r5dev
*dev
, *pdev
, *qdev
;
2768 mdk_rdev_t
*blocked_rdev
= NULL
;
2770 r6s
.qd_idx
= raid6_next_disk(pd_idx
, disks
);
2771 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2772 "pd_idx=%d, qd_idx=%d\n",
2773 (unsigned long long)sh
->sector
, sh
->state
,
2774 atomic_read(&sh
->count
), pd_idx
, r6s
.qd_idx
);
2775 memset(&s
, 0, sizeof(s
));
2777 spin_lock(&sh
->lock
);
2778 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2779 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2781 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2782 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2783 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2784 /* Now to look around and see what can be done */
2787 for (i
=disks
; i
--; ) {
2790 clear_bit(R5_Insync
, &dev
->flags
);
2792 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2793 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
2794 /* maybe we can reply to a read */
2795 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
2796 struct bio
*rbi
, *rbi2
;
2797 pr_debug("Return read for disc %d\n", i
);
2798 spin_lock_irq(&conf
->device_lock
);
2801 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
2802 wake_up(&conf
->wait_for_overlap
);
2803 spin_unlock_irq(&conf
->device_lock
);
2804 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
2805 copy_data(0, rbi
, dev
->page
, dev
->sector
);
2806 rbi2
= r5_next_bio(rbi
, dev
->sector
);
2807 spin_lock_irq(&conf
->device_lock
);
2808 if (--rbi
->bi_phys_segments
== 0) {
2809 rbi
->bi_next
= return_bi
;
2812 spin_unlock_irq(&conf
->device_lock
);
2817 /* now count some things */
2818 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2819 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2826 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2831 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2832 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
2833 blocked_rdev
= rdev
;
2834 atomic_inc(&rdev
->nr_pending
);
2837 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2838 /* The ReadError flag will just be confusing now */
2839 clear_bit(R5_ReadError
, &dev
->flags
);
2840 clear_bit(R5_ReWrite
, &dev
->flags
);
2842 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2843 || test_bit(R5_ReadError
, &dev
->flags
)) {
2845 r6s
.failed_num
[s
.failed
] = i
;
2848 set_bit(R5_Insync
, &dev
->flags
);
2852 if (unlikely(blocked_rdev
)) {
2853 set_bit(STRIPE_HANDLE
, &sh
->state
);
2856 pr_debug("locked=%d uptodate=%d to_read=%d"
2857 " to_write=%d failed=%d failed_num=%d,%d\n",
2858 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
2859 r6s
.failed_num
[0], r6s
.failed_num
[1]);
2860 /* check if the array has lost >2 devices and, if so, some requests
2861 * might need to be failed
2863 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
2864 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
2865 if (s
.failed
> 2 && s
.syncing
) {
2866 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2867 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2872 * might be able to return some write requests if the parity blocks
2873 * are safe, or on a failed drive
2875 pdev
= &sh
->dev
[pd_idx
];
2876 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
2877 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
2878 qdev
= &sh
->dev
[r6s
.qd_idx
];
2879 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == r6s
.qd_idx
)
2880 || (s
.failed
>= 2 && r6s
.failed_num
[1] == r6s
.qd_idx
);
2883 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
2884 && !test_bit(R5_LOCKED
, &pdev
->flags
)
2885 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
2886 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
2887 && !test_bit(R5_LOCKED
, &qdev
->flags
)
2888 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
2889 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
2891 /* Now we might consider reading some blocks, either to check/generate
2892 * parity, or to satisfy requests
2893 * or to load a block that is being partially written.
2895 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
2896 (s
.syncing
&& (s
.uptodate
< disks
)) || s
.expanding
)
2897 handle_stripe_fill6(sh
, &s
, &r6s
, disks
);
2899 /* now to consider writing and what else, if anything should be read */
2901 handle_stripe_dirtying6(conf
, sh
, &s
, &r6s
, disks
);
2903 /* maybe we need to check and possibly fix the parity for this stripe
2904 * Any reads will already have been scheduled, so we just see if enough
2907 if (s
.syncing
&& s
.locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
))
2908 handle_parity_checks6(conf
, sh
, &s
, &r6s
, tmp_page
, disks
);
2910 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2911 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2912 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2915 /* If the failed drives are just a ReadError, then we might need
2916 * to progress the repair/check process
2918 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
2919 for (i
= 0; i
< s
.failed
; i
++) {
2920 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
2921 if (test_bit(R5_ReadError
, &dev
->flags
)
2922 && !test_bit(R5_LOCKED
, &dev
->flags
)
2923 && test_bit(R5_UPTODATE
, &dev
->flags
)
2925 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2926 set_bit(R5_Wantwrite
, &dev
->flags
);
2927 set_bit(R5_ReWrite
, &dev
->flags
);
2928 set_bit(R5_LOCKED
, &dev
->flags
);
2930 /* let's read it back */
2931 set_bit(R5_Wantread
, &dev
->flags
);
2932 set_bit(R5_LOCKED
, &dev
->flags
);
2937 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
2938 /* Need to write out all blocks after computing P&Q */
2939 sh
->disks
= conf
->raid_disks
;
2940 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
2942 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2943 for (i
= conf
->raid_disks
; i
-- ; ) {
2944 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2946 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2948 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2949 } else if (s
.expanded
) {
2950 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2951 atomic_dec(&conf
->reshape_stripes
);
2952 wake_up(&conf
->wait_for_overlap
);
2953 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
2956 if (s
.expanding
&& s
.locked
== 0 &&
2957 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
2958 handle_stripe_expansion(conf
, sh
, &r6s
);
2961 spin_unlock(&sh
->lock
);
2963 /* wait for this device to become unblocked */
2964 if (unlikely(blocked_rdev
))
2965 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
2969 return_io(return_bi
);
2972 static void handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
2974 if (sh
->raid_conf
->level
== 6)
2975 handle_stripe6(sh
, tmp_page
);
2982 static void raid5_activate_delayed(raid5_conf_t
*conf
)
2984 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
2985 while (!list_empty(&conf
->delayed_list
)) {
2986 struct list_head
*l
= conf
->delayed_list
.next
;
2987 struct stripe_head
*sh
;
2988 sh
= list_entry(l
, struct stripe_head
, lru
);
2990 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2991 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
2992 atomic_inc(&conf
->preread_active_stripes
);
2993 list_add_tail(&sh
->lru
, &conf
->hold_list
);
2996 blk_plug_device(conf
->mddev
->queue
);
2999 static void activate_bit_delay(raid5_conf_t
*conf
)
3001 /* device_lock is held */
3002 struct list_head head
;
3003 list_add(&head
, &conf
->bitmap_list
);
3004 list_del_init(&conf
->bitmap_list
);
3005 while (!list_empty(&head
)) {
3006 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3007 list_del_init(&sh
->lru
);
3008 atomic_inc(&sh
->count
);
3009 __release_stripe(conf
, sh
);
3013 static void unplug_slaves(mddev_t
*mddev
)
3015 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3019 for (i
=0; i
<mddev
->raid_disks
; i
++) {
3020 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3021 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3022 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3024 atomic_inc(&rdev
->nr_pending
);
3027 blk_unplug(r_queue
);
3029 rdev_dec_pending(rdev
, mddev
);
3036 static void raid5_unplug_device(struct request_queue
*q
)
3038 mddev_t
*mddev
= q
->queuedata
;
3039 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3040 unsigned long flags
;
3042 spin_lock_irqsave(&conf
->device_lock
, flags
);
3044 if (blk_remove_plug(q
)) {
3046 raid5_activate_delayed(conf
);
3048 md_wakeup_thread(mddev
->thread
);
3050 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3052 unplug_slaves(mddev
);
3055 static int raid5_congested(void *data
, int bits
)
3057 mddev_t
*mddev
= data
;
3058 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3060 /* No difference between reads and writes. Just check
3061 * how busy the stripe_cache is
3063 if (conf
->inactive_blocked
)
3067 if (list_empty_careful(&conf
->inactive_list
))
3073 /* We want read requests to align with chunks where possible,
3074 * but write requests don't need to.
3076 static int raid5_mergeable_bvec(struct request_queue
*q
,
3077 struct bvec_merge_data
*bvm
,
3078 struct bio_vec
*biovec
)
3080 mddev_t
*mddev
= q
->queuedata
;
3081 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3083 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3084 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3086 if ((bvm
->bi_rw
& 1) == WRITE
)
3087 return biovec
->bv_len
; /* always allow writes to be mergeable */
3089 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3090 if (max
< 0) max
= 0;
3091 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3092 return biovec
->bv_len
;
3098 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3100 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3101 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3102 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3104 return chunk_sectors
>=
3105 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3109 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3110 * later sampled by raid5d.
3112 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3114 unsigned long flags
;
3116 spin_lock_irqsave(&conf
->device_lock
, flags
);
3118 bi
->bi_next
= conf
->retry_read_aligned_list
;
3119 conf
->retry_read_aligned_list
= bi
;
3121 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3122 md_wakeup_thread(conf
->mddev
->thread
);
3126 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3130 bi
= conf
->retry_read_aligned
;
3132 conf
->retry_read_aligned
= NULL
;
3135 bi
= conf
->retry_read_aligned_list
;
3137 conf
->retry_read_aligned_list
= bi
->bi_next
;
3139 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3140 bi
->bi_hw_segments
= 0; /* count of processed stripes */
3148 * The "raid5_align_endio" should check if the read succeeded and if it
3149 * did, call bio_endio on the original bio (having bio_put the new bio
3151 * If the read failed..
3153 static void raid5_align_endio(struct bio
*bi
, int error
)
3155 struct bio
* raid_bi
= bi
->bi_private
;
3158 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3163 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3164 conf
= mddev_to_conf(mddev
);
3165 rdev
= (void*)raid_bi
->bi_next
;
3166 raid_bi
->bi_next
= NULL
;
3168 rdev_dec_pending(rdev
, conf
->mddev
);
3170 if (!error
&& uptodate
) {
3171 bio_endio(raid_bi
, 0);
3172 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3173 wake_up(&conf
->wait_for_stripe
);
3178 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3180 add_bio_to_retry(raid_bi
, conf
);
3183 static int bio_fits_rdev(struct bio
*bi
)
3185 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3187 if ((bi
->bi_size
>>9) > q
->max_sectors
)
3189 blk_recount_segments(q
, bi
);
3190 if (bi
->bi_phys_segments
> q
->max_phys_segments
||
3191 bi
->bi_hw_segments
> q
->max_hw_segments
)
3194 if (q
->merge_bvec_fn
)
3195 /* it's too hard to apply the merge_bvec_fn at this stage,
3204 static int chunk_aligned_read(struct request_queue
*q
, struct bio
* raid_bio
)
3206 mddev_t
*mddev
= q
->queuedata
;
3207 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3208 const unsigned int raid_disks
= conf
->raid_disks
;
3209 const unsigned int data_disks
= raid_disks
- conf
->max_degraded
;
3210 unsigned int dd_idx
, pd_idx
;
3211 struct bio
* align_bi
;
3214 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3215 pr_debug("chunk_aligned_read : non aligned\n");
3219 * use bio_clone to make a copy of the bio
3221 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3225 * set bi_end_io to a new function, and set bi_private to the
3228 align_bi
->bi_end_io
= raid5_align_endio
;
3229 align_bi
->bi_private
= raid_bio
;
3233 align_bi
->bi_sector
= raid5_compute_sector(raid_bio
->bi_sector
,
3241 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3242 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3243 atomic_inc(&rdev
->nr_pending
);
3245 raid_bio
->bi_next
= (void*)rdev
;
3246 align_bi
->bi_bdev
= rdev
->bdev
;
3247 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3248 align_bi
->bi_sector
+= rdev
->data_offset
;
3250 if (!bio_fits_rdev(align_bi
)) {
3251 /* too big in some way */
3253 rdev_dec_pending(rdev
, mddev
);
3257 spin_lock_irq(&conf
->device_lock
);
3258 wait_event_lock_irq(conf
->wait_for_stripe
,
3260 conf
->device_lock
, /* nothing */);
3261 atomic_inc(&conf
->active_aligned_reads
);
3262 spin_unlock_irq(&conf
->device_lock
);
3264 generic_make_request(align_bi
);
3273 /* __get_priority_stripe - get the next stripe to process
3275 * Full stripe writes are allowed to pass preread active stripes up until
3276 * the bypass_threshold is exceeded. In general the bypass_count
3277 * increments when the handle_list is handled before the hold_list; however, it
3278 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3279 * stripe with in flight i/o. The bypass_count will be reset when the
3280 * head of the hold_list has changed, i.e. the head was promoted to the
3283 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3285 struct stripe_head
*sh
;
3287 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3289 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3290 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3291 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3293 if (!list_empty(&conf
->handle_list
)) {
3294 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3296 if (list_empty(&conf
->hold_list
))
3297 conf
->bypass_count
= 0;
3298 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3299 if (conf
->hold_list
.next
== conf
->last_hold
)
3300 conf
->bypass_count
++;
3302 conf
->last_hold
= conf
->hold_list
.next
;
3303 conf
->bypass_count
-= conf
->bypass_threshold
;
3304 if (conf
->bypass_count
< 0)
3305 conf
->bypass_count
= 0;
3308 } else if (!list_empty(&conf
->hold_list
) &&
3309 ((conf
->bypass_threshold
&&
3310 conf
->bypass_count
> conf
->bypass_threshold
) ||
3311 atomic_read(&conf
->pending_full_writes
) == 0)) {
3312 sh
= list_entry(conf
->hold_list
.next
,
3314 conf
->bypass_count
-= conf
->bypass_threshold
;
3315 if (conf
->bypass_count
< 0)
3316 conf
->bypass_count
= 0;
3320 list_del_init(&sh
->lru
);
3321 atomic_inc(&sh
->count
);
3322 BUG_ON(atomic_read(&sh
->count
) != 1);
3326 static int make_request(struct request_queue
*q
, struct bio
* bi
)
3328 mddev_t
*mddev
= q
->queuedata
;
3329 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3330 unsigned int dd_idx
, pd_idx
;
3331 sector_t new_sector
;
3332 sector_t logical_sector
, last_sector
;
3333 struct stripe_head
*sh
;
3334 const int rw
= bio_data_dir(bi
);
3337 if (unlikely(bio_barrier(bi
))) {
3338 bio_endio(bi
, -EOPNOTSUPP
);
3342 md_write_start(mddev
, bi
);
3344 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
3345 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bi
));
3348 mddev
->reshape_position
== MaxSector
&&
3349 chunk_aligned_read(q
,bi
))
3352 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3353 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3355 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3357 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3359 int disks
, data_disks
;
3362 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3363 if (likely(conf
->expand_progress
== MaxSector
))
3364 disks
= conf
->raid_disks
;
3366 /* spinlock is needed as expand_progress may be
3367 * 64bit on a 32bit platform, and so it might be
3368 * possible to see a half-updated value
3369 * Ofcourse expand_progress could change after
3370 * the lock is dropped, so once we get a reference
3371 * to the stripe that we think it is, we will have
3374 spin_lock_irq(&conf
->device_lock
);
3375 disks
= conf
->raid_disks
;
3376 if (logical_sector
>= conf
->expand_progress
)
3377 disks
= conf
->previous_raid_disks
;
3379 if (logical_sector
>= conf
->expand_lo
) {
3380 spin_unlock_irq(&conf
->device_lock
);
3385 spin_unlock_irq(&conf
->device_lock
);
3387 data_disks
= disks
- conf
->max_degraded
;
3389 new_sector
= raid5_compute_sector(logical_sector
, disks
, data_disks
,
3390 &dd_idx
, &pd_idx
, conf
);
3391 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3392 (unsigned long long)new_sector
,
3393 (unsigned long long)logical_sector
);
3395 sh
= get_active_stripe(conf
, new_sector
, disks
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
3397 if (unlikely(conf
->expand_progress
!= MaxSector
)) {
3398 /* expansion might have moved on while waiting for a
3399 * stripe, so we must do the range check again.
3400 * Expansion could still move past after this
3401 * test, but as we are holding a reference to
3402 * 'sh', we know that if that happens,
3403 * STRIPE_EXPANDING will get set and the expansion
3404 * won't proceed until we finish with the stripe.
3407 spin_lock_irq(&conf
->device_lock
);
3408 if (logical_sector
< conf
->expand_progress
&&
3409 disks
== conf
->previous_raid_disks
)
3410 /* mismatch, need to try again */
3412 spin_unlock_irq(&conf
->device_lock
);
3418 /* FIXME what if we get a false positive because these
3419 * are being updated.
3421 if (logical_sector
>= mddev
->suspend_lo
&&
3422 logical_sector
< mddev
->suspend_hi
) {
3428 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3429 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3430 /* Stripe is busy expanding or
3431 * add failed due to overlap. Flush everything
3434 raid5_unplug_device(mddev
->queue
);
3439 finish_wait(&conf
->wait_for_overlap
, &w
);
3440 set_bit(STRIPE_HANDLE
, &sh
->state
);
3441 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3444 /* cannot get stripe for read-ahead, just give-up */
3445 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3446 finish_wait(&conf
->wait_for_overlap
, &w
);
3451 spin_lock_irq(&conf
->device_lock
);
3452 remaining
= --bi
->bi_phys_segments
;
3453 spin_unlock_irq(&conf
->device_lock
);
3454 if (remaining
== 0) {
3457 md_write_end(mddev
);
3464 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3466 /* reshaping is quite different to recovery/resync so it is
3467 * handled quite separately ... here.
3469 * On each call to sync_request, we gather one chunk worth of
3470 * destination stripes and flag them as expanding.
3471 * Then we find all the source stripes and request reads.
3472 * As the reads complete, handle_stripe will copy the data
3473 * into the destination stripe and release that stripe.
3475 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3476 struct stripe_head
*sh
;
3478 sector_t first_sector
, last_sector
;
3479 int raid_disks
= conf
->previous_raid_disks
;
3480 int data_disks
= raid_disks
- conf
->max_degraded
;
3481 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3484 sector_t writepos
, safepos
, gap
;
3486 if (sector_nr
== 0 &&
3487 conf
->expand_progress
!= 0) {
3488 /* restarting in the middle, skip the initial sectors */
3489 sector_nr
= conf
->expand_progress
;
3490 sector_div(sector_nr
, new_data_disks
);
3495 /* we update the metadata when there is more than 3Meg
3496 * in the block range (that is rather arbitrary, should
3497 * probably be time based) or when the data about to be
3498 * copied would over-write the source of the data at
3499 * the front of the range.
3500 * i.e. one new_stripe forward from expand_progress new_maps
3501 * to after where expand_lo old_maps to
3503 writepos
= conf
->expand_progress
+
3504 conf
->chunk_size
/512*(new_data_disks
);
3505 sector_div(writepos
, new_data_disks
);
3506 safepos
= conf
->expand_lo
;
3507 sector_div(safepos
, data_disks
);
3508 gap
= conf
->expand_progress
- conf
->expand_lo
;
3510 if (writepos
>= safepos
||
3511 gap
> (new_data_disks
)*3000*2 /*3Meg*/) {
3512 /* Cannot proceed until we've updated the superblock... */
3513 wait_event(conf
->wait_for_overlap
,
3514 atomic_read(&conf
->reshape_stripes
)==0);
3515 mddev
->reshape_position
= conf
->expand_progress
;
3516 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3517 md_wakeup_thread(mddev
->thread
);
3518 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3519 kthread_should_stop());
3520 spin_lock_irq(&conf
->device_lock
);
3521 conf
->expand_lo
= mddev
->reshape_position
;
3522 spin_unlock_irq(&conf
->device_lock
);
3523 wake_up(&conf
->wait_for_overlap
);
3526 for (i
=0; i
< conf
->chunk_size
/512; i
+= STRIPE_SECTORS
) {
3529 pd_idx
= stripe_to_pdidx(sector_nr
+i
, conf
, conf
->raid_disks
);
3530 sh
= get_active_stripe(conf
, sector_nr
+i
,
3531 conf
->raid_disks
, pd_idx
, 0);
3532 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3533 atomic_inc(&conf
->reshape_stripes
);
3534 /* If any of this stripe is beyond the end of the old
3535 * array, then we need to zero those blocks
3537 for (j
=sh
->disks
; j
--;) {
3539 if (j
== sh
->pd_idx
)
3541 if (conf
->level
== 6 &&
3542 j
== raid6_next_disk(sh
->pd_idx
, sh
->disks
))
3544 s
= compute_blocknr(sh
, j
);
3545 if (s
< mddev
->array_sectors
) {
3549 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
3550 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
3551 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
3554 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3555 set_bit(STRIPE_HANDLE
, &sh
->state
);
3559 spin_lock_irq(&conf
->device_lock
);
3560 conf
->expand_progress
= (sector_nr
+ i
) * new_data_disks
;
3561 spin_unlock_irq(&conf
->device_lock
);
3562 /* Ok, those stripe are ready. We can start scheduling
3563 * reads on the source stripes.
3564 * The source stripes are determined by mapping the first and last
3565 * block on the destination stripes.
3568 raid5_compute_sector(sector_nr
*(new_data_disks
),
3569 raid_disks
, data_disks
,
3570 &dd_idx
, &pd_idx
, conf
);
3572 raid5_compute_sector((sector_nr
+conf
->chunk_size
/512)
3573 *(new_data_disks
) -1,
3574 raid_disks
, data_disks
,
3575 &dd_idx
, &pd_idx
, conf
);
3576 if (last_sector
>= (mddev
->size
<<1))
3577 last_sector
= (mddev
->size
<<1)-1;
3578 while (first_sector
<= last_sector
) {
3579 pd_idx
= stripe_to_pdidx(first_sector
, conf
,
3580 conf
->previous_raid_disks
);
3581 sh
= get_active_stripe(conf
, first_sector
,
3582 conf
->previous_raid_disks
, pd_idx
, 0);
3583 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3584 set_bit(STRIPE_HANDLE
, &sh
->state
);
3586 first_sector
+= STRIPE_SECTORS
;
3588 /* If this takes us to the resync_max point where we have to pause,
3589 * then we need to write out the superblock.
3591 sector_nr
+= conf
->chunk_size
>>9;
3592 if (sector_nr
>= mddev
->resync_max
) {
3593 /* Cannot proceed until we've updated the superblock... */
3594 wait_event(conf
->wait_for_overlap
,
3595 atomic_read(&conf
->reshape_stripes
) == 0);
3596 mddev
->reshape_position
= conf
->expand_progress
;
3597 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3598 md_wakeup_thread(mddev
->thread
);
3599 wait_event(mddev
->sb_wait
,
3600 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
3601 || kthread_should_stop());
3602 spin_lock_irq(&conf
->device_lock
);
3603 conf
->expand_lo
= mddev
->reshape_position
;
3604 spin_unlock_irq(&conf
->device_lock
);
3605 wake_up(&conf
->wait_for_overlap
);
3607 return conf
->chunk_size
>>9;
3610 /* FIXME go_faster isn't used */
3611 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
3613 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3614 struct stripe_head
*sh
;
3616 int raid_disks
= conf
->raid_disks
;
3617 sector_t max_sector
= mddev
->size
<< 1;
3619 int still_degraded
= 0;
3622 if (sector_nr
>= max_sector
) {
3623 /* just being told to finish up .. nothing much to do */
3624 unplug_slaves(mddev
);
3625 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3630 if (mddev
->curr_resync
< max_sector
) /* aborted */
3631 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3633 else /* completed sync */
3635 bitmap_close_sync(mddev
->bitmap
);
3640 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3641 return reshape_request(mddev
, sector_nr
, skipped
);
3643 /* No need to check resync_max as we never do more than one
3644 * stripe, and as resync_max will always be on a chunk boundary,
3645 * if the check in md_do_sync didn't fire, there is no chance
3646 * of overstepping resync_max here
3649 /* if there is too many failed drives and we are trying
3650 * to resync, then assert that we are finished, because there is
3651 * nothing we can do.
3653 if (mddev
->degraded
>= conf
->max_degraded
&&
3654 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3655 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
3659 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
3660 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
3661 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
3662 /* we can skip this block, and probably more */
3663 sync_blocks
/= STRIPE_SECTORS
;
3665 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
3669 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
3671 pd_idx
= stripe_to_pdidx(sector_nr
, conf
, raid_disks
);
3672 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 1);
3674 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 0);
3675 /* make sure we don't swamp the stripe cache if someone else
3676 * is trying to get access
3678 schedule_timeout_uninterruptible(1);
3680 /* Need to check if array will still be degraded after recovery/resync
3681 * We don't need to check the 'failed' flag as when that gets set,
3684 for (i
=0; i
<mddev
->raid_disks
; i
++)
3685 if (conf
->disks
[i
].rdev
== NULL
)
3688 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
3690 spin_lock(&sh
->lock
);
3691 set_bit(STRIPE_SYNCING
, &sh
->state
);
3692 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3693 spin_unlock(&sh
->lock
);
3695 handle_stripe(sh
, NULL
);
3698 return STRIPE_SECTORS
;
3701 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
3703 /* We may not be able to submit a whole bio at once as there
3704 * may not be enough stripe_heads available.
3705 * We cannot pre-allocate enough stripe_heads as we may need
3706 * more than exist in the cache (if we allow ever large chunks).
3707 * So we do one stripe head at a time and record in
3708 * ->bi_hw_segments how many have been done.
3710 * We *know* that this entire raid_bio is in one chunk, so
3711 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3713 struct stripe_head
*sh
;
3715 sector_t sector
, logical_sector
, last_sector
;
3720 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3721 sector
= raid5_compute_sector( logical_sector
,
3723 conf
->raid_disks
- conf
->max_degraded
,
3727 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
3729 for (; logical_sector
< last_sector
;
3730 logical_sector
+= STRIPE_SECTORS
,
3731 sector
+= STRIPE_SECTORS
,
3734 if (scnt
< raid_bio
->bi_hw_segments
)
3735 /* already done this stripe */
3738 sh
= get_active_stripe(conf
, sector
, conf
->raid_disks
, pd_idx
, 1);
3741 /* failed to get a stripe - must wait */
3742 raid_bio
->bi_hw_segments
= scnt
;
3743 conf
->retry_read_aligned
= raid_bio
;
3747 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
3748 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
3750 raid_bio
->bi_hw_segments
= scnt
;
3751 conf
->retry_read_aligned
= raid_bio
;
3755 handle_stripe(sh
, NULL
);
3759 spin_lock_irq(&conf
->device_lock
);
3760 remaining
= --raid_bio
->bi_phys_segments
;
3761 spin_unlock_irq(&conf
->device_lock
);
3763 bio_endio(raid_bio
, 0);
3764 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3765 wake_up(&conf
->wait_for_stripe
);
3772 * This is our raid5 kernel thread.
3774 * We scan the hash table for stripes which can be handled now.
3775 * During the scan, completed stripes are saved for us by the interrupt
3776 * handler, so that they will not have to wait for our next wakeup.
3778 static void raid5d(mddev_t
*mddev
)
3780 struct stripe_head
*sh
;
3781 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3784 pr_debug("+++ raid5d active\n");
3786 md_check_recovery(mddev
);
3789 spin_lock_irq(&conf
->device_lock
);
3793 if (conf
->seq_flush
!= conf
->seq_write
) {
3794 int seq
= conf
->seq_flush
;
3795 spin_unlock_irq(&conf
->device_lock
);
3796 bitmap_unplug(mddev
->bitmap
);
3797 spin_lock_irq(&conf
->device_lock
);
3798 conf
->seq_write
= seq
;
3799 activate_bit_delay(conf
);
3802 while ((bio
= remove_bio_from_retry(conf
))) {
3804 spin_unlock_irq(&conf
->device_lock
);
3805 ok
= retry_aligned_read(conf
, bio
);
3806 spin_lock_irq(&conf
->device_lock
);
3812 sh
= __get_priority_stripe(conf
);
3815 async_tx_issue_pending_all();
3818 spin_unlock_irq(&conf
->device_lock
);
3821 handle_stripe(sh
, conf
->spare_page
);
3824 spin_lock_irq(&conf
->device_lock
);
3826 pr_debug("%d stripes handled\n", handled
);
3828 spin_unlock_irq(&conf
->device_lock
);
3830 unplug_slaves(mddev
);
3832 pr_debug("--- raid5d inactive\n");
3836 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
3838 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3840 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
3846 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
3848 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3852 if (len
>= PAGE_SIZE
)
3857 if (strict_strtoul(page
, 10, &new))
3859 if (new <= 16 || new > 32768)
3861 while (new < conf
->max_nr_stripes
) {
3862 if (drop_one_stripe(conf
))
3863 conf
->max_nr_stripes
--;
3867 err
= md_allow_write(mddev
);
3870 while (new > conf
->max_nr_stripes
) {
3871 if (grow_one_stripe(conf
))
3872 conf
->max_nr_stripes
++;
3878 static struct md_sysfs_entry
3879 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
3880 raid5_show_stripe_cache_size
,
3881 raid5_store_stripe_cache_size
);
3884 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
3886 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3888 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
3894 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
3896 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3898 if (len
>= PAGE_SIZE
)
3903 if (strict_strtoul(page
, 10, &new))
3905 if (new > conf
->max_nr_stripes
)
3907 conf
->bypass_threshold
= new;
3911 static struct md_sysfs_entry
3912 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
3914 raid5_show_preread_threshold
,
3915 raid5_store_preread_threshold
);
3918 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
3920 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3922 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
3927 static struct md_sysfs_entry
3928 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
3930 static struct attribute
*raid5_attrs
[] = {
3931 &raid5_stripecache_size
.attr
,
3932 &raid5_stripecache_active
.attr
,
3933 &raid5_preread_bypass_threshold
.attr
,
3936 static struct attribute_group raid5_attrs_group
= {
3938 .attrs
= raid5_attrs
,
3941 static int run(mddev_t
*mddev
)
3944 int raid_disk
, memory
;
3946 struct disk_info
*disk
;
3947 struct list_head
*tmp
;
3948 int working_disks
= 0;
3950 if (mddev
->level
!= 5 && mddev
->level
!= 4 && mddev
->level
!= 6) {
3951 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
3952 mdname(mddev
), mddev
->level
);
3956 if (mddev
->reshape_position
!= MaxSector
) {
3957 /* Check that we can continue the reshape.
3958 * Currently only disks can change, it must
3959 * increase, and we must be past the point where
3960 * a stripe over-writes itself
3962 sector_t here_new
, here_old
;
3964 int max_degraded
= (mddev
->level
== 5 ? 1 : 2);
3966 if (mddev
->new_level
!= mddev
->level
||
3967 mddev
->new_layout
!= mddev
->layout
||
3968 mddev
->new_chunk
!= mddev
->chunk_size
) {
3969 printk(KERN_ERR
"raid5: %s: unsupported reshape "
3970 "required - aborting.\n",
3974 if (mddev
->delta_disks
<= 0) {
3975 printk(KERN_ERR
"raid5: %s: unsupported reshape "
3976 "(reduce disks) required - aborting.\n",
3980 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3981 /* reshape_position must be on a new-stripe boundary, and one
3982 * further up in new geometry must map after here in old
3985 here_new
= mddev
->reshape_position
;
3986 if (sector_div(here_new
, (mddev
->chunk_size
>>9)*
3987 (mddev
->raid_disks
- max_degraded
))) {
3988 printk(KERN_ERR
"raid5: reshape_position not "
3989 "on a stripe boundary\n");
3992 /* here_new is the stripe we will write to */
3993 here_old
= mddev
->reshape_position
;
3994 sector_div(here_old
, (mddev
->chunk_size
>>9)*
3995 (old_disks
-max_degraded
));
3996 /* here_old is the first stripe that we might need to read
3998 if (here_new
>= here_old
) {
3999 /* Reading from the same stripe as writing to - bad */
4000 printk(KERN_ERR
"raid5: reshape_position too early for "
4001 "auto-recovery - aborting.\n");
4004 printk(KERN_INFO
"raid5: reshape will continue\n");
4005 /* OK, we should be able to continue; */
4009 mddev
->private = kzalloc(sizeof (raid5_conf_t
), GFP_KERNEL
);
4010 if ((conf
= mddev
->private) == NULL
)
4012 if (mddev
->reshape_position
== MaxSector
) {
4013 conf
->previous_raid_disks
= conf
->raid_disks
= mddev
->raid_disks
;
4015 conf
->raid_disks
= mddev
->raid_disks
;
4016 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4019 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
4024 conf
->mddev
= mddev
;
4026 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4029 if (mddev
->level
== 6) {
4030 conf
->spare_page
= alloc_page(GFP_KERNEL
);
4031 if (!conf
->spare_page
)
4034 spin_lock_init(&conf
->device_lock
);
4035 mddev
->queue
->queue_lock
= &conf
->device_lock
;
4036 init_waitqueue_head(&conf
->wait_for_stripe
);
4037 init_waitqueue_head(&conf
->wait_for_overlap
);
4038 INIT_LIST_HEAD(&conf
->handle_list
);
4039 INIT_LIST_HEAD(&conf
->hold_list
);
4040 INIT_LIST_HEAD(&conf
->delayed_list
);
4041 INIT_LIST_HEAD(&conf
->bitmap_list
);
4042 INIT_LIST_HEAD(&conf
->inactive_list
);
4043 atomic_set(&conf
->active_stripes
, 0);
4044 atomic_set(&conf
->preread_active_stripes
, 0);
4045 atomic_set(&conf
->active_aligned_reads
, 0);
4046 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4048 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4050 rdev_for_each(rdev
, tmp
, mddev
) {
4051 raid_disk
= rdev
->raid_disk
;
4052 if (raid_disk
>= conf
->raid_disks
4055 disk
= conf
->disks
+ raid_disk
;
4059 if (test_bit(In_sync
, &rdev
->flags
)) {
4060 char b
[BDEVNAME_SIZE
];
4061 printk(KERN_INFO
"raid5: device %s operational as raid"
4062 " disk %d\n", bdevname(rdev
->bdev
,b
),
4066 /* Cannot rely on bitmap to complete recovery */
4071 * 0 for a fully functional array, 1 or 2 for a degraded array.
4073 mddev
->degraded
= conf
->raid_disks
- working_disks
;
4074 conf
->mddev
= mddev
;
4075 conf
->chunk_size
= mddev
->chunk_size
;
4076 conf
->level
= mddev
->level
;
4077 if (conf
->level
== 6)
4078 conf
->max_degraded
= 2;
4080 conf
->max_degraded
= 1;
4081 conf
->algorithm
= mddev
->layout
;
4082 conf
->max_nr_stripes
= NR_STRIPES
;
4083 conf
->expand_progress
= mddev
->reshape_position
;
4085 /* device size must be a multiple of chunk size */
4086 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
4087 mddev
->resync_max_sectors
= mddev
->size
<< 1;
4089 if (conf
->level
== 6 && conf
->raid_disks
< 4) {
4090 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4091 mdname(mddev
), conf
->raid_disks
);
4094 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
4095 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4096 conf
->chunk_size
, mdname(mddev
));
4099 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
4101 "raid5: unsupported parity algorithm %d for %s\n",
4102 conf
->algorithm
, mdname(mddev
));
4105 if (mddev
->degraded
> conf
->max_degraded
) {
4106 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4107 " (%d/%d failed)\n",
4108 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4112 if (mddev
->degraded
> 0 &&
4113 mddev
->recovery_cp
!= MaxSector
) {
4114 if (mddev
->ok_start_degraded
)
4116 "raid5: starting dirty degraded array: %s"
4117 "- data corruption possible.\n",
4121 "raid5: cannot start dirty degraded array for %s\n",
4128 mddev
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
4129 if (!mddev
->thread
) {
4131 "raid5: couldn't allocate thread for %s\n",
4136 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4137 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4138 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4140 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4141 shrink_stripes(conf
);
4142 md_unregister_thread(mddev
->thread
);
4145 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4146 memory
, mdname(mddev
));
4148 if (mddev
->degraded
== 0)
4149 printk("raid5: raid level %d set %s active with %d out of %d"
4150 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4151 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4154 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4155 " out of %d devices, algorithm %d\n", conf
->level
,
4156 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4157 mddev
->raid_disks
, conf
->algorithm
);
4159 print_raid5_conf(conf
);
4161 if (conf
->expand_progress
!= MaxSector
) {
4162 printk("...ok start reshape thread\n");
4163 conf
->expand_lo
= conf
->expand_progress
;
4164 atomic_set(&conf
->reshape_stripes
, 0);
4165 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4166 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4167 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4168 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4169 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4173 /* read-ahead size must cover two whole stripes, which is
4174 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4177 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4178 int stripe
= data_disks
*
4179 (mddev
->chunk_size
/ PAGE_SIZE
);
4180 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4181 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4184 /* Ok, everything is just fine now */
4185 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4187 "raid5: failed to create sysfs attributes for %s\n",
4190 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4191 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4192 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4194 mddev
->array_sectors
= 2 * mddev
->size
* (conf
->previous_raid_disks
-
4195 conf
->max_degraded
);
4197 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4202 print_raid5_conf(conf
);
4203 safe_put_page(conf
->spare_page
);
4205 kfree(conf
->stripe_hashtbl
);
4208 mddev
->private = NULL
;
4209 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
4215 static int stop(mddev_t
*mddev
)
4217 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4219 md_unregister_thread(mddev
->thread
);
4220 mddev
->thread
= NULL
;
4221 shrink_stripes(conf
);
4222 kfree(conf
->stripe_hashtbl
);
4223 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4224 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
4225 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
4228 mddev
->private = NULL
;
4233 static void print_sh (struct seq_file
*seq
, struct stripe_head
*sh
)
4237 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
4238 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
4239 seq_printf(seq
, "sh %llu, count %d.\n",
4240 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
4241 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
4242 for (i
= 0; i
< sh
->disks
; i
++) {
4243 seq_printf(seq
, "(cache%d: %p %ld) ",
4244 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
4246 seq_printf(seq
, "\n");
4249 static void printall (struct seq_file
*seq
, raid5_conf_t
*conf
)
4251 struct stripe_head
*sh
;
4252 struct hlist_node
*hn
;
4255 spin_lock_irq(&conf
->device_lock
);
4256 for (i
= 0; i
< NR_HASH
; i
++) {
4257 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
4258 if (sh
->raid_conf
!= conf
)
4263 spin_unlock_irq(&conf
->device_lock
);
4267 static void status (struct seq_file
*seq
, mddev_t
*mddev
)
4269 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4272 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
4273 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4274 for (i
= 0; i
< conf
->raid_disks
; i
++)
4275 seq_printf (seq
, "%s",
4276 conf
->disks
[i
].rdev
&&
4277 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4278 seq_printf (seq
, "]");
4280 seq_printf (seq
, "\n");
4281 printall(seq
, conf
);
4285 static void print_raid5_conf (raid5_conf_t
*conf
)
4288 struct disk_info
*tmp
;
4290 printk("RAID5 conf printout:\n");
4292 printk("(conf==NULL)\n");
4295 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
4296 conf
->raid_disks
- conf
->mddev
->degraded
);
4298 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4299 char b
[BDEVNAME_SIZE
];
4300 tmp
= conf
->disks
+ i
;
4302 printk(" disk %d, o:%d, dev:%s\n",
4303 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
4304 bdevname(tmp
->rdev
->bdev
,b
));
4308 static int raid5_spare_active(mddev_t
*mddev
)
4311 raid5_conf_t
*conf
= mddev
->private;
4312 struct disk_info
*tmp
;
4314 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4315 tmp
= conf
->disks
+ i
;
4317 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
4318 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
4319 unsigned long flags
;
4320 spin_lock_irqsave(&conf
->device_lock
, flags
);
4322 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4325 print_raid5_conf(conf
);
4329 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
4331 raid5_conf_t
*conf
= mddev
->private;
4334 struct disk_info
*p
= conf
->disks
+ number
;
4336 print_raid5_conf(conf
);
4339 if (test_bit(In_sync
, &rdev
->flags
) ||
4340 atomic_read(&rdev
->nr_pending
)) {
4344 /* Only remove non-faulty devices if recovery
4347 if (!test_bit(Faulty
, &rdev
->flags
) &&
4348 mddev
->degraded
<= conf
->max_degraded
) {
4354 if (atomic_read(&rdev
->nr_pending
)) {
4355 /* lost the race, try later */
4362 print_raid5_conf(conf
);
4366 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
4368 raid5_conf_t
*conf
= mddev
->private;
4371 struct disk_info
*p
;
4373 int last
= conf
->raid_disks
- 1;
4375 if (mddev
->degraded
> conf
->max_degraded
)
4376 /* no point adding a device */
4379 if (rdev
->raid_disk
>= 0)
4380 first
= last
= rdev
->raid_disk
;
4383 * find the disk ... but prefer rdev->saved_raid_disk
4386 if (rdev
->saved_raid_disk
>= 0 &&
4387 rdev
->saved_raid_disk
>= first
&&
4388 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
4389 disk
= rdev
->saved_raid_disk
;
4392 for ( ; disk
<= last
; disk
++)
4393 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
4394 clear_bit(In_sync
, &rdev
->flags
);
4395 rdev
->raid_disk
= disk
;
4397 if (rdev
->saved_raid_disk
!= disk
)
4399 rcu_assign_pointer(p
->rdev
, rdev
);
4402 print_raid5_conf(conf
);
4406 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
4408 /* no resync is happening, and there is enough space
4409 * on all devices, so we can resize.
4410 * We need to make sure resync covers any new space.
4411 * If the array is shrinking we should possibly wait until
4412 * any io in the removed space completes, but it hardly seems
4415 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4417 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
4418 mddev
->array_sectors
= sectors
* (mddev
->raid_disks
4419 - conf
->max_degraded
);
4420 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4422 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
4423 mddev
->recovery_cp
= mddev
->size
<< 1;
4424 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4426 mddev
->size
= sectors
/2;
4427 mddev
->resync_max_sectors
= sectors
;
4431 #ifdef CONFIG_MD_RAID5_RESHAPE
4432 static int raid5_check_reshape(mddev_t
*mddev
)
4434 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4437 if (mddev
->delta_disks
< 0 ||
4438 mddev
->new_level
!= mddev
->level
)
4439 return -EINVAL
; /* Cannot shrink array or change level yet */
4440 if (mddev
->delta_disks
== 0)
4441 return 0; /* nothing to do */
4443 /* Can only proceed if there are plenty of stripe_heads.
4444 * We need a minimum of one full stripe,, and for sensible progress
4445 * it is best to have about 4 times that.
4446 * If we require 4 times, then the default 256 4K stripe_heads will
4447 * allow for chunk sizes up to 256K, which is probably OK.
4448 * If the chunk size is greater, user-space should request more
4449 * stripe_heads first.
4451 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
4452 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
4453 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
4454 (mddev
->chunk_size
/ STRIPE_SIZE
)*4);
4458 err
= resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
4462 if (mddev
->degraded
> conf
->max_degraded
)
4464 /* looks like we might be able to manage this */
4468 static int raid5_start_reshape(mddev_t
*mddev
)
4470 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4472 struct list_head
*rtmp
;
4474 int added_devices
= 0;
4475 unsigned long flags
;
4477 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4480 rdev_for_each(rdev
, rtmp
, mddev
)
4481 if (rdev
->raid_disk
< 0 &&
4482 !test_bit(Faulty
, &rdev
->flags
))
4485 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
4486 /* Not enough devices even to make a degraded array
4491 atomic_set(&conf
->reshape_stripes
, 0);
4492 spin_lock_irq(&conf
->device_lock
);
4493 conf
->previous_raid_disks
= conf
->raid_disks
;
4494 conf
->raid_disks
+= mddev
->delta_disks
;
4495 conf
->expand_progress
= 0;
4496 conf
->expand_lo
= 0;
4497 spin_unlock_irq(&conf
->device_lock
);
4499 /* Add some new drives, as many as will fit.
4500 * We know there are enough to make the newly sized array work.
4502 rdev_for_each(rdev
, rtmp
, mddev
)
4503 if (rdev
->raid_disk
< 0 &&
4504 !test_bit(Faulty
, &rdev
->flags
)) {
4505 if (raid5_add_disk(mddev
, rdev
) == 0) {
4507 set_bit(In_sync
, &rdev
->flags
);
4509 rdev
->recovery_offset
= 0;
4510 sprintf(nm
, "rd%d", rdev
->raid_disk
);
4511 if (sysfs_create_link(&mddev
->kobj
,
4514 "raid5: failed to create "
4515 " link %s for %s\n",
4521 spin_lock_irqsave(&conf
->device_lock
, flags
);
4522 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
) - added_devices
;
4523 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4524 mddev
->raid_disks
= conf
->raid_disks
;
4525 mddev
->reshape_position
= 0;
4526 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4528 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4529 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4530 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4531 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4532 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4534 if (!mddev
->sync_thread
) {
4535 mddev
->recovery
= 0;
4536 spin_lock_irq(&conf
->device_lock
);
4537 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
4538 conf
->expand_progress
= MaxSector
;
4539 spin_unlock_irq(&conf
->device_lock
);
4542 md_wakeup_thread(mddev
->sync_thread
);
4543 md_new_event(mddev
);
4548 static void end_reshape(raid5_conf_t
*conf
)
4550 struct block_device
*bdev
;
4552 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
4553 conf
->mddev
->array_sectors
= 2 * conf
->mddev
->size
*
4554 (conf
->raid_disks
- conf
->max_degraded
);
4555 set_capacity(conf
->mddev
->gendisk
, conf
->mddev
->array_sectors
);
4556 conf
->mddev
->changed
= 1;
4558 bdev
= bdget_disk(conf
->mddev
->gendisk
, 0);
4560 mutex_lock(&bdev
->bd_inode
->i_mutex
);
4561 i_size_write(bdev
->bd_inode
,
4562 (loff_t
)conf
->mddev
->array_sectors
<< 9);
4563 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
4566 spin_lock_irq(&conf
->device_lock
);
4567 conf
->expand_progress
= MaxSector
;
4568 spin_unlock_irq(&conf
->device_lock
);
4569 conf
->mddev
->reshape_position
= MaxSector
;
4571 /* read-ahead size must cover two whole stripes, which is
4572 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4575 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4576 int stripe
= data_disks
*
4577 (conf
->mddev
->chunk_size
/ PAGE_SIZE
);
4578 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4579 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4584 static void raid5_quiesce(mddev_t
*mddev
, int state
)
4586 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4589 case 2: /* resume for a suspend */
4590 wake_up(&conf
->wait_for_overlap
);
4593 case 1: /* stop all writes */
4594 spin_lock_irq(&conf
->device_lock
);
4596 wait_event_lock_irq(conf
->wait_for_stripe
,
4597 atomic_read(&conf
->active_stripes
) == 0 &&
4598 atomic_read(&conf
->active_aligned_reads
) == 0,
4599 conf
->device_lock
, /* nothing */);
4600 spin_unlock_irq(&conf
->device_lock
);
4603 case 0: /* re-enable writes */
4604 spin_lock_irq(&conf
->device_lock
);
4606 wake_up(&conf
->wait_for_stripe
);
4607 wake_up(&conf
->wait_for_overlap
);
4608 spin_unlock_irq(&conf
->device_lock
);
4613 static struct mdk_personality raid6_personality
=
4617 .owner
= THIS_MODULE
,
4618 .make_request
= make_request
,
4622 .error_handler
= error
,
4623 .hot_add_disk
= raid5_add_disk
,
4624 .hot_remove_disk
= raid5_remove_disk
,
4625 .spare_active
= raid5_spare_active
,
4626 .sync_request
= sync_request
,
4627 .resize
= raid5_resize
,
4628 #ifdef CONFIG_MD_RAID5_RESHAPE
4629 .check_reshape
= raid5_check_reshape
,
4630 .start_reshape
= raid5_start_reshape
,
4632 .quiesce
= raid5_quiesce
,
4634 static struct mdk_personality raid5_personality
=
4638 .owner
= THIS_MODULE
,
4639 .make_request
= make_request
,
4643 .error_handler
= error
,
4644 .hot_add_disk
= raid5_add_disk
,
4645 .hot_remove_disk
= raid5_remove_disk
,
4646 .spare_active
= raid5_spare_active
,
4647 .sync_request
= sync_request
,
4648 .resize
= raid5_resize
,
4649 #ifdef CONFIG_MD_RAID5_RESHAPE
4650 .check_reshape
= raid5_check_reshape
,
4651 .start_reshape
= raid5_start_reshape
,
4653 .quiesce
= raid5_quiesce
,
4656 static struct mdk_personality raid4_personality
=
4660 .owner
= THIS_MODULE
,
4661 .make_request
= make_request
,
4665 .error_handler
= error
,
4666 .hot_add_disk
= raid5_add_disk
,
4667 .hot_remove_disk
= raid5_remove_disk
,
4668 .spare_active
= raid5_spare_active
,
4669 .sync_request
= sync_request
,
4670 .resize
= raid5_resize
,
4671 #ifdef CONFIG_MD_RAID5_RESHAPE
4672 .check_reshape
= raid5_check_reshape
,
4673 .start_reshape
= raid5_start_reshape
,
4675 .quiesce
= raid5_quiesce
,
4678 static int __init
raid5_init(void)
4682 e
= raid6_select_algo();
4685 register_md_personality(&raid6_personality
);
4686 register_md_personality(&raid5_personality
);
4687 register_md_personality(&raid4_personality
);
4691 static void raid5_exit(void)
4693 unregister_md_personality(&raid6_personality
);
4694 unregister_md_personality(&raid5_personality
);
4695 unregister_md_personality(&raid4_personality
);
4698 module_init(raid5_init
);
4699 module_exit(raid5_exit
);
4700 MODULE_LICENSE("GPL");
4701 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4702 MODULE_ALIAS("md-raid5");
4703 MODULE_ALIAS("md-raid4");
4704 MODULE_ALIAS("md-level-5");
4705 MODULE_ALIAS("md-level-4");
4706 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4707 MODULE_ALIAS("md-raid6");
4708 MODULE_ALIAS("md-level-6");
4710 /* This used to be two separate modules, they were: */
4711 MODULE_ALIAS("raid5");
4712 MODULE_ALIAS("raid6");