2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
69 * Lets keep our timers in a slab cache :-)
71 static struct kmem_cache
*posix_timers_cache
;
72 static struct idr posix_timers_id
;
73 static DEFINE_SPINLOCK(idr_lock
);
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
134 static struct k_clock posix_clocks
[MAX_CLOCKS
];
137 * These ones are defined below.
139 static int common_nsleep(const clockid_t
, int flags
, struct timespec
*t
,
140 struct timespec __user
*rmtp
);
141 static void common_timer_get(struct k_itimer
*, struct itimerspec
*);
142 static int common_timer_set(struct k_itimer
*, int,
143 struct itimerspec
*, struct itimerspec
*);
144 static int common_timer_del(struct k_itimer
*timer
);
146 static enum hrtimer_restart
posix_timer_fn(struct hrtimer
*data
);
148 static struct k_itimer
*lock_timer(timer_t timer_id
, unsigned long *flags
);
150 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
152 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
156 * Call the k_clock hook function if non-null, or the default function.
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
171 static inline int common_clock_getres(const clockid_t which_clock
,
175 tp
->tv_nsec
= posix_clocks
[which_clock
].res
;
180 * Get real time for posix timers
182 static int common_clock_get(clockid_t which_clock
, struct timespec
*tp
)
184 ktime_get_real_ts(tp
);
188 static inline int common_clock_set(const clockid_t which_clock
,
191 return do_sys_settimeofday(tp
, NULL
);
194 static int common_timer_create(struct k_itimer
*new_timer
)
196 hrtimer_init(&new_timer
->it
.real
.timer
, new_timer
->it_clock
, 0);
201 * Return nonzero if we know a priori this clockid_t value is bogus.
203 static inline int invalid_clockid(const clockid_t which_clock
)
205 if (which_clock
< 0) /* CPU clock, posix_cpu_* will check it */
207 if ((unsigned) which_clock
>= MAX_CLOCKS
)
209 if (posix_clocks
[which_clock
].clock_getres
!= NULL
)
211 if (posix_clocks
[which_clock
].res
!= 0)
217 * Get monotonic time for posix timers
219 static int posix_ktime_get_ts(clockid_t which_clock
, struct timespec
*tp
)
226 * Get monotonic time for posix timers
228 static int posix_get_monotonic_raw(clockid_t which_clock
, struct timespec
*tp
)
235 * Initialize everything, well, just everything in Posix clocks/timers ;)
237 static __init
int init_posix_timers(void)
239 struct k_clock clock_realtime
= {
240 .clock_getres
= hrtimer_get_res
,
242 struct k_clock clock_monotonic
= {
243 .clock_getres
= hrtimer_get_res
,
244 .clock_get
= posix_ktime_get_ts
,
245 .clock_set
= do_posix_clock_nosettime
,
247 struct k_clock clock_monotonic_raw
= {
248 .clock_getres
= hrtimer_get_res
,
249 .clock_get
= posix_get_monotonic_raw
,
250 .clock_set
= do_posix_clock_nosettime
,
253 register_posix_clock(CLOCK_REALTIME
, &clock_realtime
);
254 register_posix_clock(CLOCK_MONOTONIC
, &clock_monotonic
);
255 register_posix_clock(CLOCK_MONOTONIC_RAW
, &clock_monotonic_raw
);
257 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
258 sizeof (struct k_itimer
), 0, SLAB_PANIC
,
260 idr_init(&posix_timers_id
);
264 __initcall(init_posix_timers
);
266 static void schedule_next_timer(struct k_itimer
*timr
)
268 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
270 if (timr
->it
.real
.interval
.tv64
== 0)
273 timr
->it_overrun
+= (unsigned int) hrtimer_forward(timer
,
274 timer
->base
->get_time(),
275 timr
->it
.real
.interval
);
277 timr
->it_overrun_last
= timr
->it_overrun
;
278 timr
->it_overrun
= -1;
279 ++timr
->it_requeue_pending
;
280 hrtimer_restart(timer
);
284 * This function is exported for use by the signal deliver code. It is
285 * called just prior to the info block being released and passes that
286 * block to us. It's function is to update the overrun entry AND to
287 * restart the timer. It should only be called if the timer is to be
288 * restarted (i.e. we have flagged this in the sys_private entry of the
291 * To protect aginst the timer going away while the interrupt is queued,
292 * we require that the it_requeue_pending flag be set.
294 void do_schedule_next_timer(struct siginfo
*info
)
296 struct k_itimer
*timr
;
299 timr
= lock_timer(info
->si_tid
, &flags
);
301 if (timr
&& timr
->it_requeue_pending
== info
->si_sys_private
) {
302 if (timr
->it_clock
< 0)
303 posix_cpu_timer_schedule(timr
);
305 schedule_next_timer(timr
);
307 info
->si_overrun
+= timr
->it_overrun_last
;
311 unlock_timer(timr
, flags
);
314 int posix_timer_event(struct k_itimer
*timr
, int si_private
)
318 * FIXME: if ->sigq is queued we can race with
319 * dequeue_signal()->do_schedule_next_timer().
321 * If dequeue_signal() sees the "right" value of
322 * si_sys_private it calls do_schedule_next_timer().
323 * We re-queue ->sigq and drop ->it_lock().
324 * do_schedule_next_timer() locks the timer
325 * and re-schedules it while ->sigq is pending.
326 * Not really bad, but not that we want.
328 timr
->sigq
->info
.si_sys_private
= si_private
;
330 shared
= !(timr
->it_sigev_notify
& SIGEV_THREAD_ID
);
331 ret
= send_sigqueue(timr
->sigq
, timr
->it_process
, shared
);
332 /* If we failed to send the signal the timer stops. */
335 EXPORT_SYMBOL_GPL(posix_timer_event
);
338 * This function gets called when a POSIX.1b interval timer expires. It
339 * is used as a callback from the kernel internal timer. The
340 * run_timer_list code ALWAYS calls with interrupts on.
342 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
344 static enum hrtimer_restart
posix_timer_fn(struct hrtimer
*timer
)
346 struct k_itimer
*timr
;
349 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
351 timr
= container_of(timer
, struct k_itimer
, it
.real
.timer
);
352 spin_lock_irqsave(&timr
->it_lock
, flags
);
354 if (timr
->it
.real
.interval
.tv64
!= 0)
355 si_private
= ++timr
->it_requeue_pending
;
357 if (posix_timer_event(timr
, si_private
)) {
359 * signal was not sent because of sig_ignor
360 * we will not get a call back to restart it AND
361 * it should be restarted.
363 if (timr
->it
.real
.interval
.tv64
!= 0) {
364 ktime_t now
= hrtimer_cb_get_time(timer
);
367 * FIXME: What we really want, is to stop this
368 * timer completely and restart it in case the
369 * SIG_IGN is removed. This is a non trivial
370 * change which involves sighand locking
371 * (sigh !), which we don't want to do late in
374 * For now we just let timers with an interval
375 * less than a jiffie expire every jiffie to
376 * avoid softirq starvation in case of SIG_IGN
377 * and a very small interval, which would put
378 * the timer right back on the softirq pending
379 * list. By moving now ahead of time we trick
380 * hrtimer_forward() to expire the timer
381 * later, while we still maintain the overrun
382 * accuracy, but have some inconsistency in
383 * the timer_gettime() case. This is at least
384 * better than a starved softirq. A more
385 * complex fix which solves also another related
386 * inconsistency is already in the pipeline.
388 #ifdef CONFIG_HIGH_RES_TIMERS
390 ktime_t kj
= ktime_set(0, NSEC_PER_SEC
/ HZ
);
392 if (timr
->it
.real
.interval
.tv64
< kj
.tv64
)
393 now
= ktime_add(now
, kj
);
396 timr
->it_overrun
+= (unsigned int)
397 hrtimer_forward(timer
, now
,
398 timr
->it
.real
.interval
);
399 ret
= HRTIMER_RESTART
;
400 ++timr
->it_requeue_pending
;
404 unlock_timer(timr
, flags
);
408 static struct task_struct
* good_sigevent(sigevent_t
* event
)
410 struct task_struct
*rtn
= current
->group_leader
;
412 if ((event
->sigev_notify
& SIGEV_THREAD_ID
) &&
413 (!(rtn
= find_task_by_vpid(event
->sigev_notify_thread_id
)) ||
414 !same_thread_group(rtn
, current
) ||
415 (event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_SIGNAL
))
418 if (((event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
) &&
419 ((event
->sigev_signo
<= 0) || (event
->sigev_signo
> SIGRTMAX
)))
425 void register_posix_clock(const clockid_t clock_id
, struct k_clock
*new_clock
)
427 if ((unsigned) clock_id
>= MAX_CLOCKS
) {
428 printk("POSIX clock register failed for clock_id %d\n",
433 posix_clocks
[clock_id
] = *new_clock
;
435 EXPORT_SYMBOL_GPL(register_posix_clock
);
437 static struct k_itimer
* alloc_posix_timer(void)
439 struct k_itimer
*tmr
;
440 tmr
= kmem_cache_zalloc(posix_timers_cache
, GFP_KERNEL
);
443 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
444 kmem_cache_free(posix_timers_cache
, tmr
);
447 memset(&tmr
->sigq
->info
, 0, sizeof(siginfo_t
));
452 #define IT_ID_NOT_SET 0
453 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
457 spin_lock_irqsave(&idr_lock
, flags
);
458 idr_remove(&posix_timers_id
, tmr
->it_id
);
459 spin_unlock_irqrestore(&idr_lock
, flags
);
461 sigqueue_free(tmr
->sigq
);
462 kmem_cache_free(posix_timers_cache
, tmr
);
465 /* Create a POSIX.1b interval timer. */
468 sys_timer_create(const clockid_t which_clock
,
469 struct sigevent __user
*timer_event_spec
,
470 timer_t __user
* created_timer_id
)
472 struct k_itimer
*new_timer
;
473 int error
, new_timer_id
;
474 struct task_struct
*process
;
476 int it_id_set
= IT_ID_NOT_SET
;
478 if (invalid_clockid(which_clock
))
481 new_timer
= alloc_posix_timer();
482 if (unlikely(!new_timer
))
485 spin_lock_init(&new_timer
->it_lock
);
487 if (unlikely(!idr_pre_get(&posix_timers_id
, GFP_KERNEL
))) {
491 spin_lock_irq(&idr_lock
);
492 error
= idr_get_new(&posix_timers_id
, new_timer
, &new_timer_id
);
493 spin_unlock_irq(&idr_lock
);
495 if (error
== -EAGAIN
)
498 * Weird looking, but we return EAGAIN if the IDR is
499 * full (proper POSIX return value for this)
505 it_id_set
= IT_ID_SET
;
506 new_timer
->it_id
= (timer_t
) new_timer_id
;
507 new_timer
->it_clock
= which_clock
;
508 new_timer
->it_overrun
= -1;
509 error
= CLOCK_DISPATCH(which_clock
, timer_create
, (new_timer
));
514 * return the timer_id now. The next step is hard to
515 * back out if there is an error.
517 if (copy_to_user(created_timer_id
,
518 &new_timer_id
, sizeof (new_timer_id
))) {
522 if (timer_event_spec
) {
523 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
))) {
528 process
= good_sigevent(&event
);
530 get_task_struct(process
);
537 event
.sigev_notify
= SIGEV_SIGNAL
;
538 event
.sigev_signo
= SIGALRM
;
539 event
.sigev_value
.sival_int
= new_timer
->it_id
;
540 process
= current
->group_leader
;
541 get_task_struct(process
);
544 new_timer
->it_sigev_notify
= event
.sigev_notify
;
545 new_timer
->sigq
->info
.si_signo
= event
.sigev_signo
;
546 new_timer
->sigq
->info
.si_value
= event
.sigev_value
;
547 new_timer
->sigq
->info
.si_tid
= new_timer
->it_id
;
548 new_timer
->sigq
->info
.si_code
= SI_TIMER
;
550 spin_lock_irq(¤t
->sighand
->siglock
);
551 new_timer
->it_process
= process
;
552 list_add(&new_timer
->list
, ¤t
->signal
->posix_timers
);
553 spin_unlock_irq(¤t
->sighand
->siglock
);
557 * In the case of the timer belonging to another task, after
558 * the task is unlocked, the timer is owned by the other task
559 * and may cease to exist at any time. Don't use or modify
560 * new_timer after the unlock call.
563 release_posix_timer(new_timer
, it_id_set
);
568 * Locking issues: We need to protect the result of the id look up until
569 * we get the timer locked down so it is not deleted under us. The
570 * removal is done under the idr spinlock so we use that here to bridge
571 * the find to the timer lock. To avoid a dead lock, the timer id MUST
572 * be release with out holding the timer lock.
574 static struct k_itimer
*lock_timer(timer_t timer_id
, unsigned long *flags
)
576 struct k_itimer
*timr
;
578 * Watch out here. We do a irqsave on the idr_lock and pass the
579 * flags part over to the timer lock. Must not let interrupts in
580 * while we are moving the lock.
582 spin_lock_irqsave(&idr_lock
, *flags
);
583 timr
= idr_find(&posix_timers_id
, (int)timer_id
);
585 spin_lock(&timr
->it_lock
);
586 if (timr
->it_process
&&
587 same_thread_group(timr
->it_process
, current
)) {
588 spin_unlock(&idr_lock
);
591 spin_unlock(&timr
->it_lock
);
593 spin_unlock_irqrestore(&idr_lock
, *flags
);
599 * Get the time remaining on a POSIX.1b interval timer. This function
600 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
603 * We have a couple of messes to clean up here. First there is the case
604 * of a timer that has a requeue pending. These timers should appear to
605 * be in the timer list with an expiry as if we were to requeue them
608 * The second issue is the SIGEV_NONE timer which may be active but is
609 * not really ever put in the timer list (to save system resources).
610 * This timer may be expired, and if so, we will do it here. Otherwise
611 * it is the same as a requeue pending timer WRT to what we should
615 common_timer_get(struct k_itimer
*timr
, struct itimerspec
*cur_setting
)
617 ktime_t now
, remaining
, iv
;
618 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
620 memset(cur_setting
, 0, sizeof(struct itimerspec
));
622 iv
= timr
->it
.real
.interval
;
624 /* interval timer ? */
626 cur_setting
->it_interval
= ktime_to_timespec(iv
);
627 else if (!hrtimer_active(timer
) &&
628 (timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
)
631 now
= timer
->base
->get_time();
634 * When a requeue is pending or this is a SIGEV_NONE
635 * timer move the expiry time forward by intervals, so
638 if (iv
.tv64
&& (timr
->it_requeue_pending
& REQUEUE_PENDING
||
639 (timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
))
640 timr
->it_overrun
+= (unsigned int) hrtimer_forward(timer
, now
, iv
);
642 remaining
= ktime_sub(hrtimer_get_expires(timer
), now
);
643 /* Return 0 only, when the timer is expired and not pending */
644 if (remaining
.tv64
<= 0) {
646 * A single shot SIGEV_NONE timer must return 0, when
649 if ((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
)
650 cur_setting
->it_value
.tv_nsec
= 1;
652 cur_setting
->it_value
= ktime_to_timespec(remaining
);
655 /* Get the time remaining on a POSIX.1b interval timer. */
657 sys_timer_gettime(timer_t timer_id
, struct itimerspec __user
*setting
)
659 struct k_itimer
*timr
;
660 struct itimerspec cur_setting
;
663 timr
= lock_timer(timer_id
, &flags
);
667 CLOCK_DISPATCH(timr
->it_clock
, timer_get
, (timr
, &cur_setting
));
669 unlock_timer(timr
, flags
);
671 if (copy_to_user(setting
, &cur_setting
, sizeof (cur_setting
)))
678 * Get the number of overruns of a POSIX.1b interval timer. This is to
679 * be the overrun of the timer last delivered. At the same time we are
680 * accumulating overruns on the next timer. The overrun is frozen when
681 * the signal is delivered, either at the notify time (if the info block
682 * is not queued) or at the actual delivery time (as we are informed by
683 * the call back to do_schedule_next_timer(). So all we need to do is
684 * to pick up the frozen overrun.
687 sys_timer_getoverrun(timer_t timer_id
)
689 struct k_itimer
*timr
;
693 timr
= lock_timer(timer_id
, &flags
);
697 overrun
= timr
->it_overrun_last
;
698 unlock_timer(timr
, flags
);
703 /* Set a POSIX.1b interval timer. */
704 /* timr->it_lock is taken. */
706 common_timer_set(struct k_itimer
*timr
, int flags
,
707 struct itimerspec
*new_setting
, struct itimerspec
*old_setting
)
709 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
710 enum hrtimer_mode mode
;
713 common_timer_get(timr
, old_setting
);
715 /* disable the timer */
716 timr
->it
.real
.interval
.tv64
= 0;
718 * careful here. If smp we could be in the "fire" routine which will
719 * be spinning as we hold the lock. But this is ONLY an SMP issue.
721 if (hrtimer_try_to_cancel(timer
) < 0)
724 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
726 timr
->it_overrun_last
= 0;
728 /* switch off the timer when it_value is zero */
729 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
)
732 mode
= flags
& TIMER_ABSTIME
? HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
;
733 hrtimer_init(&timr
->it
.real
.timer
, timr
->it_clock
, mode
);
734 timr
->it
.real
.timer
.function
= posix_timer_fn
;
736 hrtimer_set_expires(timer
, timespec_to_ktime(new_setting
->it_value
));
738 /* Convert interval */
739 timr
->it
.real
.interval
= timespec_to_ktime(new_setting
->it_interval
);
741 /* SIGEV_NONE timers are not queued ! See common_timer_get */
742 if (((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
)) {
743 /* Setup correct expiry time for relative timers */
744 if (mode
== HRTIMER_MODE_REL
) {
745 hrtimer_add_expires(timer
, timer
->base
->get_time());
750 hrtimer_start_expires(timer
, mode
);
754 /* Set a POSIX.1b interval timer */
756 sys_timer_settime(timer_t timer_id
, int flags
,
757 const struct itimerspec __user
*new_setting
,
758 struct itimerspec __user
*old_setting
)
760 struct k_itimer
*timr
;
761 struct itimerspec new_spec
, old_spec
;
764 struct itimerspec
*rtn
= old_setting
? &old_spec
: NULL
;
769 if (copy_from_user(&new_spec
, new_setting
, sizeof (new_spec
)))
772 if (!timespec_valid(&new_spec
.it_interval
) ||
773 !timespec_valid(&new_spec
.it_value
))
776 timr
= lock_timer(timer_id
, &flag
);
780 error
= CLOCK_DISPATCH(timr
->it_clock
, timer_set
,
781 (timr
, flags
, &new_spec
, rtn
));
783 unlock_timer(timr
, flag
);
784 if (error
== TIMER_RETRY
) {
785 rtn
= NULL
; // We already got the old time...
789 if (old_setting
&& !error
&&
790 copy_to_user(old_setting
, &old_spec
, sizeof (old_spec
)))
796 static inline int common_timer_del(struct k_itimer
*timer
)
798 timer
->it
.real
.interval
.tv64
= 0;
800 if (hrtimer_try_to_cancel(&timer
->it
.real
.timer
) < 0)
805 static inline int timer_delete_hook(struct k_itimer
*timer
)
807 return CLOCK_DISPATCH(timer
->it_clock
, timer_del
, (timer
));
810 /* Delete a POSIX.1b interval timer. */
812 sys_timer_delete(timer_t timer_id
)
814 struct k_itimer
*timer
;
818 timer
= lock_timer(timer_id
, &flags
);
822 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
823 unlock_timer(timer
, flags
);
827 spin_lock(¤t
->sighand
->siglock
);
828 list_del(&timer
->list
);
829 spin_unlock(¤t
->sighand
->siglock
);
831 * This keeps any tasks waiting on the spin lock from thinking
832 * they got something (see the lock code above).
834 put_task_struct(timer
->it_process
);
835 timer
->it_process
= NULL
;
837 unlock_timer(timer
, flags
);
838 release_posix_timer(timer
, IT_ID_SET
);
843 * return timer owned by the process, used by exit_itimers
845 static void itimer_delete(struct k_itimer
*timer
)
850 spin_lock_irqsave(&timer
->it_lock
, flags
);
852 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
853 unlock_timer(timer
, flags
);
856 list_del(&timer
->list
);
858 * This keeps any tasks waiting on the spin lock from thinking
859 * they got something (see the lock code above).
861 put_task_struct(timer
->it_process
);
862 timer
->it_process
= NULL
;
864 unlock_timer(timer
, flags
);
865 release_posix_timer(timer
, IT_ID_SET
);
869 * This is called by do_exit or de_thread, only when there are no more
870 * references to the shared signal_struct.
872 void exit_itimers(struct signal_struct
*sig
)
874 struct k_itimer
*tmr
;
876 while (!list_empty(&sig
->posix_timers
)) {
877 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
882 /* Not available / possible... functions */
883 int do_posix_clock_nosettime(const clockid_t clockid
, struct timespec
*tp
)
887 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime
);
889 int do_posix_clock_nonanosleep(const clockid_t clock
, int flags
,
890 struct timespec
*t
, struct timespec __user
*r
)
893 return -EOPNOTSUPP
; /* aka ENOTSUP in userland for POSIX */
894 #else /* parisc does define it separately. */
898 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep
);
900 asmlinkage
long sys_clock_settime(const clockid_t which_clock
,
901 const struct timespec __user
*tp
)
903 struct timespec new_tp
;
905 if (invalid_clockid(which_clock
))
907 if (copy_from_user(&new_tp
, tp
, sizeof (*tp
)))
910 return CLOCK_DISPATCH(which_clock
, clock_set
, (which_clock
, &new_tp
));
914 sys_clock_gettime(const clockid_t which_clock
, struct timespec __user
*tp
)
916 struct timespec kernel_tp
;
919 if (invalid_clockid(which_clock
))
921 error
= CLOCK_DISPATCH(which_clock
, clock_get
,
922 (which_clock
, &kernel_tp
));
923 if (!error
&& copy_to_user(tp
, &kernel_tp
, sizeof (kernel_tp
)))
931 sys_clock_getres(const clockid_t which_clock
, struct timespec __user
*tp
)
933 struct timespec rtn_tp
;
936 if (invalid_clockid(which_clock
))
939 error
= CLOCK_DISPATCH(which_clock
, clock_getres
,
940 (which_clock
, &rtn_tp
));
942 if (!error
&& tp
&& copy_to_user(tp
, &rtn_tp
, sizeof (rtn_tp
))) {
950 * nanosleep for monotonic and realtime clocks
952 static int common_nsleep(const clockid_t which_clock
, int flags
,
953 struct timespec
*tsave
, struct timespec __user
*rmtp
)
955 return hrtimer_nanosleep(tsave
, rmtp
, flags
& TIMER_ABSTIME
?
956 HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
,
961 sys_clock_nanosleep(const clockid_t which_clock
, int flags
,
962 const struct timespec __user
*rqtp
,
963 struct timespec __user
*rmtp
)
967 if (invalid_clockid(which_clock
))
970 if (copy_from_user(&t
, rqtp
, sizeof (struct timespec
)))
973 if (!timespec_valid(&t
))
976 return CLOCK_DISPATCH(which_clock
, nsleep
,
977 (which_clock
, flags
, &t
, rmtp
));
981 * nanosleep_restart for monotonic and realtime clocks
983 static int common_nsleep_restart(struct restart_block
*restart_block
)
985 return hrtimer_nanosleep_restart(restart_block
);
989 * This will restart clock_nanosleep. This is required only by
990 * compat_clock_nanosleep_restart for now.
993 clock_nanosleep_restart(struct restart_block
*restart_block
)
995 clockid_t which_clock
= restart_block
->arg0
;
997 return CLOCK_DISPATCH(which_clock
, nsleep_restart
,