sched: remove the 'u64 now' parameter from ->put_prev_task()
[linux-2.6/zen-sources.git] / drivers / char / tty_io.c
blobde37ebc3a4cf03fa9e94d68fbf7e0f70b9293337
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
123 EXPORT_SYMBOL(tty_std_termios);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
144 static void initialize_tty_struct(struct tty_struct *tty);
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 static int tty_release(struct inode *, struct file *);
152 int tty_ioctl(struct inode * inode, struct file * file,
153 unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
156 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file * filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
166 * alloc_tty_struct - allocate a tty object
168 * Return a new empty tty structure. The data fields have not
169 * been initialized in any way but has been zeroed
171 * Locking: none
174 static struct tty_struct *alloc_tty_struct(void)
176 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
179 static void tty_buffer_free_all(struct tty_struct *);
182 * free_tty_struct - free a disused tty
183 * @tty: tty struct to free
185 * Free the write buffers, tty queue and tty memory itself.
187 * Locking: none. Must be called after tty is definitely unused
190 static inline void free_tty_struct(struct tty_struct *tty)
192 kfree(tty->write_buf);
193 tty_buffer_free_all(tty);
194 kfree(tty);
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
200 * tty_name - return tty naming
201 * @tty: tty structure
202 * @buf: buffer for output
204 * Convert a tty structure into a name. The name reflects the kernel
205 * naming policy and if udev is in use may not reflect user space
207 * Locking: none
210 char *tty_name(struct tty_struct *tty, char *buf)
212 if (!tty) /* Hmm. NULL pointer. That's fun. */
213 strcpy(buf, "NULL tty");
214 else
215 strcpy(buf, tty->name);
216 return buf;
219 EXPORT_SYMBOL(tty_name);
221 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
222 const char *routine)
224 #ifdef TTY_PARANOIA_CHECK
225 if (!tty) {
226 printk(KERN_WARNING
227 "null TTY for (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
231 if (tty->magic != TTY_MAGIC) {
232 printk(KERN_WARNING
233 "bad magic number for tty struct (%d:%d) in %s\n",
234 imajor(inode), iminor(inode), routine);
235 return 1;
237 #endif
238 return 0;
241 static int check_tty_count(struct tty_struct *tty, const char *routine)
243 #ifdef CHECK_TTY_COUNT
244 struct list_head *p;
245 int count = 0;
247 file_list_lock();
248 list_for_each(p, &tty->tty_files) {
249 count++;
251 file_list_unlock();
252 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
253 tty->driver->subtype == PTY_TYPE_SLAVE &&
254 tty->link && tty->link->count)
255 count++;
256 if (tty->count != count) {
257 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
258 "!= #fd's(%d) in %s\n",
259 tty->name, tty->count, count, routine);
260 return count;
262 #endif
263 return 0;
267 * Tty buffer allocation management
271 * tty_buffer_free_all - free buffers used by a tty
272 * @tty: tty to free from
274 * Remove all the buffers pending on a tty whether queued with data
275 * or in the free ring. Must be called when the tty is no longer in use
277 * Locking: none
280 static void tty_buffer_free_all(struct tty_struct *tty)
282 struct tty_buffer *thead;
283 while((thead = tty->buf.head) != NULL) {
284 tty->buf.head = thead->next;
285 kfree(thead);
287 while((thead = tty->buf.free) != NULL) {
288 tty->buf.free = thead->next;
289 kfree(thead);
291 tty->buf.tail = NULL;
292 tty->buf.memory_used = 0;
296 * tty_buffer_init - prepare a tty buffer structure
297 * @tty: tty to initialise
299 * Set up the initial state of the buffer management for a tty device.
300 * Must be called before the other tty buffer functions are used.
302 * Locking: none
305 static void tty_buffer_init(struct tty_struct *tty)
307 spin_lock_init(&tty->buf.lock);
308 tty->buf.head = NULL;
309 tty->buf.tail = NULL;
310 tty->buf.free = NULL;
311 tty->buf.memory_used = 0;
315 * tty_buffer_alloc - allocate a tty buffer
316 * @tty: tty device
317 * @size: desired size (characters)
319 * Allocate a new tty buffer to hold the desired number of characters.
320 * Return NULL if out of memory or the allocation would exceed the
321 * per device queue
323 * Locking: Caller must hold tty->buf.lock
326 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
328 struct tty_buffer *p;
330 if (tty->buf.memory_used + size > 65536)
331 return NULL;
332 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
333 if(p == NULL)
334 return NULL;
335 p->used = 0;
336 p->size = size;
337 p->next = NULL;
338 p->commit = 0;
339 p->read = 0;
340 p->char_buf_ptr = (char *)(p->data);
341 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
342 tty->buf.memory_used += size;
343 return p;
347 * tty_buffer_free - free a tty buffer
348 * @tty: tty owning the buffer
349 * @b: the buffer to free
351 * Free a tty buffer, or add it to the free list according to our
352 * internal strategy
354 * Locking: Caller must hold tty->buf.lock
357 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
359 /* Dumb strategy for now - should keep some stats */
360 tty->buf.memory_used -= b->size;
361 WARN_ON(tty->buf.memory_used < 0);
363 if(b->size >= 512)
364 kfree(b);
365 else {
366 b->next = tty->buf.free;
367 tty->buf.free = b;
372 * tty_buffer_flush - flush full tty buffers
373 * @tty: tty to flush
375 * flush all the buffers containing receive data
377 * Locking: none
380 static void tty_buffer_flush(struct tty_struct *tty)
382 struct tty_buffer *thead;
383 unsigned long flags;
385 spin_lock_irqsave(&tty->buf.lock, flags);
386 while((thead = tty->buf.head) != NULL) {
387 tty->buf.head = thead->next;
388 tty_buffer_free(tty, thead);
390 tty->buf.tail = NULL;
391 spin_unlock_irqrestore(&tty->buf.lock, flags);
395 * tty_buffer_find - find a free tty buffer
396 * @tty: tty owning the buffer
397 * @size: characters wanted
399 * Locate an existing suitable tty buffer or if we are lacking one then
400 * allocate a new one. We round our buffers off in 256 character chunks
401 * to get better allocation behaviour.
403 * Locking: Caller must hold tty->buf.lock
406 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
408 struct tty_buffer **tbh = &tty->buf.free;
409 while((*tbh) != NULL) {
410 struct tty_buffer *t = *tbh;
411 if(t->size >= size) {
412 *tbh = t->next;
413 t->next = NULL;
414 t->used = 0;
415 t->commit = 0;
416 t->read = 0;
417 tty->buf.memory_used += t->size;
418 return t;
420 tbh = &((*tbh)->next);
422 /* Round the buffer size out */
423 size = (size + 0xFF) & ~ 0xFF;
424 return tty_buffer_alloc(tty, size);
425 /* Should possibly check if this fails for the largest buffer we
426 have queued and recycle that ? */
430 * tty_buffer_request_room - grow tty buffer if needed
431 * @tty: tty structure
432 * @size: size desired
434 * Make at least size bytes of linear space available for the tty
435 * buffer. If we fail return the size we managed to find.
437 * Locking: Takes tty->buf.lock
439 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
441 struct tty_buffer *b, *n;
442 int left;
443 unsigned long flags;
445 spin_lock_irqsave(&tty->buf.lock, flags);
447 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
448 remove this conditional if its worth it. This would be invisible
449 to the callers */
450 if ((b = tty->buf.tail) != NULL)
451 left = b->size - b->used;
452 else
453 left = 0;
455 if (left < size) {
456 /* This is the slow path - looking for new buffers to use */
457 if ((n = tty_buffer_find(tty, size)) != NULL) {
458 if (b != NULL) {
459 b->next = n;
460 b->commit = b->used;
461 } else
462 tty->buf.head = n;
463 tty->buf.tail = n;
464 } else
465 size = left;
468 spin_unlock_irqrestore(&tty->buf.lock, flags);
469 return size;
471 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
474 * tty_insert_flip_string - Add characters to the tty buffer
475 * @tty: tty structure
476 * @chars: characters
477 * @size: size
479 * Queue a series of bytes to the tty buffering. All the characters
480 * passed are marked as without error. Returns the number added.
482 * Locking: Called functions may take tty->buf.lock
485 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
486 size_t size)
488 int copied = 0;
489 do {
490 int space = tty_buffer_request_room(tty, size - copied);
491 struct tty_buffer *tb = tty->buf.tail;
492 /* If there is no space then tb may be NULL */
493 if(unlikely(space == 0))
494 break;
495 memcpy(tb->char_buf_ptr + tb->used, chars, space);
496 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
497 tb->used += space;
498 copied += space;
499 chars += space;
500 /* There is a small chance that we need to split the data over
501 several buffers. If this is the case we must loop */
502 } while (unlikely(size > copied));
503 return copied;
505 EXPORT_SYMBOL(tty_insert_flip_string);
508 * tty_insert_flip_string_flags - Add characters to the tty buffer
509 * @tty: tty structure
510 * @chars: characters
511 * @flags: flag bytes
512 * @size: size
514 * Queue a series of bytes to the tty buffering. For each character
515 * the flags array indicates the status of the character. Returns the
516 * number added.
518 * Locking: Called functions may take tty->buf.lock
521 int tty_insert_flip_string_flags(struct tty_struct *tty,
522 const unsigned char *chars, const char *flags, size_t size)
524 int copied = 0;
525 do {
526 int space = tty_buffer_request_room(tty, size - copied);
527 struct tty_buffer *tb = tty->buf.tail;
528 /* If there is no space then tb may be NULL */
529 if(unlikely(space == 0))
530 break;
531 memcpy(tb->char_buf_ptr + tb->used, chars, space);
532 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
533 tb->used += space;
534 copied += space;
535 chars += space;
536 flags += space;
537 /* There is a small chance that we need to split the data over
538 several buffers. If this is the case we must loop */
539 } while (unlikely(size > copied));
540 return copied;
542 EXPORT_SYMBOL(tty_insert_flip_string_flags);
545 * tty_schedule_flip - push characters to ldisc
546 * @tty: tty to push from
548 * Takes any pending buffers and transfers their ownership to the
549 * ldisc side of the queue. It then schedules those characters for
550 * processing by the line discipline.
552 * Locking: Takes tty->buf.lock
555 void tty_schedule_flip(struct tty_struct *tty)
557 unsigned long flags;
558 spin_lock_irqsave(&tty->buf.lock, flags);
559 if (tty->buf.tail != NULL)
560 tty->buf.tail->commit = tty->buf.tail->used;
561 spin_unlock_irqrestore(&tty->buf.lock, flags);
562 schedule_delayed_work(&tty->buf.work, 1);
564 EXPORT_SYMBOL(tty_schedule_flip);
567 * tty_prepare_flip_string - make room for characters
568 * @tty: tty
569 * @chars: return pointer for character write area
570 * @size: desired size
572 * Prepare a block of space in the buffer for data. Returns the length
573 * available and buffer pointer to the space which is now allocated and
574 * accounted for as ready for normal characters. This is used for drivers
575 * that need their own block copy routines into the buffer. There is no
576 * guarantee the buffer is a DMA target!
578 * Locking: May call functions taking tty->buf.lock
581 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
583 int space = tty_buffer_request_room(tty, size);
584 if (likely(space)) {
585 struct tty_buffer *tb = tty->buf.tail;
586 *chars = tb->char_buf_ptr + tb->used;
587 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
588 tb->used += space;
590 return space;
593 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
596 * tty_prepare_flip_string_flags - make room for characters
597 * @tty: tty
598 * @chars: return pointer for character write area
599 * @flags: return pointer for status flag write area
600 * @size: desired size
602 * Prepare a block of space in the buffer for data. Returns the length
603 * available and buffer pointer to the space which is now allocated and
604 * accounted for as ready for characters. This is used for drivers
605 * that need their own block copy routines into the buffer. There is no
606 * guarantee the buffer is a DMA target!
608 * Locking: May call functions taking tty->buf.lock
611 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
613 int space = tty_buffer_request_room(tty, size);
614 if (likely(space)) {
615 struct tty_buffer *tb = tty->buf.tail;
616 *chars = tb->char_buf_ptr + tb->used;
617 *flags = tb->flag_buf_ptr + tb->used;
618 tb->used += space;
620 return space;
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
628 * tty_set_termios_ldisc - set ldisc field
629 * @tty: tty structure
630 * @num: line discipline number
632 * This is probably overkill for real world processors but
633 * they are not on hot paths so a little discipline won't do
634 * any harm.
636 * Locking: takes termios_mutex
639 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
641 mutex_lock(&tty->termios_mutex);
642 tty->termios->c_line = num;
643 mutex_unlock(&tty->termios_mutex);
647 * This guards the refcounted line discipline lists. The lock
648 * must be taken with irqs off because there are hangup path
649 * callers who will do ldisc lookups and cannot sleep.
652 static DEFINE_SPINLOCK(tty_ldisc_lock);
653 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
654 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
657 * tty_register_ldisc - install a line discipline
658 * @disc: ldisc number
659 * @new_ldisc: pointer to the ldisc object
661 * Installs a new line discipline into the kernel. The discipline
662 * is set up as unreferenced and then made available to the kernel
663 * from this point onwards.
665 * Locking:
666 * takes tty_ldisc_lock to guard against ldisc races
669 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
671 unsigned long flags;
672 int ret = 0;
674 if (disc < N_TTY || disc >= NR_LDISCS)
675 return -EINVAL;
677 spin_lock_irqsave(&tty_ldisc_lock, flags);
678 tty_ldiscs[disc] = *new_ldisc;
679 tty_ldiscs[disc].num = disc;
680 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
681 tty_ldiscs[disc].refcount = 0;
682 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
684 return ret;
686 EXPORT_SYMBOL(tty_register_ldisc);
689 * tty_unregister_ldisc - unload a line discipline
690 * @disc: ldisc number
691 * @new_ldisc: pointer to the ldisc object
693 * Remove a line discipline from the kernel providing it is not
694 * currently in use.
696 * Locking:
697 * takes tty_ldisc_lock to guard against ldisc races
700 int tty_unregister_ldisc(int disc)
702 unsigned long flags;
703 int ret = 0;
705 if (disc < N_TTY || disc >= NR_LDISCS)
706 return -EINVAL;
708 spin_lock_irqsave(&tty_ldisc_lock, flags);
709 if (tty_ldiscs[disc].refcount)
710 ret = -EBUSY;
711 else
712 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
713 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
715 return ret;
717 EXPORT_SYMBOL(tty_unregister_ldisc);
720 * tty_ldisc_get - take a reference to an ldisc
721 * @disc: ldisc number
723 * Takes a reference to a line discipline. Deals with refcounts and
724 * module locking counts. Returns NULL if the discipline is not available.
725 * Returns a pointer to the discipline and bumps the ref count if it is
726 * available
728 * Locking:
729 * takes tty_ldisc_lock to guard against ldisc races
732 struct tty_ldisc *tty_ldisc_get(int disc)
734 unsigned long flags;
735 struct tty_ldisc *ld;
737 if (disc < N_TTY || disc >= NR_LDISCS)
738 return NULL;
740 spin_lock_irqsave(&tty_ldisc_lock, flags);
742 ld = &tty_ldiscs[disc];
743 /* Check the entry is defined */
744 if(ld->flags & LDISC_FLAG_DEFINED)
746 /* If the module is being unloaded we can't use it */
747 if (!try_module_get(ld->owner))
748 ld = NULL;
749 else /* lock it */
750 ld->refcount++;
752 else
753 ld = NULL;
754 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
755 return ld;
758 EXPORT_SYMBOL_GPL(tty_ldisc_get);
761 * tty_ldisc_put - drop ldisc reference
762 * @disc: ldisc number
764 * Drop a reference to a line discipline. Manage refcounts and
765 * module usage counts
767 * Locking:
768 * takes tty_ldisc_lock to guard against ldisc races
771 void tty_ldisc_put(int disc)
773 struct tty_ldisc *ld;
774 unsigned long flags;
776 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
778 spin_lock_irqsave(&tty_ldisc_lock, flags);
779 ld = &tty_ldiscs[disc];
780 BUG_ON(ld->refcount == 0);
781 ld->refcount--;
782 module_put(ld->owner);
783 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
786 EXPORT_SYMBOL_GPL(tty_ldisc_put);
789 * tty_ldisc_assign - set ldisc on a tty
790 * @tty: tty to assign
791 * @ld: line discipline
793 * Install an instance of a line discipline into a tty structure. The
794 * ldisc must have a reference count above zero to ensure it remains/
795 * The tty instance refcount starts at zero.
797 * Locking:
798 * Caller must hold references
801 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
803 tty->ldisc = *ld;
804 tty->ldisc.refcount = 0;
808 * tty_ldisc_try - internal helper
809 * @tty: the tty
811 * Make a single attempt to grab and bump the refcount on
812 * the tty ldisc. Return 0 on failure or 1 on success. This is
813 * used to implement both the waiting and non waiting versions
814 * of tty_ldisc_ref
816 * Locking: takes tty_ldisc_lock
819 static int tty_ldisc_try(struct tty_struct *tty)
821 unsigned long flags;
822 struct tty_ldisc *ld;
823 int ret = 0;
825 spin_lock_irqsave(&tty_ldisc_lock, flags);
826 ld = &tty->ldisc;
827 if(test_bit(TTY_LDISC, &tty->flags))
829 ld->refcount++;
830 ret = 1;
832 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
833 return ret;
837 * tty_ldisc_ref_wait - wait for the tty ldisc
838 * @tty: tty device
840 * Dereference the line discipline for the terminal and take a
841 * reference to it. If the line discipline is in flux then
842 * wait patiently until it changes.
844 * Note: Must not be called from an IRQ/timer context. The caller
845 * must also be careful not to hold other locks that will deadlock
846 * against a discipline change, such as an existing ldisc reference
847 * (which we check for)
849 * Locking: call functions take tty_ldisc_lock
852 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
854 /* wait_event is a macro */
855 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
856 if(tty->ldisc.refcount == 0)
857 printk(KERN_ERR "tty_ldisc_ref_wait\n");
858 return &tty->ldisc;
861 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
864 * tty_ldisc_ref - get the tty ldisc
865 * @tty: tty device
867 * Dereference the line discipline for the terminal and take a
868 * reference to it. If the line discipline is in flux then
869 * return NULL. Can be called from IRQ and timer functions.
871 * Locking: called functions take tty_ldisc_lock
874 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
876 if(tty_ldisc_try(tty))
877 return &tty->ldisc;
878 return NULL;
881 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
884 * tty_ldisc_deref - free a tty ldisc reference
885 * @ld: reference to free up
887 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
888 * be called in IRQ context.
890 * Locking: takes tty_ldisc_lock
893 void tty_ldisc_deref(struct tty_ldisc *ld)
895 unsigned long flags;
897 BUG_ON(ld == NULL);
899 spin_lock_irqsave(&tty_ldisc_lock, flags);
900 if(ld->refcount == 0)
901 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
902 else
903 ld->refcount--;
904 if(ld->refcount == 0)
905 wake_up(&tty_ldisc_wait);
906 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
909 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
912 * tty_ldisc_enable - allow ldisc use
913 * @tty: terminal to activate ldisc on
915 * Set the TTY_LDISC flag when the line discipline can be called
916 * again. Do neccessary wakeups for existing sleepers.
918 * Note: nobody should set this bit except via this function. Clearing
919 * directly is allowed.
922 static void tty_ldisc_enable(struct tty_struct *tty)
924 set_bit(TTY_LDISC, &tty->flags);
925 wake_up(&tty_ldisc_wait);
929 * tty_set_ldisc - set line discipline
930 * @tty: the terminal to set
931 * @ldisc: the line discipline
933 * Set the discipline of a tty line. Must be called from a process
934 * context.
936 * Locking: takes tty_ldisc_lock.
937 * called functions take termios_mutex
940 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
942 int retval = 0;
943 struct tty_ldisc o_ldisc;
944 char buf[64];
945 int work;
946 unsigned long flags;
947 struct tty_ldisc *ld;
948 struct tty_struct *o_tty;
950 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
951 return -EINVAL;
953 restart:
955 ld = tty_ldisc_get(ldisc);
956 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
957 /* Cyrus Durgin <cider@speakeasy.org> */
958 if (ld == NULL) {
959 request_module("tty-ldisc-%d", ldisc);
960 ld = tty_ldisc_get(ldisc);
962 if (ld == NULL)
963 return -EINVAL;
966 * Problem: What do we do if this blocks ?
969 tty_wait_until_sent(tty, 0);
971 if (tty->ldisc.num == ldisc) {
972 tty_ldisc_put(ldisc);
973 return 0;
977 * No more input please, we are switching. The new ldisc
978 * will update this value in the ldisc open function
981 tty->receive_room = 0;
983 o_ldisc = tty->ldisc;
984 o_tty = tty->link;
987 * Make sure we don't change while someone holds a
988 * reference to the line discipline. The TTY_LDISC bit
989 * prevents anyone taking a reference once it is clear.
990 * We need the lock to avoid racing reference takers.
993 spin_lock_irqsave(&tty_ldisc_lock, flags);
994 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
995 if(tty->ldisc.refcount) {
996 /* Free the new ldisc we grabbed. Must drop the lock
997 first. */
998 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
999 tty_ldisc_put(ldisc);
1001 * There are several reasons we may be busy, including
1002 * random momentary I/O traffic. We must therefore
1003 * retry. We could distinguish between blocking ops
1004 * and retries if we made tty_ldisc_wait() smarter. That
1005 * is up for discussion.
1007 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1008 return -ERESTARTSYS;
1009 goto restart;
1011 if(o_tty && o_tty->ldisc.refcount) {
1012 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1013 tty_ldisc_put(ldisc);
1014 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1015 return -ERESTARTSYS;
1016 goto restart;
1020 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1022 if (!test_bit(TTY_LDISC, &tty->flags)) {
1023 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1024 tty_ldisc_put(ldisc);
1025 ld = tty_ldisc_ref_wait(tty);
1026 tty_ldisc_deref(ld);
1027 goto restart;
1030 clear_bit(TTY_LDISC, &tty->flags);
1031 if (o_tty)
1032 clear_bit(TTY_LDISC, &o_tty->flags);
1033 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1036 * From this point on we know nobody has an ldisc
1037 * usage reference, nor can they obtain one until
1038 * we say so later on.
1041 work = cancel_delayed_work(&tty->buf.work);
1043 * Wait for ->hangup_work and ->buf.work handlers to terminate
1046 flush_scheduled_work();
1047 /* Shutdown the current discipline. */
1048 if (tty->ldisc.close)
1049 (tty->ldisc.close)(tty);
1051 /* Now set up the new line discipline. */
1052 tty_ldisc_assign(tty, ld);
1053 tty_set_termios_ldisc(tty, ldisc);
1054 if (tty->ldisc.open)
1055 retval = (tty->ldisc.open)(tty);
1056 if (retval < 0) {
1057 tty_ldisc_put(ldisc);
1058 /* There is an outstanding reference here so this is safe */
1059 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1060 tty_set_termios_ldisc(tty, tty->ldisc.num);
1061 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1062 tty_ldisc_put(o_ldisc.num);
1063 /* This driver is always present */
1064 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1065 tty_set_termios_ldisc(tty, N_TTY);
1066 if (tty->ldisc.open) {
1067 int r = tty->ldisc.open(tty);
1069 if (r < 0)
1070 panic("Couldn't open N_TTY ldisc for "
1071 "%s --- error %d.",
1072 tty_name(tty, buf), r);
1076 /* At this point we hold a reference to the new ldisc and a
1077 a reference to the old ldisc. If we ended up flipping back
1078 to the existing ldisc we have two references to it */
1080 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1081 tty->driver->set_ldisc(tty);
1083 tty_ldisc_put(o_ldisc.num);
1086 * Allow ldisc referencing to occur as soon as the driver
1087 * ldisc callback completes.
1090 tty_ldisc_enable(tty);
1091 if (o_tty)
1092 tty_ldisc_enable(o_tty);
1094 /* Restart it in case no characters kick it off. Safe if
1095 already running */
1096 if (work)
1097 schedule_delayed_work(&tty->buf.work, 1);
1098 return retval;
1102 * get_tty_driver - find device of a tty
1103 * @dev_t: device identifier
1104 * @index: returns the index of the tty
1106 * This routine returns a tty driver structure, given a device number
1107 * and also passes back the index number.
1109 * Locking: caller must hold tty_mutex
1112 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1114 struct tty_driver *p;
1116 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1117 dev_t base = MKDEV(p->major, p->minor_start);
1118 if (device < base || device >= base + p->num)
1119 continue;
1120 *index = device - base;
1121 return p;
1123 return NULL;
1127 * tty_check_change - check for POSIX terminal changes
1128 * @tty: tty to check
1130 * If we try to write to, or set the state of, a terminal and we're
1131 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1132 * ignored, go ahead and perform the operation. (POSIX 7.2)
1134 * Locking: none
1137 int tty_check_change(struct tty_struct * tty)
1139 if (current->signal->tty != tty)
1140 return 0;
1141 if (!tty->pgrp) {
1142 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1143 return 0;
1145 if (task_pgrp(current) == tty->pgrp)
1146 return 0;
1147 if (is_ignored(SIGTTOU))
1148 return 0;
1149 if (is_current_pgrp_orphaned())
1150 return -EIO;
1151 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1152 set_thread_flag(TIF_SIGPENDING);
1153 return -ERESTARTSYS;
1156 EXPORT_SYMBOL(tty_check_change);
1158 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1159 size_t count, loff_t *ppos)
1161 return 0;
1164 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1165 size_t count, loff_t *ppos)
1167 return -EIO;
1170 /* No kernel lock held - none needed ;) */
1171 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1173 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1176 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1177 unsigned int cmd, unsigned long arg)
1179 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1182 static long hung_up_tty_compat_ioctl(struct file * file,
1183 unsigned int cmd, unsigned long arg)
1185 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1188 static const struct file_operations tty_fops = {
1189 .llseek = no_llseek,
1190 .read = tty_read,
1191 .write = tty_write,
1192 .poll = tty_poll,
1193 .ioctl = tty_ioctl,
1194 .compat_ioctl = tty_compat_ioctl,
1195 .open = tty_open,
1196 .release = tty_release,
1197 .fasync = tty_fasync,
1200 #ifdef CONFIG_UNIX98_PTYS
1201 static const struct file_operations ptmx_fops = {
1202 .llseek = no_llseek,
1203 .read = tty_read,
1204 .write = tty_write,
1205 .poll = tty_poll,
1206 .ioctl = tty_ioctl,
1207 .compat_ioctl = tty_compat_ioctl,
1208 .open = ptmx_open,
1209 .release = tty_release,
1210 .fasync = tty_fasync,
1212 #endif
1214 static const struct file_operations console_fops = {
1215 .llseek = no_llseek,
1216 .read = tty_read,
1217 .write = redirected_tty_write,
1218 .poll = tty_poll,
1219 .ioctl = tty_ioctl,
1220 .compat_ioctl = tty_compat_ioctl,
1221 .open = tty_open,
1222 .release = tty_release,
1223 .fasync = tty_fasync,
1226 static const struct file_operations hung_up_tty_fops = {
1227 .llseek = no_llseek,
1228 .read = hung_up_tty_read,
1229 .write = hung_up_tty_write,
1230 .poll = hung_up_tty_poll,
1231 .ioctl = hung_up_tty_ioctl,
1232 .compat_ioctl = hung_up_tty_compat_ioctl,
1233 .release = tty_release,
1236 static DEFINE_SPINLOCK(redirect_lock);
1237 static struct file *redirect;
1240 * tty_wakeup - request more data
1241 * @tty: terminal
1243 * Internal and external helper for wakeups of tty. This function
1244 * informs the line discipline if present that the driver is ready
1245 * to receive more output data.
1248 void tty_wakeup(struct tty_struct *tty)
1250 struct tty_ldisc *ld;
1252 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1253 ld = tty_ldisc_ref(tty);
1254 if(ld) {
1255 if(ld->write_wakeup)
1256 ld->write_wakeup(tty);
1257 tty_ldisc_deref(ld);
1260 wake_up_interruptible(&tty->write_wait);
1263 EXPORT_SYMBOL_GPL(tty_wakeup);
1266 * tty_ldisc_flush - flush line discipline queue
1267 * @tty: tty
1269 * Flush the line discipline queue (if any) for this tty. If there
1270 * is no line discipline active this is a no-op.
1273 void tty_ldisc_flush(struct tty_struct *tty)
1275 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1276 if(ld) {
1277 if(ld->flush_buffer)
1278 ld->flush_buffer(tty);
1279 tty_ldisc_deref(ld);
1281 tty_buffer_flush(tty);
1284 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1287 * tty_reset_termios - reset terminal state
1288 * @tty: tty to reset
1290 * Restore a terminal to the driver default state
1293 static void tty_reset_termios(struct tty_struct *tty)
1295 mutex_lock(&tty->termios_mutex);
1296 *tty->termios = tty->driver->init_termios;
1297 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1298 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1299 mutex_unlock(&tty->termios_mutex);
1303 * do_tty_hangup - actual handler for hangup events
1304 * @work: tty device
1306 * This can be called by the "eventd" kernel thread. That is process
1307 * synchronous but doesn't hold any locks, so we need to make sure we
1308 * have the appropriate locks for what we're doing.
1310 * The hangup event clears any pending redirections onto the hung up
1311 * device. It ensures future writes will error and it does the needed
1312 * line discipline hangup and signal delivery. The tty object itself
1313 * remains intact.
1315 * Locking:
1316 * BKL
1317 * redirect lock for undoing redirection
1318 * file list lock for manipulating list of ttys
1319 * tty_ldisc_lock from called functions
1320 * termios_mutex resetting termios data
1321 * tasklist_lock to walk task list for hangup event
1322 * ->siglock to protect ->signal/->sighand
1324 static void do_tty_hangup(struct work_struct *work)
1326 struct tty_struct *tty =
1327 container_of(work, struct tty_struct, hangup_work);
1328 struct file * cons_filp = NULL;
1329 struct file *filp, *f = NULL;
1330 struct task_struct *p;
1331 struct tty_ldisc *ld;
1332 int closecount = 0, n;
1334 if (!tty)
1335 return;
1337 /* inuse_filps is protected by the single kernel lock */
1338 lock_kernel();
1340 spin_lock(&redirect_lock);
1341 if (redirect && redirect->private_data == tty) {
1342 f = redirect;
1343 redirect = NULL;
1345 spin_unlock(&redirect_lock);
1347 check_tty_count(tty, "do_tty_hangup");
1348 file_list_lock();
1349 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1350 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1351 if (filp->f_op->write == redirected_tty_write)
1352 cons_filp = filp;
1353 if (filp->f_op->write != tty_write)
1354 continue;
1355 closecount++;
1356 tty_fasync(-1, filp, 0); /* can't block */
1357 filp->f_op = &hung_up_tty_fops;
1359 file_list_unlock();
1361 /* FIXME! What are the locking issues here? This may me overdoing things..
1362 * this question is especially important now that we've removed the irqlock. */
1364 ld = tty_ldisc_ref(tty);
1365 if(ld != NULL) /* We may have no line discipline at this point */
1367 if (ld->flush_buffer)
1368 ld->flush_buffer(tty);
1369 if (tty->driver->flush_buffer)
1370 tty->driver->flush_buffer(tty);
1371 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1372 ld->write_wakeup)
1373 ld->write_wakeup(tty);
1374 if (ld->hangup)
1375 ld->hangup(tty);
1378 /* FIXME: Once we trust the LDISC code better we can wait here for
1379 ldisc completion and fix the driver call race */
1381 wake_up_interruptible(&tty->write_wait);
1382 wake_up_interruptible(&tty->read_wait);
1385 * Shutdown the current line discipline, and reset it to
1386 * N_TTY.
1388 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1389 tty_reset_termios(tty);
1391 /* Defer ldisc switch */
1392 /* tty_deferred_ldisc_switch(N_TTY);
1394 This should get done automatically when the port closes and
1395 tty_release is called */
1397 read_lock(&tasklist_lock);
1398 if (tty->session) {
1399 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1400 spin_lock_irq(&p->sighand->siglock);
1401 if (p->signal->tty == tty)
1402 p->signal->tty = NULL;
1403 if (!p->signal->leader) {
1404 spin_unlock_irq(&p->sighand->siglock);
1405 continue;
1407 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1408 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1409 put_pid(p->signal->tty_old_pgrp); /* A noop */
1410 if (tty->pgrp)
1411 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1412 spin_unlock_irq(&p->sighand->siglock);
1413 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1415 read_unlock(&tasklist_lock);
1417 tty->flags = 0;
1418 put_pid(tty->session);
1419 put_pid(tty->pgrp);
1420 tty->session = NULL;
1421 tty->pgrp = NULL;
1422 tty->ctrl_status = 0;
1424 * If one of the devices matches a console pointer, we
1425 * cannot just call hangup() because that will cause
1426 * tty->count and state->count to go out of sync.
1427 * So we just call close() the right number of times.
1429 if (cons_filp) {
1430 if (tty->driver->close)
1431 for (n = 0; n < closecount; n++)
1432 tty->driver->close(tty, cons_filp);
1433 } else if (tty->driver->hangup)
1434 (tty->driver->hangup)(tty);
1436 /* We don't want to have driver/ldisc interactions beyond
1437 the ones we did here. The driver layer expects no
1438 calls after ->hangup() from the ldisc side. However we
1439 can't yet guarantee all that */
1441 set_bit(TTY_HUPPED, &tty->flags);
1442 if (ld) {
1443 tty_ldisc_enable(tty);
1444 tty_ldisc_deref(ld);
1446 unlock_kernel();
1447 if (f)
1448 fput(f);
1452 * tty_hangup - trigger a hangup event
1453 * @tty: tty to hangup
1455 * A carrier loss (virtual or otherwise) has occurred on this like
1456 * schedule a hangup sequence to run after this event.
1459 void tty_hangup(struct tty_struct * tty)
1461 #ifdef TTY_DEBUG_HANGUP
1462 char buf[64];
1464 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1465 #endif
1466 schedule_work(&tty->hangup_work);
1469 EXPORT_SYMBOL(tty_hangup);
1472 * tty_vhangup - process vhangup
1473 * @tty: tty to hangup
1475 * The user has asked via system call for the terminal to be hung up.
1476 * We do this synchronously so that when the syscall returns the process
1477 * is complete. That guarantee is neccessary for security reasons.
1480 void tty_vhangup(struct tty_struct * tty)
1482 #ifdef TTY_DEBUG_HANGUP
1483 char buf[64];
1485 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1486 #endif
1487 do_tty_hangup(&tty->hangup_work);
1489 EXPORT_SYMBOL(tty_vhangup);
1492 * tty_hung_up_p - was tty hung up
1493 * @filp: file pointer of tty
1495 * Return true if the tty has been subject to a vhangup or a carrier
1496 * loss
1499 int tty_hung_up_p(struct file * filp)
1501 return (filp->f_op == &hung_up_tty_fops);
1504 EXPORT_SYMBOL(tty_hung_up_p);
1507 * is_tty - checker whether file is a TTY
1509 int is_tty(struct file *filp)
1511 return filp->f_op->read == tty_read
1512 || filp->f_op->read == hung_up_tty_read;
1515 static void session_clear_tty(struct pid *session)
1517 struct task_struct *p;
1518 do_each_pid_task(session, PIDTYPE_SID, p) {
1519 proc_clear_tty(p);
1520 } while_each_pid_task(session, PIDTYPE_SID, p);
1524 * disassociate_ctty - disconnect controlling tty
1525 * @on_exit: true if exiting so need to "hang up" the session
1527 * This function is typically called only by the session leader, when
1528 * it wants to disassociate itself from its controlling tty.
1530 * It performs the following functions:
1531 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1532 * (2) Clears the tty from being controlling the session
1533 * (3) Clears the controlling tty for all processes in the
1534 * session group.
1536 * The argument on_exit is set to 1 if called when a process is
1537 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1539 * Locking:
1540 * BKL is taken for hysterical raisins
1541 * tty_mutex is taken to protect tty
1542 * ->siglock is taken to protect ->signal/->sighand
1543 * tasklist_lock is taken to walk process list for sessions
1544 * ->siglock is taken to protect ->signal/->sighand
1547 void disassociate_ctty(int on_exit)
1549 struct tty_struct *tty;
1550 struct pid *tty_pgrp = NULL;
1552 lock_kernel();
1554 mutex_lock(&tty_mutex);
1555 tty = get_current_tty();
1556 if (tty) {
1557 tty_pgrp = get_pid(tty->pgrp);
1558 mutex_unlock(&tty_mutex);
1559 /* XXX: here we race, there is nothing protecting tty */
1560 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1561 tty_vhangup(tty);
1562 } else if (on_exit) {
1563 struct pid *old_pgrp;
1564 spin_lock_irq(&current->sighand->siglock);
1565 old_pgrp = current->signal->tty_old_pgrp;
1566 current->signal->tty_old_pgrp = NULL;
1567 spin_unlock_irq(&current->sighand->siglock);
1568 if (old_pgrp) {
1569 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1570 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1571 put_pid(old_pgrp);
1573 mutex_unlock(&tty_mutex);
1574 unlock_kernel();
1575 return;
1577 if (tty_pgrp) {
1578 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1579 if (!on_exit)
1580 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1581 put_pid(tty_pgrp);
1584 spin_lock_irq(&current->sighand->siglock);
1585 put_pid(current->signal->tty_old_pgrp);
1586 current->signal->tty_old_pgrp = NULL;
1587 spin_unlock_irq(&current->sighand->siglock);
1589 mutex_lock(&tty_mutex);
1590 /* It is possible that do_tty_hangup has free'd this tty */
1591 tty = get_current_tty();
1592 if (tty) {
1593 put_pid(tty->session);
1594 put_pid(tty->pgrp);
1595 tty->session = NULL;
1596 tty->pgrp = NULL;
1597 } else {
1598 #ifdef TTY_DEBUG_HANGUP
1599 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1600 " = NULL", tty);
1601 #endif
1603 mutex_unlock(&tty_mutex);
1605 /* Now clear signal->tty under the lock */
1606 read_lock(&tasklist_lock);
1607 session_clear_tty(task_session(current));
1608 read_unlock(&tasklist_lock);
1609 unlock_kernel();
1614 * no_tty - Ensure the current process does not have a controlling tty
1616 void no_tty(void)
1618 struct task_struct *tsk = current;
1619 if (tsk->signal->leader)
1620 disassociate_ctty(0);
1621 proc_clear_tty(tsk);
1626 * stop_tty - propagate flow control
1627 * @tty: tty to stop
1629 * Perform flow control to the driver. For PTY/TTY pairs we
1630 * must also propagate the TIOCKPKT status. May be called
1631 * on an already stopped device and will not re-call the driver
1632 * method.
1634 * This functionality is used by both the line disciplines for
1635 * halting incoming flow and by the driver. It may therefore be
1636 * called from any context, may be under the tty atomic_write_lock
1637 * but not always.
1639 * Locking:
1640 * Broken. Relies on BKL which is unsafe here.
1643 void stop_tty(struct tty_struct *tty)
1645 if (tty->stopped)
1646 return;
1647 tty->stopped = 1;
1648 if (tty->link && tty->link->packet) {
1649 tty->ctrl_status &= ~TIOCPKT_START;
1650 tty->ctrl_status |= TIOCPKT_STOP;
1651 wake_up_interruptible(&tty->link->read_wait);
1653 if (tty->driver->stop)
1654 (tty->driver->stop)(tty);
1657 EXPORT_SYMBOL(stop_tty);
1660 * start_tty - propagate flow control
1661 * @tty: tty to start
1663 * Start a tty that has been stopped if at all possible. Perform
1664 * any neccessary wakeups and propagate the TIOCPKT status. If this
1665 * is the tty was previous stopped and is being started then the
1666 * driver start method is invoked and the line discipline woken.
1668 * Locking:
1669 * Broken. Relies on BKL which is unsafe here.
1672 void start_tty(struct tty_struct *tty)
1674 if (!tty->stopped || tty->flow_stopped)
1675 return;
1676 tty->stopped = 0;
1677 if (tty->link && tty->link->packet) {
1678 tty->ctrl_status &= ~TIOCPKT_STOP;
1679 tty->ctrl_status |= TIOCPKT_START;
1680 wake_up_interruptible(&tty->link->read_wait);
1682 if (tty->driver->start)
1683 (tty->driver->start)(tty);
1685 /* If we have a running line discipline it may need kicking */
1686 tty_wakeup(tty);
1689 EXPORT_SYMBOL(start_tty);
1692 * tty_read - read method for tty device files
1693 * @file: pointer to tty file
1694 * @buf: user buffer
1695 * @count: size of user buffer
1696 * @ppos: unused
1698 * Perform the read system call function on this terminal device. Checks
1699 * for hung up devices before calling the line discipline method.
1701 * Locking:
1702 * Locks the line discipline internally while needed
1703 * For historical reasons the line discipline read method is
1704 * invoked under the BKL. This will go away in time so do not rely on it
1705 * in new code. Multiple read calls may be outstanding in parallel.
1708 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1709 loff_t *ppos)
1711 int i;
1712 struct tty_struct * tty;
1713 struct inode *inode;
1714 struct tty_ldisc *ld;
1716 tty = (struct tty_struct *)file->private_data;
1717 inode = file->f_path.dentry->d_inode;
1718 if (tty_paranoia_check(tty, inode, "tty_read"))
1719 return -EIO;
1720 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1721 return -EIO;
1723 /* We want to wait for the line discipline to sort out in this
1724 situation */
1725 ld = tty_ldisc_ref_wait(tty);
1726 lock_kernel();
1727 if (ld->read)
1728 i = (ld->read)(tty,file,buf,count);
1729 else
1730 i = -EIO;
1731 tty_ldisc_deref(ld);
1732 unlock_kernel();
1733 if (i > 0)
1734 inode->i_atime = current_fs_time(inode->i_sb);
1735 return i;
1738 void tty_write_unlock(struct tty_struct *tty)
1740 mutex_unlock(&tty->atomic_write_lock);
1741 wake_up_interruptible(&tty->write_wait);
1744 int tty_write_lock(struct tty_struct *tty, int ndelay)
1746 if (!mutex_trylock(&tty->atomic_write_lock)) {
1747 if (ndelay)
1748 return -EAGAIN;
1749 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1750 return -ERESTARTSYS;
1752 return 0;
1756 * Split writes up in sane blocksizes to avoid
1757 * denial-of-service type attacks
1759 static inline ssize_t do_tty_write(
1760 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1761 struct tty_struct *tty,
1762 struct file *file,
1763 const char __user *buf,
1764 size_t count)
1766 ssize_t ret, written = 0;
1767 unsigned int chunk;
1769 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1770 if (ret < 0)
1771 return ret;
1774 * We chunk up writes into a temporary buffer. This
1775 * simplifies low-level drivers immensely, since they
1776 * don't have locking issues and user mode accesses.
1778 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1779 * big chunk-size..
1781 * The default chunk-size is 2kB, because the NTTY
1782 * layer has problems with bigger chunks. It will
1783 * claim to be able to handle more characters than
1784 * it actually does.
1786 * FIXME: This can probably go away now except that 64K chunks
1787 * are too likely to fail unless switched to vmalloc...
1789 chunk = 2048;
1790 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1791 chunk = 65536;
1792 if (count < chunk)
1793 chunk = count;
1795 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1796 if (tty->write_cnt < chunk) {
1797 unsigned char *buf;
1799 if (chunk < 1024)
1800 chunk = 1024;
1802 buf = kmalloc(chunk, GFP_KERNEL);
1803 if (!buf) {
1804 ret = -ENOMEM;
1805 goto out;
1807 kfree(tty->write_buf);
1808 tty->write_cnt = chunk;
1809 tty->write_buf = buf;
1812 /* Do the write .. */
1813 for (;;) {
1814 size_t size = count;
1815 if (size > chunk)
1816 size = chunk;
1817 ret = -EFAULT;
1818 if (copy_from_user(tty->write_buf, buf, size))
1819 break;
1820 lock_kernel();
1821 ret = write(tty, file, tty->write_buf, size);
1822 unlock_kernel();
1823 if (ret <= 0)
1824 break;
1825 written += ret;
1826 buf += ret;
1827 count -= ret;
1828 if (!count)
1829 break;
1830 ret = -ERESTARTSYS;
1831 if (signal_pending(current))
1832 break;
1833 cond_resched();
1835 if (written) {
1836 struct inode *inode = file->f_path.dentry->d_inode;
1837 inode->i_mtime = current_fs_time(inode->i_sb);
1838 ret = written;
1840 out:
1841 tty_write_unlock(tty);
1842 return ret;
1847 * tty_write - write method for tty device file
1848 * @file: tty file pointer
1849 * @buf: user data to write
1850 * @count: bytes to write
1851 * @ppos: unused
1853 * Write data to a tty device via the line discipline.
1855 * Locking:
1856 * Locks the line discipline as required
1857 * Writes to the tty driver are serialized by the atomic_write_lock
1858 * and are then processed in chunks to the device. The line discipline
1859 * write method will not be involked in parallel for each device
1860 * The line discipline write method is called under the big
1861 * kernel lock for historical reasons. New code should not rely on this.
1864 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1865 loff_t *ppos)
1867 struct tty_struct * tty;
1868 struct inode *inode = file->f_path.dentry->d_inode;
1869 ssize_t ret;
1870 struct tty_ldisc *ld;
1872 tty = (struct tty_struct *)file->private_data;
1873 if (tty_paranoia_check(tty, inode, "tty_write"))
1874 return -EIO;
1875 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1876 return -EIO;
1878 ld = tty_ldisc_ref_wait(tty);
1879 if (!ld->write)
1880 ret = -EIO;
1881 else
1882 ret = do_tty_write(ld->write, tty, file, buf, count);
1883 tty_ldisc_deref(ld);
1884 return ret;
1887 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1888 loff_t *ppos)
1890 struct file *p = NULL;
1892 spin_lock(&redirect_lock);
1893 if (redirect) {
1894 get_file(redirect);
1895 p = redirect;
1897 spin_unlock(&redirect_lock);
1899 if (p) {
1900 ssize_t res;
1901 res = vfs_write(p, buf, count, &p->f_pos);
1902 fput(p);
1903 return res;
1906 return tty_write(file, buf, count, ppos);
1909 static char ptychar[] = "pqrstuvwxyzabcde";
1912 * pty_line_name - generate name for a pty
1913 * @driver: the tty driver in use
1914 * @index: the minor number
1915 * @p: output buffer of at least 6 bytes
1917 * Generate a name from a driver reference and write it to the output
1918 * buffer.
1920 * Locking: None
1922 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1924 int i = index + driver->name_base;
1925 /* ->name is initialized to "ttyp", but "tty" is expected */
1926 sprintf(p, "%s%c%x",
1927 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1928 ptychar[i >> 4 & 0xf], i & 0xf);
1932 * pty_line_name - generate name for a tty
1933 * @driver: the tty driver in use
1934 * @index: the minor number
1935 * @p: output buffer of at least 7 bytes
1937 * Generate a name from a driver reference and write it to the output
1938 * buffer.
1940 * Locking: None
1942 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1944 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1948 * init_dev - initialise a tty device
1949 * @driver: tty driver we are opening a device on
1950 * @idx: device index
1951 * @tty: returned tty structure
1953 * Prepare a tty device. This may not be a "new" clean device but
1954 * could also be an active device. The pty drivers require special
1955 * handling because of this.
1957 * Locking:
1958 * The function is called under the tty_mutex, which
1959 * protects us from the tty struct or driver itself going away.
1961 * On exit the tty device has the line discipline attached and
1962 * a reference count of 1. If a pair was created for pty/tty use
1963 * and the other was a pty master then it too has a reference count of 1.
1965 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1966 * failed open. The new code protects the open with a mutex, so it's
1967 * really quite straightforward. The mutex locking can probably be
1968 * relaxed for the (most common) case of reopening a tty.
1971 static int init_dev(struct tty_driver *driver, int idx,
1972 struct tty_struct **ret_tty)
1974 struct tty_struct *tty, *o_tty;
1975 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1976 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1977 int retval = 0;
1979 /* check whether we're reopening an existing tty */
1980 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1981 tty = devpts_get_tty(idx);
1983 * If we don't have a tty here on a slave open, it's because
1984 * the master already started the close process and there's
1985 * no relation between devpts file and tty anymore.
1987 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1988 retval = -EIO;
1989 goto end_init;
1992 * It's safe from now on because init_dev() is called with
1993 * tty_mutex held and release_dev() won't change tty->count
1994 * or tty->flags without having to grab tty_mutex
1996 if (tty && driver->subtype == PTY_TYPE_MASTER)
1997 tty = tty->link;
1998 } else {
1999 tty = driver->ttys[idx];
2001 if (tty) goto fast_track;
2004 * First time open is complex, especially for PTY devices.
2005 * This code guarantees that either everything succeeds and the
2006 * TTY is ready for operation, or else the table slots are vacated
2007 * and the allocated memory released. (Except that the termios
2008 * and locked termios may be retained.)
2011 if (!try_module_get(driver->owner)) {
2012 retval = -ENODEV;
2013 goto end_init;
2016 o_tty = NULL;
2017 tp = o_tp = NULL;
2018 ltp = o_ltp = NULL;
2020 tty = alloc_tty_struct();
2021 if(!tty)
2022 goto fail_no_mem;
2023 initialize_tty_struct(tty);
2024 tty->driver = driver;
2025 tty->index = idx;
2026 tty_line_name(driver, idx, tty->name);
2028 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2029 tp_loc = &tty->termios;
2030 ltp_loc = &tty->termios_locked;
2031 } else {
2032 tp_loc = &driver->termios[idx];
2033 ltp_loc = &driver->termios_locked[idx];
2036 if (!*tp_loc) {
2037 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
2038 GFP_KERNEL);
2039 if (!tp)
2040 goto free_mem_out;
2041 *tp = driver->init_termios;
2044 if (!*ltp_loc) {
2045 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2046 if (!ltp)
2047 goto free_mem_out;
2050 if (driver->type == TTY_DRIVER_TYPE_PTY) {
2051 o_tty = alloc_tty_struct();
2052 if (!o_tty)
2053 goto free_mem_out;
2054 initialize_tty_struct(o_tty);
2055 o_tty->driver = driver->other;
2056 o_tty->index = idx;
2057 tty_line_name(driver->other, idx, o_tty->name);
2059 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2060 o_tp_loc = &o_tty->termios;
2061 o_ltp_loc = &o_tty->termios_locked;
2062 } else {
2063 o_tp_loc = &driver->other->termios[idx];
2064 o_ltp_loc = &driver->other->termios_locked[idx];
2067 if (!*o_tp_loc) {
2068 o_tp = (struct ktermios *)
2069 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2070 if (!o_tp)
2071 goto free_mem_out;
2072 *o_tp = driver->other->init_termios;
2075 if (!*o_ltp_loc) {
2076 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2077 if (!o_ltp)
2078 goto free_mem_out;
2082 * Everything allocated ... set up the o_tty structure.
2084 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2085 driver->other->ttys[idx] = o_tty;
2087 if (!*o_tp_loc)
2088 *o_tp_loc = o_tp;
2089 if (!*o_ltp_loc)
2090 *o_ltp_loc = o_ltp;
2091 o_tty->termios = *o_tp_loc;
2092 o_tty->termios_locked = *o_ltp_loc;
2093 driver->other->refcount++;
2094 if (driver->subtype == PTY_TYPE_MASTER)
2095 o_tty->count++;
2097 /* Establish the links in both directions */
2098 tty->link = o_tty;
2099 o_tty->link = tty;
2103 * All structures have been allocated, so now we install them.
2104 * Failures after this point use release_tty to clean up, so
2105 * there's no need to null out the local pointers.
2107 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2108 driver->ttys[idx] = tty;
2111 if (!*tp_loc)
2112 *tp_loc = tp;
2113 if (!*ltp_loc)
2114 *ltp_loc = ltp;
2115 tty->termios = *tp_loc;
2116 tty->termios_locked = *ltp_loc;
2117 /* Compatibility until drivers always set this */
2118 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2119 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2120 driver->refcount++;
2121 tty->count++;
2124 * Structures all installed ... call the ldisc open routines.
2125 * If we fail here just call release_tty to clean up. No need
2126 * to decrement the use counts, as release_tty doesn't care.
2129 if (tty->ldisc.open) {
2130 retval = (tty->ldisc.open)(tty);
2131 if (retval)
2132 goto release_mem_out;
2134 if (o_tty && o_tty->ldisc.open) {
2135 retval = (o_tty->ldisc.open)(o_tty);
2136 if (retval) {
2137 if (tty->ldisc.close)
2138 (tty->ldisc.close)(tty);
2139 goto release_mem_out;
2141 tty_ldisc_enable(o_tty);
2143 tty_ldisc_enable(tty);
2144 goto success;
2147 * This fast open can be used if the tty is already open.
2148 * No memory is allocated, and the only failures are from
2149 * attempting to open a closing tty or attempting multiple
2150 * opens on a pty master.
2152 fast_track:
2153 if (test_bit(TTY_CLOSING, &tty->flags)) {
2154 retval = -EIO;
2155 goto end_init;
2157 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2158 driver->subtype == PTY_TYPE_MASTER) {
2160 * special case for PTY masters: only one open permitted,
2161 * and the slave side open count is incremented as well.
2163 if (tty->count) {
2164 retval = -EIO;
2165 goto end_init;
2167 tty->link->count++;
2169 tty->count++;
2170 tty->driver = driver; /* N.B. why do this every time?? */
2172 /* FIXME */
2173 if(!test_bit(TTY_LDISC, &tty->flags))
2174 printk(KERN_ERR "init_dev but no ldisc\n");
2175 success:
2176 *ret_tty = tty;
2178 /* All paths come through here to release the mutex */
2179 end_init:
2180 return retval;
2182 /* Release locally allocated memory ... nothing placed in slots */
2183 free_mem_out:
2184 kfree(o_tp);
2185 if (o_tty)
2186 free_tty_struct(o_tty);
2187 kfree(ltp);
2188 kfree(tp);
2189 free_tty_struct(tty);
2191 fail_no_mem:
2192 module_put(driver->owner);
2193 retval = -ENOMEM;
2194 goto end_init;
2196 /* call the tty release_tty routine to clean out this slot */
2197 release_mem_out:
2198 if (printk_ratelimit())
2199 printk(KERN_INFO "init_dev: ldisc open failed, "
2200 "clearing slot %d\n", idx);
2201 release_tty(tty, idx);
2202 goto end_init;
2206 * release_one_tty - release tty structure memory
2208 * Releases memory associated with a tty structure, and clears out the
2209 * driver table slots. This function is called when a device is no longer
2210 * in use. It also gets called when setup of a device fails.
2212 * Locking:
2213 * tty_mutex - sometimes only
2214 * takes the file list lock internally when working on the list
2215 * of ttys that the driver keeps.
2216 * FIXME: should we require tty_mutex is held here ??
2218 static void release_one_tty(struct tty_struct *tty, int idx)
2220 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2221 struct ktermios *tp;
2223 if (!devpts)
2224 tty->driver->ttys[idx] = NULL;
2226 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2227 tp = tty->termios;
2228 if (!devpts)
2229 tty->driver->termios[idx] = NULL;
2230 kfree(tp);
2232 tp = tty->termios_locked;
2233 if (!devpts)
2234 tty->driver->termios_locked[idx] = NULL;
2235 kfree(tp);
2239 tty->magic = 0;
2240 tty->driver->refcount--;
2242 file_list_lock();
2243 list_del_init(&tty->tty_files);
2244 file_list_unlock();
2246 free_tty_struct(tty);
2250 * release_tty - release tty structure memory
2252 * Release both @tty and a possible linked partner (think pty pair),
2253 * and decrement the refcount of the backing module.
2255 * Locking:
2256 * tty_mutex - sometimes only
2257 * takes the file list lock internally when working on the list
2258 * of ttys that the driver keeps.
2259 * FIXME: should we require tty_mutex is held here ??
2261 static void release_tty(struct tty_struct *tty, int idx)
2263 struct tty_driver *driver = tty->driver;
2265 if (tty->link)
2266 release_one_tty(tty->link, idx);
2267 release_one_tty(tty, idx);
2268 module_put(driver->owner);
2272 * Even releasing the tty structures is a tricky business.. We have
2273 * to be very careful that the structures are all released at the
2274 * same time, as interrupts might otherwise get the wrong pointers.
2276 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2277 * lead to double frees or releasing memory still in use.
2279 static void release_dev(struct file * filp)
2281 struct tty_struct *tty, *o_tty;
2282 int pty_master, tty_closing, o_tty_closing, do_sleep;
2283 int devpts;
2284 int idx;
2285 char buf[64];
2286 unsigned long flags;
2288 tty = (struct tty_struct *)filp->private_data;
2289 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2290 return;
2292 check_tty_count(tty, "release_dev");
2294 tty_fasync(-1, filp, 0);
2296 idx = tty->index;
2297 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2298 tty->driver->subtype == PTY_TYPE_MASTER);
2299 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2300 o_tty = tty->link;
2302 #ifdef TTY_PARANOIA_CHECK
2303 if (idx < 0 || idx >= tty->driver->num) {
2304 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2305 "free (%s)\n", tty->name);
2306 return;
2308 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2309 if (tty != tty->driver->ttys[idx]) {
2310 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2311 "for (%s)\n", idx, tty->name);
2312 return;
2314 if (tty->termios != tty->driver->termios[idx]) {
2315 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2316 "for (%s)\n",
2317 idx, tty->name);
2318 return;
2320 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2321 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2322 "termios_locked for (%s)\n",
2323 idx, tty->name);
2324 return;
2327 #endif
2329 #ifdef TTY_DEBUG_HANGUP
2330 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2331 tty_name(tty, buf), tty->count);
2332 #endif
2334 #ifdef TTY_PARANOIA_CHECK
2335 if (tty->driver->other &&
2336 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2337 if (o_tty != tty->driver->other->ttys[idx]) {
2338 printk(KERN_DEBUG "release_dev: other->table[%d] "
2339 "not o_tty for (%s)\n",
2340 idx, tty->name);
2341 return;
2343 if (o_tty->termios != tty->driver->other->termios[idx]) {
2344 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2345 "not o_termios for (%s)\n",
2346 idx, tty->name);
2347 return;
2349 if (o_tty->termios_locked !=
2350 tty->driver->other->termios_locked[idx]) {
2351 printk(KERN_DEBUG "release_dev: other->termios_locked["
2352 "%d] not o_termios_locked for (%s)\n",
2353 idx, tty->name);
2354 return;
2356 if (o_tty->link != tty) {
2357 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2358 return;
2361 #endif
2362 if (tty->driver->close)
2363 tty->driver->close(tty, filp);
2366 * Sanity check: if tty->count is going to zero, there shouldn't be
2367 * any waiters on tty->read_wait or tty->write_wait. We test the
2368 * wait queues and kick everyone out _before_ actually starting to
2369 * close. This ensures that we won't block while releasing the tty
2370 * structure.
2372 * The test for the o_tty closing is necessary, since the master and
2373 * slave sides may close in any order. If the slave side closes out
2374 * first, its count will be one, since the master side holds an open.
2375 * Thus this test wouldn't be triggered at the time the slave closes,
2376 * so we do it now.
2378 * Note that it's possible for the tty to be opened again while we're
2379 * flushing out waiters. By recalculating the closing flags before
2380 * each iteration we avoid any problems.
2382 while (1) {
2383 /* Guard against races with tty->count changes elsewhere and
2384 opens on /dev/tty */
2386 mutex_lock(&tty_mutex);
2387 tty_closing = tty->count <= 1;
2388 o_tty_closing = o_tty &&
2389 (o_tty->count <= (pty_master ? 1 : 0));
2390 do_sleep = 0;
2392 if (tty_closing) {
2393 if (waitqueue_active(&tty->read_wait)) {
2394 wake_up(&tty->read_wait);
2395 do_sleep++;
2397 if (waitqueue_active(&tty->write_wait)) {
2398 wake_up(&tty->write_wait);
2399 do_sleep++;
2402 if (o_tty_closing) {
2403 if (waitqueue_active(&o_tty->read_wait)) {
2404 wake_up(&o_tty->read_wait);
2405 do_sleep++;
2407 if (waitqueue_active(&o_tty->write_wait)) {
2408 wake_up(&o_tty->write_wait);
2409 do_sleep++;
2412 if (!do_sleep)
2413 break;
2415 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2416 "active!\n", tty_name(tty, buf));
2417 mutex_unlock(&tty_mutex);
2418 schedule();
2422 * The closing flags are now consistent with the open counts on
2423 * both sides, and we've completed the last operation that could
2424 * block, so it's safe to proceed with closing.
2426 if (pty_master) {
2427 if (--o_tty->count < 0) {
2428 printk(KERN_WARNING "release_dev: bad pty slave count "
2429 "(%d) for %s\n",
2430 o_tty->count, tty_name(o_tty, buf));
2431 o_tty->count = 0;
2434 if (--tty->count < 0) {
2435 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2436 tty->count, tty_name(tty, buf));
2437 tty->count = 0;
2441 * We've decremented tty->count, so we need to remove this file
2442 * descriptor off the tty->tty_files list; this serves two
2443 * purposes:
2444 * - check_tty_count sees the correct number of file descriptors
2445 * associated with this tty.
2446 * - do_tty_hangup no longer sees this file descriptor as
2447 * something that needs to be handled for hangups.
2449 file_kill(filp);
2450 filp->private_data = NULL;
2453 * Perform some housekeeping before deciding whether to return.
2455 * Set the TTY_CLOSING flag if this was the last open. In the
2456 * case of a pty we may have to wait around for the other side
2457 * to close, and TTY_CLOSING makes sure we can't be reopened.
2459 if(tty_closing)
2460 set_bit(TTY_CLOSING, &tty->flags);
2461 if(o_tty_closing)
2462 set_bit(TTY_CLOSING, &o_tty->flags);
2465 * If _either_ side is closing, make sure there aren't any
2466 * processes that still think tty or o_tty is their controlling
2467 * tty.
2469 if (tty_closing || o_tty_closing) {
2470 read_lock(&tasklist_lock);
2471 session_clear_tty(tty->session);
2472 if (o_tty)
2473 session_clear_tty(o_tty->session);
2474 read_unlock(&tasklist_lock);
2477 mutex_unlock(&tty_mutex);
2479 /* check whether both sides are closing ... */
2480 if (!tty_closing || (o_tty && !o_tty_closing))
2481 return;
2483 #ifdef TTY_DEBUG_HANGUP
2484 printk(KERN_DEBUG "freeing tty structure...");
2485 #endif
2487 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2488 * kill any delayed work. As this is the final close it does not
2489 * race with the set_ldisc code path.
2491 clear_bit(TTY_LDISC, &tty->flags);
2492 cancel_delayed_work(&tty->buf.work);
2495 * Wait for ->hangup_work and ->buf.work handlers to terminate
2498 flush_scheduled_work();
2501 * Wait for any short term users (we know they are just driver
2502 * side waiters as the file is closing so user count on the file
2503 * side is zero.
2505 spin_lock_irqsave(&tty_ldisc_lock, flags);
2506 while(tty->ldisc.refcount)
2508 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2509 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2510 spin_lock_irqsave(&tty_ldisc_lock, flags);
2512 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2514 * Shutdown the current line discipline, and reset it to N_TTY.
2515 * N.B. why reset ldisc when we're releasing the memory??
2517 * FIXME: this MUST get fixed for the new reflocking
2519 if (tty->ldisc.close)
2520 (tty->ldisc.close)(tty);
2521 tty_ldisc_put(tty->ldisc.num);
2524 * Switch the line discipline back
2526 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2527 tty_set_termios_ldisc(tty,N_TTY);
2528 if (o_tty) {
2529 /* FIXME: could o_tty be in setldisc here ? */
2530 clear_bit(TTY_LDISC, &o_tty->flags);
2531 if (o_tty->ldisc.close)
2532 (o_tty->ldisc.close)(o_tty);
2533 tty_ldisc_put(o_tty->ldisc.num);
2534 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2535 tty_set_termios_ldisc(o_tty,N_TTY);
2538 * The release_tty function takes care of the details of clearing
2539 * the slots and preserving the termios structure.
2541 release_tty(tty, idx);
2543 #ifdef CONFIG_UNIX98_PTYS
2544 /* Make this pty number available for reallocation */
2545 if (devpts) {
2546 down(&allocated_ptys_lock);
2547 idr_remove(&allocated_ptys, idx);
2548 up(&allocated_ptys_lock);
2550 #endif
2555 * tty_open - open a tty device
2556 * @inode: inode of device file
2557 * @filp: file pointer to tty
2559 * tty_open and tty_release keep up the tty count that contains the
2560 * number of opens done on a tty. We cannot use the inode-count, as
2561 * different inodes might point to the same tty.
2563 * Open-counting is needed for pty masters, as well as for keeping
2564 * track of serial lines: DTR is dropped when the last close happens.
2565 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2567 * The termios state of a pty is reset on first open so that
2568 * settings don't persist across reuse.
2570 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2571 * tty->count should protect the rest.
2572 * ->siglock protects ->signal/->sighand
2575 static int tty_open(struct inode * inode, struct file * filp)
2577 struct tty_struct *tty;
2578 int noctty, retval;
2579 struct tty_driver *driver;
2580 int index;
2581 dev_t device = inode->i_rdev;
2582 unsigned short saved_flags = filp->f_flags;
2584 nonseekable_open(inode, filp);
2586 retry_open:
2587 noctty = filp->f_flags & O_NOCTTY;
2588 index = -1;
2589 retval = 0;
2591 mutex_lock(&tty_mutex);
2593 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2594 tty = get_current_tty();
2595 if (!tty) {
2596 mutex_unlock(&tty_mutex);
2597 return -ENXIO;
2599 driver = tty->driver;
2600 index = tty->index;
2601 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2602 /* noctty = 1; */
2603 goto got_driver;
2605 #ifdef CONFIG_VT
2606 if (device == MKDEV(TTY_MAJOR,0)) {
2607 extern struct tty_driver *console_driver;
2608 driver = console_driver;
2609 index = fg_console;
2610 noctty = 1;
2611 goto got_driver;
2613 #endif
2614 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2615 driver = console_device(&index);
2616 if (driver) {
2617 /* Don't let /dev/console block */
2618 filp->f_flags |= O_NONBLOCK;
2619 noctty = 1;
2620 goto got_driver;
2622 mutex_unlock(&tty_mutex);
2623 return -ENODEV;
2626 driver = get_tty_driver(device, &index);
2627 if (!driver) {
2628 mutex_unlock(&tty_mutex);
2629 return -ENODEV;
2631 got_driver:
2632 retval = init_dev(driver, index, &tty);
2633 mutex_unlock(&tty_mutex);
2634 if (retval)
2635 return retval;
2637 filp->private_data = tty;
2638 file_move(filp, &tty->tty_files);
2639 check_tty_count(tty, "tty_open");
2640 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2641 tty->driver->subtype == PTY_TYPE_MASTER)
2642 noctty = 1;
2643 #ifdef TTY_DEBUG_HANGUP
2644 printk(KERN_DEBUG "opening %s...", tty->name);
2645 #endif
2646 if (!retval) {
2647 if (tty->driver->open)
2648 retval = tty->driver->open(tty, filp);
2649 else
2650 retval = -ENODEV;
2652 filp->f_flags = saved_flags;
2654 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2655 retval = -EBUSY;
2657 if (retval) {
2658 #ifdef TTY_DEBUG_HANGUP
2659 printk(KERN_DEBUG "error %d in opening %s...", retval,
2660 tty->name);
2661 #endif
2662 release_dev(filp);
2663 if (retval != -ERESTARTSYS)
2664 return retval;
2665 if (signal_pending(current))
2666 return retval;
2667 schedule();
2669 * Need to reset f_op in case a hangup happened.
2671 if (filp->f_op == &hung_up_tty_fops)
2672 filp->f_op = &tty_fops;
2673 goto retry_open;
2676 mutex_lock(&tty_mutex);
2677 spin_lock_irq(&current->sighand->siglock);
2678 if (!noctty &&
2679 current->signal->leader &&
2680 !current->signal->tty &&
2681 tty->session == NULL)
2682 __proc_set_tty(current, tty);
2683 spin_unlock_irq(&current->sighand->siglock);
2684 mutex_unlock(&tty_mutex);
2685 tty_audit_opening();
2686 return 0;
2689 #ifdef CONFIG_UNIX98_PTYS
2691 * ptmx_open - open a unix 98 pty master
2692 * @inode: inode of device file
2693 * @filp: file pointer to tty
2695 * Allocate a unix98 pty master device from the ptmx driver.
2697 * Locking: tty_mutex protects theinit_dev work. tty->count should
2698 protect the rest.
2699 * allocated_ptys_lock handles the list of free pty numbers
2702 static int ptmx_open(struct inode * inode, struct file * filp)
2704 struct tty_struct *tty;
2705 int retval;
2706 int index;
2707 int idr_ret;
2709 nonseekable_open(inode, filp);
2711 /* find a device that is not in use. */
2712 down(&allocated_ptys_lock);
2713 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2714 up(&allocated_ptys_lock);
2715 return -ENOMEM;
2717 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2718 if (idr_ret < 0) {
2719 up(&allocated_ptys_lock);
2720 if (idr_ret == -EAGAIN)
2721 return -ENOMEM;
2722 return -EIO;
2724 if (index >= pty_limit) {
2725 idr_remove(&allocated_ptys, index);
2726 up(&allocated_ptys_lock);
2727 return -EIO;
2729 up(&allocated_ptys_lock);
2731 mutex_lock(&tty_mutex);
2732 retval = init_dev(ptm_driver, index, &tty);
2733 mutex_unlock(&tty_mutex);
2735 if (retval)
2736 goto out;
2738 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2739 filp->private_data = tty;
2740 file_move(filp, &tty->tty_files);
2742 retval = -ENOMEM;
2743 if (devpts_pty_new(tty->link))
2744 goto out1;
2746 check_tty_count(tty, "tty_open");
2747 retval = ptm_driver->open(tty, filp);
2748 if (!retval) {
2749 tty_audit_opening();
2750 return 0;
2752 out1:
2753 release_dev(filp);
2754 return retval;
2755 out:
2756 down(&allocated_ptys_lock);
2757 idr_remove(&allocated_ptys, index);
2758 up(&allocated_ptys_lock);
2759 return retval;
2761 #endif
2764 * tty_release - vfs callback for close
2765 * @inode: inode of tty
2766 * @filp: file pointer for handle to tty
2768 * Called the last time each file handle is closed that references
2769 * this tty. There may however be several such references.
2771 * Locking:
2772 * Takes bkl. See release_dev
2775 static int tty_release(struct inode * inode, struct file * filp)
2777 lock_kernel();
2778 release_dev(filp);
2779 unlock_kernel();
2780 return 0;
2784 * tty_poll - check tty status
2785 * @filp: file being polled
2786 * @wait: poll wait structures to update
2788 * Call the line discipline polling method to obtain the poll
2789 * status of the device.
2791 * Locking: locks called line discipline but ldisc poll method
2792 * may be re-entered freely by other callers.
2795 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2797 struct tty_struct * tty;
2798 struct tty_ldisc *ld;
2799 int ret = 0;
2801 tty = (struct tty_struct *)filp->private_data;
2802 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2803 return 0;
2805 ld = tty_ldisc_ref_wait(tty);
2806 if (ld->poll)
2807 ret = (ld->poll)(tty, filp, wait);
2808 tty_ldisc_deref(ld);
2809 return ret;
2812 static int tty_fasync(int fd, struct file * filp, int on)
2814 struct tty_struct * tty;
2815 int retval;
2817 tty = (struct tty_struct *)filp->private_data;
2818 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2819 return 0;
2821 retval = fasync_helper(fd, filp, on, &tty->fasync);
2822 if (retval <= 0)
2823 return retval;
2825 if (on) {
2826 enum pid_type type;
2827 struct pid *pid;
2828 if (!waitqueue_active(&tty->read_wait))
2829 tty->minimum_to_wake = 1;
2830 if (tty->pgrp) {
2831 pid = tty->pgrp;
2832 type = PIDTYPE_PGID;
2833 } else {
2834 pid = task_pid(current);
2835 type = PIDTYPE_PID;
2837 retval = __f_setown(filp, pid, type, 0);
2838 if (retval)
2839 return retval;
2840 } else {
2841 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2842 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2844 return 0;
2848 * tiocsti - fake input character
2849 * @tty: tty to fake input into
2850 * @p: pointer to character
2852 * Fake input to a tty device. Does the neccessary locking and
2853 * input management.
2855 * FIXME: does not honour flow control ??
2857 * Locking:
2858 * Called functions take tty_ldisc_lock
2859 * current->signal->tty check is safe without locks
2861 * FIXME: may race normal receive processing
2864 static int tiocsti(struct tty_struct *tty, char __user *p)
2866 char ch, mbz = 0;
2867 struct tty_ldisc *ld;
2869 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2870 return -EPERM;
2871 if (get_user(ch, p))
2872 return -EFAULT;
2873 ld = tty_ldisc_ref_wait(tty);
2874 ld->receive_buf(tty, &ch, &mbz, 1);
2875 tty_ldisc_deref(ld);
2876 return 0;
2880 * tiocgwinsz - implement window query ioctl
2881 * @tty; tty
2882 * @arg: user buffer for result
2884 * Copies the kernel idea of the window size into the user buffer.
2886 * Locking: tty->termios_mutex is taken to ensure the winsize data
2887 * is consistent.
2890 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2892 int err;
2894 mutex_lock(&tty->termios_mutex);
2895 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2896 mutex_unlock(&tty->termios_mutex);
2898 return err ? -EFAULT: 0;
2902 * tiocswinsz - implement window size set ioctl
2903 * @tty; tty
2904 * @arg: user buffer for result
2906 * Copies the user idea of the window size to the kernel. Traditionally
2907 * this is just advisory information but for the Linux console it
2908 * actually has driver level meaning and triggers a VC resize.
2910 * Locking:
2911 * Called function use the console_sem is used to ensure we do
2912 * not try and resize the console twice at once.
2913 * The tty->termios_mutex is used to ensure we don't double
2914 * resize and get confused. Lock order - tty->termios_mutex before
2915 * console sem
2918 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2919 struct winsize __user * arg)
2921 struct winsize tmp_ws;
2923 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2924 return -EFAULT;
2926 mutex_lock(&tty->termios_mutex);
2927 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2928 goto done;
2930 #ifdef CONFIG_VT
2931 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2932 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2933 tmp_ws.ws_row)) {
2934 mutex_unlock(&tty->termios_mutex);
2935 return -ENXIO;
2938 #endif
2939 if (tty->pgrp)
2940 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2941 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2942 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2943 tty->winsize = tmp_ws;
2944 real_tty->winsize = tmp_ws;
2945 done:
2946 mutex_unlock(&tty->termios_mutex);
2947 return 0;
2951 * tioccons - allow admin to move logical console
2952 * @file: the file to become console
2954 * Allow the adminstrator to move the redirected console device
2956 * Locking: uses redirect_lock to guard the redirect information
2959 static int tioccons(struct file *file)
2961 if (!capable(CAP_SYS_ADMIN))
2962 return -EPERM;
2963 if (file->f_op->write == redirected_tty_write) {
2964 struct file *f;
2965 spin_lock(&redirect_lock);
2966 f = redirect;
2967 redirect = NULL;
2968 spin_unlock(&redirect_lock);
2969 if (f)
2970 fput(f);
2971 return 0;
2973 spin_lock(&redirect_lock);
2974 if (redirect) {
2975 spin_unlock(&redirect_lock);
2976 return -EBUSY;
2978 get_file(file);
2979 redirect = file;
2980 spin_unlock(&redirect_lock);
2981 return 0;
2985 * fionbio - non blocking ioctl
2986 * @file: file to set blocking value
2987 * @p: user parameter
2989 * Historical tty interfaces had a blocking control ioctl before
2990 * the generic functionality existed. This piece of history is preserved
2991 * in the expected tty API of posix OS's.
2993 * Locking: none, the open fle handle ensures it won't go away.
2996 static int fionbio(struct file *file, int __user *p)
2998 int nonblock;
3000 if (get_user(nonblock, p))
3001 return -EFAULT;
3003 if (nonblock)
3004 file->f_flags |= O_NONBLOCK;
3005 else
3006 file->f_flags &= ~O_NONBLOCK;
3007 return 0;
3011 * tiocsctty - set controlling tty
3012 * @tty: tty structure
3013 * @arg: user argument
3015 * This ioctl is used to manage job control. It permits a session
3016 * leader to set this tty as the controlling tty for the session.
3018 * Locking:
3019 * Takes tty_mutex() to protect tty instance
3020 * Takes tasklist_lock internally to walk sessions
3021 * Takes ->siglock() when updating signal->tty
3024 static int tiocsctty(struct tty_struct *tty, int arg)
3026 int ret = 0;
3027 if (current->signal->leader && (task_session(current) == tty->session))
3028 return ret;
3030 mutex_lock(&tty_mutex);
3032 * The process must be a session leader and
3033 * not have a controlling tty already.
3035 if (!current->signal->leader || current->signal->tty) {
3036 ret = -EPERM;
3037 goto unlock;
3040 if (tty->session) {
3042 * This tty is already the controlling
3043 * tty for another session group!
3045 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
3047 * Steal it away
3049 read_lock(&tasklist_lock);
3050 session_clear_tty(tty->session);
3051 read_unlock(&tasklist_lock);
3052 } else {
3053 ret = -EPERM;
3054 goto unlock;
3057 proc_set_tty(current, tty);
3058 unlock:
3059 mutex_unlock(&tty_mutex);
3060 return ret;
3064 * tiocgpgrp - get process group
3065 * @tty: tty passed by user
3066 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3067 * @p: returned pid
3069 * Obtain the process group of the tty. If there is no process group
3070 * return an error.
3072 * Locking: none. Reference to current->signal->tty is safe.
3075 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3078 * (tty == real_tty) is a cheap way of
3079 * testing if the tty is NOT a master pty.
3081 if (tty == real_tty && current->signal->tty != real_tty)
3082 return -ENOTTY;
3083 return put_user(pid_nr(real_tty->pgrp), p);
3087 * tiocspgrp - attempt to set process group
3088 * @tty: tty passed by user
3089 * @real_tty: tty side device matching tty passed by user
3090 * @p: pid pointer
3092 * Set the process group of the tty to the session passed. Only
3093 * permitted where the tty session is our session.
3095 * Locking: None
3098 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3100 struct pid *pgrp;
3101 pid_t pgrp_nr;
3102 int retval = tty_check_change(real_tty);
3104 if (retval == -EIO)
3105 return -ENOTTY;
3106 if (retval)
3107 return retval;
3108 if (!current->signal->tty ||
3109 (current->signal->tty != real_tty) ||
3110 (real_tty->session != task_session(current)))
3111 return -ENOTTY;
3112 if (get_user(pgrp_nr, p))
3113 return -EFAULT;
3114 if (pgrp_nr < 0)
3115 return -EINVAL;
3116 rcu_read_lock();
3117 pgrp = find_pid(pgrp_nr);
3118 retval = -ESRCH;
3119 if (!pgrp)
3120 goto out_unlock;
3121 retval = -EPERM;
3122 if (session_of_pgrp(pgrp) != task_session(current))
3123 goto out_unlock;
3124 retval = 0;
3125 put_pid(real_tty->pgrp);
3126 real_tty->pgrp = get_pid(pgrp);
3127 out_unlock:
3128 rcu_read_unlock();
3129 return retval;
3133 * tiocgsid - get session id
3134 * @tty: tty passed by user
3135 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3136 * @p: pointer to returned session id
3138 * Obtain the session id of the tty. If there is no session
3139 * return an error.
3141 * Locking: none. Reference to current->signal->tty is safe.
3144 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3147 * (tty == real_tty) is a cheap way of
3148 * testing if the tty is NOT a master pty.
3150 if (tty == real_tty && current->signal->tty != real_tty)
3151 return -ENOTTY;
3152 if (!real_tty->session)
3153 return -ENOTTY;
3154 return put_user(pid_nr(real_tty->session), p);
3158 * tiocsetd - set line discipline
3159 * @tty: tty device
3160 * @p: pointer to user data
3162 * Set the line discipline according to user request.
3164 * Locking: see tty_set_ldisc, this function is just a helper
3167 static int tiocsetd(struct tty_struct *tty, int __user *p)
3169 int ldisc;
3171 if (get_user(ldisc, p))
3172 return -EFAULT;
3173 return tty_set_ldisc(tty, ldisc);
3177 * send_break - performed time break
3178 * @tty: device to break on
3179 * @duration: timeout in mS
3181 * Perform a timed break on hardware that lacks its own driver level
3182 * timed break functionality.
3184 * Locking:
3185 * atomic_write_lock serializes
3189 static int send_break(struct tty_struct *tty, unsigned int duration)
3191 if (tty_write_lock(tty, 0) < 0)
3192 return -EINTR;
3193 tty->driver->break_ctl(tty, -1);
3194 if (!signal_pending(current))
3195 msleep_interruptible(duration);
3196 tty->driver->break_ctl(tty, 0);
3197 tty_write_unlock(tty);
3198 if (signal_pending(current))
3199 return -EINTR;
3200 return 0;
3204 * tiocmget - get modem status
3205 * @tty: tty device
3206 * @file: user file pointer
3207 * @p: pointer to result
3209 * Obtain the modem status bits from the tty driver if the feature
3210 * is supported. Return -EINVAL if it is not available.
3212 * Locking: none (up to the driver)
3215 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3217 int retval = -EINVAL;
3219 if (tty->driver->tiocmget) {
3220 retval = tty->driver->tiocmget(tty, file);
3222 if (retval >= 0)
3223 retval = put_user(retval, p);
3225 return retval;
3229 * tiocmset - set modem status
3230 * @tty: tty device
3231 * @file: user file pointer
3232 * @cmd: command - clear bits, set bits or set all
3233 * @p: pointer to desired bits
3235 * Set the modem status bits from the tty driver if the feature
3236 * is supported. Return -EINVAL if it is not available.
3238 * Locking: none (up to the driver)
3241 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3242 unsigned __user *p)
3244 int retval = -EINVAL;
3246 if (tty->driver->tiocmset) {
3247 unsigned int set, clear, val;
3249 retval = get_user(val, p);
3250 if (retval)
3251 return retval;
3253 set = clear = 0;
3254 switch (cmd) {
3255 case TIOCMBIS:
3256 set = val;
3257 break;
3258 case TIOCMBIC:
3259 clear = val;
3260 break;
3261 case TIOCMSET:
3262 set = val;
3263 clear = ~val;
3264 break;
3267 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3268 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3270 retval = tty->driver->tiocmset(tty, file, set, clear);
3272 return retval;
3276 * Split this up, as gcc can choke on it otherwise..
3278 int tty_ioctl(struct inode * inode, struct file * file,
3279 unsigned int cmd, unsigned long arg)
3281 struct tty_struct *tty, *real_tty;
3282 void __user *p = (void __user *)arg;
3283 int retval;
3284 struct tty_ldisc *ld;
3286 tty = (struct tty_struct *)file->private_data;
3287 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3288 return -EINVAL;
3290 /* CHECKME: is this safe as one end closes ? */
3292 real_tty = tty;
3293 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3294 tty->driver->subtype == PTY_TYPE_MASTER)
3295 real_tty = tty->link;
3298 * Break handling by driver
3300 if (!tty->driver->break_ctl) {
3301 switch(cmd) {
3302 case TIOCSBRK:
3303 case TIOCCBRK:
3304 if (tty->driver->ioctl)
3305 return tty->driver->ioctl(tty, file, cmd, arg);
3306 return -EINVAL;
3308 /* These two ioctl's always return success; even if */
3309 /* the driver doesn't support them. */
3310 case TCSBRK:
3311 case TCSBRKP:
3312 if (!tty->driver->ioctl)
3313 return 0;
3314 retval = tty->driver->ioctl(tty, file, cmd, arg);
3315 if (retval == -ENOIOCTLCMD)
3316 retval = 0;
3317 return retval;
3322 * Factor out some common prep work
3324 switch (cmd) {
3325 case TIOCSETD:
3326 case TIOCSBRK:
3327 case TIOCCBRK:
3328 case TCSBRK:
3329 case TCSBRKP:
3330 retval = tty_check_change(tty);
3331 if (retval)
3332 return retval;
3333 if (cmd != TIOCCBRK) {
3334 tty_wait_until_sent(tty, 0);
3335 if (signal_pending(current))
3336 return -EINTR;
3338 break;
3341 switch (cmd) {
3342 case TIOCSTI:
3343 return tiocsti(tty, p);
3344 case TIOCGWINSZ:
3345 return tiocgwinsz(tty, p);
3346 case TIOCSWINSZ:
3347 return tiocswinsz(tty, real_tty, p);
3348 case TIOCCONS:
3349 return real_tty!=tty ? -EINVAL : tioccons(file);
3350 case FIONBIO:
3351 return fionbio(file, p);
3352 case TIOCEXCL:
3353 set_bit(TTY_EXCLUSIVE, &tty->flags);
3354 return 0;
3355 case TIOCNXCL:
3356 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3357 return 0;
3358 case TIOCNOTTY:
3359 if (current->signal->tty != tty)
3360 return -ENOTTY;
3361 no_tty();
3362 return 0;
3363 case TIOCSCTTY:
3364 return tiocsctty(tty, arg);
3365 case TIOCGPGRP:
3366 return tiocgpgrp(tty, real_tty, p);
3367 case TIOCSPGRP:
3368 return tiocspgrp(tty, real_tty, p);
3369 case TIOCGSID:
3370 return tiocgsid(tty, real_tty, p);
3371 case TIOCGETD:
3372 /* FIXME: check this is ok */
3373 return put_user(tty->ldisc.num, (int __user *)p);
3374 case TIOCSETD:
3375 return tiocsetd(tty, p);
3376 #ifdef CONFIG_VT
3377 case TIOCLINUX:
3378 return tioclinux(tty, arg);
3379 #endif
3381 * Break handling
3383 case TIOCSBRK: /* Turn break on, unconditionally */
3384 tty->driver->break_ctl(tty, -1);
3385 return 0;
3387 case TIOCCBRK: /* Turn break off, unconditionally */
3388 tty->driver->break_ctl(tty, 0);
3389 return 0;
3390 case TCSBRK: /* SVID version: non-zero arg --> no break */
3391 /* non-zero arg means wait for all output data
3392 * to be sent (performed above) but don't send break.
3393 * This is used by the tcdrain() termios function.
3395 if (!arg)
3396 return send_break(tty, 250);
3397 return 0;
3398 case TCSBRKP: /* support for POSIX tcsendbreak() */
3399 return send_break(tty, arg ? arg*100 : 250);
3401 case TIOCMGET:
3402 return tty_tiocmget(tty, file, p);
3404 case TIOCMSET:
3405 case TIOCMBIC:
3406 case TIOCMBIS:
3407 return tty_tiocmset(tty, file, cmd, p);
3408 case TCFLSH:
3409 switch (arg) {
3410 case TCIFLUSH:
3411 case TCIOFLUSH:
3412 /* flush tty buffer and allow ldisc to process ioctl */
3413 tty_buffer_flush(tty);
3414 break;
3416 break;
3418 if (tty->driver->ioctl) {
3419 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3420 if (retval != -ENOIOCTLCMD)
3421 return retval;
3423 ld = tty_ldisc_ref_wait(tty);
3424 retval = -EINVAL;
3425 if (ld->ioctl) {
3426 retval = ld->ioctl(tty, file, cmd, arg);
3427 if (retval == -ENOIOCTLCMD)
3428 retval = -EINVAL;
3430 tty_ldisc_deref(ld);
3431 return retval;
3434 #ifdef CONFIG_COMPAT
3435 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
3436 unsigned long arg)
3438 struct inode *inode = file->f_dentry->d_inode;
3439 struct tty_struct *tty = file->private_data;
3440 struct tty_ldisc *ld;
3441 int retval = -ENOIOCTLCMD;
3443 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3444 return -EINVAL;
3446 if (tty->driver->compat_ioctl) {
3447 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3448 if (retval != -ENOIOCTLCMD)
3449 return retval;
3452 ld = tty_ldisc_ref_wait(tty);
3453 if (ld->compat_ioctl)
3454 retval = ld->compat_ioctl(tty, file, cmd, arg);
3455 tty_ldisc_deref(ld);
3457 return retval;
3459 #endif
3462 * This implements the "Secure Attention Key" --- the idea is to
3463 * prevent trojan horses by killing all processes associated with this
3464 * tty when the user hits the "Secure Attention Key". Required for
3465 * super-paranoid applications --- see the Orange Book for more details.
3467 * This code could be nicer; ideally it should send a HUP, wait a few
3468 * seconds, then send a INT, and then a KILL signal. But you then
3469 * have to coordinate with the init process, since all processes associated
3470 * with the current tty must be dead before the new getty is allowed
3471 * to spawn.
3473 * Now, if it would be correct ;-/ The current code has a nasty hole -
3474 * it doesn't catch files in flight. We may send the descriptor to ourselves
3475 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3477 * Nasty bug: do_SAK is being called in interrupt context. This can
3478 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3480 void __do_SAK(struct tty_struct *tty)
3482 #ifdef TTY_SOFT_SAK
3483 tty_hangup(tty);
3484 #else
3485 struct task_struct *g, *p;
3486 struct pid *session;
3487 int i;
3488 struct file *filp;
3489 struct fdtable *fdt;
3491 if (!tty)
3492 return;
3493 session = tty->session;
3495 tty_ldisc_flush(tty);
3497 if (tty->driver->flush_buffer)
3498 tty->driver->flush_buffer(tty);
3500 read_lock(&tasklist_lock);
3501 /* Kill the entire session */
3502 do_each_pid_task(session, PIDTYPE_SID, p) {
3503 printk(KERN_NOTICE "SAK: killed process %d"
3504 " (%s): process_session(p)==tty->session\n",
3505 p->pid, p->comm);
3506 send_sig(SIGKILL, p, 1);
3507 } while_each_pid_task(session, PIDTYPE_SID, p);
3508 /* Now kill any processes that happen to have the
3509 * tty open.
3511 do_each_thread(g, p) {
3512 if (p->signal->tty == tty) {
3513 printk(KERN_NOTICE "SAK: killed process %d"
3514 " (%s): process_session(p)==tty->session\n",
3515 p->pid, p->comm);
3516 send_sig(SIGKILL, p, 1);
3517 continue;
3519 task_lock(p);
3520 if (p->files) {
3522 * We don't take a ref to the file, so we must
3523 * hold ->file_lock instead.
3525 spin_lock(&p->files->file_lock);
3526 fdt = files_fdtable(p->files);
3527 for (i=0; i < fdt->max_fds; i++) {
3528 filp = fcheck_files(p->files, i);
3529 if (!filp)
3530 continue;
3531 if (filp->f_op->read == tty_read &&
3532 filp->private_data == tty) {
3533 printk(KERN_NOTICE "SAK: killed process %d"
3534 " (%s): fd#%d opened to the tty\n",
3535 p->pid, p->comm, i);
3536 force_sig(SIGKILL, p);
3537 break;
3540 spin_unlock(&p->files->file_lock);
3542 task_unlock(p);
3543 } while_each_thread(g, p);
3544 read_unlock(&tasklist_lock);
3545 #endif
3548 static void do_SAK_work(struct work_struct *work)
3550 struct tty_struct *tty =
3551 container_of(work, struct tty_struct, SAK_work);
3552 __do_SAK(tty);
3556 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3557 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3558 * the values which we write to it will be identical to the values which it
3559 * already has. --akpm
3561 void do_SAK(struct tty_struct *tty)
3563 if (!tty)
3564 return;
3565 schedule_work(&tty->SAK_work);
3568 EXPORT_SYMBOL(do_SAK);
3571 * flush_to_ldisc
3572 * @work: tty structure passed from work queue.
3574 * This routine is called out of the software interrupt to flush data
3575 * from the buffer chain to the line discipline.
3577 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3578 * while invoking the line discipline receive_buf method. The
3579 * receive_buf method is single threaded for each tty instance.
3582 static void flush_to_ldisc(struct work_struct *work)
3584 struct tty_struct *tty =
3585 container_of(work, struct tty_struct, buf.work.work);
3586 unsigned long flags;
3587 struct tty_ldisc *disc;
3588 struct tty_buffer *tbuf, *head;
3589 char *char_buf;
3590 unsigned char *flag_buf;
3592 disc = tty_ldisc_ref(tty);
3593 if (disc == NULL) /* !TTY_LDISC */
3594 return;
3596 spin_lock_irqsave(&tty->buf.lock, flags);
3597 head = tty->buf.head;
3598 if (head != NULL) {
3599 tty->buf.head = NULL;
3600 for (;;) {
3601 int count = head->commit - head->read;
3602 if (!count) {
3603 if (head->next == NULL)
3604 break;
3605 tbuf = head;
3606 head = head->next;
3607 tty_buffer_free(tty, tbuf);
3608 continue;
3610 if (!tty->receive_room) {
3611 schedule_delayed_work(&tty->buf.work, 1);
3612 break;
3614 if (count > tty->receive_room)
3615 count = tty->receive_room;
3616 char_buf = head->char_buf_ptr + head->read;
3617 flag_buf = head->flag_buf_ptr + head->read;
3618 head->read += count;
3619 spin_unlock_irqrestore(&tty->buf.lock, flags);
3620 disc->receive_buf(tty, char_buf, flag_buf, count);
3621 spin_lock_irqsave(&tty->buf.lock, flags);
3623 tty->buf.head = head;
3625 spin_unlock_irqrestore(&tty->buf.lock, flags);
3627 tty_ldisc_deref(disc);
3631 * tty_flip_buffer_push - terminal
3632 * @tty: tty to push
3634 * Queue a push of the terminal flip buffers to the line discipline. This
3635 * function must not be called from IRQ context if tty->low_latency is set.
3637 * In the event of the queue being busy for flipping the work will be
3638 * held off and retried later.
3640 * Locking: tty buffer lock. Driver locks in low latency mode.
3643 void tty_flip_buffer_push(struct tty_struct *tty)
3645 unsigned long flags;
3646 spin_lock_irqsave(&tty->buf.lock, flags);
3647 if (tty->buf.tail != NULL)
3648 tty->buf.tail->commit = tty->buf.tail->used;
3649 spin_unlock_irqrestore(&tty->buf.lock, flags);
3651 if (tty->low_latency)
3652 flush_to_ldisc(&tty->buf.work.work);
3653 else
3654 schedule_delayed_work(&tty->buf.work, 1);
3657 EXPORT_SYMBOL(tty_flip_buffer_push);
3661 * initialize_tty_struct
3662 * @tty: tty to initialize
3664 * This subroutine initializes a tty structure that has been newly
3665 * allocated.
3667 * Locking: none - tty in question must not be exposed at this point
3670 static void initialize_tty_struct(struct tty_struct *tty)
3672 memset(tty, 0, sizeof(struct tty_struct));
3673 tty->magic = TTY_MAGIC;
3674 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3675 tty->session = NULL;
3676 tty->pgrp = NULL;
3677 tty->overrun_time = jiffies;
3678 tty->buf.head = tty->buf.tail = NULL;
3679 tty_buffer_init(tty);
3680 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3681 init_MUTEX(&tty->buf.pty_sem);
3682 mutex_init(&tty->termios_mutex);
3683 init_waitqueue_head(&tty->write_wait);
3684 init_waitqueue_head(&tty->read_wait);
3685 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3686 mutex_init(&tty->atomic_read_lock);
3687 mutex_init(&tty->atomic_write_lock);
3688 spin_lock_init(&tty->read_lock);
3689 INIT_LIST_HEAD(&tty->tty_files);
3690 INIT_WORK(&tty->SAK_work, do_SAK_work);
3694 * The default put_char routine if the driver did not define one.
3697 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3699 tty->driver->write(tty, &ch, 1);
3702 static struct class *tty_class;
3705 * tty_register_device - register a tty device
3706 * @driver: the tty driver that describes the tty device
3707 * @index: the index in the tty driver for this tty device
3708 * @device: a struct device that is associated with this tty device.
3709 * This field is optional, if there is no known struct device
3710 * for this tty device it can be set to NULL safely.
3712 * Returns a pointer to the struct device for this tty device
3713 * (or ERR_PTR(-EFOO) on error).
3715 * This call is required to be made to register an individual tty device
3716 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3717 * that bit is not set, this function should not be called by a tty
3718 * driver.
3720 * Locking: ??
3723 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3724 struct device *device)
3726 char name[64];
3727 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3729 if (index >= driver->num) {
3730 printk(KERN_ERR "Attempt to register invalid tty line number "
3731 " (%d).\n", index);
3732 return ERR_PTR(-EINVAL);
3735 if (driver->type == TTY_DRIVER_TYPE_PTY)
3736 pty_line_name(driver, index, name);
3737 else
3738 tty_line_name(driver, index, name);
3740 return device_create(tty_class, device, dev, name);
3744 * tty_unregister_device - unregister a tty device
3745 * @driver: the tty driver that describes the tty device
3746 * @index: the index in the tty driver for this tty device
3748 * If a tty device is registered with a call to tty_register_device() then
3749 * this function must be called when the tty device is gone.
3751 * Locking: ??
3754 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3756 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3759 EXPORT_SYMBOL(tty_register_device);
3760 EXPORT_SYMBOL(tty_unregister_device);
3762 struct tty_driver *alloc_tty_driver(int lines)
3764 struct tty_driver *driver;
3766 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3767 if (driver) {
3768 driver->magic = TTY_DRIVER_MAGIC;
3769 driver->num = lines;
3770 /* later we'll move allocation of tables here */
3772 return driver;
3775 void put_tty_driver(struct tty_driver *driver)
3777 kfree(driver);
3780 void tty_set_operations(struct tty_driver *driver,
3781 const struct tty_operations *op)
3783 driver->open = op->open;
3784 driver->close = op->close;
3785 driver->write = op->write;
3786 driver->put_char = op->put_char;
3787 driver->flush_chars = op->flush_chars;
3788 driver->write_room = op->write_room;
3789 driver->chars_in_buffer = op->chars_in_buffer;
3790 driver->ioctl = op->ioctl;
3791 driver->compat_ioctl = op->compat_ioctl;
3792 driver->set_termios = op->set_termios;
3793 driver->throttle = op->throttle;
3794 driver->unthrottle = op->unthrottle;
3795 driver->stop = op->stop;
3796 driver->start = op->start;
3797 driver->hangup = op->hangup;
3798 driver->break_ctl = op->break_ctl;
3799 driver->flush_buffer = op->flush_buffer;
3800 driver->set_ldisc = op->set_ldisc;
3801 driver->wait_until_sent = op->wait_until_sent;
3802 driver->send_xchar = op->send_xchar;
3803 driver->read_proc = op->read_proc;
3804 driver->write_proc = op->write_proc;
3805 driver->tiocmget = op->tiocmget;
3806 driver->tiocmset = op->tiocmset;
3810 EXPORT_SYMBOL(alloc_tty_driver);
3811 EXPORT_SYMBOL(put_tty_driver);
3812 EXPORT_SYMBOL(tty_set_operations);
3815 * Called by a tty driver to register itself.
3817 int tty_register_driver(struct tty_driver *driver)
3819 int error;
3820 int i;
3821 dev_t dev;
3822 void **p = NULL;
3824 if (driver->flags & TTY_DRIVER_INSTALLED)
3825 return 0;
3827 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3828 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3829 if (!p)
3830 return -ENOMEM;
3833 if (!driver->major) {
3834 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3835 driver->name);
3836 if (!error) {
3837 driver->major = MAJOR(dev);
3838 driver->minor_start = MINOR(dev);
3840 } else {
3841 dev = MKDEV(driver->major, driver->minor_start);
3842 error = register_chrdev_region(dev, driver->num, driver->name);
3844 if (error < 0) {
3845 kfree(p);
3846 return error;
3849 if (p) {
3850 driver->ttys = (struct tty_struct **)p;
3851 driver->termios = (struct ktermios **)(p + driver->num);
3852 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3853 } else {
3854 driver->ttys = NULL;
3855 driver->termios = NULL;
3856 driver->termios_locked = NULL;
3859 cdev_init(&driver->cdev, &tty_fops);
3860 driver->cdev.owner = driver->owner;
3861 error = cdev_add(&driver->cdev, dev, driver->num);
3862 if (error) {
3863 unregister_chrdev_region(dev, driver->num);
3864 driver->ttys = NULL;
3865 driver->termios = driver->termios_locked = NULL;
3866 kfree(p);
3867 return error;
3870 if (!driver->put_char)
3871 driver->put_char = tty_default_put_char;
3873 mutex_lock(&tty_mutex);
3874 list_add(&driver->tty_drivers, &tty_drivers);
3875 mutex_unlock(&tty_mutex);
3877 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3878 for(i = 0; i < driver->num; i++)
3879 tty_register_device(driver, i, NULL);
3881 proc_tty_register_driver(driver);
3882 return 0;
3885 EXPORT_SYMBOL(tty_register_driver);
3888 * Called by a tty driver to unregister itself.
3890 int tty_unregister_driver(struct tty_driver *driver)
3892 int i;
3893 struct ktermios *tp;
3894 void *p;
3896 if (driver->refcount)
3897 return -EBUSY;
3899 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3900 driver->num);
3901 mutex_lock(&tty_mutex);
3902 list_del(&driver->tty_drivers);
3903 mutex_unlock(&tty_mutex);
3906 * Free the termios and termios_locked structures because
3907 * we don't want to get memory leaks when modular tty
3908 * drivers are removed from the kernel.
3910 for (i = 0; i < driver->num; i++) {
3911 tp = driver->termios[i];
3912 if (tp) {
3913 driver->termios[i] = NULL;
3914 kfree(tp);
3916 tp = driver->termios_locked[i];
3917 if (tp) {
3918 driver->termios_locked[i] = NULL;
3919 kfree(tp);
3921 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3922 tty_unregister_device(driver, i);
3924 p = driver->ttys;
3925 proc_tty_unregister_driver(driver);
3926 driver->ttys = NULL;
3927 driver->termios = driver->termios_locked = NULL;
3928 kfree(p);
3929 cdev_del(&driver->cdev);
3930 return 0;
3932 EXPORT_SYMBOL(tty_unregister_driver);
3934 dev_t tty_devnum(struct tty_struct *tty)
3936 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3938 EXPORT_SYMBOL(tty_devnum);
3940 void proc_clear_tty(struct task_struct *p)
3942 spin_lock_irq(&p->sighand->siglock);
3943 p->signal->tty = NULL;
3944 spin_unlock_irq(&p->sighand->siglock);
3946 EXPORT_SYMBOL(proc_clear_tty);
3948 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3950 if (tty) {
3951 /* We should not have a session or pgrp to here but.... */
3952 put_pid(tty->session);
3953 put_pid(tty->pgrp);
3954 tty->session = get_pid(task_session(tsk));
3955 tty->pgrp = get_pid(task_pgrp(tsk));
3957 put_pid(tsk->signal->tty_old_pgrp);
3958 tsk->signal->tty = tty;
3959 tsk->signal->tty_old_pgrp = NULL;
3962 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3964 spin_lock_irq(&tsk->sighand->siglock);
3965 __proc_set_tty(tsk, tty);
3966 spin_unlock_irq(&tsk->sighand->siglock);
3969 struct tty_struct *get_current_tty(void)
3971 struct tty_struct *tty;
3972 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3973 tty = current->signal->tty;
3975 * session->tty can be changed/cleared from under us, make sure we
3976 * issue the load. The obtained pointer, when not NULL, is valid as
3977 * long as we hold tty_mutex.
3979 barrier();
3980 return tty;
3982 EXPORT_SYMBOL_GPL(get_current_tty);
3985 * Initialize the console device. This is called *early*, so
3986 * we can't necessarily depend on lots of kernel help here.
3987 * Just do some early initializations, and do the complex setup
3988 * later.
3990 void __init console_init(void)
3992 initcall_t *call;
3994 /* Setup the default TTY line discipline. */
3995 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3998 * set up the console device so that later boot sequences can
3999 * inform about problems etc..
4001 call = __con_initcall_start;
4002 while (call < __con_initcall_end) {
4003 (*call)();
4004 call++;
4008 #ifdef CONFIG_VT
4009 extern int vty_init(void);
4010 #endif
4012 static int __init tty_class_init(void)
4014 tty_class = class_create(THIS_MODULE, "tty");
4015 if (IS_ERR(tty_class))
4016 return PTR_ERR(tty_class);
4017 return 0;
4020 postcore_initcall(tty_class_init);
4022 /* 3/2004 jmc: why do these devices exist? */
4024 static struct cdev tty_cdev, console_cdev;
4025 #ifdef CONFIG_UNIX98_PTYS
4026 static struct cdev ptmx_cdev;
4027 #endif
4028 #ifdef CONFIG_VT
4029 static struct cdev vc0_cdev;
4030 #endif
4033 * Ok, now we can initialize the rest of the tty devices and can count
4034 * on memory allocations, interrupts etc..
4036 static int __init tty_init(void)
4038 cdev_init(&tty_cdev, &tty_fops);
4039 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4040 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4041 panic("Couldn't register /dev/tty driver\n");
4042 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4044 cdev_init(&console_cdev, &console_fops);
4045 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4046 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4047 panic("Couldn't register /dev/console driver\n");
4048 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4050 #ifdef CONFIG_UNIX98_PTYS
4051 cdev_init(&ptmx_cdev, &ptmx_fops);
4052 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4053 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4054 panic("Couldn't register /dev/ptmx driver\n");
4055 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4056 #endif
4058 #ifdef CONFIG_VT
4059 cdev_init(&vc0_cdev, &console_fops);
4060 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4061 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4062 panic("Couldn't register /dev/tty0 driver\n");
4063 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4065 vty_init();
4066 #endif
4067 return 0;
4069 module_init(tty_init);