Blackfin char driver for Blackfin on-chip OTP memory (v3)
[linux-2.6/zen-sources.git] / drivers / video / pxafb.c
blob757651954e6cf81bebba98cda2bf36ce910f824d
1 /*
2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
19 * email address:
21 * linux-arm-kernel@lists.arm.linux.org.uk
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/string.h>
31 #include <linux/interrupt.h>
32 #include <linux/slab.h>
33 #include <linux/fb.h>
34 #include <linux/delay.h>
35 #include <linux/init.h>
36 #include <linux/ioport.h>
37 #include <linux/cpufreq.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/err.h>
43 #include <asm/hardware.h>
44 #include <asm/io.h>
45 #include <asm/irq.h>
46 #include <asm/div64.h>
47 #include <asm/arch/pxa-regs.h>
48 #include <asm/arch/pxa2xx-gpio.h>
49 #include <asm/arch/bitfield.h>
50 #include <asm/arch/pxafb.h>
53 * Complain if VAR is out of range.
55 #define DEBUG_VAR 1
57 #include "pxafb.h"
59 /* Bits which should not be set in machine configuration structures */
60 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB)
61 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP)
63 static void (*pxafb_backlight_power)(int);
64 static void (*pxafb_lcd_power)(int, struct fb_var_screeninfo *);
66 static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *);
67 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
69 #ifdef CONFIG_FB_PXA_PARAMETERS
70 #define PXAFB_OPTIONS_SIZE 256
71 static char g_options[PXAFB_OPTIONS_SIZE] __devinitdata = "";
72 #endif
74 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
76 unsigned long flags;
78 local_irq_save(flags);
80 * We need to handle two requests being made at the same time.
81 * There are two important cases:
82 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
83 * We must perform the unblanking, which will do our REENABLE for us.
84 * 2. When we are blanking, but immediately unblank before we have
85 * blanked. We do the "REENABLE" thing here as well, just to be sure.
87 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
88 state = (u_int) -1;
89 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
90 state = C_REENABLE;
92 if (state != (u_int)-1) {
93 fbi->task_state = state;
94 schedule_work(&fbi->task);
96 local_irq_restore(flags);
99 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
101 chan &= 0xffff;
102 chan >>= 16 - bf->length;
103 return chan << bf->offset;
106 static int
107 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
108 u_int trans, struct fb_info *info)
110 struct pxafb_info *fbi = (struct pxafb_info *)info;
111 u_int val;
113 if (regno >= fbi->palette_size)
114 return 1;
116 if (fbi->fb.var.grayscale) {
117 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
118 return 0;
121 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
122 case LCCR4_PAL_FOR_0:
123 val = ((red >> 0) & 0xf800);
124 val |= ((green >> 5) & 0x07e0);
125 val |= ((blue >> 11) & 0x001f);
126 fbi->palette_cpu[regno] = val;
127 break;
128 case LCCR4_PAL_FOR_1:
129 val = ((red << 8) & 0x00f80000);
130 val |= ((green >> 0) & 0x0000fc00);
131 val |= ((blue >> 8) & 0x000000f8);
132 ((u32*)(fbi->palette_cpu))[regno] = val;
133 break;
134 case LCCR4_PAL_FOR_2:
135 val = ((red << 8) & 0x00fc0000);
136 val |= ((green >> 0) & 0x0000fc00);
137 val |= ((blue >> 8) & 0x000000fc);
138 ((u32*)(fbi->palette_cpu))[regno] = val;
139 break;
142 return 0;
145 static int
146 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
147 u_int trans, struct fb_info *info)
149 struct pxafb_info *fbi = (struct pxafb_info *)info;
150 unsigned int val;
151 int ret = 1;
154 * If inverse mode was selected, invert all the colours
155 * rather than the register number. The register number
156 * is what you poke into the framebuffer to produce the
157 * colour you requested.
159 if (fbi->cmap_inverse) {
160 red = 0xffff - red;
161 green = 0xffff - green;
162 blue = 0xffff - blue;
166 * If greyscale is true, then we convert the RGB value
167 * to greyscale no matter what visual we are using.
169 if (fbi->fb.var.grayscale)
170 red = green = blue = (19595 * red + 38470 * green +
171 7471 * blue) >> 16;
173 switch (fbi->fb.fix.visual) {
174 case FB_VISUAL_TRUECOLOR:
176 * 16-bit True Colour. We encode the RGB value
177 * according to the RGB bitfield information.
179 if (regno < 16) {
180 u32 *pal = fbi->fb.pseudo_palette;
182 val = chan_to_field(red, &fbi->fb.var.red);
183 val |= chan_to_field(green, &fbi->fb.var.green);
184 val |= chan_to_field(blue, &fbi->fb.var.blue);
186 pal[regno] = val;
187 ret = 0;
189 break;
191 case FB_VISUAL_STATIC_PSEUDOCOLOR:
192 case FB_VISUAL_PSEUDOCOLOR:
193 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
194 break;
197 return ret;
201 * pxafb_bpp_to_lccr3():
202 * Convert a bits per pixel value to the correct bit pattern for LCCR3
204 static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var)
206 int ret = 0;
207 switch (var->bits_per_pixel) {
208 case 1: ret = LCCR3_1BPP; break;
209 case 2: ret = LCCR3_2BPP; break;
210 case 4: ret = LCCR3_4BPP; break;
211 case 8: ret = LCCR3_8BPP; break;
212 case 16: ret = LCCR3_16BPP; break;
214 return ret;
217 #ifdef CONFIG_CPU_FREQ
219 * pxafb_display_dma_period()
220 * Calculate the minimum period (in picoseconds) between two DMA
221 * requests for the LCD controller. If we hit this, it means we're
222 * doing nothing but LCD DMA.
224 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
227 * Period = pixclock * bits_per_byte * bytes_per_transfer
228 * / memory_bits_per_pixel;
230 return var->pixclock * 8 * 16 / var->bits_per_pixel;
233 extern unsigned int get_clk_frequency_khz(int info);
234 #endif
237 * Select the smallest mode that allows the desired resolution to be
238 * displayed. If desired parameters can be rounded up.
240 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach, struct fb_var_screeninfo *var)
242 struct pxafb_mode_info *mode = NULL;
243 struct pxafb_mode_info *modelist = mach->modes;
244 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
245 unsigned int i;
247 for (i = 0 ; i < mach->num_modes ; i++) {
248 if (modelist[i].xres >= var->xres && modelist[i].yres >= var->yres &&
249 modelist[i].xres < best_x && modelist[i].yres < best_y &&
250 modelist[i].bpp >= var->bits_per_pixel ) {
251 best_x = modelist[i].xres;
252 best_y = modelist[i].yres;
253 mode = &modelist[i];
257 return mode;
260 static void pxafb_setmode(struct fb_var_screeninfo *var, struct pxafb_mode_info *mode)
262 var->xres = mode->xres;
263 var->yres = mode->yres;
264 var->bits_per_pixel = mode->bpp;
265 var->pixclock = mode->pixclock;
266 var->hsync_len = mode->hsync_len;
267 var->left_margin = mode->left_margin;
268 var->right_margin = mode->right_margin;
269 var->vsync_len = mode->vsync_len;
270 var->upper_margin = mode->upper_margin;
271 var->lower_margin = mode->lower_margin;
272 var->sync = mode->sync;
273 var->grayscale = mode->cmap_greyscale;
274 var->xres_virtual = var->xres;
275 var->yres_virtual = var->yres;
279 * pxafb_check_var():
280 * Get the video params out of 'var'. If a value doesn't fit, round it up,
281 * if it's too big, return -EINVAL.
283 * Round up in the following order: bits_per_pixel, xres,
284 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
285 * bitfields, horizontal timing, vertical timing.
287 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
289 struct pxafb_info *fbi = (struct pxafb_info *)info;
290 struct pxafb_mach_info *inf = fbi->dev->platform_data;
292 if (var->xres < MIN_XRES)
293 var->xres = MIN_XRES;
294 if (var->yres < MIN_YRES)
295 var->yres = MIN_YRES;
297 if (inf->fixed_modes) {
298 struct pxafb_mode_info *mode;
300 mode = pxafb_getmode(inf, var);
301 if (!mode)
302 return -EINVAL;
303 pxafb_setmode(var, mode);
304 } else {
305 if (var->xres > inf->modes->xres)
306 return -EINVAL;
307 if (var->yres > inf->modes->yres)
308 return -EINVAL;
309 if (var->bits_per_pixel > inf->modes->bpp)
310 return -EINVAL;
313 var->xres_virtual =
314 max(var->xres_virtual, var->xres);
315 var->yres_virtual =
316 max(var->yres_virtual, var->yres);
319 * Setup the RGB parameters for this display.
321 * The pixel packing format is described on page 7-11 of the
322 * PXA2XX Developer's Manual.
324 if (var->bits_per_pixel == 16) {
325 var->red.offset = 11; var->red.length = 5;
326 var->green.offset = 5; var->green.length = 6;
327 var->blue.offset = 0; var->blue.length = 5;
328 var->transp.offset = var->transp.length = 0;
329 } else {
330 var->red.offset = var->green.offset = var->blue.offset = var->transp.offset = 0;
331 var->red.length = 8;
332 var->green.length = 8;
333 var->blue.length = 8;
334 var->transp.length = 0;
337 #ifdef CONFIG_CPU_FREQ
338 pr_debug("pxafb: dma period = %d ps, clock = %d kHz\n",
339 pxafb_display_dma_period(var),
340 get_clk_frequency_khz(0));
341 #endif
343 return 0;
346 static inline void pxafb_set_truecolor(u_int is_true_color)
348 pr_debug("pxafb: true_color = %d\n", is_true_color);
349 // do your machine-specific setup if needed
353 * pxafb_set_par():
354 * Set the user defined part of the display for the specified console
356 static int pxafb_set_par(struct fb_info *info)
358 struct pxafb_info *fbi = (struct pxafb_info *)info;
359 struct fb_var_screeninfo *var = &info->var;
360 unsigned long palette_mem_size;
362 pr_debug("pxafb: set_par\n");
364 if (var->bits_per_pixel == 16)
365 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
366 else if (!fbi->cmap_static)
367 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
368 else {
370 * Some people have weird ideas about wanting static
371 * pseudocolor maps. I suspect their user space
372 * applications are broken.
374 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
377 fbi->fb.fix.line_length = var->xres_virtual *
378 var->bits_per_pixel / 8;
379 if (var->bits_per_pixel == 16)
380 fbi->palette_size = 0;
381 else
382 fbi->palette_size = var->bits_per_pixel == 1 ? 4 : 1 << var->bits_per_pixel;
384 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
385 palette_mem_size = fbi->palette_size * sizeof(u16);
386 else
387 palette_mem_size = fbi->palette_size * sizeof(u32);
389 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
391 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
392 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
395 * Set (any) board control register to handle new color depth
397 pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
399 if (fbi->fb.var.bits_per_pixel == 16)
400 fb_dealloc_cmap(&fbi->fb.cmap);
401 else
402 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
404 pxafb_activate_var(var, fbi);
406 return 0;
410 * Formal definition of the VESA spec:
411 * On
412 * This refers to the state of the display when it is in full operation
413 * Stand-By
414 * This defines an optional operating state of minimal power reduction with
415 * the shortest recovery time
416 * Suspend
417 * This refers to a level of power management in which substantial power
418 * reduction is achieved by the display. The display can have a longer
419 * recovery time from this state than from the Stand-by state
420 * Off
421 * This indicates that the display is consuming the lowest level of power
422 * and is non-operational. Recovery from this state may optionally require
423 * the user to manually power on the monitor
425 * Now, the fbdev driver adds an additional state, (blank), where they
426 * turn off the video (maybe by colormap tricks), but don't mess with the
427 * video itself: think of it semantically between on and Stand-By.
429 * So here's what we should do in our fbdev blank routine:
431 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
432 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
433 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
434 * VESA_POWERDOWN (mode 3) Video off, front/back light off
436 * This will match the matrox implementation.
440 * pxafb_blank():
441 * Blank the display by setting all palette values to zero. Note, the
442 * 16 bpp mode does not really use the palette, so this will not
443 * blank the display in all modes.
445 static int pxafb_blank(int blank, struct fb_info *info)
447 struct pxafb_info *fbi = (struct pxafb_info *)info;
448 int i;
450 pr_debug("pxafb: blank=%d\n", blank);
452 switch (blank) {
453 case FB_BLANK_POWERDOWN:
454 case FB_BLANK_VSYNC_SUSPEND:
455 case FB_BLANK_HSYNC_SUSPEND:
456 case FB_BLANK_NORMAL:
457 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
458 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
459 for (i = 0; i < fbi->palette_size; i++)
460 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
462 pxafb_schedule_work(fbi, C_DISABLE);
463 //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
464 break;
466 case FB_BLANK_UNBLANK:
467 //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
468 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
469 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
470 fb_set_cmap(&fbi->fb.cmap, info);
471 pxafb_schedule_work(fbi, C_ENABLE);
473 return 0;
476 static int pxafb_mmap(struct fb_info *info,
477 struct vm_area_struct *vma)
479 struct pxafb_info *fbi = (struct pxafb_info *)info;
480 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
482 if (off < info->fix.smem_len) {
483 vma->vm_pgoff += 1;
484 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
485 fbi->map_dma, fbi->map_size);
487 return -EINVAL;
490 static struct fb_ops pxafb_ops = {
491 .owner = THIS_MODULE,
492 .fb_check_var = pxafb_check_var,
493 .fb_set_par = pxafb_set_par,
494 .fb_setcolreg = pxafb_setcolreg,
495 .fb_fillrect = cfb_fillrect,
496 .fb_copyarea = cfb_copyarea,
497 .fb_imageblit = cfb_imageblit,
498 .fb_blank = pxafb_blank,
499 .fb_mmap = pxafb_mmap,
503 * Calculate the PCD value from the clock rate (in picoseconds).
504 * We take account of the PPCR clock setting.
505 * From PXA Developer's Manual:
507 * PixelClock = LCLK
508 * -------------
509 * 2 ( PCD + 1 )
511 * PCD = LCLK
512 * ------------- - 1
513 * 2(PixelClock)
515 * Where:
516 * LCLK = LCD/Memory Clock
517 * PCD = LCCR3[7:0]
519 * PixelClock here is in Hz while the pixclock argument given is the
520 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
522 * The function get_lclk_frequency_10khz returns LCLK in units of
523 * 10khz. Calling the result of this function lclk gives us the
524 * following
526 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
527 * -------------------------------------- - 1
530 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
532 static inline unsigned int get_pcd(struct pxafb_info *fbi, unsigned int pixclock)
534 unsigned long long pcd;
536 /* FIXME: Need to take into account Double Pixel Clock mode
537 * (DPC) bit? or perhaps set it based on the various clock
538 * speeds */
539 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
540 pcd *= pixclock;
541 do_div(pcd, 100000000 * 2);
542 /* no need for this, since we should subtract 1 anyway. they cancel */
543 /* pcd += 1; */ /* make up for integer math truncations */
544 return (unsigned int)pcd;
548 * Some touchscreens need hsync information from the video driver to
549 * function correctly. We export it here. Note that 'hsync_time' and
550 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
551 * of the hsync period in seconds.
553 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
555 unsigned long htime;
557 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
558 fbi->hsync_time=0;
559 return;
562 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
564 fbi->hsync_time = htime;
567 unsigned long pxafb_get_hsync_time(struct device *dev)
569 struct pxafb_info *fbi = dev_get_drvdata(dev);
571 /* If display is blanked/suspended, hsync isn't active */
572 if (!fbi || (fbi->state != C_ENABLE))
573 return 0;
575 return fbi->hsync_time;
577 EXPORT_SYMBOL(pxafb_get_hsync_time);
580 * pxafb_activate_var():
581 * Configures LCD Controller based on entries in var parameter. Settings are
582 * only written to the controller if changes were made.
584 static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi)
586 struct pxafb_lcd_reg new_regs;
587 u_long flags;
588 u_int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
590 pr_debug("pxafb: Configuring PXA LCD\n");
592 pr_debug("var: xres=%d hslen=%d lm=%d rm=%d\n",
593 var->xres, var->hsync_len,
594 var->left_margin, var->right_margin);
595 pr_debug("var: yres=%d vslen=%d um=%d bm=%d\n",
596 var->yres, var->vsync_len,
597 var->upper_margin, var->lower_margin);
598 pr_debug("var: pixclock=%d pcd=%d\n", var->pixclock, pcd);
600 #if DEBUG_VAR
601 if (var->xres < 16 || var->xres > 1024)
602 printk(KERN_ERR "%s: invalid xres %d\n",
603 fbi->fb.fix.id, var->xres);
604 switch(var->bits_per_pixel) {
605 case 1:
606 case 2:
607 case 4:
608 case 8:
609 case 16:
610 break;
611 default:
612 printk(KERN_ERR "%s: invalid bit depth %d\n",
613 fbi->fb.fix.id, var->bits_per_pixel);
614 break;
616 if (var->hsync_len < 1 || var->hsync_len > 64)
617 printk(KERN_ERR "%s: invalid hsync_len %d\n",
618 fbi->fb.fix.id, var->hsync_len);
619 if (var->left_margin < 1 || var->left_margin > 255)
620 printk(KERN_ERR "%s: invalid left_margin %d\n",
621 fbi->fb.fix.id, var->left_margin);
622 if (var->right_margin < 1 || var->right_margin > 255)
623 printk(KERN_ERR "%s: invalid right_margin %d\n",
624 fbi->fb.fix.id, var->right_margin);
625 if (var->yres < 1 || var->yres > 1024)
626 printk(KERN_ERR "%s: invalid yres %d\n",
627 fbi->fb.fix.id, var->yres);
628 if (var->vsync_len < 1 || var->vsync_len > 64)
629 printk(KERN_ERR "%s: invalid vsync_len %d\n",
630 fbi->fb.fix.id, var->vsync_len);
631 if (var->upper_margin < 0 || var->upper_margin > 255)
632 printk(KERN_ERR "%s: invalid upper_margin %d\n",
633 fbi->fb.fix.id, var->upper_margin);
634 if (var->lower_margin < 0 || var->lower_margin > 255)
635 printk(KERN_ERR "%s: invalid lower_margin %d\n",
636 fbi->fb.fix.id, var->lower_margin);
637 #endif
639 new_regs.lccr0 = fbi->lccr0 |
640 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
641 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
643 new_regs.lccr1 =
644 LCCR1_DisWdth(var->xres) +
645 LCCR1_HorSnchWdth(var->hsync_len) +
646 LCCR1_BegLnDel(var->left_margin) +
647 LCCR1_EndLnDel(var->right_margin);
650 * If we have a dual scan LCD, we need to halve
651 * the YRES parameter.
653 lines_per_panel = var->yres;
654 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
655 lines_per_panel /= 2;
657 new_regs.lccr2 =
658 LCCR2_DisHght(lines_per_panel) +
659 LCCR2_VrtSnchWdth(var->vsync_len) +
660 LCCR2_BegFrmDel(var->upper_margin) +
661 LCCR2_EndFrmDel(var->lower_margin);
663 new_regs.lccr3 = fbi->lccr3 |
664 pxafb_bpp_to_lccr3(var) |
665 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
666 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
668 if (pcd)
669 new_regs.lccr3 |= LCCR3_PixClkDiv(pcd);
671 pr_debug("nlccr0 = 0x%08x\n", new_regs.lccr0);
672 pr_debug("nlccr1 = 0x%08x\n", new_regs.lccr1);
673 pr_debug("nlccr2 = 0x%08x\n", new_regs.lccr2);
674 pr_debug("nlccr3 = 0x%08x\n", new_regs.lccr3);
676 /* Update shadow copy atomically */
677 local_irq_save(flags);
679 /* setup dma descriptors */
680 fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 3*16);
681 fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 2*16);
682 fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 1*16);
684 fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16;
685 fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16;
686 fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16;
688 #define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length)
690 /* populate descriptors */
691 fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma;
692 fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL;
693 fbi->dmadesc_fblow_cpu->fidr = 0;
694 fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL;
696 fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */
698 fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma;
699 fbi->dmadesc_fbhigh_cpu->fidr = 0;
700 fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL;
702 fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma;
703 fbi->dmadesc_palette_cpu->fidr = 0;
704 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
705 fbi->dmadesc_palette_cpu->ldcmd = fbi->palette_size *
706 sizeof(u16);
707 else
708 fbi->dmadesc_palette_cpu->ldcmd = fbi->palette_size *
709 sizeof(u32);
710 fbi->dmadesc_palette_cpu->ldcmd |= LDCMD_PAL;
712 if (var->bits_per_pixel == 16) {
713 /* palette shouldn't be loaded in true-color mode */
714 fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
715 fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */
716 /* init it to something, even though we won't be using it */
717 fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma;
718 } else {
719 fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
720 fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma;
721 fbi->fdadr0 = fbi->dmadesc_palette_dma; /* flips back and forth between pal and fbhigh */
724 #if 0
725 pr_debug("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu);
726 pr_debug("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu);
727 pr_debug("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu);
728 pr_debug("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma);
729 pr_debug("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma);
730 pr_debug("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma);
732 pr_debug("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr);
733 pr_debug("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr);
734 pr_debug("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr);
736 pr_debug("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr);
737 pr_debug("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr);
738 pr_debug("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr);
740 pr_debug("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd);
741 pr_debug("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd);
742 pr_debug("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd);
743 #endif
745 fbi->reg_lccr0 = new_regs.lccr0;
746 fbi->reg_lccr1 = new_regs.lccr1;
747 fbi->reg_lccr2 = new_regs.lccr2;
748 fbi->reg_lccr3 = new_regs.lccr3;
749 fbi->reg_lccr4 = LCCR4 & (~LCCR4_PAL_FOR_MASK);
750 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
751 set_hsync_time(fbi, pcd);
752 local_irq_restore(flags);
755 * Only update the registers if the controller is enabled
756 * and something has changed.
758 if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) ||
759 (LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) ||
760 (FDADR0 != fbi->fdadr0) || (FDADR1 != fbi->fdadr1))
761 pxafb_schedule_work(fbi, C_REENABLE);
763 return 0;
767 * NOTE! The following functions are purely helpers for set_ctrlr_state.
768 * Do not call them directly; set_ctrlr_state does the correct serialisation
769 * to ensure that things happen in the right way 100% of time time.
770 * -- rmk
772 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
774 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
776 if (pxafb_backlight_power)
777 pxafb_backlight_power(on);
780 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
782 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
784 if (pxafb_lcd_power)
785 pxafb_lcd_power(on, &fbi->fb.var);
788 static void pxafb_setup_gpio(struct pxafb_info *fbi)
790 int gpio, ldd_bits;
791 unsigned int lccr0 = fbi->lccr0;
794 * setup is based on type of panel supported
797 /* 4 bit interface */
798 if ((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
799 (lccr0 & LCCR0_SDS) == LCCR0_Sngl &&
800 (lccr0 & LCCR0_DPD) == LCCR0_4PixMono)
801 ldd_bits = 4;
803 /* 8 bit interface */
804 else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
805 ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) ||
806 ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
807 (lccr0 & LCCR0_PAS) == LCCR0_Pas && (lccr0 & LCCR0_SDS) == LCCR0_Sngl))
808 ldd_bits = 8;
810 /* 16 bit interface */
811 else if ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
812 ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_PAS) == LCCR0_Act))
813 ldd_bits = 16;
815 else {
816 printk(KERN_ERR "pxafb_setup_gpio: unable to determine bits per pixel\n");
817 return;
820 for (gpio = 58; ldd_bits; gpio++, ldd_bits--)
821 pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT);
822 pxa_gpio_mode(GPIO74_LCD_FCLK_MD);
823 pxa_gpio_mode(GPIO75_LCD_LCLK_MD);
824 pxa_gpio_mode(GPIO76_LCD_PCLK_MD);
825 pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD);
828 static void pxafb_enable_controller(struct pxafb_info *fbi)
830 pr_debug("pxafb: Enabling LCD controller\n");
831 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0);
832 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1);
833 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
834 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
835 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
836 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
838 /* enable LCD controller clock */
839 clk_enable(fbi->clk);
841 /* Sequence from 11.7.10 */
842 LCCR3 = fbi->reg_lccr3;
843 LCCR2 = fbi->reg_lccr2;
844 LCCR1 = fbi->reg_lccr1;
845 LCCR0 = fbi->reg_lccr0 & ~LCCR0_ENB;
847 FDADR0 = fbi->fdadr0;
848 FDADR1 = fbi->fdadr1;
849 LCCR0 |= LCCR0_ENB;
851 pr_debug("FDADR0 0x%08x\n", (unsigned int) FDADR0);
852 pr_debug("FDADR1 0x%08x\n", (unsigned int) FDADR1);
853 pr_debug("LCCR0 0x%08x\n", (unsigned int) LCCR0);
854 pr_debug("LCCR1 0x%08x\n", (unsigned int) LCCR1);
855 pr_debug("LCCR2 0x%08x\n", (unsigned int) LCCR2);
856 pr_debug("LCCR3 0x%08x\n", (unsigned int) LCCR3);
857 pr_debug("LCCR4 0x%08x\n", (unsigned int) LCCR4);
860 static void pxafb_disable_controller(struct pxafb_info *fbi)
862 DECLARE_WAITQUEUE(wait, current);
864 pr_debug("pxafb: disabling LCD controller\n");
866 set_current_state(TASK_UNINTERRUPTIBLE);
867 add_wait_queue(&fbi->ctrlr_wait, &wait);
869 LCSR = 0xffffffff; /* Clear LCD Status Register */
870 LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
871 LCCR0 |= LCCR0_DIS; /* Disable LCD Controller */
873 schedule_timeout(200 * HZ / 1000);
874 remove_wait_queue(&fbi->ctrlr_wait, &wait);
876 /* disable LCD controller clock */
877 clk_disable(fbi->clk);
881 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
883 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
885 struct pxafb_info *fbi = dev_id;
886 unsigned int lcsr = LCSR;
888 if (lcsr & LCSR_LDD) {
889 LCCR0 |= LCCR0_LDM;
890 wake_up(&fbi->ctrlr_wait);
893 LCSR = lcsr;
894 return IRQ_HANDLED;
898 * This function must be called from task context only, since it will
899 * sleep when disabling the LCD controller, or if we get two contending
900 * processes trying to alter state.
902 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
904 u_int old_state;
906 down(&fbi->ctrlr_sem);
908 old_state = fbi->state;
911 * Hack around fbcon initialisation.
913 if (old_state == C_STARTUP && state == C_REENABLE)
914 state = C_ENABLE;
916 switch (state) {
917 case C_DISABLE_CLKCHANGE:
919 * Disable controller for clock change. If the
920 * controller is already disabled, then do nothing.
922 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
923 fbi->state = state;
924 //TODO __pxafb_lcd_power(fbi, 0);
925 pxafb_disable_controller(fbi);
927 break;
929 case C_DISABLE_PM:
930 case C_DISABLE:
932 * Disable controller
934 if (old_state != C_DISABLE) {
935 fbi->state = state;
936 __pxafb_backlight_power(fbi, 0);
937 __pxafb_lcd_power(fbi, 0);
938 if (old_state != C_DISABLE_CLKCHANGE)
939 pxafb_disable_controller(fbi);
941 break;
943 case C_ENABLE_CLKCHANGE:
945 * Enable the controller after clock change. Only
946 * do this if we were disabled for the clock change.
948 if (old_state == C_DISABLE_CLKCHANGE) {
949 fbi->state = C_ENABLE;
950 pxafb_enable_controller(fbi);
951 //TODO __pxafb_lcd_power(fbi, 1);
953 break;
955 case C_REENABLE:
957 * Re-enable the controller only if it was already
958 * enabled. This is so we reprogram the control
959 * registers.
961 if (old_state == C_ENABLE) {
962 __pxafb_lcd_power(fbi, 0);
963 pxafb_disable_controller(fbi);
964 pxafb_setup_gpio(fbi);
965 pxafb_enable_controller(fbi);
966 __pxafb_lcd_power(fbi, 1);
968 break;
970 case C_ENABLE_PM:
972 * Re-enable the controller after PM. This is not
973 * perfect - think about the case where we were doing
974 * a clock change, and we suspended half-way through.
976 if (old_state != C_DISABLE_PM)
977 break;
978 /* fall through */
980 case C_ENABLE:
982 * Power up the LCD screen, enable controller, and
983 * turn on the backlight.
985 if (old_state != C_ENABLE) {
986 fbi->state = C_ENABLE;
987 pxafb_setup_gpio(fbi);
988 pxafb_enable_controller(fbi);
989 __pxafb_lcd_power(fbi, 1);
990 __pxafb_backlight_power(fbi, 1);
992 break;
994 up(&fbi->ctrlr_sem);
998 * Our LCD controller task (which is called when we blank or unblank)
999 * via keventd.
1001 static void pxafb_task(struct work_struct *work)
1003 struct pxafb_info *fbi =
1004 container_of(work, struct pxafb_info, task);
1005 u_int state = xchg(&fbi->task_state, -1);
1007 set_ctrlr_state(fbi, state);
1010 #ifdef CONFIG_CPU_FREQ
1012 * CPU clock speed change handler. We need to adjust the LCD timing
1013 * parameters when the CPU clock is adjusted by the power management
1014 * subsystem.
1016 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1018 static int
1019 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1021 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1022 //TODO struct cpufreq_freqs *f = data;
1023 u_int pcd;
1025 switch (val) {
1026 case CPUFREQ_PRECHANGE:
1027 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1028 break;
1030 case CPUFREQ_POSTCHANGE:
1031 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1032 set_hsync_time(fbi, pcd);
1033 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1034 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1035 break;
1037 return 0;
1040 static int
1041 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1043 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1044 struct fb_var_screeninfo *var = &fbi->fb.var;
1045 struct cpufreq_policy *policy = data;
1047 switch (val) {
1048 case CPUFREQ_ADJUST:
1049 case CPUFREQ_INCOMPATIBLE:
1050 pr_debug("min dma period: %d ps, "
1051 "new clock %d kHz\n", pxafb_display_dma_period(var),
1052 policy->max);
1053 // TODO: fill in min/max values
1054 break;
1055 #if 0
1056 case CPUFREQ_NOTIFY:
1057 printk(KERN_ERR "%s: got CPUFREQ_NOTIFY\n", __FUNCTION__);
1058 do {} while(0);
1059 /* todo: panic if min/max values aren't fulfilled
1060 * [can't really happen unless there's a bug in the
1061 * CPU policy verification process *
1063 break;
1064 #endif
1066 return 0;
1068 #endif
1070 #ifdef CONFIG_PM
1072 * Power management hooks. Note that we won't be called from IRQ context,
1073 * unlike the blank functions above, so we may sleep.
1075 static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
1077 struct pxafb_info *fbi = platform_get_drvdata(dev);
1079 set_ctrlr_state(fbi, C_DISABLE_PM);
1080 return 0;
1083 static int pxafb_resume(struct platform_device *dev)
1085 struct pxafb_info *fbi = platform_get_drvdata(dev);
1087 set_ctrlr_state(fbi, C_ENABLE_PM);
1088 return 0;
1090 #else
1091 #define pxafb_suspend NULL
1092 #define pxafb_resume NULL
1093 #endif
1096 * pxafb_map_video_memory():
1097 * Allocates the DRAM memory for the frame buffer. This buffer is
1098 * remapped into a non-cached, non-buffered, memory region to
1099 * allow palette and pixel writes to occur without flushing the
1100 * cache. Once this area is remapped, all virtual memory
1101 * access to the video memory should occur at the new region.
1103 static int __init pxafb_map_video_memory(struct pxafb_info *fbi)
1105 u_long palette_mem_size;
1108 * We reserve one page for the palette, plus the size
1109 * of the framebuffer.
1111 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1112 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1113 &fbi->map_dma, GFP_KERNEL);
1115 if (fbi->map_cpu) {
1116 /* prevent initial garbage on screen */
1117 memset(fbi->map_cpu, 0, fbi->map_size);
1118 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1119 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1121 * FIXME: this is actually the wrong thing to place in
1122 * smem_start. But fbdev suffers from the problem that
1123 * it needs an API which doesn't exist (in this case,
1124 * dma_writecombine_mmap)
1126 fbi->fb.fix.smem_start = fbi->screen_dma;
1127 fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
1129 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1130 palette_mem_size = fbi->palette_size * sizeof(u16);
1131 else
1132 palette_mem_size = fbi->palette_size * sizeof(u32);
1134 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
1136 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
1137 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
1140 return fbi->map_cpu ? 0 : -ENOMEM;
1143 static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev)
1145 struct pxafb_info *fbi;
1146 void *addr;
1147 struct pxafb_mach_info *inf = dev->platform_data;
1148 struct pxafb_mode_info *mode = inf->modes;
1149 int i, smemlen;
1151 /* Alloc the pxafb_info and pseudo_palette in one step */
1152 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1153 if (!fbi)
1154 return NULL;
1156 memset(fbi, 0, sizeof(struct pxafb_info));
1157 fbi->dev = dev;
1159 fbi->clk = clk_get(dev, "LCDCLK");
1160 if (IS_ERR(fbi->clk)) {
1161 kfree(fbi);
1162 return NULL;
1165 strcpy(fbi->fb.fix.id, PXA_NAME);
1167 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1168 fbi->fb.fix.type_aux = 0;
1169 fbi->fb.fix.xpanstep = 0;
1170 fbi->fb.fix.ypanstep = 0;
1171 fbi->fb.fix.ywrapstep = 0;
1172 fbi->fb.fix.accel = FB_ACCEL_NONE;
1174 fbi->fb.var.nonstd = 0;
1175 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1176 fbi->fb.var.height = -1;
1177 fbi->fb.var.width = -1;
1178 fbi->fb.var.accel_flags = 0;
1179 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1181 fbi->fb.fbops = &pxafb_ops;
1182 fbi->fb.flags = FBINFO_DEFAULT;
1183 fbi->fb.node = -1;
1185 addr = fbi;
1186 addr = addr + sizeof(struct pxafb_info);
1187 fbi->fb.pseudo_palette = addr;
1189 pxafb_setmode(&fbi->fb.var, mode);
1191 fbi->cmap_inverse = inf->cmap_inverse;
1192 fbi->cmap_static = inf->cmap_static;
1194 fbi->lccr0 = inf->lccr0;
1195 fbi->lccr3 = inf->lccr3;
1196 fbi->lccr4 = inf->lccr4;
1197 fbi->state = C_STARTUP;
1198 fbi->task_state = (u_char)-1;
1200 for (i = 0; i < inf->num_modes; i++) {
1201 smemlen = mode[i].xres * mode[i].yres * mode[i].bpp / 8;
1202 if (smemlen > fbi->fb.fix.smem_len)
1203 fbi->fb.fix.smem_len = smemlen;
1206 init_waitqueue_head(&fbi->ctrlr_wait);
1207 INIT_WORK(&fbi->task, pxafb_task);
1208 init_MUTEX(&fbi->ctrlr_sem);
1210 return fbi;
1213 #ifdef CONFIG_FB_PXA_PARAMETERS
1214 static int __init pxafb_parse_options(struct device *dev, char *options)
1216 struct pxafb_mach_info *inf = dev->platform_data;
1217 char *this_opt;
1219 if (!options || !*options)
1220 return 0;
1222 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1224 /* could be made table driven or similar?... */
1225 while ((this_opt = strsep(&options, ",")) != NULL) {
1226 if (!strncmp(this_opt, "mode:", 5)) {
1227 const char *name = this_opt+5;
1228 unsigned int namelen = strlen(name);
1229 int res_specified = 0, bpp_specified = 0;
1230 unsigned int xres = 0, yres = 0, bpp = 0;
1231 int yres_specified = 0;
1232 int i;
1233 for (i = namelen-1; i >= 0; i--) {
1234 switch (name[i]) {
1235 case '-':
1236 namelen = i;
1237 if (!bpp_specified && !yres_specified) {
1238 bpp = simple_strtoul(&name[i+1], NULL, 0);
1239 bpp_specified = 1;
1240 } else
1241 goto done;
1242 break;
1243 case 'x':
1244 if (!yres_specified) {
1245 yres = simple_strtoul(&name[i+1], NULL, 0);
1246 yres_specified = 1;
1247 } else
1248 goto done;
1249 break;
1250 case '0' ... '9':
1251 break;
1252 default:
1253 goto done;
1256 if (i < 0 && yres_specified) {
1257 xres = simple_strtoul(name, NULL, 0);
1258 res_specified = 1;
1260 done:
1261 if (res_specified) {
1262 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1263 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1265 if (bpp_specified)
1266 switch (bpp) {
1267 case 1:
1268 case 2:
1269 case 4:
1270 case 8:
1271 case 16:
1272 inf->modes[0].bpp = bpp;
1273 dev_info(dev, "overriding bit depth: %d\n", bpp);
1274 break;
1275 default:
1276 dev_err(dev, "Depth %d is not valid\n", bpp);
1278 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1279 inf->modes[0].pixclock = simple_strtoul(this_opt+9, NULL, 0);
1280 dev_info(dev, "override pixclock: %ld\n", inf->modes[0].pixclock);
1281 } else if (!strncmp(this_opt, "left:", 5)) {
1282 inf->modes[0].left_margin = simple_strtoul(this_opt+5, NULL, 0);
1283 dev_info(dev, "override left: %u\n", inf->modes[0].left_margin);
1284 } else if (!strncmp(this_opt, "right:", 6)) {
1285 inf->modes[0].right_margin = simple_strtoul(this_opt+6, NULL, 0);
1286 dev_info(dev, "override right: %u\n", inf->modes[0].right_margin);
1287 } else if (!strncmp(this_opt, "upper:", 6)) {
1288 inf->modes[0].upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1289 dev_info(dev, "override upper: %u\n", inf->modes[0].upper_margin);
1290 } else if (!strncmp(this_opt, "lower:", 6)) {
1291 inf->modes[0].lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1292 dev_info(dev, "override lower: %u\n", inf->modes[0].lower_margin);
1293 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1294 inf->modes[0].hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1295 dev_info(dev, "override hsynclen: %u\n", inf->modes[0].hsync_len);
1296 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1297 inf->modes[0].vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1298 dev_info(dev, "override vsynclen: %u\n", inf->modes[0].vsync_len);
1299 } else if (!strncmp(this_opt, "hsync:", 6)) {
1300 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1301 dev_info(dev, "override hsync: Active Low\n");
1302 inf->modes[0].sync &= ~FB_SYNC_HOR_HIGH_ACT;
1303 } else {
1304 dev_info(dev, "override hsync: Active High\n");
1305 inf->modes[0].sync |= FB_SYNC_HOR_HIGH_ACT;
1307 } else if (!strncmp(this_opt, "vsync:", 6)) {
1308 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1309 dev_info(dev, "override vsync: Active Low\n");
1310 inf->modes[0].sync &= ~FB_SYNC_VERT_HIGH_ACT;
1311 } else {
1312 dev_info(dev, "override vsync: Active High\n");
1313 inf->modes[0].sync |= FB_SYNC_VERT_HIGH_ACT;
1315 } else if (!strncmp(this_opt, "dpc:", 4)) {
1316 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1317 dev_info(dev, "override double pixel clock: false\n");
1318 inf->lccr3 &= ~LCCR3_DPC;
1319 } else {
1320 dev_info(dev, "override double pixel clock: true\n");
1321 inf->lccr3 |= LCCR3_DPC;
1323 } else if (!strncmp(this_opt, "outputen:", 9)) {
1324 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1325 dev_info(dev, "override output enable: active low\n");
1326 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1327 } else {
1328 dev_info(dev, "override output enable: active high\n");
1329 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1331 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1332 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1333 dev_info(dev, "override pixel clock polarity: falling edge\n");
1334 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1335 } else {
1336 dev_info(dev, "override pixel clock polarity: rising edge\n");
1337 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1339 } else if (!strncmp(this_opt, "color", 5)) {
1340 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1341 } else if (!strncmp(this_opt, "mono", 4)) {
1342 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1343 } else if (!strncmp(this_opt, "active", 6)) {
1344 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1345 } else if (!strncmp(this_opt, "passive", 7)) {
1346 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1347 } else if (!strncmp(this_opt, "single", 6)) {
1348 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1349 } else if (!strncmp(this_opt, "dual", 4)) {
1350 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1351 } else if (!strncmp(this_opt, "4pix", 4)) {
1352 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1353 } else if (!strncmp(this_opt, "8pix", 4)) {
1354 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1355 } else {
1356 dev_err(dev, "unknown option: %s\n", this_opt);
1357 return -EINVAL;
1360 return 0;
1363 #endif
1365 static int __init pxafb_probe(struct platform_device *dev)
1367 struct pxafb_info *fbi;
1368 struct pxafb_mach_info *inf;
1369 int ret;
1371 dev_dbg(&dev->dev, "pxafb_probe\n");
1373 inf = dev->dev.platform_data;
1374 ret = -ENOMEM;
1375 fbi = NULL;
1376 if (!inf)
1377 goto failed;
1379 #ifdef CONFIG_FB_PXA_PARAMETERS
1380 ret = pxafb_parse_options(&dev->dev, g_options);
1381 if (ret < 0)
1382 goto failed;
1383 #endif
1385 #ifdef DEBUG_VAR
1386 /* Check for various illegal bit-combinations. Currently only
1387 * a warning is given. */
1389 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
1390 dev_warn(&dev->dev, "machine LCCR0 setting contains illegal bits: %08x\n",
1391 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
1392 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
1393 dev_warn(&dev->dev, "machine LCCR3 setting contains illegal bits: %08x\n",
1394 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
1395 if (inf->lccr0 & LCCR0_DPD &&
1396 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
1397 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
1398 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
1399 dev_warn(&dev->dev, "Double Pixel Data (DPD) mode is only valid in passive mono"
1400 " single panel mode\n");
1401 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
1402 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1403 dev_warn(&dev->dev, "Dual panel only valid in passive mode\n");
1404 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
1405 (inf->modes->upper_margin || inf->modes->lower_margin))
1406 dev_warn(&dev->dev, "Upper and lower margins must be 0 in passive mode\n");
1407 #endif
1409 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",inf->modes->xres, inf->modes->yres, inf->modes->bpp);
1410 if (inf->modes->xres == 0 || inf->modes->yres == 0 || inf->modes->bpp == 0) {
1411 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
1412 ret = -EINVAL;
1413 goto failed;
1415 pxafb_backlight_power = inf->pxafb_backlight_power;
1416 pxafb_lcd_power = inf->pxafb_lcd_power;
1417 fbi = pxafb_init_fbinfo(&dev->dev);
1418 if (!fbi) {
1419 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
1420 ret = -ENOMEM; // only reason for pxafb_init_fbinfo to fail is kmalloc
1421 goto failed;
1424 /* Initialize video memory */
1425 ret = pxafb_map_video_memory(fbi);
1426 if (ret) {
1427 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
1428 ret = -ENOMEM;
1429 goto failed;
1432 ret = request_irq(IRQ_LCD, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
1433 if (ret) {
1434 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
1435 ret = -EBUSY;
1436 goto failed;
1440 * This makes sure that our colour bitfield
1441 * descriptors are correctly initialised.
1443 pxafb_check_var(&fbi->fb.var, &fbi->fb);
1444 pxafb_set_par(&fbi->fb);
1446 platform_set_drvdata(dev, fbi);
1448 ret = register_framebuffer(&fbi->fb);
1449 if (ret < 0) {
1450 dev_err(&dev->dev, "Failed to register framebuffer device: %d\n", ret);
1451 goto failed;
1454 #ifdef CONFIG_PM
1455 // TODO
1456 #endif
1458 #ifdef CONFIG_CPU_FREQ
1459 fbi->freq_transition.notifier_call = pxafb_freq_transition;
1460 fbi->freq_policy.notifier_call = pxafb_freq_policy;
1461 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1462 cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1463 #endif
1466 * Ok, now enable the LCD controller
1468 set_ctrlr_state(fbi, C_ENABLE);
1470 return 0;
1472 failed:
1473 platform_set_drvdata(dev, NULL);
1474 kfree(fbi);
1475 return ret;
1478 static struct platform_driver pxafb_driver = {
1479 .probe = pxafb_probe,
1480 #ifdef CONFIG_PM
1481 .suspend = pxafb_suspend,
1482 .resume = pxafb_resume,
1483 #endif
1484 .driver = {
1485 .name = "pxa2xx-fb",
1489 #ifndef MODULE
1490 static int __devinit pxafb_setup(char *options)
1492 # ifdef CONFIG_FB_PXA_PARAMETERS
1493 if (options)
1494 strlcpy(g_options, options, sizeof(g_options));
1495 # endif
1496 return 0;
1498 #else
1499 # ifdef CONFIG_FB_PXA_PARAMETERS
1500 module_param_string(options, g_options, sizeof(g_options), 0);
1501 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
1502 # endif
1503 #endif
1505 static int __devinit pxafb_init(void)
1507 #ifndef MODULE
1508 char *option = NULL;
1510 if (fb_get_options("pxafb", &option))
1511 return -ENODEV;
1512 pxafb_setup(option);
1513 #endif
1514 return platform_driver_register(&pxafb_driver);
1517 module_init(pxafb_init);
1519 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
1520 MODULE_LICENSE("GPL");