4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
37 #include <linux/compat.h>
38 #include <linux/syscalls.h>
39 #include <linux/kprobes.h>
40 #include <linux/user_namespace.h>
42 #include <asm/uaccess.h>
44 #include <asm/unistd.h>
46 #ifndef SET_UNALIGN_CTL
47 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
49 #ifndef GET_UNALIGN_CTL
50 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
53 # define SET_FPEMU_CTL(a,b) (-EINVAL)
56 # define GET_FPEMU_CTL(a,b) (-EINVAL)
59 # define SET_FPEXC_CTL(a,b) (-EINVAL)
62 # define GET_FPEXC_CTL(a,b) (-EINVAL)
65 # define GET_ENDIAN(a,b) (-EINVAL)
68 # define SET_ENDIAN(a,b) (-EINVAL)
71 # define GET_TSC_CTL(a) (-EINVAL)
74 # define SET_TSC_CTL(a) (-EINVAL)
78 * this is where the system-wide overflow UID and GID are defined, for
79 * architectures that now have 32-bit UID/GID but didn't in the past
82 int overflowuid
= DEFAULT_OVERFLOWUID
;
83 int overflowgid
= DEFAULT_OVERFLOWGID
;
86 EXPORT_SYMBOL(overflowuid
);
87 EXPORT_SYMBOL(overflowgid
);
91 * the same as above, but for filesystems which can only store a 16-bit
92 * UID and GID. as such, this is needed on all architectures
95 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
96 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
98 EXPORT_SYMBOL(fs_overflowuid
);
99 EXPORT_SYMBOL(fs_overflowgid
);
102 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
107 EXPORT_SYMBOL(cad_pid
);
110 * If set, this is used for preparing the system to power off.
113 void (*pm_power_off_prepare
)(void);
115 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
119 if (p
->uid
!= current
->euid
&&
120 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
124 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
128 no_nice
= security_task_setnice(p
, niceval
);
135 set_user_nice(p
, niceval
);
140 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
142 struct task_struct
*g
, *p
;
143 struct user_struct
*user
;
147 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
150 /* normalize: avoid signed division (rounding problems) */
157 read_lock(&tasklist_lock
);
161 p
= find_task_by_vpid(who
);
165 error
= set_one_prio(p
, niceval
, error
);
169 pgrp
= find_vpid(who
);
171 pgrp
= task_pgrp(current
);
172 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
173 error
= set_one_prio(p
, niceval
, error
);
174 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
177 user
= current
->user
;
181 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
182 goto out_unlock
; /* No processes for this user */
186 error
= set_one_prio(p
, niceval
, error
);
187 while_each_thread(g
, p
);
188 if (who
!= current
->uid
)
189 free_uid(user
); /* For find_user() */
193 read_unlock(&tasklist_lock
);
199 * Ugh. To avoid negative return values, "getpriority()" will
200 * not return the normal nice-value, but a negated value that
201 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
202 * to stay compatible.
204 asmlinkage
long sys_getpriority(int which
, int who
)
206 struct task_struct
*g
, *p
;
207 struct user_struct
*user
;
208 long niceval
, retval
= -ESRCH
;
211 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
214 read_lock(&tasklist_lock
);
218 p
= find_task_by_vpid(who
);
222 niceval
= 20 - task_nice(p
);
223 if (niceval
> retval
)
229 pgrp
= find_vpid(who
);
231 pgrp
= task_pgrp(current
);
232 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
233 niceval
= 20 - task_nice(p
);
234 if (niceval
> retval
)
236 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
239 user
= current
->user
;
243 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
244 goto out_unlock
; /* No processes for this user */
248 niceval
= 20 - task_nice(p
);
249 if (niceval
> retval
)
252 while_each_thread(g
, p
);
253 if (who
!= current
->uid
)
254 free_uid(user
); /* for find_user() */
258 read_unlock(&tasklist_lock
);
264 * emergency_restart - reboot the system
266 * Without shutting down any hardware or taking any locks
267 * reboot the system. This is called when we know we are in
268 * trouble so this is our best effort to reboot. This is
269 * safe to call in interrupt context.
271 void emergency_restart(void)
273 machine_emergency_restart();
275 EXPORT_SYMBOL_GPL(emergency_restart
);
277 static void kernel_restart_prepare(char *cmd
)
279 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
280 system_state
= SYSTEM_RESTART
;
286 * kernel_restart - reboot the system
287 * @cmd: pointer to buffer containing command to execute for restart
290 * Shutdown everything and perform a clean reboot.
291 * This is not safe to call in interrupt context.
293 void kernel_restart(char *cmd
)
295 kernel_restart_prepare(cmd
);
297 printk(KERN_EMERG
"Restarting system.\n");
299 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
300 machine_restart(cmd
);
302 EXPORT_SYMBOL_GPL(kernel_restart
);
305 * kernel_kexec - reboot the system
307 * Move into place and start executing a preloaded standalone
308 * executable. If nothing was preloaded return an error.
310 static void kernel_kexec(void)
313 struct kimage
*image
;
314 image
= xchg(&kexec_image
, NULL
);
317 kernel_restart_prepare(NULL
);
318 printk(KERN_EMERG
"Starting new kernel\n");
320 machine_kexec(image
);
324 static void kernel_shutdown_prepare(enum system_states state
)
326 blocking_notifier_call_chain(&reboot_notifier_list
,
327 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
328 system_state
= state
;
332 * kernel_halt - halt the system
334 * Shutdown everything and perform a clean system halt.
336 void kernel_halt(void)
338 kernel_shutdown_prepare(SYSTEM_HALT
);
340 printk(KERN_EMERG
"System halted.\n");
344 EXPORT_SYMBOL_GPL(kernel_halt
);
347 * kernel_power_off - power_off the system
349 * Shutdown everything and perform a clean system power_off.
351 void kernel_power_off(void)
353 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
354 if (pm_power_off_prepare
)
355 pm_power_off_prepare();
356 disable_nonboot_cpus();
358 printk(KERN_EMERG
"Power down.\n");
361 EXPORT_SYMBOL_GPL(kernel_power_off
);
363 * Reboot system call: for obvious reasons only root may call it,
364 * and even root needs to set up some magic numbers in the registers
365 * so that some mistake won't make this reboot the whole machine.
366 * You can also set the meaning of the ctrl-alt-del-key here.
368 * reboot doesn't sync: do that yourself before calling this.
370 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
374 /* We only trust the superuser with rebooting the system. */
375 if (!capable(CAP_SYS_BOOT
))
378 /* For safety, we require "magic" arguments. */
379 if (magic1
!= LINUX_REBOOT_MAGIC1
||
380 (magic2
!= LINUX_REBOOT_MAGIC2
&&
381 magic2
!= LINUX_REBOOT_MAGIC2A
&&
382 magic2
!= LINUX_REBOOT_MAGIC2B
&&
383 magic2
!= LINUX_REBOOT_MAGIC2C
))
386 /* Instead of trying to make the power_off code look like
387 * halt when pm_power_off is not set do it the easy way.
389 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
390 cmd
= LINUX_REBOOT_CMD_HALT
;
394 case LINUX_REBOOT_CMD_RESTART
:
395 kernel_restart(NULL
);
398 case LINUX_REBOOT_CMD_CAD_ON
:
402 case LINUX_REBOOT_CMD_CAD_OFF
:
406 case LINUX_REBOOT_CMD_HALT
:
412 case LINUX_REBOOT_CMD_POWER_OFF
:
418 case LINUX_REBOOT_CMD_RESTART2
:
419 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
423 buffer
[sizeof(buffer
) - 1] = '\0';
425 kernel_restart(buffer
);
428 case LINUX_REBOOT_CMD_KEXEC
:
433 #ifdef CONFIG_HIBERNATION
434 case LINUX_REBOOT_CMD_SW_SUSPEND
:
436 int ret
= hibernate();
450 static void deferred_cad(struct work_struct
*dummy
)
452 kernel_restart(NULL
);
456 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
457 * As it's called within an interrupt, it may NOT sync: the only choice
458 * is whether to reboot at once, or just ignore the ctrl-alt-del.
460 void ctrl_alt_del(void)
462 static DECLARE_WORK(cad_work
, deferred_cad
);
465 schedule_work(&cad_work
);
467 kill_cad_pid(SIGINT
, 1);
471 * Unprivileged users may change the real gid to the effective gid
472 * or vice versa. (BSD-style)
474 * If you set the real gid at all, or set the effective gid to a value not
475 * equal to the real gid, then the saved gid is set to the new effective gid.
477 * This makes it possible for a setgid program to completely drop its
478 * privileges, which is often a useful assertion to make when you are doing
479 * a security audit over a program.
481 * The general idea is that a program which uses just setregid() will be
482 * 100% compatible with BSD. A program which uses just setgid() will be
483 * 100% compatible with POSIX with saved IDs.
485 * SMP: There are not races, the GIDs are checked only by filesystem
486 * operations (as far as semantic preservation is concerned).
488 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
490 int old_rgid
= current
->gid
;
491 int old_egid
= current
->egid
;
492 int new_rgid
= old_rgid
;
493 int new_egid
= old_egid
;
496 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
500 if (rgid
!= (gid_t
) -1) {
501 if ((old_rgid
== rgid
) ||
502 (current
->egid
==rgid
) ||
508 if (egid
!= (gid_t
) -1) {
509 if ((old_rgid
== egid
) ||
510 (current
->egid
== egid
) ||
511 (current
->sgid
== egid
) ||
517 if (new_egid
!= old_egid
) {
518 set_dumpable(current
->mm
, suid_dumpable
);
521 if (rgid
!= (gid_t
) -1 ||
522 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
523 current
->sgid
= new_egid
;
524 current
->fsgid
= new_egid
;
525 current
->egid
= new_egid
;
526 current
->gid
= new_rgid
;
527 key_fsgid_changed(current
);
528 proc_id_connector(current
, PROC_EVENT_GID
);
533 * setgid() is implemented like SysV w/ SAVED_IDS
535 * SMP: Same implicit races as above.
537 asmlinkage
long sys_setgid(gid_t gid
)
539 int old_egid
= current
->egid
;
542 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
546 if (capable(CAP_SETGID
)) {
547 if (old_egid
!= gid
) {
548 set_dumpable(current
->mm
, suid_dumpable
);
551 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
552 } else if ((gid
== current
->gid
) || (gid
== current
->sgid
)) {
553 if (old_egid
!= gid
) {
554 set_dumpable(current
->mm
, suid_dumpable
);
557 current
->egid
= current
->fsgid
= gid
;
562 key_fsgid_changed(current
);
563 proc_id_connector(current
, PROC_EVENT_GID
);
567 static int set_user(uid_t new_ruid
, int dumpclear
)
569 struct user_struct
*new_user
;
571 new_user
= alloc_uid(current
->nsproxy
->user_ns
, new_ruid
);
575 if (atomic_read(&new_user
->processes
) >=
576 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
577 new_user
!= current
->nsproxy
->user_ns
->root_user
) {
582 switch_uid(new_user
);
585 set_dumpable(current
->mm
, suid_dumpable
);
588 current
->uid
= new_ruid
;
593 * Unprivileged users may change the real uid to the effective uid
594 * or vice versa. (BSD-style)
596 * If you set the real uid at all, or set the effective uid to a value not
597 * equal to the real uid, then the saved uid is set to the new effective uid.
599 * This makes it possible for a setuid program to completely drop its
600 * privileges, which is often a useful assertion to make when you are doing
601 * a security audit over a program.
603 * The general idea is that a program which uses just setreuid() will be
604 * 100% compatible with BSD. A program which uses just setuid() will be
605 * 100% compatible with POSIX with saved IDs.
607 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
609 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
612 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
616 new_ruid
= old_ruid
= current
->uid
;
617 new_euid
= old_euid
= current
->euid
;
618 old_suid
= current
->suid
;
620 if (ruid
!= (uid_t
) -1) {
622 if ((old_ruid
!= ruid
) &&
623 (current
->euid
!= ruid
) &&
624 !capable(CAP_SETUID
))
628 if (euid
!= (uid_t
) -1) {
630 if ((old_ruid
!= euid
) &&
631 (current
->euid
!= euid
) &&
632 (current
->suid
!= euid
) &&
633 !capable(CAP_SETUID
))
637 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
640 if (new_euid
!= old_euid
) {
641 set_dumpable(current
->mm
, suid_dumpable
);
644 current
->fsuid
= current
->euid
= new_euid
;
645 if (ruid
!= (uid_t
) -1 ||
646 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
647 current
->suid
= current
->euid
;
648 current
->fsuid
= current
->euid
;
650 key_fsuid_changed(current
);
651 proc_id_connector(current
, PROC_EVENT_UID
);
653 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
659 * setuid() is implemented like SysV with SAVED_IDS
661 * Note that SAVED_ID's is deficient in that a setuid root program
662 * like sendmail, for example, cannot set its uid to be a normal
663 * user and then switch back, because if you're root, setuid() sets
664 * the saved uid too. If you don't like this, blame the bright people
665 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
666 * will allow a root program to temporarily drop privileges and be able to
667 * regain them by swapping the real and effective uid.
669 asmlinkage
long sys_setuid(uid_t uid
)
671 int old_euid
= current
->euid
;
672 int old_ruid
, old_suid
, new_suid
;
675 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
679 old_ruid
= current
->uid
;
680 old_suid
= current
->suid
;
683 if (capable(CAP_SETUID
)) {
684 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
687 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
690 if (old_euid
!= uid
) {
691 set_dumpable(current
->mm
, suid_dumpable
);
694 current
->fsuid
= current
->euid
= uid
;
695 current
->suid
= new_suid
;
697 key_fsuid_changed(current
);
698 proc_id_connector(current
, PROC_EVENT_UID
);
700 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
705 * This function implements a generic ability to update ruid, euid,
706 * and suid. This allows you to implement the 4.4 compatible seteuid().
708 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
710 int old_ruid
= current
->uid
;
711 int old_euid
= current
->euid
;
712 int old_suid
= current
->suid
;
715 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
719 if (!capable(CAP_SETUID
)) {
720 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
721 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
723 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
724 (euid
!= current
->euid
) && (euid
!= current
->suid
))
726 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
727 (suid
!= current
->euid
) && (suid
!= current
->suid
))
730 if (ruid
!= (uid_t
) -1) {
731 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
734 if (euid
!= (uid_t
) -1) {
735 if (euid
!= current
->euid
) {
736 set_dumpable(current
->mm
, suid_dumpable
);
739 current
->euid
= euid
;
741 current
->fsuid
= current
->euid
;
742 if (suid
!= (uid_t
) -1)
743 current
->suid
= suid
;
745 key_fsuid_changed(current
);
746 proc_id_connector(current
, PROC_EVENT_UID
);
748 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
751 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
755 if (!(retval
= put_user(current
->uid
, ruid
)) &&
756 !(retval
= put_user(current
->euid
, euid
)))
757 retval
= put_user(current
->suid
, suid
);
763 * Same as above, but for rgid, egid, sgid.
765 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
769 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
773 if (!capable(CAP_SETGID
)) {
774 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
775 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
777 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
778 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
780 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
781 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
784 if (egid
!= (gid_t
) -1) {
785 if (egid
!= current
->egid
) {
786 set_dumpable(current
->mm
, suid_dumpable
);
789 current
->egid
= egid
;
791 current
->fsgid
= current
->egid
;
792 if (rgid
!= (gid_t
) -1)
794 if (sgid
!= (gid_t
) -1)
795 current
->sgid
= sgid
;
797 key_fsgid_changed(current
);
798 proc_id_connector(current
, PROC_EVENT_GID
);
802 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
806 if (!(retval
= put_user(current
->gid
, rgid
)) &&
807 !(retval
= put_user(current
->egid
, egid
)))
808 retval
= put_user(current
->sgid
, sgid
);
815 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
816 * is used for "access()" and for the NFS daemon (letting nfsd stay at
817 * whatever uid it wants to). It normally shadows "euid", except when
818 * explicitly set by setfsuid() or for access..
820 asmlinkage
long sys_setfsuid(uid_t uid
)
824 old_fsuid
= current
->fsuid
;
825 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
828 if (uid
== current
->uid
|| uid
== current
->euid
||
829 uid
== current
->suid
|| uid
== current
->fsuid
||
830 capable(CAP_SETUID
)) {
831 if (uid
!= old_fsuid
) {
832 set_dumpable(current
->mm
, suid_dumpable
);
835 current
->fsuid
= uid
;
838 key_fsuid_changed(current
);
839 proc_id_connector(current
, PROC_EVENT_UID
);
841 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
847 * Samma på svenska..
849 asmlinkage
long sys_setfsgid(gid_t gid
)
853 old_fsgid
= current
->fsgid
;
854 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
857 if (gid
== current
->gid
|| gid
== current
->egid
||
858 gid
== current
->sgid
|| gid
== current
->fsgid
||
859 capable(CAP_SETGID
)) {
860 if (gid
!= old_fsgid
) {
861 set_dumpable(current
->mm
, suid_dumpable
);
864 current
->fsgid
= gid
;
865 key_fsgid_changed(current
);
866 proc_id_connector(current
, PROC_EVENT_GID
);
871 asmlinkage
long sys_times(struct tms __user
* tbuf
)
874 * In the SMP world we might just be unlucky and have one of
875 * the times increment as we use it. Since the value is an
876 * atomically safe type this is just fine. Conceptually its
877 * as if the syscall took an instant longer to occur.
881 struct task_struct
*tsk
= current
;
882 struct task_struct
*t
;
883 cputime_t utime
, stime
, cutime
, cstime
;
885 spin_lock_irq(&tsk
->sighand
->siglock
);
886 utime
= tsk
->signal
->utime
;
887 stime
= tsk
->signal
->stime
;
890 utime
= cputime_add(utime
, t
->utime
);
891 stime
= cputime_add(stime
, t
->stime
);
895 cutime
= tsk
->signal
->cutime
;
896 cstime
= tsk
->signal
->cstime
;
897 spin_unlock_irq(&tsk
->sighand
->siglock
);
899 tmp
.tms_utime
= cputime_to_clock_t(utime
);
900 tmp
.tms_stime
= cputime_to_clock_t(stime
);
901 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
902 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
903 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
906 return (long) jiffies_64_to_clock_t(get_jiffies_64());
910 * This needs some heavy checking ...
911 * I just haven't the stomach for it. I also don't fully
912 * understand sessions/pgrp etc. Let somebody who does explain it.
914 * OK, I think I have the protection semantics right.... this is really
915 * only important on a multi-user system anyway, to make sure one user
916 * can't send a signal to a process owned by another. -TYT, 12/12/91
918 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
921 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
923 struct task_struct
*p
;
924 struct task_struct
*group_leader
= current
->group_leader
;
929 pid
= task_pid_vnr(group_leader
);
935 /* From this point forward we keep holding onto the tasklist lock
936 * so that our parent does not change from under us. -DaveM
938 write_lock_irq(&tasklist_lock
);
941 p
= find_task_by_vpid(pid
);
946 if (!thread_group_leader(p
))
949 if (same_thread_group(p
->real_parent
, group_leader
)) {
951 if (task_session(p
) != task_session(group_leader
))
958 if (p
!= group_leader
)
963 if (p
->signal
->leader
)
968 struct task_struct
*g
;
970 pgrp
= find_vpid(pgid
);
971 g
= pid_task(pgrp
, PIDTYPE_PGID
);
972 if (!g
|| task_session(g
) != task_session(group_leader
))
976 err
= security_task_setpgid(p
, pgid
);
980 if (task_pgrp(p
) != pgrp
) {
981 change_pid(p
, PIDTYPE_PGID
, pgrp
);
982 set_task_pgrp(p
, pid_nr(pgrp
));
987 /* All paths lead to here, thus we are safe. -DaveM */
988 write_unlock_irq(&tasklist_lock
);
992 asmlinkage
long sys_getpgid(pid_t pid
)
994 struct task_struct
*p
;
1000 grp
= task_pgrp(current
);
1003 p
= find_task_by_vpid(pid
);
1010 retval
= security_task_getpgid(p
);
1014 retval
= pid_vnr(grp
);
1020 #ifdef __ARCH_WANT_SYS_GETPGRP
1022 asmlinkage
long sys_getpgrp(void)
1024 return sys_getpgid(0);
1029 asmlinkage
long sys_getsid(pid_t pid
)
1031 struct task_struct
*p
;
1037 sid
= task_session(current
);
1040 p
= find_task_by_vpid(pid
);
1043 sid
= task_session(p
);
1047 retval
= security_task_getsid(p
);
1051 retval
= pid_vnr(sid
);
1057 asmlinkage
long sys_setsid(void)
1059 struct task_struct
*group_leader
= current
->group_leader
;
1060 struct pid
*sid
= task_pid(group_leader
);
1061 pid_t session
= pid_vnr(sid
);
1064 write_lock_irq(&tasklist_lock
);
1065 /* Fail if I am already a session leader */
1066 if (group_leader
->signal
->leader
)
1069 /* Fail if a process group id already exists that equals the
1070 * proposed session id.
1072 if (pid_task(sid
, PIDTYPE_PGID
))
1075 group_leader
->signal
->leader
= 1;
1076 __set_special_pids(sid
);
1078 spin_lock(&group_leader
->sighand
->siglock
);
1079 group_leader
->signal
->tty
= NULL
;
1080 spin_unlock(&group_leader
->sighand
->siglock
);
1084 write_unlock_irq(&tasklist_lock
);
1089 * Supplementary group IDs
1092 /* init to 2 - one for init_task, one to ensure it is never freed */
1093 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1095 struct group_info
*groups_alloc(int gidsetsize
)
1097 struct group_info
*group_info
;
1101 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1102 /* Make sure we always allocate at least one indirect block pointer */
1103 nblocks
= nblocks
? : 1;
1104 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1107 group_info
->ngroups
= gidsetsize
;
1108 group_info
->nblocks
= nblocks
;
1109 atomic_set(&group_info
->usage
, 1);
1111 if (gidsetsize
<= NGROUPS_SMALL
)
1112 group_info
->blocks
[0] = group_info
->small_block
;
1114 for (i
= 0; i
< nblocks
; i
++) {
1116 b
= (void *)__get_free_page(GFP_USER
);
1118 goto out_undo_partial_alloc
;
1119 group_info
->blocks
[i
] = b
;
1124 out_undo_partial_alloc
:
1126 free_page((unsigned long)group_info
->blocks
[i
]);
1132 EXPORT_SYMBOL(groups_alloc
);
1134 void groups_free(struct group_info
*group_info
)
1136 if (group_info
->blocks
[0] != group_info
->small_block
) {
1138 for (i
= 0; i
< group_info
->nblocks
; i
++)
1139 free_page((unsigned long)group_info
->blocks
[i
]);
1144 EXPORT_SYMBOL(groups_free
);
1146 /* export the group_info to a user-space array */
1147 static int groups_to_user(gid_t __user
*grouplist
,
1148 struct group_info
*group_info
)
1151 unsigned int count
= group_info
->ngroups
;
1153 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1154 unsigned int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1155 unsigned int len
= cp_count
* sizeof(*grouplist
);
1157 if (copy_to_user(grouplist
, group_info
->blocks
[i
], len
))
1160 grouplist
+= NGROUPS_PER_BLOCK
;
1166 /* fill a group_info from a user-space array - it must be allocated already */
1167 static int groups_from_user(struct group_info
*group_info
,
1168 gid_t __user
*grouplist
)
1171 unsigned int count
= group_info
->ngroups
;
1173 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1174 unsigned int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1175 unsigned int len
= cp_count
* sizeof(*grouplist
);
1177 if (copy_from_user(group_info
->blocks
[i
], grouplist
, len
))
1180 grouplist
+= NGROUPS_PER_BLOCK
;
1186 /* a simple Shell sort */
1187 static void groups_sort(struct group_info
*group_info
)
1189 int base
, max
, stride
;
1190 int gidsetsize
= group_info
->ngroups
;
1192 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1197 max
= gidsetsize
- stride
;
1198 for (base
= 0; base
< max
; base
++) {
1200 int right
= left
+ stride
;
1201 gid_t tmp
= GROUP_AT(group_info
, right
);
1203 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1204 GROUP_AT(group_info
, right
) =
1205 GROUP_AT(group_info
, left
);
1209 GROUP_AT(group_info
, right
) = tmp
;
1215 /* a simple bsearch */
1216 int groups_search(struct group_info
*group_info
, gid_t grp
)
1218 unsigned int left
, right
;
1224 right
= group_info
->ngroups
;
1225 while (left
< right
) {
1226 unsigned int mid
= (left
+right
)/2;
1227 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1238 /* validate and set current->group_info */
1239 int set_current_groups(struct group_info
*group_info
)
1242 struct group_info
*old_info
;
1244 retval
= security_task_setgroups(group_info
);
1248 groups_sort(group_info
);
1249 get_group_info(group_info
);
1252 old_info
= current
->group_info
;
1253 current
->group_info
= group_info
;
1254 task_unlock(current
);
1256 put_group_info(old_info
);
1261 EXPORT_SYMBOL(set_current_groups
);
1263 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1268 * SMP: Nobody else can change our grouplist. Thus we are
1275 /* no need to grab task_lock here; it cannot change */
1276 i
= current
->group_info
->ngroups
;
1278 if (i
> gidsetsize
) {
1282 if (groups_to_user(grouplist
, current
->group_info
)) {
1292 * SMP: Our groups are copy-on-write. We can set them safely
1293 * without another task interfering.
1296 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1298 struct group_info
*group_info
;
1301 if (!capable(CAP_SETGID
))
1303 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1306 group_info
= groups_alloc(gidsetsize
);
1309 retval
= groups_from_user(group_info
, grouplist
);
1311 put_group_info(group_info
);
1315 retval
= set_current_groups(group_info
);
1316 put_group_info(group_info
);
1322 * Check whether we're fsgid/egid or in the supplemental group..
1324 int in_group_p(gid_t grp
)
1327 if (grp
!= current
->fsgid
)
1328 retval
= groups_search(current
->group_info
, grp
);
1332 EXPORT_SYMBOL(in_group_p
);
1334 int in_egroup_p(gid_t grp
)
1337 if (grp
!= current
->egid
)
1338 retval
= groups_search(current
->group_info
, grp
);
1342 EXPORT_SYMBOL(in_egroup_p
);
1344 DECLARE_RWSEM(uts_sem
);
1346 EXPORT_SYMBOL(uts_sem
);
1348 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1352 down_read(&uts_sem
);
1353 if (copy_to_user(name
, utsname(), sizeof *name
))
1359 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1362 char tmp
[__NEW_UTS_LEN
];
1364 if (!capable(CAP_SYS_ADMIN
))
1366 if (len
< 0 || len
> __NEW_UTS_LEN
)
1368 down_write(&uts_sem
);
1370 if (!copy_from_user(tmp
, name
, len
)) {
1371 memcpy(utsname()->nodename
, tmp
, len
);
1372 utsname()->nodename
[len
] = 0;
1379 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1381 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1387 down_read(&uts_sem
);
1388 i
= 1 + strlen(utsname()->nodename
);
1392 if (copy_to_user(name
, utsname()->nodename
, i
))
1401 * Only setdomainname; getdomainname can be implemented by calling
1404 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1407 char tmp
[__NEW_UTS_LEN
];
1409 if (!capable(CAP_SYS_ADMIN
))
1411 if (len
< 0 || len
> __NEW_UTS_LEN
)
1414 down_write(&uts_sem
);
1416 if (!copy_from_user(tmp
, name
, len
)) {
1417 memcpy(utsname()->domainname
, tmp
, len
);
1418 utsname()->domainname
[len
] = 0;
1425 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1427 if (resource
>= RLIM_NLIMITS
)
1430 struct rlimit value
;
1431 task_lock(current
->group_leader
);
1432 value
= current
->signal
->rlim
[resource
];
1433 task_unlock(current
->group_leader
);
1434 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1438 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1441 * Back compatibility for getrlimit. Needed for some apps.
1444 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1447 if (resource
>= RLIM_NLIMITS
)
1450 task_lock(current
->group_leader
);
1451 x
= current
->signal
->rlim
[resource
];
1452 task_unlock(current
->group_leader
);
1453 if (x
.rlim_cur
> 0x7FFFFFFF)
1454 x
.rlim_cur
= 0x7FFFFFFF;
1455 if (x
.rlim_max
> 0x7FFFFFFF)
1456 x
.rlim_max
= 0x7FFFFFFF;
1457 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1462 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1464 struct rlimit new_rlim
, *old_rlim
;
1465 unsigned long it_prof_secs
;
1468 if (resource
>= RLIM_NLIMITS
)
1470 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1472 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1474 old_rlim
= current
->signal
->rlim
+ resource
;
1475 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1476 !capable(CAP_SYS_RESOURCE
))
1478 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> sysctl_nr_open
)
1481 retval
= security_task_setrlimit(resource
, &new_rlim
);
1485 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
1487 * The caller is asking for an immediate RLIMIT_CPU
1488 * expiry. But we use the zero value to mean "it was
1489 * never set". So let's cheat and make it one second
1492 new_rlim
.rlim_cur
= 1;
1495 task_lock(current
->group_leader
);
1496 *old_rlim
= new_rlim
;
1497 task_unlock(current
->group_leader
);
1499 if (resource
!= RLIMIT_CPU
)
1503 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1504 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1505 * very long-standing error, and fixing it now risks breakage of
1506 * applications, so we live with it
1508 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1511 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
1512 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
1513 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
1516 cputime
= secs_to_cputime(rlim_cur
);
1517 read_lock(&tasklist_lock
);
1518 spin_lock_irq(¤t
->sighand
->siglock
);
1519 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
1520 spin_unlock_irq(¤t
->sighand
->siglock
);
1521 read_unlock(&tasklist_lock
);
1528 * It would make sense to put struct rusage in the task_struct,
1529 * except that would make the task_struct be *really big*. After
1530 * task_struct gets moved into malloc'ed memory, it would
1531 * make sense to do this. It will make moving the rest of the information
1532 * a lot simpler! (Which we're not doing right now because we're not
1533 * measuring them yet).
1535 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1536 * races with threads incrementing their own counters. But since word
1537 * reads are atomic, we either get new values or old values and we don't
1538 * care which for the sums. We always take the siglock to protect reading
1539 * the c* fields from p->signal from races with exit.c updating those
1540 * fields when reaping, so a sample either gets all the additions of a
1541 * given child after it's reaped, or none so this sample is before reaping.
1544 * We need to take the siglock for CHILDEREN, SELF and BOTH
1545 * for the cases current multithreaded, non-current single threaded
1546 * non-current multithreaded. Thread traversal is now safe with
1548 * Strictly speaking, we donot need to take the siglock if we are current and
1549 * single threaded, as no one else can take our signal_struct away, no one
1550 * else can reap the children to update signal->c* counters, and no one else
1551 * can race with the signal-> fields. If we do not take any lock, the
1552 * signal-> fields could be read out of order while another thread was just
1553 * exiting. So we should place a read memory barrier when we avoid the lock.
1554 * On the writer side, write memory barrier is implied in __exit_signal
1555 * as __exit_signal releases the siglock spinlock after updating the signal->
1556 * fields. But we don't do this yet to keep things simple.
1560 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
,
1561 cputime_t
*utimep
, cputime_t
*stimep
)
1563 *utimep
= cputime_add(*utimep
, t
->utime
);
1564 *stimep
= cputime_add(*stimep
, t
->stime
);
1565 r
->ru_nvcsw
+= t
->nvcsw
;
1566 r
->ru_nivcsw
+= t
->nivcsw
;
1567 r
->ru_minflt
+= t
->min_flt
;
1568 r
->ru_majflt
+= t
->maj_flt
;
1569 r
->ru_inblock
+= task_io_get_inblock(t
);
1570 r
->ru_oublock
+= task_io_get_oublock(t
);
1573 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1575 struct task_struct
*t
;
1576 unsigned long flags
;
1577 cputime_t utime
, stime
;
1579 memset((char *) r
, 0, sizeof *r
);
1580 utime
= stime
= cputime_zero
;
1582 if (who
== RUSAGE_THREAD
) {
1583 accumulate_thread_rusage(p
, r
, &utime
, &stime
);
1587 if (!lock_task_sighand(p
, &flags
))
1592 case RUSAGE_CHILDREN
:
1593 utime
= p
->signal
->cutime
;
1594 stime
= p
->signal
->cstime
;
1595 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1596 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1597 r
->ru_minflt
= p
->signal
->cmin_flt
;
1598 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1599 r
->ru_inblock
= p
->signal
->cinblock
;
1600 r
->ru_oublock
= p
->signal
->coublock
;
1602 if (who
== RUSAGE_CHILDREN
)
1606 utime
= cputime_add(utime
, p
->signal
->utime
);
1607 stime
= cputime_add(stime
, p
->signal
->stime
);
1608 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1609 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1610 r
->ru_minflt
+= p
->signal
->min_flt
;
1611 r
->ru_majflt
+= p
->signal
->maj_flt
;
1612 r
->ru_inblock
+= p
->signal
->inblock
;
1613 r
->ru_oublock
+= p
->signal
->oublock
;
1616 accumulate_thread_rusage(t
, r
, &utime
, &stime
);
1624 unlock_task_sighand(p
, &flags
);
1627 cputime_to_timeval(utime
, &r
->ru_utime
);
1628 cputime_to_timeval(stime
, &r
->ru_stime
);
1631 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1634 k_getrusage(p
, who
, &r
);
1635 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1638 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
1640 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1641 who
!= RUSAGE_THREAD
)
1643 return getrusage(current
, who
, ru
);
1646 asmlinkage
long sys_umask(int mask
)
1648 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1652 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1653 unsigned long arg4
, unsigned long arg5
)
1655 long uninitialized_var(error
);
1657 if (security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
, &error
))
1661 case PR_SET_PDEATHSIG
:
1662 if (!valid_signal(arg2
)) {
1666 current
->pdeath_signal
= arg2
;
1668 case PR_GET_PDEATHSIG
:
1669 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
1671 case PR_GET_DUMPABLE
:
1672 error
= get_dumpable(current
->mm
);
1674 case PR_SET_DUMPABLE
:
1675 if (arg2
< 0 || arg2
> 1) {
1679 set_dumpable(current
->mm
, arg2
);
1682 case PR_SET_UNALIGN
:
1683 error
= SET_UNALIGN_CTL(current
, arg2
);
1685 case PR_GET_UNALIGN
:
1686 error
= GET_UNALIGN_CTL(current
, arg2
);
1689 error
= SET_FPEMU_CTL(current
, arg2
);
1692 error
= GET_FPEMU_CTL(current
, arg2
);
1695 error
= SET_FPEXC_CTL(current
, arg2
);
1698 error
= GET_FPEXC_CTL(current
, arg2
);
1701 error
= PR_TIMING_STATISTICAL
;
1704 if (arg2
== PR_TIMING_STATISTICAL
)
1711 struct task_struct
*me
= current
;
1712 unsigned char ncomm
[sizeof(me
->comm
)];
1714 ncomm
[sizeof(me
->comm
)-1] = 0;
1715 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
1716 sizeof(me
->comm
)-1) < 0)
1718 set_task_comm(me
, ncomm
);
1722 struct task_struct
*me
= current
;
1723 unsigned char tcomm
[sizeof(me
->comm
)];
1725 get_task_comm(tcomm
, me
);
1726 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))
1731 error
= GET_ENDIAN(current
, arg2
);
1734 error
= SET_ENDIAN(current
, arg2
);
1737 case PR_GET_SECCOMP
:
1738 error
= prctl_get_seccomp();
1740 case PR_SET_SECCOMP
:
1741 error
= prctl_set_seccomp(arg2
);
1744 error
= GET_TSC_CTL(arg2
);
1747 error
= SET_TSC_CTL(arg2
);
1756 asmlinkage
long sys_getcpu(unsigned __user
*cpup
, unsigned __user
*nodep
,
1757 struct getcpu_cache __user
*unused
)
1760 int cpu
= raw_smp_processor_id();
1762 err
|= put_user(cpu
, cpup
);
1764 err
|= put_user(cpu_to_node(cpu
), nodep
);
1765 return err
? -EFAULT
: 0;
1768 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1770 static void argv_cleanup(char **argv
, char **envp
)
1776 * orderly_poweroff - Trigger an orderly system poweroff
1777 * @force: force poweroff if command execution fails
1779 * This may be called from any context to trigger a system shutdown.
1780 * If the orderly shutdown fails, it will force an immediate shutdown.
1782 int orderly_poweroff(bool force
)
1785 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1786 static char *envp
[] = {
1788 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1792 struct subprocess_info
*info
;
1795 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1796 __func__
, poweroff_cmd
);
1800 info
= call_usermodehelper_setup(argv
[0], argv
, envp
);
1806 call_usermodehelper_setcleanup(info
, argv_cleanup
);
1808 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1812 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1813 "forcing the issue\n");
1815 /* I guess this should try to kick off some daemon to
1816 sync and poweroff asap. Or not even bother syncing
1817 if we're doing an emergency shutdown? */
1824 EXPORT_SYMBOL_GPL(orderly_poweroff
);