hrtimer: optimize the softirq time optimization
[linux-2.6/zen-sources.git] / mm / filemap.c
blob07e9d9258b486f804a2af0b98972104f2d63bd89
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 #include <asm/mman.h>
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 loff_t offset, unsigned long nr_segs);
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * Lock ordering:
64 * ->i_mmap_lock (vmtruncate)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
69 * ->i_mutex
70 * ->i_mmap_lock (truncate->unmap_mapping_range)
72 * ->mmap_sem
73 * ->i_mmap_lock
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_file_buffered_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 * ->i_mutex
84 * ->i_alloc_sem (various)
86 * ->inode_lock
87 * ->sb_lock (fs/fs-writeback.c)
88 * ->mapping->tree_lock (__sync_single_inode)
90 * ->i_mmap_lock
91 * ->anon_vma.lock (vma_adjust)
93 * ->anon_vma.lock
94 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
96 * ->page_table_lock or pte_lock
97 * ->swap_lock (try_to_unmap_one)
98 * ->private_lock (try_to_unmap_one)
99 * ->tree_lock (try_to_unmap_one)
100 * ->zone.lru_lock (follow_page->mark_page_accessed)
101 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
102 * ->private_lock (page_remove_rmap->set_page_dirty)
103 * ->tree_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (page_remove_rmap->set_page_dirty)
105 * ->inode_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * ->task->proc_lock
109 * ->dcache_lock (proc_pid_lookup)
113 * Remove a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
117 void __remove_from_page_cache(struct page *page)
119 struct address_space *mapping = page->mapping;
121 mem_cgroup_uncharge_page(page);
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
125 __dec_zone_page_state(page, NR_FILE_PAGES);
126 BUG_ON(page_mapped(page));
129 * Some filesystems seem to re-dirty the page even after
130 * the VM has canceled the dirty bit (eg ext3 journaling).
132 * Fix it up by doing a final dirty accounting check after
133 * having removed the page entirely.
135 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136 dec_zone_page_state(page, NR_FILE_DIRTY);
137 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
141 void remove_from_page_cache(struct page *page)
143 struct address_space *mapping = page->mapping;
145 BUG_ON(!PageLocked(page));
147 write_lock_irq(&mapping->tree_lock);
148 __remove_from_page_cache(page);
149 write_unlock_irq(&mapping->tree_lock);
152 static int sync_page(void *word)
154 struct address_space *mapping;
155 struct page *page;
157 page = container_of((unsigned long *)word, struct page, flags);
160 * page_mapping() is being called without PG_locked held.
161 * Some knowledge of the state and use of the page is used to
162 * reduce the requirements down to a memory barrier.
163 * The danger here is of a stale page_mapping() return value
164 * indicating a struct address_space different from the one it's
165 * associated with when it is associated with one.
166 * After smp_mb(), it's either the correct page_mapping() for
167 * the page, or an old page_mapping() and the page's own
168 * page_mapping() has gone NULL.
169 * The ->sync_page() address_space operation must tolerate
170 * page_mapping() going NULL. By an amazing coincidence,
171 * this comes about because none of the users of the page
172 * in the ->sync_page() methods make essential use of the
173 * page_mapping(), merely passing the page down to the backing
174 * device's unplug functions when it's non-NULL, which in turn
175 * ignore it for all cases but swap, where only page_private(page) is
176 * of interest. When page_mapping() does go NULL, the entire
177 * call stack gracefully ignores the page and returns.
178 * -- wli
180 smp_mb();
181 mapping = page_mapping(page);
182 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183 mapping->a_ops->sync_page(page);
184 io_schedule();
185 return 0;
188 static int sync_page_killable(void *word)
190 sync_page(word);
191 return fatal_signal_pending(current) ? -EINTR : 0;
195 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
196 * @mapping: address space structure to write
197 * @start: offset in bytes where the range starts
198 * @end: offset in bytes where the range ends (inclusive)
199 * @sync_mode: enable synchronous operation
201 * Start writeback against all of a mapping's dirty pages that lie
202 * within the byte offsets <start, end> inclusive.
204 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
205 * opposed to a regular memory cleansing writeback. The difference between
206 * these two operations is that if a dirty page/buffer is encountered, it must
207 * be waited upon, and not just skipped over.
209 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
210 loff_t end, int sync_mode)
212 int ret;
213 struct writeback_control wbc = {
214 .sync_mode = sync_mode,
215 .nr_to_write = mapping->nrpages * 2,
216 .range_start = start,
217 .range_end = end,
220 if (!mapping_cap_writeback_dirty(mapping))
221 return 0;
223 ret = do_writepages(mapping, &wbc);
224 return ret;
227 static inline int __filemap_fdatawrite(struct address_space *mapping,
228 int sync_mode)
230 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
233 int filemap_fdatawrite(struct address_space *mapping)
235 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
237 EXPORT_SYMBOL(filemap_fdatawrite);
239 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240 loff_t end)
242 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
246 * filemap_flush - mostly a non-blocking flush
247 * @mapping: target address_space
249 * This is a mostly non-blocking flush. Not suitable for data-integrity
250 * purposes - I/O may not be started against all dirty pages.
252 int filemap_flush(struct address_space *mapping)
254 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
256 EXPORT_SYMBOL(filemap_flush);
259 * wait_on_page_writeback_range - wait for writeback to complete
260 * @mapping: target address_space
261 * @start: beginning page index
262 * @end: ending page index
264 * Wait for writeback to complete against pages indexed by start->end
265 * inclusive
267 int wait_on_page_writeback_range(struct address_space *mapping,
268 pgoff_t start, pgoff_t end)
270 struct pagevec pvec;
271 int nr_pages;
272 int ret = 0;
273 pgoff_t index;
275 if (end < start)
276 return 0;
278 pagevec_init(&pvec, 0);
279 index = start;
280 while ((index <= end) &&
281 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282 PAGECACHE_TAG_WRITEBACK,
283 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284 unsigned i;
286 for (i = 0; i < nr_pages; i++) {
287 struct page *page = pvec.pages[i];
289 /* until radix tree lookup accepts end_index */
290 if (page->index > end)
291 continue;
293 wait_on_page_writeback(page);
294 if (PageError(page))
295 ret = -EIO;
297 pagevec_release(&pvec);
298 cond_resched();
301 /* Check for outstanding write errors */
302 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 ret = -ENOSPC;
304 if (test_and_clear_bit(AS_EIO, &mapping->flags))
305 ret = -EIO;
307 return ret;
311 * sync_page_range - write and wait on all pages in the passed range
312 * @inode: target inode
313 * @mapping: target address_space
314 * @pos: beginning offset in pages to write
315 * @count: number of bytes to write
317 * Write and wait upon all the pages in the passed range. This is a "data
318 * integrity" operation. It waits upon in-flight writeout before starting and
319 * waiting upon new writeout. If there was an IO error, return it.
321 * We need to re-take i_mutex during the generic_osync_inode list walk because
322 * it is otherwise livelockable.
324 int sync_page_range(struct inode *inode, struct address_space *mapping,
325 loff_t pos, loff_t count)
327 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
328 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
329 int ret;
331 if (!mapping_cap_writeback_dirty(mapping) || !count)
332 return 0;
333 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
334 if (ret == 0) {
335 mutex_lock(&inode->i_mutex);
336 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
337 mutex_unlock(&inode->i_mutex);
339 if (ret == 0)
340 ret = wait_on_page_writeback_range(mapping, start, end);
341 return ret;
343 EXPORT_SYMBOL(sync_page_range);
346 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
347 * @inode: target inode
348 * @mapping: target address_space
349 * @pos: beginning offset in pages to write
350 * @count: number of bytes to write
352 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
353 * as it forces O_SYNC writers to different parts of the same file
354 * to be serialised right until io completion.
356 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
357 loff_t pos, loff_t count)
359 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
360 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
361 int ret;
363 if (!mapping_cap_writeback_dirty(mapping) || !count)
364 return 0;
365 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
366 if (ret == 0)
367 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
368 if (ret == 0)
369 ret = wait_on_page_writeback_range(mapping, start, end);
370 return ret;
372 EXPORT_SYMBOL(sync_page_range_nolock);
375 * filemap_fdatawait - wait for all under-writeback pages to complete
376 * @mapping: address space structure to wait for
378 * Walk the list of under-writeback pages of the given address space
379 * and wait for all of them.
381 int filemap_fdatawait(struct address_space *mapping)
383 loff_t i_size = i_size_read(mapping->host);
385 if (i_size == 0)
386 return 0;
388 return wait_on_page_writeback_range(mapping, 0,
389 (i_size - 1) >> PAGE_CACHE_SHIFT);
391 EXPORT_SYMBOL(filemap_fdatawait);
393 int filemap_write_and_wait(struct address_space *mapping)
395 int err = 0;
397 if (mapping->nrpages) {
398 err = filemap_fdatawrite(mapping);
400 * Even if the above returned error, the pages may be
401 * written partially (e.g. -ENOSPC), so we wait for it.
402 * But the -EIO is special case, it may indicate the worst
403 * thing (e.g. bug) happened, so we avoid waiting for it.
405 if (err != -EIO) {
406 int err2 = filemap_fdatawait(mapping);
407 if (!err)
408 err = err2;
411 return err;
413 EXPORT_SYMBOL(filemap_write_and_wait);
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
421 * Write out and wait upon file offsets lstart->lend, inclusive.
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 loff_t lstart, loff_t lend)
429 int err = 0;
431 if (mapping->nrpages) {
432 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 WB_SYNC_ALL);
434 /* See comment of filemap_write_and_wait() */
435 if (err != -EIO) {
436 int err2 = wait_on_page_writeback_range(mapping,
437 lstart >> PAGE_CACHE_SHIFT,
438 lend >> PAGE_CACHE_SHIFT);
439 if (!err)
440 err = err2;
443 return err;
447 * add_to_page_cache - add newly allocated pagecache pages
448 * @page: page to add
449 * @mapping: the page's address_space
450 * @offset: page index
451 * @gfp_mask: page allocation mode
453 * This function is used to add newly allocated pagecache pages;
454 * the page is new, so we can just run SetPageLocked() against it.
455 * The other page state flags were set by rmqueue().
457 * This function does not add the page to the LRU. The caller must do that.
459 int add_to_page_cache(struct page *page, struct address_space *mapping,
460 pgoff_t offset, gfp_t gfp_mask)
462 int error = mem_cgroup_cache_charge(page, current->mm,
463 gfp_mask & ~__GFP_HIGHMEM);
464 if (error)
465 goto out;
467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 if (error == 0) {
469 write_lock_irq(&mapping->tree_lock);
470 error = radix_tree_insert(&mapping->page_tree, offset, page);
471 if (!error) {
472 page_cache_get(page);
473 SetPageLocked(page);
474 page->mapping = mapping;
475 page->index = offset;
476 mapping->nrpages++;
477 __inc_zone_page_state(page, NR_FILE_PAGES);
478 } else
479 mem_cgroup_uncharge_page(page);
481 write_unlock_irq(&mapping->tree_lock);
482 radix_tree_preload_end();
483 } else
484 mem_cgroup_uncharge_page(page);
485 out:
486 return error;
488 EXPORT_SYMBOL(add_to_page_cache);
490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491 pgoff_t offset, gfp_t gfp_mask)
493 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
494 if (ret == 0)
495 lru_cache_add(page);
496 return ret;
499 #ifdef CONFIG_NUMA
500 struct page *__page_cache_alloc(gfp_t gfp)
502 if (cpuset_do_page_mem_spread()) {
503 int n = cpuset_mem_spread_node();
504 return alloc_pages_node(n, gfp, 0);
506 return alloc_pages(gfp, 0);
508 EXPORT_SYMBOL(__page_cache_alloc);
509 #endif
511 static int __sleep_on_page_lock(void *word)
513 io_schedule();
514 return 0;
518 * In order to wait for pages to become available there must be
519 * waitqueues associated with pages. By using a hash table of
520 * waitqueues where the bucket discipline is to maintain all
521 * waiters on the same queue and wake all when any of the pages
522 * become available, and for the woken contexts to check to be
523 * sure the appropriate page became available, this saves space
524 * at a cost of "thundering herd" phenomena during rare hash
525 * collisions.
527 static wait_queue_head_t *page_waitqueue(struct page *page)
529 const struct zone *zone = page_zone(page);
531 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
534 static inline void wake_up_page(struct page *page, int bit)
536 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
539 void wait_on_page_bit(struct page *page, int bit_nr)
541 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
543 if (test_bit(bit_nr, &page->flags))
544 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
545 TASK_UNINTERRUPTIBLE);
547 EXPORT_SYMBOL(wait_on_page_bit);
550 * unlock_page - unlock a locked page
551 * @page: the page
553 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
554 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
555 * mechananism between PageLocked pages and PageWriteback pages is shared.
556 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
558 * The first mb is necessary to safely close the critical section opened by the
559 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
560 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
561 * parallel wait_on_page_locked()).
563 void unlock_page(struct page *page)
565 smp_mb__before_clear_bit();
566 if (!TestClearPageLocked(page))
567 BUG();
568 smp_mb__after_clear_bit();
569 wake_up_page(page, PG_locked);
571 EXPORT_SYMBOL(unlock_page);
574 * end_page_writeback - end writeback against a page
575 * @page: the page
577 void end_page_writeback(struct page *page)
579 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
580 if (!test_clear_page_writeback(page))
581 BUG();
583 smp_mb__after_clear_bit();
584 wake_up_page(page, PG_writeback);
586 EXPORT_SYMBOL(end_page_writeback);
589 * __lock_page - get a lock on the page, assuming we need to sleep to get it
590 * @page: the page to lock
592 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
593 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
594 * chances are that on the second loop, the block layer's plug list is empty,
595 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
597 void __lock_page(struct page *page)
599 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
601 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
602 TASK_UNINTERRUPTIBLE);
604 EXPORT_SYMBOL(__lock_page);
606 int __lock_page_killable(struct page *page)
608 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
610 return __wait_on_bit_lock(page_waitqueue(page), &wait,
611 sync_page_killable, TASK_KILLABLE);
615 * __lock_page_nosync - get a lock on the page, without calling sync_page()
616 * @page: the page to lock
618 * Variant of lock_page that does not require the caller to hold a reference
619 * on the page's mapping.
621 void __lock_page_nosync(struct page *page)
623 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
624 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
625 TASK_UNINTERRUPTIBLE);
629 * find_get_page - find and get a page reference
630 * @mapping: the address_space to search
631 * @offset: the page index
633 * Is there a pagecache struct page at the given (mapping, offset) tuple?
634 * If yes, increment its refcount and return it; if no, return NULL.
636 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
638 struct page *page;
640 read_lock_irq(&mapping->tree_lock);
641 page = radix_tree_lookup(&mapping->page_tree, offset);
642 if (page)
643 page_cache_get(page);
644 read_unlock_irq(&mapping->tree_lock);
645 return page;
647 EXPORT_SYMBOL(find_get_page);
650 * find_lock_page - locate, pin and lock a pagecache page
651 * @mapping: the address_space to search
652 * @offset: the page index
654 * Locates the desired pagecache page, locks it, increments its reference
655 * count and returns its address.
657 * Returns zero if the page was not present. find_lock_page() may sleep.
659 struct page *find_lock_page(struct address_space *mapping,
660 pgoff_t offset)
662 struct page *page;
664 repeat:
665 read_lock_irq(&mapping->tree_lock);
666 page = radix_tree_lookup(&mapping->page_tree, offset);
667 if (page) {
668 page_cache_get(page);
669 if (TestSetPageLocked(page)) {
670 read_unlock_irq(&mapping->tree_lock);
671 __lock_page(page);
673 /* Has the page been truncated while we slept? */
674 if (unlikely(page->mapping != mapping)) {
675 unlock_page(page);
676 page_cache_release(page);
677 goto repeat;
679 VM_BUG_ON(page->index != offset);
680 goto out;
683 read_unlock_irq(&mapping->tree_lock);
684 out:
685 return page;
687 EXPORT_SYMBOL(find_lock_page);
690 * find_or_create_page - locate or add a pagecache page
691 * @mapping: the page's address_space
692 * @index: the page's index into the mapping
693 * @gfp_mask: page allocation mode
695 * Locates a page in the pagecache. If the page is not present, a new page
696 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
697 * LRU list. The returned page is locked and has its reference count
698 * incremented.
700 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
701 * allocation!
703 * find_or_create_page() returns the desired page's address, or zero on
704 * memory exhaustion.
706 struct page *find_or_create_page(struct address_space *mapping,
707 pgoff_t index, gfp_t gfp_mask)
709 struct page *page;
710 int err;
711 repeat:
712 page = find_lock_page(mapping, index);
713 if (!page) {
714 page = __page_cache_alloc(gfp_mask);
715 if (!page)
716 return NULL;
717 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
718 if (unlikely(err)) {
719 page_cache_release(page);
720 page = NULL;
721 if (err == -EEXIST)
722 goto repeat;
725 return page;
727 EXPORT_SYMBOL(find_or_create_page);
730 * find_get_pages - gang pagecache lookup
731 * @mapping: The address_space to search
732 * @start: The starting page index
733 * @nr_pages: The maximum number of pages
734 * @pages: Where the resulting pages are placed
736 * find_get_pages() will search for and return a group of up to
737 * @nr_pages pages in the mapping. The pages are placed at @pages.
738 * find_get_pages() takes a reference against the returned pages.
740 * The search returns a group of mapping-contiguous pages with ascending
741 * indexes. There may be holes in the indices due to not-present pages.
743 * find_get_pages() returns the number of pages which were found.
745 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
746 unsigned int nr_pages, struct page **pages)
748 unsigned int i;
749 unsigned int ret;
751 read_lock_irq(&mapping->tree_lock);
752 ret = radix_tree_gang_lookup(&mapping->page_tree,
753 (void **)pages, start, nr_pages);
754 for (i = 0; i < ret; i++)
755 page_cache_get(pages[i]);
756 read_unlock_irq(&mapping->tree_lock);
757 return ret;
761 * find_get_pages_contig - gang contiguous pagecache lookup
762 * @mapping: The address_space to search
763 * @index: The starting page index
764 * @nr_pages: The maximum number of pages
765 * @pages: Where the resulting pages are placed
767 * find_get_pages_contig() works exactly like find_get_pages(), except
768 * that the returned number of pages are guaranteed to be contiguous.
770 * find_get_pages_contig() returns the number of pages which were found.
772 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
773 unsigned int nr_pages, struct page **pages)
775 unsigned int i;
776 unsigned int ret;
778 read_lock_irq(&mapping->tree_lock);
779 ret = radix_tree_gang_lookup(&mapping->page_tree,
780 (void **)pages, index, nr_pages);
781 for (i = 0; i < ret; i++) {
782 if (pages[i]->mapping == NULL || pages[i]->index != index)
783 break;
785 page_cache_get(pages[i]);
786 index++;
788 read_unlock_irq(&mapping->tree_lock);
789 return i;
791 EXPORT_SYMBOL(find_get_pages_contig);
794 * find_get_pages_tag - find and return pages that match @tag
795 * @mapping: the address_space to search
796 * @index: the starting page index
797 * @tag: the tag index
798 * @nr_pages: the maximum number of pages
799 * @pages: where the resulting pages are placed
801 * Like find_get_pages, except we only return pages which are tagged with
802 * @tag. We update @index to index the next page for the traversal.
804 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
805 int tag, unsigned int nr_pages, struct page **pages)
807 unsigned int i;
808 unsigned int ret;
810 read_lock_irq(&mapping->tree_lock);
811 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
812 (void **)pages, *index, nr_pages, tag);
813 for (i = 0; i < ret; i++)
814 page_cache_get(pages[i]);
815 if (ret)
816 *index = pages[ret - 1]->index + 1;
817 read_unlock_irq(&mapping->tree_lock);
818 return ret;
820 EXPORT_SYMBOL(find_get_pages_tag);
823 * grab_cache_page_nowait - returns locked page at given index in given cache
824 * @mapping: target address_space
825 * @index: the page index
827 * Same as grab_cache_page(), but do not wait if the page is unavailable.
828 * This is intended for speculative data generators, where the data can
829 * be regenerated if the page couldn't be grabbed. This routine should
830 * be safe to call while holding the lock for another page.
832 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
833 * and deadlock against the caller's locked page.
835 struct page *
836 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
838 struct page *page = find_get_page(mapping, index);
840 if (page) {
841 if (!TestSetPageLocked(page))
842 return page;
843 page_cache_release(page);
844 return NULL;
846 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
847 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
848 page_cache_release(page);
849 page = NULL;
851 return page;
853 EXPORT_SYMBOL(grab_cache_page_nowait);
856 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
857 * a _large_ part of the i/o request. Imagine the worst scenario:
859 * ---R__________________________________________B__________
860 * ^ reading here ^ bad block(assume 4k)
862 * read(R) => miss => readahead(R...B) => media error => frustrating retries
863 * => failing the whole request => read(R) => read(R+1) =>
864 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
865 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
866 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
868 * It is going insane. Fix it by quickly scaling down the readahead size.
870 static void shrink_readahead_size_eio(struct file *filp,
871 struct file_ra_state *ra)
873 if (!ra->ra_pages)
874 return;
876 ra->ra_pages /= 4;
880 * do_generic_file_read - generic file read routine
881 * @filp: the file to read
882 * @ppos: current file position
883 * @desc: read_descriptor
884 * @actor: read method
886 * This is a generic file read routine, and uses the
887 * mapping->a_ops->readpage() function for the actual low-level stuff.
889 * This is really ugly. But the goto's actually try to clarify some
890 * of the logic when it comes to error handling etc.
892 static void do_generic_file_read(struct file *filp, loff_t *ppos,
893 read_descriptor_t *desc, read_actor_t actor)
895 struct address_space *mapping = filp->f_mapping;
896 struct inode *inode = mapping->host;
897 struct file_ra_state *ra = &filp->f_ra;
898 pgoff_t index;
899 pgoff_t last_index;
900 pgoff_t prev_index;
901 unsigned long offset; /* offset into pagecache page */
902 unsigned int prev_offset;
903 int error;
905 index = *ppos >> PAGE_CACHE_SHIFT;
906 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
907 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
908 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
909 offset = *ppos & ~PAGE_CACHE_MASK;
911 for (;;) {
912 struct page *page;
913 pgoff_t end_index;
914 loff_t isize;
915 unsigned long nr, ret;
917 cond_resched();
918 find_page:
919 page = find_get_page(mapping, index);
920 if (!page) {
921 page_cache_sync_readahead(mapping,
922 ra, filp,
923 index, last_index - index);
924 page = find_get_page(mapping, index);
925 if (unlikely(page == NULL))
926 goto no_cached_page;
928 if (PageReadahead(page)) {
929 page_cache_async_readahead(mapping,
930 ra, filp, page,
931 index, last_index - index);
933 if (!PageUptodate(page))
934 goto page_not_up_to_date;
935 page_ok:
937 * i_size must be checked after we know the page is Uptodate.
939 * Checking i_size after the check allows us to calculate
940 * the correct value for "nr", which means the zero-filled
941 * part of the page is not copied back to userspace (unless
942 * another truncate extends the file - this is desired though).
945 isize = i_size_read(inode);
946 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
947 if (unlikely(!isize || index > end_index)) {
948 page_cache_release(page);
949 goto out;
952 /* nr is the maximum number of bytes to copy from this page */
953 nr = PAGE_CACHE_SIZE;
954 if (index == end_index) {
955 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
956 if (nr <= offset) {
957 page_cache_release(page);
958 goto out;
961 nr = nr - offset;
963 /* If users can be writing to this page using arbitrary
964 * virtual addresses, take care about potential aliasing
965 * before reading the page on the kernel side.
967 if (mapping_writably_mapped(mapping))
968 flush_dcache_page(page);
971 * When a sequential read accesses a page several times,
972 * only mark it as accessed the first time.
974 if (prev_index != index || offset != prev_offset)
975 mark_page_accessed(page);
976 prev_index = index;
979 * Ok, we have the page, and it's up-to-date, so
980 * now we can copy it to user space...
982 * The actor routine returns how many bytes were actually used..
983 * NOTE! This may not be the same as how much of a user buffer
984 * we filled up (we may be padding etc), so we can only update
985 * "pos" here (the actor routine has to update the user buffer
986 * pointers and the remaining count).
988 ret = actor(desc, page, offset, nr);
989 offset += ret;
990 index += offset >> PAGE_CACHE_SHIFT;
991 offset &= ~PAGE_CACHE_MASK;
992 prev_offset = offset;
994 page_cache_release(page);
995 if (ret == nr && desc->count)
996 continue;
997 goto out;
999 page_not_up_to_date:
1000 /* Get exclusive access to the page ... */
1001 if (lock_page_killable(page))
1002 goto readpage_eio;
1004 /* Did it get truncated before we got the lock? */
1005 if (!page->mapping) {
1006 unlock_page(page);
1007 page_cache_release(page);
1008 continue;
1011 /* Did somebody else fill it already? */
1012 if (PageUptodate(page)) {
1013 unlock_page(page);
1014 goto page_ok;
1017 readpage:
1018 /* Start the actual read. The read will unlock the page. */
1019 error = mapping->a_ops->readpage(filp, page);
1021 if (unlikely(error)) {
1022 if (error == AOP_TRUNCATED_PAGE) {
1023 page_cache_release(page);
1024 goto find_page;
1026 goto readpage_error;
1029 if (!PageUptodate(page)) {
1030 if (lock_page_killable(page))
1031 goto readpage_eio;
1032 if (!PageUptodate(page)) {
1033 if (page->mapping == NULL) {
1035 * invalidate_inode_pages got it
1037 unlock_page(page);
1038 page_cache_release(page);
1039 goto find_page;
1041 unlock_page(page);
1042 shrink_readahead_size_eio(filp, ra);
1043 goto readpage_eio;
1045 unlock_page(page);
1048 goto page_ok;
1050 readpage_eio:
1051 error = -EIO;
1052 readpage_error:
1053 /* UHHUH! A synchronous read error occurred. Report it */
1054 desc->error = error;
1055 page_cache_release(page);
1056 goto out;
1058 no_cached_page:
1060 * Ok, it wasn't cached, so we need to create a new
1061 * page..
1063 page = page_cache_alloc_cold(mapping);
1064 if (!page) {
1065 desc->error = -ENOMEM;
1066 goto out;
1068 error = add_to_page_cache_lru(page, mapping,
1069 index, GFP_KERNEL);
1070 if (error) {
1071 page_cache_release(page);
1072 if (error == -EEXIST)
1073 goto find_page;
1074 desc->error = error;
1075 goto out;
1077 goto readpage;
1080 out:
1081 ra->prev_pos = prev_index;
1082 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1083 ra->prev_pos |= prev_offset;
1085 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1086 if (filp)
1087 file_accessed(filp);
1090 int file_read_actor(read_descriptor_t *desc, struct page *page,
1091 unsigned long offset, unsigned long size)
1093 char *kaddr;
1094 unsigned long left, count = desc->count;
1096 if (size > count)
1097 size = count;
1100 * Faults on the destination of a read are common, so do it before
1101 * taking the kmap.
1103 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1104 kaddr = kmap_atomic(page, KM_USER0);
1105 left = __copy_to_user_inatomic(desc->arg.buf,
1106 kaddr + offset, size);
1107 kunmap_atomic(kaddr, KM_USER0);
1108 if (left == 0)
1109 goto success;
1112 /* Do it the slow way */
1113 kaddr = kmap(page);
1114 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1115 kunmap(page);
1117 if (left) {
1118 size -= left;
1119 desc->error = -EFAULT;
1121 success:
1122 desc->count = count - size;
1123 desc->written += size;
1124 desc->arg.buf += size;
1125 return size;
1129 * Performs necessary checks before doing a write
1130 * @iov: io vector request
1131 * @nr_segs: number of segments in the iovec
1132 * @count: number of bytes to write
1133 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1135 * Adjust number of segments and amount of bytes to write (nr_segs should be
1136 * properly initialized first). Returns appropriate error code that caller
1137 * should return or zero in case that write should be allowed.
1139 int generic_segment_checks(const struct iovec *iov,
1140 unsigned long *nr_segs, size_t *count, int access_flags)
1142 unsigned long seg;
1143 size_t cnt = 0;
1144 for (seg = 0; seg < *nr_segs; seg++) {
1145 const struct iovec *iv = &iov[seg];
1148 * If any segment has a negative length, or the cumulative
1149 * length ever wraps negative then return -EINVAL.
1151 cnt += iv->iov_len;
1152 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1153 return -EINVAL;
1154 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1155 continue;
1156 if (seg == 0)
1157 return -EFAULT;
1158 *nr_segs = seg;
1159 cnt -= iv->iov_len; /* This segment is no good */
1160 break;
1162 *count = cnt;
1163 return 0;
1165 EXPORT_SYMBOL(generic_segment_checks);
1168 * generic_file_aio_read - generic filesystem read routine
1169 * @iocb: kernel I/O control block
1170 * @iov: io vector request
1171 * @nr_segs: number of segments in the iovec
1172 * @pos: current file position
1174 * This is the "read()" routine for all filesystems
1175 * that can use the page cache directly.
1177 ssize_t
1178 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1179 unsigned long nr_segs, loff_t pos)
1181 struct file *filp = iocb->ki_filp;
1182 ssize_t retval;
1183 unsigned long seg;
1184 size_t count;
1185 loff_t *ppos = &iocb->ki_pos;
1187 count = 0;
1188 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1189 if (retval)
1190 return retval;
1192 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1193 if (filp->f_flags & O_DIRECT) {
1194 loff_t size;
1195 struct address_space *mapping;
1196 struct inode *inode;
1198 mapping = filp->f_mapping;
1199 inode = mapping->host;
1200 retval = 0;
1201 if (!count)
1202 goto out; /* skip atime */
1203 size = i_size_read(inode);
1204 if (pos < size) {
1205 retval = generic_file_direct_IO(READ, iocb,
1206 iov, pos, nr_segs);
1207 if (retval > 0)
1208 *ppos = pos + retval;
1210 if (likely(retval != 0)) {
1211 file_accessed(filp);
1212 goto out;
1216 retval = 0;
1217 if (count) {
1218 for (seg = 0; seg < nr_segs; seg++) {
1219 read_descriptor_t desc;
1221 desc.written = 0;
1222 desc.arg.buf = iov[seg].iov_base;
1223 desc.count = iov[seg].iov_len;
1224 if (desc.count == 0)
1225 continue;
1226 desc.error = 0;
1227 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1228 retval += desc.written;
1229 if (desc.error) {
1230 retval = retval ?: desc.error;
1231 break;
1233 if (desc.count > 0)
1234 break;
1237 out:
1238 return retval;
1240 EXPORT_SYMBOL(generic_file_aio_read);
1242 static ssize_t
1243 do_readahead(struct address_space *mapping, struct file *filp,
1244 pgoff_t index, unsigned long nr)
1246 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1247 return -EINVAL;
1249 force_page_cache_readahead(mapping, filp, index,
1250 max_sane_readahead(nr));
1251 return 0;
1254 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1256 ssize_t ret;
1257 struct file *file;
1259 ret = -EBADF;
1260 file = fget(fd);
1261 if (file) {
1262 if (file->f_mode & FMODE_READ) {
1263 struct address_space *mapping = file->f_mapping;
1264 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1265 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1266 unsigned long len = end - start + 1;
1267 ret = do_readahead(mapping, file, start, len);
1269 fput(file);
1271 return ret;
1274 #ifdef CONFIG_MMU
1276 * page_cache_read - adds requested page to the page cache if not already there
1277 * @file: file to read
1278 * @offset: page index
1280 * This adds the requested page to the page cache if it isn't already there,
1281 * and schedules an I/O to read in its contents from disk.
1283 static int page_cache_read(struct file *file, pgoff_t offset)
1285 struct address_space *mapping = file->f_mapping;
1286 struct page *page;
1287 int ret;
1289 do {
1290 page = page_cache_alloc_cold(mapping);
1291 if (!page)
1292 return -ENOMEM;
1294 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1295 if (ret == 0)
1296 ret = mapping->a_ops->readpage(file, page);
1297 else if (ret == -EEXIST)
1298 ret = 0; /* losing race to add is OK */
1300 page_cache_release(page);
1302 } while (ret == AOP_TRUNCATED_PAGE);
1304 return ret;
1307 #define MMAP_LOTSAMISS (100)
1310 * filemap_fault - read in file data for page fault handling
1311 * @vma: vma in which the fault was taken
1312 * @vmf: struct vm_fault containing details of the fault
1314 * filemap_fault() is invoked via the vma operations vector for a
1315 * mapped memory region to read in file data during a page fault.
1317 * The goto's are kind of ugly, but this streamlines the normal case of having
1318 * it in the page cache, and handles the special cases reasonably without
1319 * having a lot of duplicated code.
1321 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 int error;
1324 struct file *file = vma->vm_file;
1325 struct address_space *mapping = file->f_mapping;
1326 struct file_ra_state *ra = &file->f_ra;
1327 struct inode *inode = mapping->host;
1328 struct page *page;
1329 pgoff_t size;
1330 int did_readaround = 0;
1331 int ret = 0;
1333 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1334 if (vmf->pgoff >= size)
1335 return VM_FAULT_SIGBUS;
1337 /* If we don't want any read-ahead, don't bother */
1338 if (VM_RandomReadHint(vma))
1339 goto no_cached_page;
1342 * Do we have something in the page cache already?
1344 retry_find:
1345 page = find_lock_page(mapping, vmf->pgoff);
1347 * For sequential accesses, we use the generic readahead logic.
1349 if (VM_SequentialReadHint(vma)) {
1350 if (!page) {
1351 page_cache_sync_readahead(mapping, ra, file,
1352 vmf->pgoff, 1);
1353 page = find_lock_page(mapping, vmf->pgoff);
1354 if (!page)
1355 goto no_cached_page;
1357 if (PageReadahead(page)) {
1358 page_cache_async_readahead(mapping, ra, file, page,
1359 vmf->pgoff, 1);
1363 if (!page) {
1364 unsigned long ra_pages;
1366 ra->mmap_miss++;
1369 * Do we miss much more than hit in this file? If so,
1370 * stop bothering with read-ahead. It will only hurt.
1372 if (ra->mmap_miss > MMAP_LOTSAMISS)
1373 goto no_cached_page;
1376 * To keep the pgmajfault counter straight, we need to
1377 * check did_readaround, as this is an inner loop.
1379 if (!did_readaround) {
1380 ret = VM_FAULT_MAJOR;
1381 count_vm_event(PGMAJFAULT);
1383 did_readaround = 1;
1384 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1385 if (ra_pages) {
1386 pgoff_t start = 0;
1388 if (vmf->pgoff > ra_pages / 2)
1389 start = vmf->pgoff - ra_pages / 2;
1390 do_page_cache_readahead(mapping, file, start, ra_pages);
1392 page = find_lock_page(mapping, vmf->pgoff);
1393 if (!page)
1394 goto no_cached_page;
1397 if (!did_readaround)
1398 ra->mmap_miss--;
1401 * We have a locked page in the page cache, now we need to check
1402 * that it's up-to-date. If not, it is going to be due to an error.
1404 if (unlikely(!PageUptodate(page)))
1405 goto page_not_uptodate;
1407 /* Must recheck i_size under page lock */
1408 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1409 if (unlikely(vmf->pgoff >= size)) {
1410 unlock_page(page);
1411 page_cache_release(page);
1412 return VM_FAULT_SIGBUS;
1416 * Found the page and have a reference on it.
1418 mark_page_accessed(page);
1419 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1420 vmf->page = page;
1421 return ret | VM_FAULT_LOCKED;
1423 no_cached_page:
1425 * We're only likely to ever get here if MADV_RANDOM is in
1426 * effect.
1428 error = page_cache_read(file, vmf->pgoff);
1431 * The page we want has now been added to the page cache.
1432 * In the unlikely event that someone removed it in the
1433 * meantime, we'll just come back here and read it again.
1435 if (error >= 0)
1436 goto retry_find;
1439 * An error return from page_cache_read can result if the
1440 * system is low on memory, or a problem occurs while trying
1441 * to schedule I/O.
1443 if (error == -ENOMEM)
1444 return VM_FAULT_OOM;
1445 return VM_FAULT_SIGBUS;
1447 page_not_uptodate:
1448 /* IO error path */
1449 if (!did_readaround) {
1450 ret = VM_FAULT_MAJOR;
1451 count_vm_event(PGMAJFAULT);
1455 * Umm, take care of errors if the page isn't up-to-date.
1456 * Try to re-read it _once_. We do this synchronously,
1457 * because there really aren't any performance issues here
1458 * and we need to check for errors.
1460 ClearPageError(page);
1461 error = mapping->a_ops->readpage(file, page);
1462 page_cache_release(page);
1464 if (!error || error == AOP_TRUNCATED_PAGE)
1465 goto retry_find;
1467 /* Things didn't work out. Return zero to tell the mm layer so. */
1468 shrink_readahead_size_eio(file, ra);
1469 return VM_FAULT_SIGBUS;
1471 EXPORT_SYMBOL(filemap_fault);
1473 struct vm_operations_struct generic_file_vm_ops = {
1474 .fault = filemap_fault,
1477 /* This is used for a general mmap of a disk file */
1479 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1481 struct address_space *mapping = file->f_mapping;
1483 if (!mapping->a_ops->readpage)
1484 return -ENOEXEC;
1485 file_accessed(file);
1486 vma->vm_ops = &generic_file_vm_ops;
1487 vma->vm_flags |= VM_CAN_NONLINEAR;
1488 return 0;
1492 * This is for filesystems which do not implement ->writepage.
1494 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1496 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1497 return -EINVAL;
1498 return generic_file_mmap(file, vma);
1500 #else
1501 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1503 return -ENOSYS;
1505 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1507 return -ENOSYS;
1509 #endif /* CONFIG_MMU */
1511 EXPORT_SYMBOL(generic_file_mmap);
1512 EXPORT_SYMBOL(generic_file_readonly_mmap);
1514 static struct page *__read_cache_page(struct address_space *mapping,
1515 pgoff_t index,
1516 int (*filler)(void *,struct page*),
1517 void *data)
1519 struct page *page;
1520 int err;
1521 repeat:
1522 page = find_get_page(mapping, index);
1523 if (!page) {
1524 page = page_cache_alloc_cold(mapping);
1525 if (!page)
1526 return ERR_PTR(-ENOMEM);
1527 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1528 if (unlikely(err)) {
1529 page_cache_release(page);
1530 if (err == -EEXIST)
1531 goto repeat;
1532 /* Presumably ENOMEM for radix tree node */
1533 return ERR_PTR(err);
1535 err = filler(data, page);
1536 if (err < 0) {
1537 page_cache_release(page);
1538 page = ERR_PTR(err);
1541 return page;
1545 * read_cache_page_async - read into page cache, fill it if needed
1546 * @mapping: the page's address_space
1547 * @index: the page index
1548 * @filler: function to perform the read
1549 * @data: destination for read data
1551 * Same as read_cache_page, but don't wait for page to become unlocked
1552 * after submitting it to the filler.
1554 * Read into the page cache. If a page already exists, and PageUptodate() is
1555 * not set, try to fill the page but don't wait for it to become unlocked.
1557 * If the page does not get brought uptodate, return -EIO.
1559 struct page *read_cache_page_async(struct address_space *mapping,
1560 pgoff_t index,
1561 int (*filler)(void *,struct page*),
1562 void *data)
1564 struct page *page;
1565 int err;
1567 retry:
1568 page = __read_cache_page(mapping, index, filler, data);
1569 if (IS_ERR(page))
1570 return page;
1571 if (PageUptodate(page))
1572 goto out;
1574 lock_page(page);
1575 if (!page->mapping) {
1576 unlock_page(page);
1577 page_cache_release(page);
1578 goto retry;
1580 if (PageUptodate(page)) {
1581 unlock_page(page);
1582 goto out;
1584 err = filler(data, page);
1585 if (err < 0) {
1586 page_cache_release(page);
1587 return ERR_PTR(err);
1589 out:
1590 mark_page_accessed(page);
1591 return page;
1593 EXPORT_SYMBOL(read_cache_page_async);
1596 * read_cache_page - read into page cache, fill it if needed
1597 * @mapping: the page's address_space
1598 * @index: the page index
1599 * @filler: function to perform the read
1600 * @data: destination for read data
1602 * Read into the page cache. If a page already exists, and PageUptodate() is
1603 * not set, try to fill the page then wait for it to become unlocked.
1605 * If the page does not get brought uptodate, return -EIO.
1607 struct page *read_cache_page(struct address_space *mapping,
1608 pgoff_t index,
1609 int (*filler)(void *,struct page*),
1610 void *data)
1612 struct page *page;
1614 page = read_cache_page_async(mapping, index, filler, data);
1615 if (IS_ERR(page))
1616 goto out;
1617 wait_on_page_locked(page);
1618 if (!PageUptodate(page)) {
1619 page_cache_release(page);
1620 page = ERR_PTR(-EIO);
1622 out:
1623 return page;
1625 EXPORT_SYMBOL(read_cache_page);
1628 * The logic we want is
1630 * if suid or (sgid and xgrp)
1631 * remove privs
1633 int should_remove_suid(struct dentry *dentry)
1635 mode_t mode = dentry->d_inode->i_mode;
1636 int kill = 0;
1638 /* suid always must be killed */
1639 if (unlikely(mode & S_ISUID))
1640 kill = ATTR_KILL_SUID;
1643 * sgid without any exec bits is just a mandatory locking mark; leave
1644 * it alone. If some exec bits are set, it's a real sgid; kill it.
1646 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1647 kill |= ATTR_KILL_SGID;
1649 if (unlikely(kill && !capable(CAP_FSETID)))
1650 return kill;
1652 return 0;
1654 EXPORT_SYMBOL(should_remove_suid);
1656 int __remove_suid(struct dentry *dentry, int kill)
1658 struct iattr newattrs;
1660 newattrs.ia_valid = ATTR_FORCE | kill;
1661 return notify_change(dentry, &newattrs);
1664 int remove_suid(struct dentry *dentry)
1666 int killsuid = should_remove_suid(dentry);
1667 int killpriv = security_inode_need_killpriv(dentry);
1668 int error = 0;
1670 if (killpriv < 0)
1671 return killpriv;
1672 if (killpriv)
1673 error = security_inode_killpriv(dentry);
1674 if (!error && killsuid)
1675 error = __remove_suid(dentry, killsuid);
1677 return error;
1679 EXPORT_SYMBOL(remove_suid);
1681 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1682 const struct iovec *iov, size_t base, size_t bytes)
1684 size_t copied = 0, left = 0;
1686 while (bytes) {
1687 char __user *buf = iov->iov_base + base;
1688 int copy = min(bytes, iov->iov_len - base);
1690 base = 0;
1691 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1692 copied += copy;
1693 bytes -= copy;
1694 vaddr += copy;
1695 iov++;
1697 if (unlikely(left))
1698 break;
1700 return copied - left;
1704 * Copy as much as we can into the page and return the number of bytes which
1705 * were sucessfully copied. If a fault is encountered then return the number of
1706 * bytes which were copied.
1708 size_t iov_iter_copy_from_user_atomic(struct page *page,
1709 struct iov_iter *i, unsigned long offset, size_t bytes)
1711 char *kaddr;
1712 size_t copied;
1714 BUG_ON(!in_atomic());
1715 kaddr = kmap_atomic(page, KM_USER0);
1716 if (likely(i->nr_segs == 1)) {
1717 int left;
1718 char __user *buf = i->iov->iov_base + i->iov_offset;
1719 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1720 buf, bytes);
1721 copied = bytes - left;
1722 } else {
1723 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1724 i->iov, i->iov_offset, bytes);
1726 kunmap_atomic(kaddr, KM_USER0);
1728 return copied;
1730 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1733 * This has the same sideeffects and return value as
1734 * iov_iter_copy_from_user_atomic().
1735 * The difference is that it attempts to resolve faults.
1736 * Page must not be locked.
1738 size_t iov_iter_copy_from_user(struct page *page,
1739 struct iov_iter *i, unsigned long offset, size_t bytes)
1741 char *kaddr;
1742 size_t copied;
1744 kaddr = kmap(page);
1745 if (likely(i->nr_segs == 1)) {
1746 int left;
1747 char __user *buf = i->iov->iov_base + i->iov_offset;
1748 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1749 copied = bytes - left;
1750 } else {
1751 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1752 i->iov, i->iov_offset, bytes);
1754 kunmap(page);
1755 return copied;
1757 EXPORT_SYMBOL(iov_iter_copy_from_user);
1759 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1761 BUG_ON(i->count < bytes);
1763 if (likely(i->nr_segs == 1)) {
1764 i->iov_offset += bytes;
1765 i->count -= bytes;
1766 } else {
1767 const struct iovec *iov = i->iov;
1768 size_t base = i->iov_offset;
1771 * The !iov->iov_len check ensures we skip over unlikely
1772 * zero-length segments (without overruning the iovec).
1774 while (bytes || unlikely(!iov->iov_len && i->count)) {
1775 int copy;
1777 copy = min(bytes, iov->iov_len - base);
1778 BUG_ON(!i->count || i->count < copy);
1779 i->count -= copy;
1780 bytes -= copy;
1781 base += copy;
1782 if (iov->iov_len == base) {
1783 iov++;
1784 base = 0;
1787 i->iov = iov;
1788 i->iov_offset = base;
1791 EXPORT_SYMBOL(iov_iter_advance);
1794 * Fault in the first iovec of the given iov_iter, to a maximum length
1795 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1796 * accessed (ie. because it is an invalid address).
1798 * writev-intensive code may want this to prefault several iovecs -- that
1799 * would be possible (callers must not rely on the fact that _only_ the
1800 * first iovec will be faulted with the current implementation).
1802 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1804 char __user *buf = i->iov->iov_base + i->iov_offset;
1805 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1806 return fault_in_pages_readable(buf, bytes);
1808 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1811 * Return the count of just the current iov_iter segment.
1813 size_t iov_iter_single_seg_count(struct iov_iter *i)
1815 const struct iovec *iov = i->iov;
1816 if (i->nr_segs == 1)
1817 return i->count;
1818 else
1819 return min(i->count, iov->iov_len - i->iov_offset);
1821 EXPORT_SYMBOL(iov_iter_single_seg_count);
1824 * Performs necessary checks before doing a write
1826 * Can adjust writing position or amount of bytes to write.
1827 * Returns appropriate error code that caller should return or
1828 * zero in case that write should be allowed.
1830 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1832 struct inode *inode = file->f_mapping->host;
1833 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1835 if (unlikely(*pos < 0))
1836 return -EINVAL;
1838 if (!isblk) {
1839 /* FIXME: this is for backwards compatibility with 2.4 */
1840 if (file->f_flags & O_APPEND)
1841 *pos = i_size_read(inode);
1843 if (limit != RLIM_INFINITY) {
1844 if (*pos >= limit) {
1845 send_sig(SIGXFSZ, current, 0);
1846 return -EFBIG;
1848 if (*count > limit - (typeof(limit))*pos) {
1849 *count = limit - (typeof(limit))*pos;
1855 * LFS rule
1857 if (unlikely(*pos + *count > MAX_NON_LFS &&
1858 !(file->f_flags & O_LARGEFILE))) {
1859 if (*pos >= MAX_NON_LFS) {
1860 return -EFBIG;
1862 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1863 *count = MAX_NON_LFS - (unsigned long)*pos;
1868 * Are we about to exceed the fs block limit ?
1870 * If we have written data it becomes a short write. If we have
1871 * exceeded without writing data we send a signal and return EFBIG.
1872 * Linus frestrict idea will clean these up nicely..
1874 if (likely(!isblk)) {
1875 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1876 if (*count || *pos > inode->i_sb->s_maxbytes) {
1877 return -EFBIG;
1879 /* zero-length writes at ->s_maxbytes are OK */
1882 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1883 *count = inode->i_sb->s_maxbytes - *pos;
1884 } else {
1885 #ifdef CONFIG_BLOCK
1886 loff_t isize;
1887 if (bdev_read_only(I_BDEV(inode)))
1888 return -EPERM;
1889 isize = i_size_read(inode);
1890 if (*pos >= isize) {
1891 if (*count || *pos > isize)
1892 return -ENOSPC;
1895 if (*pos + *count > isize)
1896 *count = isize - *pos;
1897 #else
1898 return -EPERM;
1899 #endif
1901 return 0;
1903 EXPORT_SYMBOL(generic_write_checks);
1905 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1906 loff_t pos, unsigned len, unsigned flags,
1907 struct page **pagep, void **fsdata)
1909 const struct address_space_operations *aops = mapping->a_ops;
1911 if (aops->write_begin) {
1912 return aops->write_begin(file, mapping, pos, len, flags,
1913 pagep, fsdata);
1914 } else {
1915 int ret;
1916 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1917 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1918 struct inode *inode = mapping->host;
1919 struct page *page;
1920 again:
1921 page = __grab_cache_page(mapping, index);
1922 *pagep = page;
1923 if (!page)
1924 return -ENOMEM;
1926 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1928 * There is no way to resolve a short write situation
1929 * for a !Uptodate page (except by double copying in
1930 * the caller done by generic_perform_write_2copy).
1932 * Instead, we have to bring it uptodate here.
1934 ret = aops->readpage(file, page);
1935 page_cache_release(page);
1936 if (ret) {
1937 if (ret == AOP_TRUNCATED_PAGE)
1938 goto again;
1939 return ret;
1941 goto again;
1944 ret = aops->prepare_write(file, page, offset, offset+len);
1945 if (ret) {
1946 unlock_page(page);
1947 page_cache_release(page);
1948 if (pos + len > inode->i_size)
1949 vmtruncate(inode, inode->i_size);
1951 return ret;
1954 EXPORT_SYMBOL(pagecache_write_begin);
1956 int pagecache_write_end(struct file *file, struct address_space *mapping,
1957 loff_t pos, unsigned len, unsigned copied,
1958 struct page *page, void *fsdata)
1960 const struct address_space_operations *aops = mapping->a_ops;
1961 int ret;
1963 if (aops->write_end) {
1964 mark_page_accessed(page);
1965 ret = aops->write_end(file, mapping, pos, len, copied,
1966 page, fsdata);
1967 } else {
1968 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1969 struct inode *inode = mapping->host;
1971 flush_dcache_page(page);
1972 ret = aops->commit_write(file, page, offset, offset+len);
1973 unlock_page(page);
1974 mark_page_accessed(page);
1975 page_cache_release(page);
1977 if (ret < 0) {
1978 if (pos + len > inode->i_size)
1979 vmtruncate(inode, inode->i_size);
1980 } else if (ret > 0)
1981 ret = min_t(size_t, copied, ret);
1982 else
1983 ret = copied;
1986 return ret;
1988 EXPORT_SYMBOL(pagecache_write_end);
1990 ssize_t
1991 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1992 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1993 size_t count, size_t ocount)
1995 struct file *file = iocb->ki_filp;
1996 struct address_space *mapping = file->f_mapping;
1997 struct inode *inode = mapping->host;
1998 ssize_t written;
2000 if (count != ocount)
2001 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2003 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2004 if (written > 0) {
2005 loff_t end = pos + written;
2006 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2007 i_size_write(inode, end);
2008 mark_inode_dirty(inode);
2010 *ppos = end;
2014 * Sync the fs metadata but not the minor inode changes and
2015 * of course not the data as we did direct DMA for the IO.
2016 * i_mutex is held, which protects generic_osync_inode() from
2017 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2019 if ((written >= 0 || written == -EIOCBQUEUED) &&
2020 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2021 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2022 if (err < 0)
2023 written = err;
2025 return written;
2027 EXPORT_SYMBOL(generic_file_direct_write);
2030 * Find or create a page at the given pagecache position. Return the locked
2031 * page. This function is specifically for buffered writes.
2033 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2035 int status;
2036 struct page *page;
2037 repeat:
2038 page = find_lock_page(mapping, index);
2039 if (likely(page))
2040 return page;
2042 page = page_cache_alloc(mapping);
2043 if (!page)
2044 return NULL;
2045 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2046 if (unlikely(status)) {
2047 page_cache_release(page);
2048 if (status == -EEXIST)
2049 goto repeat;
2050 return NULL;
2052 return page;
2054 EXPORT_SYMBOL(__grab_cache_page);
2056 static ssize_t generic_perform_write_2copy(struct file *file,
2057 struct iov_iter *i, loff_t pos)
2059 struct address_space *mapping = file->f_mapping;
2060 const struct address_space_operations *a_ops = mapping->a_ops;
2061 struct inode *inode = mapping->host;
2062 long status = 0;
2063 ssize_t written = 0;
2065 do {
2066 struct page *src_page;
2067 struct page *page;
2068 pgoff_t index; /* Pagecache index for current page */
2069 unsigned long offset; /* Offset into pagecache page */
2070 unsigned long bytes; /* Bytes to write to page */
2071 size_t copied; /* Bytes copied from user */
2073 offset = (pos & (PAGE_CACHE_SIZE - 1));
2074 index = pos >> PAGE_CACHE_SHIFT;
2075 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2076 iov_iter_count(i));
2079 * a non-NULL src_page indicates that we're doing the
2080 * copy via get_user_pages and kmap.
2082 src_page = NULL;
2085 * Bring in the user page that we will copy from _first_.
2086 * Otherwise there's a nasty deadlock on copying from the
2087 * same page as we're writing to, without it being marked
2088 * up-to-date.
2090 * Not only is this an optimisation, but it is also required
2091 * to check that the address is actually valid, when atomic
2092 * usercopies are used, below.
2094 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2095 status = -EFAULT;
2096 break;
2099 page = __grab_cache_page(mapping, index);
2100 if (!page) {
2101 status = -ENOMEM;
2102 break;
2106 * non-uptodate pages cannot cope with short copies, and we
2107 * cannot take a pagefault with the destination page locked.
2108 * So pin the source page to copy it.
2110 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2111 unlock_page(page);
2113 src_page = alloc_page(GFP_KERNEL);
2114 if (!src_page) {
2115 page_cache_release(page);
2116 status = -ENOMEM;
2117 break;
2121 * Cannot get_user_pages with a page locked for the
2122 * same reason as we can't take a page fault with a
2123 * page locked (as explained below).
2125 copied = iov_iter_copy_from_user(src_page, i,
2126 offset, bytes);
2127 if (unlikely(copied == 0)) {
2128 status = -EFAULT;
2129 page_cache_release(page);
2130 page_cache_release(src_page);
2131 break;
2133 bytes = copied;
2135 lock_page(page);
2137 * Can't handle the page going uptodate here, because
2138 * that means we would use non-atomic usercopies, which
2139 * zero out the tail of the page, which can cause
2140 * zeroes to become transiently visible. We could just
2141 * use a non-zeroing copy, but the APIs aren't too
2142 * consistent.
2144 if (unlikely(!page->mapping || PageUptodate(page))) {
2145 unlock_page(page);
2146 page_cache_release(page);
2147 page_cache_release(src_page);
2148 continue;
2152 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2153 if (unlikely(status))
2154 goto fs_write_aop_error;
2156 if (!src_page) {
2158 * Must not enter the pagefault handler here, because
2159 * we hold the page lock, so we might recursively
2160 * deadlock on the same lock, or get an ABBA deadlock
2161 * against a different lock, or against the mmap_sem
2162 * (which nests outside the page lock). So increment
2163 * preempt count, and use _atomic usercopies.
2165 * The page is uptodate so we are OK to encounter a
2166 * short copy: if unmodified parts of the page are
2167 * marked dirty and written out to disk, it doesn't
2168 * really matter.
2170 pagefault_disable();
2171 copied = iov_iter_copy_from_user_atomic(page, i,
2172 offset, bytes);
2173 pagefault_enable();
2174 } else {
2175 void *src, *dst;
2176 src = kmap_atomic(src_page, KM_USER0);
2177 dst = kmap_atomic(page, KM_USER1);
2178 memcpy(dst + offset, src + offset, bytes);
2179 kunmap_atomic(dst, KM_USER1);
2180 kunmap_atomic(src, KM_USER0);
2181 copied = bytes;
2183 flush_dcache_page(page);
2185 status = a_ops->commit_write(file, page, offset, offset+bytes);
2186 if (unlikely(status < 0))
2187 goto fs_write_aop_error;
2188 if (unlikely(status > 0)) /* filesystem did partial write */
2189 copied = min_t(size_t, copied, status);
2191 unlock_page(page);
2192 mark_page_accessed(page);
2193 page_cache_release(page);
2194 if (src_page)
2195 page_cache_release(src_page);
2197 iov_iter_advance(i, copied);
2198 pos += copied;
2199 written += copied;
2201 balance_dirty_pages_ratelimited(mapping);
2202 cond_resched();
2203 continue;
2205 fs_write_aop_error:
2206 unlock_page(page);
2207 page_cache_release(page);
2208 if (src_page)
2209 page_cache_release(src_page);
2212 * prepare_write() may have instantiated a few blocks
2213 * outside i_size. Trim these off again. Don't need
2214 * i_size_read because we hold i_mutex.
2216 if (pos + bytes > inode->i_size)
2217 vmtruncate(inode, inode->i_size);
2218 break;
2219 } while (iov_iter_count(i));
2221 return written ? written : status;
2224 static ssize_t generic_perform_write(struct file *file,
2225 struct iov_iter *i, loff_t pos)
2227 struct address_space *mapping = file->f_mapping;
2228 const struct address_space_operations *a_ops = mapping->a_ops;
2229 long status = 0;
2230 ssize_t written = 0;
2231 unsigned int flags = 0;
2234 * Copies from kernel address space cannot fail (NFSD is a big user).
2236 if (segment_eq(get_fs(), KERNEL_DS))
2237 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2239 do {
2240 struct page *page;
2241 pgoff_t index; /* Pagecache index for current page */
2242 unsigned long offset; /* Offset into pagecache page */
2243 unsigned long bytes; /* Bytes to write to page */
2244 size_t copied; /* Bytes copied from user */
2245 void *fsdata;
2247 offset = (pos & (PAGE_CACHE_SIZE - 1));
2248 index = pos >> PAGE_CACHE_SHIFT;
2249 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2250 iov_iter_count(i));
2252 again:
2255 * Bring in the user page that we will copy from _first_.
2256 * Otherwise there's a nasty deadlock on copying from the
2257 * same page as we're writing to, without it being marked
2258 * up-to-date.
2260 * Not only is this an optimisation, but it is also required
2261 * to check that the address is actually valid, when atomic
2262 * usercopies are used, below.
2264 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2265 status = -EFAULT;
2266 break;
2269 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2270 &page, &fsdata);
2271 if (unlikely(status))
2272 break;
2274 pagefault_disable();
2275 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2276 pagefault_enable();
2277 flush_dcache_page(page);
2279 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2280 page, fsdata);
2281 if (unlikely(status < 0))
2282 break;
2283 copied = status;
2285 cond_resched();
2287 iov_iter_advance(i, copied);
2288 if (unlikely(copied == 0)) {
2290 * If we were unable to copy any data at all, we must
2291 * fall back to a single segment length write.
2293 * If we didn't fallback here, we could livelock
2294 * because not all segments in the iov can be copied at
2295 * once without a pagefault.
2297 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2298 iov_iter_single_seg_count(i));
2299 goto again;
2301 pos += copied;
2302 written += copied;
2304 balance_dirty_pages_ratelimited(mapping);
2306 } while (iov_iter_count(i));
2308 return written ? written : status;
2311 ssize_t
2312 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2313 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2314 size_t count, ssize_t written)
2316 struct file *file = iocb->ki_filp;
2317 struct address_space *mapping = file->f_mapping;
2318 const struct address_space_operations *a_ops = mapping->a_ops;
2319 struct inode *inode = mapping->host;
2320 ssize_t status;
2321 struct iov_iter i;
2323 iov_iter_init(&i, iov, nr_segs, count, written);
2324 if (a_ops->write_begin)
2325 status = generic_perform_write(file, &i, pos);
2326 else
2327 status = generic_perform_write_2copy(file, &i, pos);
2329 if (likely(status >= 0)) {
2330 written += status;
2331 *ppos = pos + status;
2334 * For now, when the user asks for O_SYNC, we'll actually give
2335 * O_DSYNC
2337 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2338 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2339 status = generic_osync_inode(inode, mapping,
2340 OSYNC_METADATA|OSYNC_DATA);
2345 * If we get here for O_DIRECT writes then we must have fallen through
2346 * to buffered writes (block instantiation inside i_size). So we sync
2347 * the file data here, to try to honour O_DIRECT expectations.
2349 if (unlikely(file->f_flags & O_DIRECT) && written)
2350 status = filemap_write_and_wait(mapping);
2352 return written ? written : status;
2354 EXPORT_SYMBOL(generic_file_buffered_write);
2356 static ssize_t
2357 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2358 unsigned long nr_segs, loff_t *ppos)
2360 struct file *file = iocb->ki_filp;
2361 struct address_space * mapping = file->f_mapping;
2362 size_t ocount; /* original count */
2363 size_t count; /* after file limit checks */
2364 struct inode *inode = mapping->host;
2365 loff_t pos;
2366 ssize_t written;
2367 ssize_t err;
2369 ocount = 0;
2370 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2371 if (err)
2372 return err;
2374 count = ocount;
2375 pos = *ppos;
2377 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2379 /* We can write back this queue in page reclaim */
2380 current->backing_dev_info = mapping->backing_dev_info;
2381 written = 0;
2383 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2384 if (err)
2385 goto out;
2387 if (count == 0)
2388 goto out;
2390 err = remove_suid(file->f_path.dentry);
2391 if (err)
2392 goto out;
2394 file_update_time(file);
2396 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2397 if (unlikely(file->f_flags & O_DIRECT)) {
2398 loff_t endbyte;
2399 ssize_t written_buffered;
2401 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2402 ppos, count, ocount);
2403 if (written < 0 || written == count)
2404 goto out;
2406 * direct-io write to a hole: fall through to buffered I/O
2407 * for completing the rest of the request.
2409 pos += written;
2410 count -= written;
2411 written_buffered = generic_file_buffered_write(iocb, iov,
2412 nr_segs, pos, ppos, count,
2413 written);
2415 * If generic_file_buffered_write() retuned a synchronous error
2416 * then we want to return the number of bytes which were
2417 * direct-written, or the error code if that was zero. Note
2418 * that this differs from normal direct-io semantics, which
2419 * will return -EFOO even if some bytes were written.
2421 if (written_buffered < 0) {
2422 err = written_buffered;
2423 goto out;
2427 * We need to ensure that the page cache pages are written to
2428 * disk and invalidated to preserve the expected O_DIRECT
2429 * semantics.
2431 endbyte = pos + written_buffered - written - 1;
2432 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2433 SYNC_FILE_RANGE_WAIT_BEFORE|
2434 SYNC_FILE_RANGE_WRITE|
2435 SYNC_FILE_RANGE_WAIT_AFTER);
2436 if (err == 0) {
2437 written = written_buffered;
2438 invalidate_mapping_pages(mapping,
2439 pos >> PAGE_CACHE_SHIFT,
2440 endbyte >> PAGE_CACHE_SHIFT);
2441 } else {
2443 * We don't know how much we wrote, so just return
2444 * the number of bytes which were direct-written
2447 } else {
2448 written = generic_file_buffered_write(iocb, iov, nr_segs,
2449 pos, ppos, count, written);
2451 out:
2452 current->backing_dev_info = NULL;
2453 return written ? written : err;
2456 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2457 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2459 struct file *file = iocb->ki_filp;
2460 struct address_space *mapping = file->f_mapping;
2461 struct inode *inode = mapping->host;
2462 ssize_t ret;
2464 BUG_ON(iocb->ki_pos != pos);
2466 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2467 &iocb->ki_pos);
2469 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2470 ssize_t err;
2472 err = sync_page_range_nolock(inode, mapping, pos, ret);
2473 if (err < 0)
2474 ret = err;
2476 return ret;
2478 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2480 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2481 unsigned long nr_segs, loff_t pos)
2483 struct file *file = iocb->ki_filp;
2484 struct address_space *mapping = file->f_mapping;
2485 struct inode *inode = mapping->host;
2486 ssize_t ret;
2488 BUG_ON(iocb->ki_pos != pos);
2490 mutex_lock(&inode->i_mutex);
2491 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2492 &iocb->ki_pos);
2493 mutex_unlock(&inode->i_mutex);
2495 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2496 ssize_t err;
2498 err = sync_page_range(inode, mapping, pos, ret);
2499 if (err < 0)
2500 ret = err;
2502 return ret;
2504 EXPORT_SYMBOL(generic_file_aio_write);
2507 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2508 * went wrong during pagecache shootdown.
2510 static ssize_t
2511 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2512 loff_t offset, unsigned long nr_segs)
2514 struct file *file = iocb->ki_filp;
2515 struct address_space *mapping = file->f_mapping;
2516 ssize_t retval;
2517 size_t write_len;
2518 pgoff_t end = 0; /* silence gcc */
2521 * If it's a write, unmap all mmappings of the file up-front. This
2522 * will cause any pte dirty bits to be propagated into the pageframes
2523 * for the subsequent filemap_write_and_wait().
2525 if (rw == WRITE) {
2526 write_len = iov_length(iov, nr_segs);
2527 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2528 if (mapping_mapped(mapping))
2529 unmap_mapping_range(mapping, offset, write_len, 0);
2532 retval = filemap_write_and_wait(mapping);
2533 if (retval)
2534 goto out;
2537 * After a write we want buffered reads to be sure to go to disk to get
2538 * the new data. We invalidate clean cached page from the region we're
2539 * about to write. We do this *before* the write so that we can return
2540 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2542 if (rw == WRITE && mapping->nrpages) {
2543 retval = invalidate_inode_pages2_range(mapping,
2544 offset >> PAGE_CACHE_SHIFT, end);
2545 if (retval)
2546 goto out;
2549 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2552 * Finally, try again to invalidate clean pages which might have been
2553 * cached by non-direct readahead, or faulted in by get_user_pages()
2554 * if the source of the write was an mmap'ed region of the file
2555 * we're writing. Either one is a pretty crazy thing to do,
2556 * so we don't support it 100%. If this invalidation
2557 * fails, tough, the write still worked...
2559 if (rw == WRITE && mapping->nrpages) {
2560 invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2562 out:
2563 return retval;
2567 * try_to_release_page() - release old fs-specific metadata on a page
2569 * @page: the page which the kernel is trying to free
2570 * @gfp_mask: memory allocation flags (and I/O mode)
2572 * The address_space is to try to release any data against the page
2573 * (presumably at page->private). If the release was successful, return `1'.
2574 * Otherwise return zero.
2576 * The @gfp_mask argument specifies whether I/O may be performed to release
2577 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2579 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2581 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2583 struct address_space * const mapping = page->mapping;
2585 BUG_ON(!PageLocked(page));
2586 if (PageWriteback(page))
2587 return 0;
2589 if (mapping && mapping->a_ops->releasepage)
2590 return mapping->a_ops->releasepage(page, gfp_mask);
2591 return try_to_free_buffers(page);
2594 EXPORT_SYMBOL(try_to_release_page);