2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/debugfs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mii.h>
46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.13"
48 #define PFX DRV_NAME " "
50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024
53 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
54 #define MAX_RX_RING_SIZE 4096
55 #define RX_COPY_THRESHOLD 128
56 #define RX_BUF_SIZE 1536
57 #define PHY_RETRIES 1000
58 #define ETH_JUMBO_MTU 9000
59 #define TX_WATCHDOG (5 * HZ)
60 #define NAPI_WEIGHT 64
64 #define SKGE_EEPROM_MAGIC 0x9933aabb
67 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
68 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
69 MODULE_LICENSE("GPL");
70 MODULE_VERSION(DRV_VERSION
);
72 static const u32 default_msg
73 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
74 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
76 static int debug
= -1; /* defaults above */
77 module_param(debug
, int, 0);
78 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
80 static const struct pci_device_id skge_id_table
[] = {
81 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
82 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
83 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
84 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
85 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
86 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
87 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
88 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
89 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
90 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
91 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
94 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
96 static int skge_up(struct net_device
*dev
);
97 static int skge_down(struct net_device
*dev
);
98 static void skge_phy_reset(struct skge_port
*skge
);
99 static void skge_tx_clean(struct net_device
*dev
);
100 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
101 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
102 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
103 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
104 static void yukon_init(struct skge_hw
*hw
, int port
);
105 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
106 static void genesis_link_up(struct skge_port
*skge
);
108 /* Avoid conditionals by using array */
109 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
110 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
111 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
112 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
113 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
114 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
116 static int skge_get_regs_len(struct net_device
*dev
)
122 * Returns copy of whole control register region
123 * Note: skip RAM address register because accessing it will
126 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
129 const struct skge_port
*skge
= netdev_priv(dev
);
130 const void __iomem
*io
= skge
->hw
->regs
;
133 memset(p
, 0, regs
->len
);
134 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
136 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
137 regs
->len
- B3_RI_WTO_R1
);
140 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
141 static u32
wol_supported(const struct skge_hw
*hw
)
143 if (hw
->chip_id
== CHIP_ID_GENESIS
)
146 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
149 return WAKE_MAGIC
| WAKE_PHY
;
152 static u32
pci_wake_enabled(struct pci_dev
*dev
)
154 int pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
157 /* If device doesn't support PM Capabilities, but request is to disable
158 * wake events, it's a nop; otherwise fail */
162 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &value
);
164 value
&= PCI_PM_CAP_PME_MASK
;
165 value
>>= ffs(PCI_PM_CAP_PME_MASK
) - 1; /* First bit of mask */
170 static void skge_wol_init(struct skge_port
*skge
)
172 struct skge_hw
*hw
= skge
->hw
;
173 int port
= skge
->port
;
176 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
177 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
180 skge_write8(hw
, B0_POWER_CTRL
,
181 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
183 /* WA code for COMA mode -- clear PHY reset */
184 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
185 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
186 u32 reg
= skge_read32(hw
, B2_GP_IO
);
189 skge_write32(hw
, B2_GP_IO
, reg
);
192 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
194 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
195 GPC_ANEG_1
| GPC_RST_SET
);
197 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
199 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
200 GPC_ANEG_1
| GPC_RST_CLR
);
202 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
204 /* Force to 10/100 skge_reset will re-enable on resume */
205 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
206 PHY_AN_100FULL
| PHY_AN_100HALF
|
207 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
);
209 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
210 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
211 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
212 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
215 /* Set GMAC to no flow control and auto update for speed/duplex */
216 gma_write16(hw
, port
, GM_GP_CTRL
,
217 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
218 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
220 /* Set WOL address */
221 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
222 skge
->netdev
->dev_addr
, ETH_ALEN
);
224 /* Turn on appropriate WOL control bits */
225 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
227 if (skge
->wol
& WAKE_PHY
)
228 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
230 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
232 if (skge
->wol
& WAKE_MAGIC
)
233 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
235 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;;
237 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
238 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
241 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
244 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
246 struct skge_port
*skge
= netdev_priv(dev
);
248 wol
->supported
= wol_supported(skge
->hw
);
249 wol
->wolopts
= skge
->wol
;
252 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
254 struct skge_port
*skge
= netdev_priv(dev
);
255 struct skge_hw
*hw
= skge
->hw
;
257 if (wol
->wolopts
& ~wol_supported(hw
))
260 skge
->wol
= wol
->wolopts
;
264 /* Determine supported/advertised modes based on hardware.
265 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
267 static u32
skge_supported_modes(const struct skge_hw
*hw
)
272 supported
= SUPPORTED_10baseT_Half
273 | SUPPORTED_10baseT_Full
274 | SUPPORTED_100baseT_Half
275 | SUPPORTED_100baseT_Full
276 | SUPPORTED_1000baseT_Half
277 | SUPPORTED_1000baseT_Full
278 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
280 if (hw
->chip_id
== CHIP_ID_GENESIS
)
281 supported
&= ~(SUPPORTED_10baseT_Half
282 | SUPPORTED_10baseT_Full
283 | SUPPORTED_100baseT_Half
284 | SUPPORTED_100baseT_Full
);
286 else if (hw
->chip_id
== CHIP_ID_YUKON
)
287 supported
&= ~SUPPORTED_1000baseT_Half
;
289 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_1000baseT_Half
290 | SUPPORTED_FIBRE
| SUPPORTED_Autoneg
;
295 static int skge_get_settings(struct net_device
*dev
,
296 struct ethtool_cmd
*ecmd
)
298 struct skge_port
*skge
= netdev_priv(dev
);
299 struct skge_hw
*hw
= skge
->hw
;
301 ecmd
->transceiver
= XCVR_INTERNAL
;
302 ecmd
->supported
= skge_supported_modes(hw
);
305 ecmd
->port
= PORT_TP
;
306 ecmd
->phy_address
= hw
->phy_addr
;
308 ecmd
->port
= PORT_FIBRE
;
310 ecmd
->advertising
= skge
->advertising
;
311 ecmd
->autoneg
= skge
->autoneg
;
312 ecmd
->speed
= skge
->speed
;
313 ecmd
->duplex
= skge
->duplex
;
317 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
319 struct skge_port
*skge
= netdev_priv(dev
);
320 const struct skge_hw
*hw
= skge
->hw
;
321 u32 supported
= skge_supported_modes(hw
);
323 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
324 ecmd
->advertising
= supported
;
330 switch (ecmd
->speed
) {
332 if (ecmd
->duplex
== DUPLEX_FULL
)
333 setting
= SUPPORTED_1000baseT_Full
;
334 else if (ecmd
->duplex
== DUPLEX_HALF
)
335 setting
= SUPPORTED_1000baseT_Half
;
340 if (ecmd
->duplex
== DUPLEX_FULL
)
341 setting
= SUPPORTED_100baseT_Full
;
342 else if (ecmd
->duplex
== DUPLEX_HALF
)
343 setting
= SUPPORTED_100baseT_Half
;
349 if (ecmd
->duplex
== DUPLEX_FULL
)
350 setting
= SUPPORTED_10baseT_Full
;
351 else if (ecmd
->duplex
== DUPLEX_HALF
)
352 setting
= SUPPORTED_10baseT_Half
;
360 if ((setting
& supported
) == 0)
363 skge
->speed
= ecmd
->speed
;
364 skge
->duplex
= ecmd
->duplex
;
367 skge
->autoneg
= ecmd
->autoneg
;
368 skge
->advertising
= ecmd
->advertising
;
370 if (netif_running(dev
))
371 skge_phy_reset(skge
);
376 static void skge_get_drvinfo(struct net_device
*dev
,
377 struct ethtool_drvinfo
*info
)
379 struct skge_port
*skge
= netdev_priv(dev
);
381 strcpy(info
->driver
, DRV_NAME
);
382 strcpy(info
->version
, DRV_VERSION
);
383 strcpy(info
->fw_version
, "N/A");
384 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
387 static const struct skge_stat
{
388 char name
[ETH_GSTRING_LEN
];
392 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
393 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
395 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
396 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
397 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
398 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
399 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
400 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
401 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
402 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
404 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
405 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
406 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
407 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
408 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
409 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
411 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
412 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
413 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
414 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
415 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
418 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
422 return ARRAY_SIZE(skge_stats
);
428 static void skge_get_ethtool_stats(struct net_device
*dev
,
429 struct ethtool_stats
*stats
, u64
*data
)
431 struct skge_port
*skge
= netdev_priv(dev
);
433 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
434 genesis_get_stats(skge
, data
);
436 yukon_get_stats(skge
, data
);
439 /* Use hardware MIB variables for critical path statistics and
440 * transmit feedback not reported at interrupt.
441 * Other errors are accounted for in interrupt handler.
443 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
445 struct skge_port
*skge
= netdev_priv(dev
);
446 u64 data
[ARRAY_SIZE(skge_stats
)];
448 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
449 genesis_get_stats(skge
, data
);
451 yukon_get_stats(skge
, data
);
453 dev
->stats
.tx_bytes
= data
[0];
454 dev
->stats
.rx_bytes
= data
[1];
455 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
456 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
457 dev
->stats
.multicast
= data
[3] + data
[5];
458 dev
->stats
.collisions
= data
[10];
459 dev
->stats
.tx_aborted_errors
= data
[12];
464 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
470 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
471 memcpy(data
+ i
* ETH_GSTRING_LEN
,
472 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
477 static void skge_get_ring_param(struct net_device
*dev
,
478 struct ethtool_ringparam
*p
)
480 struct skge_port
*skge
= netdev_priv(dev
);
482 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
483 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
484 p
->rx_mini_max_pending
= 0;
485 p
->rx_jumbo_max_pending
= 0;
487 p
->rx_pending
= skge
->rx_ring
.count
;
488 p
->tx_pending
= skge
->tx_ring
.count
;
489 p
->rx_mini_pending
= 0;
490 p
->rx_jumbo_pending
= 0;
493 static int skge_set_ring_param(struct net_device
*dev
,
494 struct ethtool_ringparam
*p
)
496 struct skge_port
*skge
= netdev_priv(dev
);
499 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
500 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
503 skge
->rx_ring
.count
= p
->rx_pending
;
504 skge
->tx_ring
.count
= p
->tx_pending
;
506 if (netif_running(dev
)) {
516 static u32
skge_get_msglevel(struct net_device
*netdev
)
518 struct skge_port
*skge
= netdev_priv(netdev
);
519 return skge
->msg_enable
;
522 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
524 struct skge_port
*skge
= netdev_priv(netdev
);
525 skge
->msg_enable
= value
;
528 static int skge_nway_reset(struct net_device
*dev
)
530 struct skge_port
*skge
= netdev_priv(dev
);
532 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
535 skge_phy_reset(skge
);
539 static int skge_set_sg(struct net_device
*dev
, u32 data
)
541 struct skge_port
*skge
= netdev_priv(dev
);
542 struct skge_hw
*hw
= skge
->hw
;
544 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
546 return ethtool_op_set_sg(dev
, data
);
549 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
551 struct skge_port
*skge
= netdev_priv(dev
);
552 struct skge_hw
*hw
= skge
->hw
;
554 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
557 return ethtool_op_set_tx_csum(dev
, data
);
560 static u32
skge_get_rx_csum(struct net_device
*dev
)
562 struct skge_port
*skge
= netdev_priv(dev
);
564 return skge
->rx_csum
;
567 /* Only Yukon supports checksum offload. */
568 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
570 struct skge_port
*skge
= netdev_priv(dev
);
572 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
575 skge
->rx_csum
= data
;
579 static void skge_get_pauseparam(struct net_device
*dev
,
580 struct ethtool_pauseparam
*ecmd
)
582 struct skge_port
*skge
= netdev_priv(dev
);
584 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_SYMMETRIC
)
585 || (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
);
586 ecmd
->tx_pause
= ecmd
->rx_pause
|| (skge
->flow_control
== FLOW_MODE_LOC_SEND
);
588 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
591 static int skge_set_pauseparam(struct net_device
*dev
,
592 struct ethtool_pauseparam
*ecmd
)
594 struct skge_port
*skge
= netdev_priv(dev
);
595 struct ethtool_pauseparam old
;
597 skge_get_pauseparam(dev
, &old
);
599 if (ecmd
->autoneg
!= old
.autoneg
)
600 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
602 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
603 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
604 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
605 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
606 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
607 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
609 skge
->flow_control
= FLOW_MODE_NONE
;
612 if (netif_running(dev
))
613 skge_phy_reset(skge
);
618 /* Chip internal frequency for clock calculations */
619 static inline u32
hwkhz(const struct skge_hw
*hw
)
621 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
624 /* Chip HZ to microseconds */
625 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
627 return (ticks
* 1000) / hwkhz(hw
);
630 /* Microseconds to chip HZ */
631 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
633 return hwkhz(hw
) * usec
/ 1000;
636 static int skge_get_coalesce(struct net_device
*dev
,
637 struct ethtool_coalesce
*ecmd
)
639 struct skge_port
*skge
= netdev_priv(dev
);
640 struct skge_hw
*hw
= skge
->hw
;
641 int port
= skge
->port
;
643 ecmd
->rx_coalesce_usecs
= 0;
644 ecmd
->tx_coalesce_usecs
= 0;
646 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
647 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
648 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
650 if (msk
& rxirqmask
[port
])
651 ecmd
->rx_coalesce_usecs
= delay
;
652 if (msk
& txirqmask
[port
])
653 ecmd
->tx_coalesce_usecs
= delay
;
659 /* Note: interrupt timer is per board, but can turn on/off per port */
660 static int skge_set_coalesce(struct net_device
*dev
,
661 struct ethtool_coalesce
*ecmd
)
663 struct skge_port
*skge
= netdev_priv(dev
);
664 struct skge_hw
*hw
= skge
->hw
;
665 int port
= skge
->port
;
666 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
669 if (ecmd
->rx_coalesce_usecs
== 0)
670 msk
&= ~rxirqmask
[port
];
671 else if (ecmd
->rx_coalesce_usecs
< 25 ||
672 ecmd
->rx_coalesce_usecs
> 33333)
675 msk
|= rxirqmask
[port
];
676 delay
= ecmd
->rx_coalesce_usecs
;
679 if (ecmd
->tx_coalesce_usecs
== 0)
680 msk
&= ~txirqmask
[port
];
681 else if (ecmd
->tx_coalesce_usecs
< 25 ||
682 ecmd
->tx_coalesce_usecs
> 33333)
685 msk
|= txirqmask
[port
];
686 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
689 skge_write32(hw
, B2_IRQM_MSK
, msk
);
691 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
693 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
694 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
699 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
700 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
702 struct skge_hw
*hw
= skge
->hw
;
703 int port
= skge
->port
;
705 spin_lock_bh(&hw
->phy_lock
);
706 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
709 if (hw
->phy_type
== SK_PHY_BCOM
)
710 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
712 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
713 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
715 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
716 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
717 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
721 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
722 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
724 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
725 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
730 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
731 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
732 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
734 if (hw
->phy_type
== SK_PHY_BCOM
)
735 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
737 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
738 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
739 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
746 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
747 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
748 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
749 PHY_M_LED_MO_10(MO_LED_OFF
) |
750 PHY_M_LED_MO_100(MO_LED_OFF
) |
751 PHY_M_LED_MO_1000(MO_LED_OFF
) |
752 PHY_M_LED_MO_RX(MO_LED_OFF
));
755 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
756 PHY_M_LED_PULS_DUR(PULS_170MS
) |
757 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
761 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
762 PHY_M_LED_MO_RX(MO_LED_OFF
) |
763 (skge
->speed
== SPEED_100
?
764 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
767 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
768 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
769 PHY_M_LED_MO_DUP(MO_LED_ON
) |
770 PHY_M_LED_MO_10(MO_LED_ON
) |
771 PHY_M_LED_MO_100(MO_LED_ON
) |
772 PHY_M_LED_MO_1000(MO_LED_ON
) |
773 PHY_M_LED_MO_RX(MO_LED_ON
));
776 spin_unlock_bh(&hw
->phy_lock
);
779 /* blink LED's for finding board */
780 static int skge_phys_id(struct net_device
*dev
, u32 data
)
782 struct skge_port
*skge
= netdev_priv(dev
);
784 enum led_mode mode
= LED_MODE_TST
;
786 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
787 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
792 skge_led(skge
, mode
);
793 mode
^= LED_MODE_TST
;
795 if (msleep_interruptible(BLINK_MS
))
800 /* back to regular LED state */
801 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
806 static int skge_get_eeprom_len(struct net_device
*dev
)
808 struct skge_port
*skge
= netdev_priv(dev
);
811 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
812 return 1 << ( ((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
815 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
819 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
822 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
823 } while (!(offset
& PCI_VPD_ADDR_F
));
825 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
829 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
831 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
832 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
833 offset
| PCI_VPD_ADDR_F
);
836 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
837 } while (offset
& PCI_VPD_ADDR_F
);
840 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
843 struct skge_port
*skge
= netdev_priv(dev
);
844 struct pci_dev
*pdev
= skge
->hw
->pdev
;
845 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
846 int length
= eeprom
->len
;
847 u16 offset
= eeprom
->offset
;
852 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
855 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
856 int n
= min_t(int, length
, sizeof(val
));
858 memcpy(data
, &val
, n
);
866 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
869 struct skge_port
*skge
= netdev_priv(dev
);
870 struct pci_dev
*pdev
= skge
->hw
->pdev
;
871 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
872 int length
= eeprom
->len
;
873 u16 offset
= eeprom
->offset
;
878 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
883 int n
= min_t(int, length
, sizeof(val
));
886 val
= skge_vpd_read(pdev
, cap
, offset
);
887 memcpy(&val
, data
, n
);
889 skge_vpd_write(pdev
, cap
, offset
, val
);
898 static const struct ethtool_ops skge_ethtool_ops
= {
899 .get_settings
= skge_get_settings
,
900 .set_settings
= skge_set_settings
,
901 .get_drvinfo
= skge_get_drvinfo
,
902 .get_regs_len
= skge_get_regs_len
,
903 .get_regs
= skge_get_regs
,
904 .get_wol
= skge_get_wol
,
905 .set_wol
= skge_set_wol
,
906 .get_msglevel
= skge_get_msglevel
,
907 .set_msglevel
= skge_set_msglevel
,
908 .nway_reset
= skge_nway_reset
,
909 .get_link
= ethtool_op_get_link
,
910 .get_eeprom_len
= skge_get_eeprom_len
,
911 .get_eeprom
= skge_get_eeprom
,
912 .set_eeprom
= skge_set_eeprom
,
913 .get_ringparam
= skge_get_ring_param
,
914 .set_ringparam
= skge_set_ring_param
,
915 .get_pauseparam
= skge_get_pauseparam
,
916 .set_pauseparam
= skge_set_pauseparam
,
917 .get_coalesce
= skge_get_coalesce
,
918 .set_coalesce
= skge_set_coalesce
,
919 .set_sg
= skge_set_sg
,
920 .set_tx_csum
= skge_set_tx_csum
,
921 .get_rx_csum
= skge_get_rx_csum
,
922 .set_rx_csum
= skge_set_rx_csum
,
923 .get_strings
= skge_get_strings
,
924 .phys_id
= skge_phys_id
,
925 .get_sset_count
= skge_get_sset_count
,
926 .get_ethtool_stats
= skge_get_ethtool_stats
,
930 * Allocate ring elements and chain them together
931 * One-to-one association of board descriptors with ring elements
933 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
935 struct skge_tx_desc
*d
;
936 struct skge_element
*e
;
939 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
943 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
945 if (i
== ring
->count
- 1) {
946 e
->next
= ring
->start
;
947 d
->next_offset
= base
;
950 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
953 ring
->to_use
= ring
->to_clean
= ring
->start
;
958 /* Allocate and setup a new buffer for receiving */
959 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
960 struct sk_buff
*skb
, unsigned int bufsize
)
962 struct skge_rx_desc
*rd
= e
->desc
;
965 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
969 rd
->dma_hi
= map
>> 32;
971 rd
->csum1_start
= ETH_HLEN
;
972 rd
->csum2_start
= ETH_HLEN
;
978 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
979 pci_unmap_addr_set(e
, mapaddr
, map
);
980 pci_unmap_len_set(e
, maplen
, bufsize
);
983 /* Resume receiving using existing skb,
984 * Note: DMA address is not changed by chip.
985 * MTU not changed while receiver active.
987 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
989 struct skge_rx_desc
*rd
= e
->desc
;
992 rd
->csum2_start
= ETH_HLEN
;
996 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
1000 /* Free all buffers in receive ring, assumes receiver stopped */
1001 static void skge_rx_clean(struct skge_port
*skge
)
1003 struct skge_hw
*hw
= skge
->hw
;
1004 struct skge_ring
*ring
= &skge
->rx_ring
;
1005 struct skge_element
*e
;
1009 struct skge_rx_desc
*rd
= e
->desc
;
1012 pci_unmap_single(hw
->pdev
,
1013 pci_unmap_addr(e
, mapaddr
),
1014 pci_unmap_len(e
, maplen
),
1015 PCI_DMA_FROMDEVICE
);
1016 dev_kfree_skb(e
->skb
);
1019 } while ((e
= e
->next
) != ring
->start
);
1023 /* Allocate buffers for receive ring
1024 * For receive: to_clean is next received frame.
1026 static int skge_rx_fill(struct net_device
*dev
)
1028 struct skge_port
*skge
= netdev_priv(dev
);
1029 struct skge_ring
*ring
= &skge
->rx_ring
;
1030 struct skge_element
*e
;
1034 struct sk_buff
*skb
;
1036 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1041 skb_reserve(skb
, NET_IP_ALIGN
);
1042 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
1043 } while ( (e
= e
->next
) != ring
->start
);
1045 ring
->to_clean
= ring
->start
;
1049 static const char *skge_pause(enum pause_status status
)
1052 case FLOW_STAT_NONE
:
1054 case FLOW_STAT_REM_SEND
:
1056 case FLOW_STAT_LOC_SEND
:
1058 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1061 return "indeterminated";
1066 static void skge_link_up(struct skge_port
*skge
)
1068 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1069 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
1071 netif_carrier_on(skge
->netdev
);
1072 netif_wake_queue(skge
->netdev
);
1074 if (netif_msg_link(skge
)) {
1075 printk(KERN_INFO PFX
1076 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
1077 skge
->netdev
->name
, skge
->speed
,
1078 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1079 skge_pause(skge
->flow_status
));
1083 static void skge_link_down(struct skge_port
*skge
)
1085 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
1086 netif_carrier_off(skge
->netdev
);
1087 netif_stop_queue(skge
->netdev
);
1089 if (netif_msg_link(skge
))
1090 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
1094 static void xm_link_down(struct skge_hw
*hw
, int port
)
1096 struct net_device
*dev
= hw
->dev
[port
];
1097 struct skge_port
*skge
= netdev_priv(dev
);
1099 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1101 if (netif_carrier_ok(dev
))
1102 skge_link_down(skge
);
1105 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1109 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1110 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1112 if (hw
->phy_type
== SK_PHY_XMAC
)
1115 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1116 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1123 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1128 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1131 if (__xm_phy_read(hw
, port
, reg
, &v
))
1132 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
1133 hw
->dev
[port
]->name
);
1137 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1141 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1142 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1143 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1150 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1151 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1152 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1159 static void genesis_init(struct skge_hw
*hw
)
1161 /* set blink source counter */
1162 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1163 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1165 /* configure mac arbiter */
1166 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1168 /* configure mac arbiter timeout values */
1169 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1170 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1171 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1172 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1174 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1175 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1176 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1177 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1179 /* configure packet arbiter timeout */
1180 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1181 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1182 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1183 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1184 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1187 static void genesis_reset(struct skge_hw
*hw
, int port
)
1189 const u8 zero
[8] = { 0 };
1192 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1194 /* reset the statistics module */
1195 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1196 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1197 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1198 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1199 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1201 /* disable Broadcom PHY IRQ */
1202 if (hw
->phy_type
== SK_PHY_BCOM
)
1203 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1205 xm_outhash(hw
, port
, XM_HSM
, zero
);
1207 /* Flush TX and RX fifo */
1208 reg
= xm_read32(hw
, port
, XM_MODE
);
1209 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1210 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1214 /* Convert mode to MII values */
1215 static const u16 phy_pause_map
[] = {
1216 [FLOW_MODE_NONE
] = 0,
1217 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1218 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1219 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1222 /* special defines for FIBER (88E1011S only) */
1223 static const u16 fiber_pause_map
[] = {
1224 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1225 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1226 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1227 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1231 /* Check status of Broadcom phy link */
1232 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1234 struct net_device
*dev
= hw
->dev
[port
];
1235 struct skge_port
*skge
= netdev_priv(dev
);
1238 /* read twice because of latch */
1239 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1240 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1242 if ((status
& PHY_ST_LSYNC
) == 0) {
1243 xm_link_down(hw
, port
);
1247 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1250 if (!(status
& PHY_ST_AN_OVER
))
1253 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1254 if (lpa
& PHY_B_AN_RF
) {
1255 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1260 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1262 /* Check Duplex mismatch */
1263 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1264 case PHY_B_RES_1000FD
:
1265 skge
->duplex
= DUPLEX_FULL
;
1267 case PHY_B_RES_1000HD
:
1268 skge
->duplex
= DUPLEX_HALF
;
1271 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1276 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1277 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1278 case PHY_B_AS_PAUSE_MSK
:
1279 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1282 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1285 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1288 skge
->flow_status
= FLOW_STAT_NONE
;
1290 skge
->speed
= SPEED_1000
;
1293 if (!netif_carrier_ok(dev
))
1294 genesis_link_up(skge
);
1297 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1298 * Phy on for 100 or 10Mbit operation
1300 static void bcom_phy_init(struct skge_port
*skge
)
1302 struct skge_hw
*hw
= skge
->hw
;
1303 int port
= skge
->port
;
1305 u16 id1
, r
, ext
, ctl
;
1307 /* magic workaround patterns for Broadcom */
1308 static const struct {
1312 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1313 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1314 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1315 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1317 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1318 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1321 /* read Id from external PHY (all have the same address) */
1322 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1324 /* Optimize MDIO transfer by suppressing preamble. */
1325 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1327 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1330 case PHY_BCOM_ID1_C0
:
1332 * Workaround BCOM Errata for the C0 type.
1333 * Write magic patterns to reserved registers.
1335 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1336 xm_phy_write(hw
, port
,
1337 C0hack
[i
].reg
, C0hack
[i
].val
);
1340 case PHY_BCOM_ID1_A1
:
1342 * Workaround BCOM Errata for the A1 type.
1343 * Write magic patterns to reserved registers.
1345 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1346 xm_phy_write(hw
, port
,
1347 A1hack
[i
].reg
, A1hack
[i
].val
);
1352 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1353 * Disable Power Management after reset.
1355 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1356 r
|= PHY_B_AC_DIS_PM
;
1357 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1360 xm_read16(hw
, port
, XM_ISRC
);
1362 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1363 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1365 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1367 * Workaround BCOM Errata #1 for the C5 type.
1368 * 1000Base-T Link Acquisition Failure in Slave Mode
1369 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1371 u16 adv
= PHY_B_1000C_RD
;
1372 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1373 adv
|= PHY_B_1000C_AHD
;
1374 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1375 adv
|= PHY_B_1000C_AFD
;
1376 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1378 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1380 if (skge
->duplex
== DUPLEX_FULL
)
1381 ctl
|= PHY_CT_DUP_MD
;
1382 /* Force to slave */
1383 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1386 /* Set autonegotiation pause parameters */
1387 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1388 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1390 /* Handle Jumbo frames */
1391 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1392 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1393 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1395 ext
|= PHY_B_PEC_HIGH_LA
;
1399 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1400 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1402 /* Use link status change interrupt */
1403 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1406 static void xm_phy_init(struct skge_port
*skge
)
1408 struct skge_hw
*hw
= skge
->hw
;
1409 int port
= skge
->port
;
1412 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1413 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1414 ctrl
|= PHY_X_AN_HD
;
1415 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1416 ctrl
|= PHY_X_AN_FD
;
1418 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1420 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1422 /* Restart Auto-negotiation */
1423 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1425 /* Set DuplexMode in Config register */
1426 if (skge
->duplex
== DUPLEX_FULL
)
1427 ctrl
|= PHY_CT_DUP_MD
;
1429 * Do NOT enable Auto-negotiation here. This would hold
1430 * the link down because no IDLEs are transmitted
1434 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1436 /* Poll PHY for status changes */
1437 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1440 static int xm_check_link(struct net_device
*dev
)
1442 struct skge_port
*skge
= netdev_priv(dev
);
1443 struct skge_hw
*hw
= skge
->hw
;
1444 int port
= skge
->port
;
1447 /* read twice because of latch */
1448 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1449 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1451 if ((status
& PHY_ST_LSYNC
) == 0) {
1452 xm_link_down(hw
, port
);
1456 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1459 if (!(status
& PHY_ST_AN_OVER
))
1462 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1463 if (lpa
& PHY_B_AN_RF
) {
1464 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1469 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1471 /* Check Duplex mismatch */
1472 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1474 skge
->duplex
= DUPLEX_FULL
;
1477 skge
->duplex
= DUPLEX_HALF
;
1480 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1485 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1486 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1487 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1488 (lpa
& PHY_X_P_SYM_MD
))
1489 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1490 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1491 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1492 /* Enable PAUSE receive, disable PAUSE transmit */
1493 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1494 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1495 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1496 /* Disable PAUSE receive, enable PAUSE transmit */
1497 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1499 skge
->flow_status
= FLOW_STAT_NONE
;
1501 skge
->speed
= SPEED_1000
;
1504 if (!netif_carrier_ok(dev
))
1505 genesis_link_up(skge
);
1509 /* Poll to check for link coming up.
1511 * Since internal PHY is wired to a level triggered pin, can't
1512 * get an interrupt when carrier is detected, need to poll for
1515 static void xm_link_timer(unsigned long arg
)
1517 struct skge_port
*skge
= (struct skge_port
*) arg
;
1518 struct net_device
*dev
= skge
->netdev
;
1519 struct skge_hw
*hw
= skge
->hw
;
1520 int port
= skge
->port
;
1522 unsigned long flags
;
1524 if (!netif_running(dev
))
1527 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1530 * Verify that the link by checking GPIO register three times.
1531 * This pin has the signal from the link_sync pin connected to it.
1533 for (i
= 0; i
< 3; i
++) {
1534 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1538 /* Re-enable interrupt to detect link down */
1539 if (xm_check_link(dev
)) {
1540 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1541 msk
&= ~XM_IS_INP_ASS
;
1542 xm_write16(hw
, port
, XM_IMSK
, msk
);
1543 xm_read16(hw
, port
, XM_ISRC
);
1546 mod_timer(&skge
->link_timer
,
1547 round_jiffies(jiffies
+ LINK_HZ
));
1549 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1552 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1554 struct net_device
*dev
= hw
->dev
[port
];
1555 struct skge_port
*skge
= netdev_priv(dev
);
1556 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1559 const u8 zero
[6] = { 0 };
1561 for (i
= 0; i
< 10; i
++) {
1562 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1564 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1569 printk(KERN_WARNING PFX
"%s: genesis reset failed\n", dev
->name
);
1572 /* Unreset the XMAC. */
1573 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1576 * Perform additional initialization for external PHYs,
1577 * namely for the 1000baseTX cards that use the XMAC's
1580 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1581 /* Take external Phy out of reset */
1582 r
= skge_read32(hw
, B2_GP_IO
);
1584 r
|= GP_DIR_0
|GP_IO_0
;
1586 r
|= GP_DIR_2
|GP_IO_2
;
1588 skge_write32(hw
, B2_GP_IO
, r
);
1590 /* Enable GMII interface */
1591 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1595 switch(hw
->phy_type
) {
1600 bcom_phy_init(skge
);
1601 bcom_check_link(hw
, port
);
1604 /* Set Station Address */
1605 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1607 /* We don't use match addresses so clear */
1608 for (i
= 1; i
< 16; i
++)
1609 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1611 /* Clear MIB counters */
1612 xm_write16(hw
, port
, XM_STAT_CMD
,
1613 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1614 /* Clear two times according to Errata #3 */
1615 xm_write16(hw
, port
, XM_STAT_CMD
,
1616 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1618 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1619 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1621 /* We don't need the FCS appended to the packet. */
1622 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1624 r
|= XM_RX_BIG_PK_OK
;
1626 if (skge
->duplex
== DUPLEX_HALF
) {
1628 * If in manual half duplex mode the other side might be in
1629 * full duplex mode, so ignore if a carrier extension is not seen
1630 * on frames received
1632 r
|= XM_RX_DIS_CEXT
;
1634 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1636 /* We want short frames padded to 60 bytes. */
1637 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1639 /* Increase threshold for jumbo frames on dual port */
1640 if (hw
->ports
> 1 && jumbo
)
1641 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1643 xm_write16(hw
, port
, XM_TX_THR
, 512);
1646 * Enable the reception of all error frames. This is is
1647 * a necessary evil due to the design of the XMAC. The
1648 * XMAC's receive FIFO is only 8K in size, however jumbo
1649 * frames can be up to 9000 bytes in length. When bad
1650 * frame filtering is enabled, the XMAC's RX FIFO operates
1651 * in 'store and forward' mode. For this to work, the
1652 * entire frame has to fit into the FIFO, but that means
1653 * that jumbo frames larger than 8192 bytes will be
1654 * truncated. Disabling all bad frame filtering causes
1655 * the RX FIFO to operate in streaming mode, in which
1656 * case the XMAC will start transferring frames out of the
1657 * RX FIFO as soon as the FIFO threshold is reached.
1659 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1663 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1664 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1665 * and 'Octets Rx OK Hi Cnt Ov'.
1667 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1670 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1671 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1672 * and 'Octets Tx OK Hi Cnt Ov'.
1674 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1676 /* Configure MAC arbiter */
1677 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1679 /* configure timeout values */
1680 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1681 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1682 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1683 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1685 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1686 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1687 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1688 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1690 /* Configure Rx MAC FIFO */
1691 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1692 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1693 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1695 /* Configure Tx MAC FIFO */
1696 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1697 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1698 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1701 /* Enable frame flushing if jumbo frames used */
1702 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1704 /* enable timeout timers if normal frames */
1705 skge_write16(hw
, B3_PA_CTRL
,
1706 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1710 static void genesis_stop(struct skge_port
*skge
)
1712 struct skge_hw
*hw
= skge
->hw
;
1713 int port
= skge
->port
;
1714 unsigned retries
= 1000;
1717 /* Disable Tx and Rx */
1718 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1719 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1720 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1722 genesis_reset(hw
, port
);
1724 /* Clear Tx packet arbiter timeout IRQ */
1725 skge_write16(hw
, B3_PA_CTRL
,
1726 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1729 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1731 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1732 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1734 } while (--retries
> 0);
1736 /* For external PHYs there must be special handling */
1737 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1738 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1746 skge_write32(hw
, B2_GP_IO
, reg
);
1747 skge_read32(hw
, B2_GP_IO
);
1750 xm_write16(hw
, port
, XM_MMU_CMD
,
1751 xm_read16(hw
, port
, XM_MMU_CMD
)
1752 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1754 xm_read16(hw
, port
, XM_MMU_CMD
);
1758 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1760 struct skge_hw
*hw
= skge
->hw
;
1761 int port
= skge
->port
;
1763 unsigned long timeout
= jiffies
+ HZ
;
1765 xm_write16(hw
, port
,
1766 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1768 /* wait for update to complete */
1769 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1770 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1771 if (time_after(jiffies
, timeout
))
1776 /* special case for 64 bit octet counter */
1777 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1778 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1779 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1780 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1782 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1783 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1786 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1788 struct net_device
*dev
= hw
->dev
[port
];
1789 struct skge_port
*skge
= netdev_priv(dev
);
1790 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1792 if (netif_msg_intr(skge
))
1793 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1796 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1797 xm_link_down(hw
, port
);
1798 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1801 if (status
& XM_IS_TXF_UR
) {
1802 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1803 ++dev
->stats
.tx_fifo_errors
;
1807 static void genesis_link_up(struct skge_port
*skge
)
1809 struct skge_hw
*hw
= skge
->hw
;
1810 int port
= skge
->port
;
1814 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1817 * enabling pause frame reception is required for 1000BT
1818 * because the XMAC is not reset if the link is going down
1820 if (skge
->flow_status
== FLOW_STAT_NONE
||
1821 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1822 /* Disable Pause Frame Reception */
1823 cmd
|= XM_MMU_IGN_PF
;
1825 /* Enable Pause Frame Reception */
1826 cmd
&= ~XM_MMU_IGN_PF
;
1828 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1830 mode
= xm_read32(hw
, port
, XM_MODE
);
1831 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1832 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1834 * Configure Pause Frame Generation
1835 * Use internal and external Pause Frame Generation.
1836 * Sending pause frames is edge triggered.
1837 * Send a Pause frame with the maximum pause time if
1838 * internal oder external FIFO full condition occurs.
1839 * Send a zero pause time frame to re-start transmission.
1841 /* XM_PAUSE_DA = '010000C28001' (default) */
1842 /* XM_MAC_PTIME = 0xffff (maximum) */
1843 /* remember this value is defined in big endian (!) */
1844 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1846 mode
|= XM_PAUSE_MODE
;
1847 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1850 * disable pause frame generation is required for 1000BT
1851 * because the XMAC is not reset if the link is going down
1853 /* Disable Pause Mode in Mode Register */
1854 mode
&= ~XM_PAUSE_MODE
;
1856 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1859 xm_write32(hw
, port
, XM_MODE
, mode
);
1861 /* Turn on detection of Tx underrun */
1862 msk
= xm_read16(hw
, port
, XM_IMSK
);
1863 msk
&= ~XM_IS_TXF_UR
;
1864 xm_write16(hw
, port
, XM_IMSK
, msk
);
1866 xm_read16(hw
, port
, XM_ISRC
);
1868 /* get MMU Command Reg. */
1869 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1870 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1871 cmd
|= XM_MMU_GMII_FD
;
1874 * Workaround BCOM Errata (#10523) for all BCom Phys
1875 * Enable Power Management after link up
1877 if (hw
->phy_type
== SK_PHY_BCOM
) {
1878 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1879 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1880 & ~PHY_B_AC_DIS_PM
);
1881 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1885 xm_write16(hw
, port
, XM_MMU_CMD
,
1886 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1891 static inline void bcom_phy_intr(struct skge_port
*skge
)
1893 struct skge_hw
*hw
= skge
->hw
;
1894 int port
= skge
->port
;
1897 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1898 if (netif_msg_intr(skge
))
1899 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1900 skge
->netdev
->name
, isrc
);
1902 if (isrc
& PHY_B_IS_PSE
)
1903 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1904 hw
->dev
[port
]->name
);
1906 /* Workaround BCom Errata:
1907 * enable and disable loopback mode if "NO HCD" occurs.
1909 if (isrc
& PHY_B_IS_NO_HDCL
) {
1910 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1911 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1912 ctrl
| PHY_CT_LOOP
);
1913 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1914 ctrl
& ~PHY_CT_LOOP
);
1917 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1918 bcom_check_link(hw
, port
);
1922 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1926 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1927 gma_write16(hw
, port
, GM_SMI_CTRL
,
1928 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1929 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1932 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1936 printk(KERN_WARNING PFX
"%s: phy write timeout\n",
1937 hw
->dev
[port
]->name
);
1941 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1945 gma_write16(hw
, port
, GM_SMI_CTRL
,
1946 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1947 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1949 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1951 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1957 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1961 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1964 if (__gm_phy_read(hw
, port
, reg
, &v
))
1965 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1966 hw
->dev
[port
]->name
);
1970 /* Marvell Phy Initialization */
1971 static void yukon_init(struct skge_hw
*hw
, int port
)
1973 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1974 u16 ctrl
, ct1000
, adv
;
1976 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1977 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1979 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1980 PHY_M_EC_MAC_S_MSK
);
1981 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1983 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1985 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1988 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1989 if (skge
->autoneg
== AUTONEG_DISABLE
)
1990 ctrl
&= ~PHY_CT_ANE
;
1992 ctrl
|= PHY_CT_RESET
;
1993 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1999 if (skge
->autoneg
== AUTONEG_ENABLE
) {
2001 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2002 ct1000
|= PHY_M_1000C_AFD
;
2003 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2004 ct1000
|= PHY_M_1000C_AHD
;
2005 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
2006 adv
|= PHY_M_AN_100_FD
;
2007 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
2008 adv
|= PHY_M_AN_100_HD
;
2009 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
2010 adv
|= PHY_M_AN_10_FD
;
2011 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
2012 adv
|= PHY_M_AN_10_HD
;
2014 /* Set Flow-control capabilities */
2015 adv
|= phy_pause_map
[skge
->flow_control
];
2017 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2018 adv
|= PHY_M_AN_1000X_AFD
;
2019 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2020 adv
|= PHY_M_AN_1000X_AHD
;
2022 adv
|= fiber_pause_map
[skge
->flow_control
];
2025 /* Restart Auto-negotiation */
2026 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
2028 /* forced speed/duplex settings */
2029 ct1000
= PHY_M_1000C_MSE
;
2031 if (skge
->duplex
== DUPLEX_FULL
)
2032 ctrl
|= PHY_CT_DUP_MD
;
2034 switch (skge
->speed
) {
2036 ctrl
|= PHY_CT_SP1000
;
2039 ctrl
|= PHY_CT_SP100
;
2043 ctrl
|= PHY_CT_RESET
;
2046 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2048 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2049 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2051 /* Enable phy interrupt on autonegotiation complete (or link up) */
2052 if (skge
->autoneg
== AUTONEG_ENABLE
)
2053 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2055 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2058 static void yukon_reset(struct skge_hw
*hw
, int port
)
2060 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2061 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2062 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2063 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2064 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2066 gma_write16(hw
, port
, GM_RX_CTRL
,
2067 gma_read16(hw
, port
, GM_RX_CTRL
)
2068 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2071 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2072 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2077 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2080 reg
= skge_read32(hw
, B2_FAR
);
2081 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2082 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2083 skge_write32(hw
, B2_FAR
, reg
);
2087 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2089 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2092 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2094 /* WA code for COMA mode -- set PHY reset */
2095 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2096 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2097 reg
= skge_read32(hw
, B2_GP_IO
);
2098 reg
|= GP_DIR_9
| GP_IO_9
;
2099 skge_write32(hw
, B2_GP_IO
, reg
);
2103 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2104 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2106 /* WA code for COMA mode -- clear PHY reset */
2107 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2108 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2109 reg
= skge_read32(hw
, B2_GP_IO
);
2112 skge_write32(hw
, B2_GP_IO
, reg
);
2115 /* Set hardware config mode */
2116 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2117 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2118 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2120 /* Clear GMC reset */
2121 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2122 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2123 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2125 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2126 reg
= GM_GPCR_AU_ALL_DIS
;
2127 gma_write16(hw
, port
, GM_GP_CTRL
,
2128 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2130 switch (skge
->speed
) {
2132 reg
&= ~GM_GPCR_SPEED_100
;
2133 reg
|= GM_GPCR_SPEED_1000
;
2136 reg
&= ~GM_GPCR_SPEED_1000
;
2137 reg
|= GM_GPCR_SPEED_100
;
2140 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2144 if (skge
->duplex
== DUPLEX_FULL
)
2145 reg
|= GM_GPCR_DUP_FULL
;
2147 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2149 switch (skge
->flow_control
) {
2150 case FLOW_MODE_NONE
:
2151 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2152 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2154 case FLOW_MODE_LOC_SEND
:
2155 /* disable Rx flow-control */
2156 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2158 case FLOW_MODE_SYMMETRIC
:
2159 case FLOW_MODE_SYM_OR_REM
:
2160 /* enable Tx & Rx flow-control */
2164 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2165 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2167 yukon_init(hw
, port
);
2170 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2171 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2173 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2174 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2175 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2177 /* transmit control */
2178 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2180 /* receive control reg: unicast + multicast + no FCS */
2181 gma_write16(hw
, port
, GM_RX_CTRL
,
2182 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2184 /* transmit flow control */
2185 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2187 /* transmit parameter */
2188 gma_write16(hw
, port
, GM_TX_PARAM
,
2189 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2190 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2191 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2193 /* configure the Serial Mode Register */
2194 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2196 | IPG_DATA_VAL(IPG_DATA_DEF
);
2198 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2199 reg
|= GM_SMOD_JUMBO_ENA
;
2201 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2203 /* physical address: used for pause frames */
2204 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2205 /* virtual address for data */
2206 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2208 /* enable interrupt mask for counter overflows */
2209 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2210 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2211 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2213 /* Initialize Mac Fifo */
2215 /* Configure Rx MAC FIFO */
2216 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2217 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2219 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2220 if (is_yukon_lite_a0(hw
))
2221 reg
&= ~GMF_RX_F_FL_ON
;
2223 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2224 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2226 * because Pause Packet Truncation in GMAC is not working
2227 * we have to increase the Flush Threshold to 64 bytes
2228 * in order to flush pause packets in Rx FIFO on Yukon-1
2230 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2232 /* Configure Tx MAC FIFO */
2233 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2234 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2237 /* Go into power down mode */
2238 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2242 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2243 ctrl
|= PHY_M_PC_POL_R_DIS
;
2244 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2246 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2247 ctrl
|= PHY_CT_RESET
;
2248 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2250 /* switch IEEE compatible power down mode on */
2251 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2252 ctrl
|= PHY_CT_PDOWN
;
2253 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2256 static void yukon_stop(struct skge_port
*skge
)
2258 struct skge_hw
*hw
= skge
->hw
;
2259 int port
= skge
->port
;
2261 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2262 yukon_reset(hw
, port
);
2264 gma_write16(hw
, port
, GM_GP_CTRL
,
2265 gma_read16(hw
, port
, GM_GP_CTRL
)
2266 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2267 gma_read16(hw
, port
, GM_GP_CTRL
);
2269 yukon_suspend(hw
, port
);
2271 /* set GPHY Control reset */
2272 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2273 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2276 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2278 struct skge_hw
*hw
= skge
->hw
;
2279 int port
= skge
->port
;
2282 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2283 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2284 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2285 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2287 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2288 data
[i
] = gma_read32(hw
, port
,
2289 skge_stats
[i
].gma_offset
);
2292 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2294 struct net_device
*dev
= hw
->dev
[port
];
2295 struct skge_port
*skge
= netdev_priv(dev
);
2296 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2298 if (netif_msg_intr(skge
))
2299 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
2302 if (status
& GM_IS_RX_FF_OR
) {
2303 ++dev
->stats
.rx_fifo_errors
;
2304 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2307 if (status
& GM_IS_TX_FF_UR
) {
2308 ++dev
->stats
.tx_fifo_errors
;
2309 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2314 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2316 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2317 case PHY_M_PS_SPEED_1000
:
2319 case PHY_M_PS_SPEED_100
:
2326 static void yukon_link_up(struct skge_port
*skge
)
2328 struct skge_hw
*hw
= skge
->hw
;
2329 int port
= skge
->port
;
2332 /* Enable Transmit FIFO Underrun */
2333 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2335 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2336 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2337 reg
|= GM_GPCR_DUP_FULL
;
2340 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2341 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2343 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2347 static void yukon_link_down(struct skge_port
*skge
)
2349 struct skge_hw
*hw
= skge
->hw
;
2350 int port
= skge
->port
;
2353 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2354 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2355 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2357 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2358 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2359 ctrl
|= PHY_M_AN_ASP
;
2360 /* restore Asymmetric Pause bit */
2361 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2364 skge_link_down(skge
);
2366 yukon_init(hw
, port
);
2369 static void yukon_phy_intr(struct skge_port
*skge
)
2371 struct skge_hw
*hw
= skge
->hw
;
2372 int port
= skge
->port
;
2373 const char *reason
= NULL
;
2374 u16 istatus
, phystat
;
2376 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2377 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2379 if (netif_msg_intr(skge
))
2380 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
2381 skge
->netdev
->name
, istatus
, phystat
);
2383 if (istatus
& PHY_M_IS_AN_COMPL
) {
2384 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2386 reason
= "remote fault";
2390 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2391 reason
= "master/slave fault";
2395 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2396 reason
= "speed/duplex";
2400 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2401 ? DUPLEX_FULL
: DUPLEX_HALF
;
2402 skge
->speed
= yukon_speed(hw
, phystat
);
2404 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2405 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2406 case PHY_M_PS_PAUSE_MSK
:
2407 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2409 case PHY_M_PS_RX_P_EN
:
2410 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2412 case PHY_M_PS_TX_P_EN
:
2413 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2416 skge
->flow_status
= FLOW_STAT_NONE
;
2419 if (skge
->flow_status
== FLOW_STAT_NONE
||
2420 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2421 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2423 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2424 yukon_link_up(skge
);
2428 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2429 skge
->speed
= yukon_speed(hw
, phystat
);
2431 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2432 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2433 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2434 if (phystat
& PHY_M_PS_LINK_UP
)
2435 yukon_link_up(skge
);
2437 yukon_link_down(skge
);
2441 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2442 skge
->netdev
->name
, reason
);
2444 /* XXX restart autonegotiation? */
2447 static void skge_phy_reset(struct skge_port
*skge
)
2449 struct skge_hw
*hw
= skge
->hw
;
2450 int port
= skge
->port
;
2451 struct net_device
*dev
= hw
->dev
[port
];
2453 netif_stop_queue(skge
->netdev
);
2454 netif_carrier_off(skge
->netdev
);
2456 spin_lock_bh(&hw
->phy_lock
);
2457 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2458 genesis_reset(hw
, port
);
2459 genesis_mac_init(hw
, port
);
2461 yukon_reset(hw
, port
);
2462 yukon_init(hw
, port
);
2464 spin_unlock_bh(&hw
->phy_lock
);
2466 dev
->set_multicast_list(dev
);
2469 /* Basic MII support */
2470 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2472 struct mii_ioctl_data
*data
= if_mii(ifr
);
2473 struct skge_port
*skge
= netdev_priv(dev
);
2474 struct skge_hw
*hw
= skge
->hw
;
2475 int err
= -EOPNOTSUPP
;
2477 if (!netif_running(dev
))
2478 return -ENODEV
; /* Phy still in reset */
2482 data
->phy_id
= hw
->phy_addr
;
2487 spin_lock_bh(&hw
->phy_lock
);
2488 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2489 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2491 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2492 spin_unlock_bh(&hw
->phy_lock
);
2493 data
->val_out
= val
;
2498 if (!capable(CAP_NET_ADMIN
))
2501 spin_lock_bh(&hw
->phy_lock
);
2502 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2503 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2506 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2508 spin_unlock_bh(&hw
->phy_lock
);
2514 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2520 end
= start
+ len
- 1;
2522 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2523 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2524 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2525 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2526 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2528 if (q
== Q_R1
|| q
== Q_R2
) {
2529 /* Set thresholds on receive queue's */
2530 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2532 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2535 /* Enable store & forward on Tx queue's because
2536 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2538 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2541 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2544 /* Setup Bus Memory Interface */
2545 static void skge_qset(struct skge_port
*skge
, u16 q
,
2546 const struct skge_element
*e
)
2548 struct skge_hw
*hw
= skge
->hw
;
2549 u32 watermark
= 0x600;
2550 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2552 /* optimization to reduce window on 32bit/33mhz */
2553 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2556 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2557 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2558 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2559 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2562 static int skge_up(struct net_device
*dev
)
2564 struct skge_port
*skge
= netdev_priv(dev
);
2565 struct skge_hw
*hw
= skge
->hw
;
2566 int port
= skge
->port
;
2567 u32 chunk
, ram_addr
;
2568 size_t rx_size
, tx_size
;
2571 if (!is_valid_ether_addr(dev
->dev_addr
))
2574 if (netif_msg_ifup(skge
))
2575 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2577 if (dev
->mtu
> RX_BUF_SIZE
)
2578 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2580 skge
->rx_buf_size
= RX_BUF_SIZE
;
2583 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2584 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2585 skge
->mem_size
= tx_size
+ rx_size
;
2586 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2590 BUG_ON(skge
->dma
& 7);
2592 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2593 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2598 memset(skge
->mem
, 0, skge
->mem_size
);
2600 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2604 err
= skge_rx_fill(dev
);
2608 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2609 skge
->dma
+ rx_size
);
2613 /* Initialize MAC */
2614 spin_lock_bh(&hw
->phy_lock
);
2615 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2616 genesis_mac_init(hw
, port
);
2618 yukon_mac_init(hw
, port
);
2619 spin_unlock_bh(&hw
->phy_lock
);
2621 /* Configure RAMbuffers - equally between ports and tx/rx */
2622 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2623 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2625 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2626 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2628 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2629 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2630 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2632 /* Start receiver BMU */
2634 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2635 skge_led(skge
, LED_MODE_ON
);
2637 spin_lock_irq(&hw
->hw_lock
);
2638 hw
->intr_mask
|= portmask
[port
];
2639 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2640 spin_unlock_irq(&hw
->hw_lock
);
2642 napi_enable(&skge
->napi
);
2646 skge_rx_clean(skge
);
2647 kfree(skge
->rx_ring
.start
);
2649 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2656 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2658 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2659 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2660 RB_RST_SET
|RB_DIS_OP_MD
);
2661 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2664 static int skge_down(struct net_device
*dev
)
2666 struct skge_port
*skge
= netdev_priv(dev
);
2667 struct skge_hw
*hw
= skge
->hw
;
2668 int port
= skge
->port
;
2670 if (skge
->mem
== NULL
)
2673 if (netif_msg_ifdown(skge
))
2674 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2676 netif_stop_queue(dev
);
2678 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2679 del_timer_sync(&skge
->link_timer
);
2681 napi_disable(&skge
->napi
);
2682 netif_carrier_off(dev
);
2684 spin_lock_irq(&hw
->hw_lock
);
2685 hw
->intr_mask
&= ~portmask
[port
];
2686 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2687 spin_unlock_irq(&hw
->hw_lock
);
2689 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2690 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2695 /* Stop transmitter */
2696 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2697 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2698 RB_RST_SET
|RB_DIS_OP_MD
);
2701 /* Disable Force Sync bit and Enable Alloc bit */
2702 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2703 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2705 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2706 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2707 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2709 /* Reset PCI FIFO */
2710 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2711 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2713 /* Reset the RAM Buffer async Tx queue */
2714 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2716 skge_rx_stop(hw
, port
);
2718 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2719 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2720 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2722 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2723 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2726 skge_led(skge
, LED_MODE_OFF
);
2728 netif_tx_lock_bh(dev
);
2730 netif_tx_unlock_bh(dev
);
2732 skge_rx_clean(skge
);
2734 kfree(skge
->rx_ring
.start
);
2735 kfree(skge
->tx_ring
.start
);
2736 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2741 static inline int skge_avail(const struct skge_ring
*ring
)
2744 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2745 + (ring
->to_clean
- ring
->to_use
) - 1;
2748 static int skge_xmit_frame(struct sk_buff
*skb
, struct net_device
*dev
)
2750 struct skge_port
*skge
= netdev_priv(dev
);
2751 struct skge_hw
*hw
= skge
->hw
;
2752 struct skge_element
*e
;
2753 struct skge_tx_desc
*td
;
2758 if (skb_padto(skb
, ETH_ZLEN
))
2759 return NETDEV_TX_OK
;
2761 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2762 return NETDEV_TX_BUSY
;
2764 e
= skge
->tx_ring
.to_use
;
2766 BUG_ON(td
->control
& BMU_OWN
);
2768 len
= skb_headlen(skb
);
2769 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2770 pci_unmap_addr_set(e
, mapaddr
, map
);
2771 pci_unmap_len_set(e
, maplen
, len
);
2774 td
->dma_hi
= map
>> 32;
2776 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2777 const int offset
= skb_transport_offset(skb
);
2779 /* This seems backwards, but it is what the sk98lin
2780 * does. Looks like hardware is wrong?
2782 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
2783 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2784 control
= BMU_TCP_CHECK
;
2786 control
= BMU_UDP_CHECK
;
2789 td
->csum_start
= offset
;
2790 td
->csum_write
= offset
+ skb
->csum_offset
;
2792 control
= BMU_CHECK
;
2794 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2795 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2797 struct skge_tx_desc
*tf
= td
;
2799 control
|= BMU_STFWD
;
2800 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2801 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2803 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2804 frag
->size
, PCI_DMA_TODEVICE
);
2809 BUG_ON(tf
->control
& BMU_OWN
);
2812 tf
->dma_hi
= (u64
) map
>> 32;
2813 pci_unmap_addr_set(e
, mapaddr
, map
);
2814 pci_unmap_len_set(e
, maplen
, frag
->size
);
2816 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2818 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2820 /* Make sure all the descriptors written */
2822 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2825 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2827 if (unlikely(netif_msg_tx_queued(skge
)))
2828 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2829 dev
->name
, e
- skge
->tx_ring
.start
, skb
->len
);
2831 skge
->tx_ring
.to_use
= e
->next
;
2834 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2835 pr_debug("%s: transmit queue full\n", dev
->name
);
2836 netif_stop_queue(dev
);
2839 dev
->trans_start
= jiffies
;
2841 return NETDEV_TX_OK
;
2845 /* Free resources associated with this reing element */
2846 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2849 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2851 /* skb header vs. fragment */
2852 if (control
& BMU_STF
)
2853 pci_unmap_single(pdev
, pci_unmap_addr(e
, mapaddr
),
2854 pci_unmap_len(e
, maplen
),
2857 pci_unmap_page(pdev
, pci_unmap_addr(e
, mapaddr
),
2858 pci_unmap_len(e
, maplen
),
2861 if (control
& BMU_EOF
) {
2862 if (unlikely(netif_msg_tx_done(skge
)))
2863 printk(KERN_DEBUG PFX
"%s: tx done slot %td\n",
2864 skge
->netdev
->name
, e
- skge
->tx_ring
.start
);
2866 dev_kfree_skb(e
->skb
);
2870 /* Free all buffers in transmit ring */
2871 static void skge_tx_clean(struct net_device
*dev
)
2873 struct skge_port
*skge
= netdev_priv(dev
);
2874 struct skge_element
*e
;
2876 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2877 struct skge_tx_desc
*td
= e
->desc
;
2878 skge_tx_free(skge
, e
, td
->control
);
2882 skge
->tx_ring
.to_clean
= e
;
2883 netif_wake_queue(dev
);
2886 static void skge_tx_timeout(struct net_device
*dev
)
2888 struct skge_port
*skge
= netdev_priv(dev
);
2890 if (netif_msg_timer(skge
))
2891 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2893 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2897 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2901 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2904 if (!netif_running(dev
)) {
2920 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2922 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2926 crc
= ether_crc_le(ETH_ALEN
, addr
);
2928 filter
[bit
/8] |= 1 << (bit
%8);
2931 static void genesis_set_multicast(struct net_device
*dev
)
2933 struct skge_port
*skge
= netdev_priv(dev
);
2934 struct skge_hw
*hw
= skge
->hw
;
2935 int port
= skge
->port
;
2936 int i
, count
= dev
->mc_count
;
2937 struct dev_mc_list
*list
= dev
->mc_list
;
2941 mode
= xm_read32(hw
, port
, XM_MODE
);
2942 mode
|= XM_MD_ENA_HASH
;
2943 if (dev
->flags
& IFF_PROMISC
)
2944 mode
|= XM_MD_ENA_PROM
;
2946 mode
&= ~XM_MD_ENA_PROM
;
2948 if (dev
->flags
& IFF_ALLMULTI
)
2949 memset(filter
, 0xff, sizeof(filter
));
2951 memset(filter
, 0, sizeof(filter
));
2953 if (skge
->flow_status
== FLOW_STAT_REM_SEND
2954 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2955 genesis_add_filter(filter
, pause_mc_addr
);
2957 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
2958 genesis_add_filter(filter
, list
->dmi_addr
);
2961 xm_write32(hw
, port
, XM_MODE
, mode
);
2962 xm_outhash(hw
, port
, XM_HSM
, filter
);
2965 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2967 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2968 filter
[bit
/8] |= 1 << (bit
%8);
2971 static void yukon_set_multicast(struct net_device
*dev
)
2973 struct skge_port
*skge
= netdev_priv(dev
);
2974 struct skge_hw
*hw
= skge
->hw
;
2975 int port
= skge
->port
;
2976 struct dev_mc_list
*list
= dev
->mc_list
;
2977 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
2978 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2982 memset(filter
, 0, sizeof(filter
));
2984 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2985 reg
|= GM_RXCR_UCF_ENA
;
2987 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2988 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2989 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2990 memset(filter
, 0xff, sizeof(filter
));
2991 else if (dev
->mc_count
== 0 && !rx_pause
)/* no multicast */
2992 reg
&= ~GM_RXCR_MCF_ENA
;
2995 reg
|= GM_RXCR_MCF_ENA
;
2998 yukon_add_filter(filter
, pause_mc_addr
);
3000 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
)
3001 yukon_add_filter(filter
, list
->dmi_addr
);
3005 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
3006 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
3007 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
3008 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
3009 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
3010 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
3011 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
3012 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
3014 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3017 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3019 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3020 return status
>> XMR_FS_LEN_SHIFT
;
3022 return status
>> GMR_FS_LEN_SHIFT
;
3025 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3027 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3028 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3030 return (status
& GMR_FS_ANY_ERR
) ||
3031 (status
& GMR_FS_RX_OK
) == 0;
3035 /* Get receive buffer from descriptor.
3036 * Handles copy of small buffers and reallocation failures
3038 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3039 struct skge_element
*e
,
3040 u32 control
, u32 status
, u16 csum
)
3042 struct skge_port
*skge
= netdev_priv(dev
);
3043 struct sk_buff
*skb
;
3044 u16 len
= control
& BMU_BBC
;
3046 if (unlikely(netif_msg_rx_status(skge
)))
3047 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
3048 dev
->name
, e
- skge
->rx_ring
.start
,
3051 if (len
> skge
->rx_buf_size
)
3054 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3057 if (bad_phy_status(skge
->hw
, status
))
3060 if (phy_length(skge
->hw
, status
) != len
)
3063 if (len
< RX_COPY_THRESHOLD
) {
3064 skb
= netdev_alloc_skb(dev
, len
+ 2);
3068 skb_reserve(skb
, 2);
3069 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3070 pci_unmap_addr(e
, mapaddr
),
3071 len
, PCI_DMA_FROMDEVICE
);
3072 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3073 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3074 pci_unmap_addr(e
, mapaddr
),
3075 len
, PCI_DMA_FROMDEVICE
);
3076 skge_rx_reuse(e
, skge
->rx_buf_size
);
3078 struct sk_buff
*nskb
;
3079 nskb
= netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
);
3083 skb_reserve(nskb
, NET_IP_ALIGN
);
3084 pci_unmap_single(skge
->hw
->pdev
,
3085 pci_unmap_addr(e
, mapaddr
),
3086 pci_unmap_len(e
, maplen
),
3087 PCI_DMA_FROMDEVICE
);
3089 prefetch(skb
->data
);
3090 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
3094 if (skge
->rx_csum
) {
3096 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3099 skb
->protocol
= eth_type_trans(skb
, dev
);
3104 if (netif_msg_rx_err(skge
))
3105 printk(KERN_DEBUG PFX
"%s: rx err, slot %td control 0x%x status 0x%x\n",
3106 dev
->name
, e
- skge
->rx_ring
.start
,
3109 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
3110 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3111 dev
->stats
.rx_length_errors
++;
3112 if (status
& XMR_FS_FRA_ERR
)
3113 dev
->stats
.rx_frame_errors
++;
3114 if (status
& XMR_FS_FCS_ERR
)
3115 dev
->stats
.rx_crc_errors
++;
3117 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3118 dev
->stats
.rx_length_errors
++;
3119 if (status
& GMR_FS_FRAGMENT
)
3120 dev
->stats
.rx_frame_errors
++;
3121 if (status
& GMR_FS_CRC_ERR
)
3122 dev
->stats
.rx_crc_errors
++;
3126 skge_rx_reuse(e
, skge
->rx_buf_size
);
3130 /* Free all buffers in Tx ring which are no longer owned by device */
3131 static void skge_tx_done(struct net_device
*dev
)
3133 struct skge_port
*skge
= netdev_priv(dev
);
3134 struct skge_ring
*ring
= &skge
->tx_ring
;
3135 struct skge_element
*e
;
3137 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3139 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3140 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3142 if (control
& BMU_OWN
)
3145 skge_tx_free(skge
, e
, control
);
3147 skge
->tx_ring
.to_clean
= e
;
3149 /* Can run lockless until we need to synchronize to restart queue. */
3152 if (unlikely(netif_queue_stopped(dev
) &&
3153 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3155 if (unlikely(netif_queue_stopped(dev
) &&
3156 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3157 netif_wake_queue(dev
);
3160 netif_tx_unlock(dev
);
3164 static int skge_poll(struct napi_struct
*napi
, int to_do
)
3166 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3167 struct net_device
*dev
= skge
->netdev
;
3168 struct skge_hw
*hw
= skge
->hw
;
3169 struct skge_ring
*ring
= &skge
->rx_ring
;
3170 struct skge_element
*e
;
3175 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3177 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3178 struct skge_rx_desc
*rd
= e
->desc
;
3179 struct sk_buff
*skb
;
3183 control
= rd
->control
;
3184 if (control
& BMU_OWN
)
3187 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3189 dev
->last_rx
= jiffies
;
3190 netif_receive_skb(skb
);
3197 /* restart receiver */
3199 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3201 if (work_done
< to_do
) {
3202 spin_lock_irq(&hw
->hw_lock
);
3203 __netif_rx_complete(dev
, napi
);
3204 hw
->intr_mask
|= napimask
[skge
->port
];
3205 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3206 skge_read32(hw
, B0_IMSK
);
3207 spin_unlock_irq(&hw
->hw_lock
);
3213 /* Parity errors seem to happen when Genesis is connected to a switch
3214 * with no other ports present. Heartbeat error??
3216 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3218 struct net_device
*dev
= hw
->dev
[port
];
3220 ++dev
->stats
.tx_heartbeat_errors
;
3222 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3223 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3226 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3227 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3228 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3229 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3232 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3234 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3235 genesis_mac_intr(hw
, port
);
3237 yukon_mac_intr(hw
, port
);
3240 /* Handle device specific framing and timeout interrupts */
3241 static void skge_error_irq(struct skge_hw
*hw
)
3243 struct pci_dev
*pdev
= hw
->pdev
;
3244 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3246 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3247 /* clear xmac errors */
3248 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3249 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3250 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3251 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3253 /* Timestamp (unused) overflow */
3254 if (hwstatus
& IS_IRQ_TIST_OV
)
3255 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3258 if (hwstatus
& IS_RAM_RD_PAR
) {
3259 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3260 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3263 if (hwstatus
& IS_RAM_WR_PAR
) {
3264 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3265 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3268 if (hwstatus
& IS_M1_PAR_ERR
)
3269 skge_mac_parity(hw
, 0);
3271 if (hwstatus
& IS_M2_PAR_ERR
)
3272 skge_mac_parity(hw
, 1);
3274 if (hwstatus
& IS_R1_PAR_ERR
) {
3275 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3277 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3280 if (hwstatus
& IS_R2_PAR_ERR
) {
3281 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3283 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3286 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3287 u16 pci_status
, pci_cmd
;
3289 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3290 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3292 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3293 pci_cmd
, pci_status
);
3295 /* Write the error bits back to clear them. */
3296 pci_status
&= PCI_STATUS_ERROR_BITS
;
3297 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3298 pci_write_config_word(pdev
, PCI_COMMAND
,
3299 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3300 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3301 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3303 /* if error still set then just ignore it */
3304 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3305 if (hwstatus
& IS_IRQ_STAT
) {
3306 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3307 hw
->intr_mask
&= ~IS_HW_ERR
;
3313 * Interrupt from PHY are handled in tasklet (softirq)
3314 * because accessing phy registers requires spin wait which might
3315 * cause excess interrupt latency.
3317 static void skge_extirq(unsigned long arg
)
3319 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3322 for (port
= 0; port
< hw
->ports
; port
++) {
3323 struct net_device
*dev
= hw
->dev
[port
];
3325 if (netif_running(dev
)) {
3326 struct skge_port
*skge
= netdev_priv(dev
);
3328 spin_lock(&hw
->phy_lock
);
3329 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3330 yukon_phy_intr(skge
);
3331 else if (hw
->phy_type
== SK_PHY_BCOM
)
3332 bcom_phy_intr(skge
);
3333 spin_unlock(&hw
->phy_lock
);
3337 spin_lock_irq(&hw
->hw_lock
);
3338 hw
->intr_mask
|= IS_EXT_REG
;
3339 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3340 skge_read32(hw
, B0_IMSK
);
3341 spin_unlock_irq(&hw
->hw_lock
);
3344 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3346 struct skge_hw
*hw
= dev_id
;
3350 spin_lock(&hw
->hw_lock
);
3351 /* Reading this register masks IRQ */
3352 status
= skge_read32(hw
, B0_SP_ISRC
);
3353 if (status
== 0 || status
== ~0)
3357 status
&= hw
->intr_mask
;
3358 if (status
& IS_EXT_REG
) {
3359 hw
->intr_mask
&= ~IS_EXT_REG
;
3360 tasklet_schedule(&hw
->phy_task
);
3363 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3364 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3365 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3366 netif_rx_schedule(hw
->dev
[0], &skge
->napi
);
3369 if (status
& IS_PA_TO_TX1
)
3370 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3372 if (status
& IS_PA_TO_RX1
) {
3373 ++hw
->dev
[0]->stats
.rx_over_errors
;
3374 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3378 if (status
& IS_MAC1
)
3379 skge_mac_intr(hw
, 0);
3382 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3384 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3385 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3386 netif_rx_schedule(hw
->dev
[1], &skge
->napi
);
3389 if (status
& IS_PA_TO_RX2
) {
3390 ++hw
->dev
[1]->stats
.rx_over_errors
;
3391 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3394 if (status
& IS_PA_TO_TX2
)
3395 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3397 if (status
& IS_MAC2
)
3398 skge_mac_intr(hw
, 1);
3401 if (status
& IS_HW_ERR
)
3404 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3405 skge_read32(hw
, B0_IMSK
);
3407 spin_unlock(&hw
->hw_lock
);
3409 return IRQ_RETVAL(handled
);
3412 #ifdef CONFIG_NET_POLL_CONTROLLER
3413 static void skge_netpoll(struct net_device
*dev
)
3415 struct skge_port
*skge
= netdev_priv(dev
);
3417 disable_irq(dev
->irq
);
3418 skge_intr(dev
->irq
, skge
->hw
);
3419 enable_irq(dev
->irq
);
3423 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3425 struct skge_port
*skge
= netdev_priv(dev
);
3426 struct skge_hw
*hw
= skge
->hw
;
3427 unsigned port
= skge
->port
;
3428 const struct sockaddr
*addr
= p
;
3431 if (!is_valid_ether_addr(addr
->sa_data
))
3432 return -EADDRNOTAVAIL
;
3434 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3436 if (!netif_running(dev
)) {
3437 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3438 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3441 spin_lock_bh(&hw
->phy_lock
);
3442 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3443 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3445 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3446 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3448 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3449 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3451 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3452 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3455 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3456 spin_unlock_bh(&hw
->phy_lock
);
3462 static const struct {
3466 { CHIP_ID_GENESIS
, "Genesis" },
3467 { CHIP_ID_YUKON
, "Yukon" },
3468 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3469 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3472 static const char *skge_board_name(const struct skge_hw
*hw
)
3475 static char buf
[16];
3477 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3478 if (skge_chips
[i
].id
== hw
->chip_id
)
3479 return skge_chips
[i
].name
;
3481 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3487 * Setup the board data structure, but don't bring up
3490 static int skge_reset(struct skge_hw
*hw
)
3493 u16 ctst
, pci_status
;
3494 u8 t8
, mac_cfg
, pmd_type
;
3497 ctst
= skge_read16(hw
, B0_CTST
);
3500 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3501 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3503 /* clear PCI errors, if any */
3504 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3505 skge_write8(hw
, B2_TST_CTRL2
, 0);
3507 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3508 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3509 pci_status
| PCI_STATUS_ERROR_BITS
);
3510 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3511 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3513 /* restore CLK_RUN bits (for Yukon-Lite) */
3514 skge_write16(hw
, B0_CTST
,
3515 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3517 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3518 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3519 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3520 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3522 switch (hw
->chip_id
) {
3523 case CHIP_ID_GENESIS
:
3524 switch (hw
->phy_type
) {
3526 hw
->phy_addr
= PHY_ADDR_XMAC
;
3529 hw
->phy_addr
= PHY_ADDR_BCOM
;
3532 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3539 case CHIP_ID_YUKON_LITE
:
3540 case CHIP_ID_YUKON_LP
:
3541 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3544 hw
->phy_addr
= PHY_ADDR_MARV
;
3548 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3553 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3554 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3555 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3557 /* read the adapters RAM size */
3558 t8
= skge_read8(hw
, B2_E_0
);
3559 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3561 /* special case: 4 x 64k x 36, offset = 0x80000 */
3562 hw
->ram_size
= 0x100000;
3563 hw
->ram_offset
= 0x80000;
3565 hw
->ram_size
= t8
* 512;
3568 hw
->ram_size
= 0x20000;
3570 hw
->ram_size
= t8
* 4096;
3572 hw
->intr_mask
= IS_HW_ERR
;
3574 /* Use PHY IRQ for all but fiber based Genesis board */
3575 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3576 hw
->intr_mask
|= IS_EXT_REG
;
3578 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3581 /* switch power to VCC (WA for VAUX problem) */
3582 skge_write8(hw
, B0_POWER_CTRL
,
3583 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3585 /* avoid boards with stuck Hardware error bits */
3586 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3587 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3588 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3589 hw
->intr_mask
&= ~IS_HW_ERR
;
3592 /* Clear PHY COMA */
3593 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3594 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3595 reg
&= ~PCI_PHY_COMA
;
3596 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3597 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3600 for (i
= 0; i
< hw
->ports
; i
++) {
3601 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3602 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3606 /* turn off hardware timer (unused) */
3607 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3608 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3609 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3611 /* enable the Tx Arbiters */
3612 for (i
= 0; i
< hw
->ports
; i
++)
3613 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3615 /* Initialize ram interface */
3616 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3618 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3619 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3620 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3621 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3622 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3623 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3624 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3625 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3626 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3627 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3628 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3629 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3631 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3633 /* Set interrupt moderation for Transmit only
3634 * Receive interrupts avoided by NAPI
3636 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3637 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3638 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3640 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3642 for (i
= 0; i
< hw
->ports
; i
++) {
3643 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3644 genesis_reset(hw
, i
);
3653 #ifdef CONFIG_SKGE_DEBUG
3655 static struct dentry
*skge_debug
;
3657 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3659 struct net_device
*dev
= seq
->private;
3660 const struct skge_port
*skge
= netdev_priv(dev
);
3661 const struct skge_hw
*hw
= skge
->hw
;
3662 const struct skge_element
*e
;
3664 if (!netif_running(dev
))
3667 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3668 skge_read32(hw
, B0_IMSK
));
3670 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3671 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3672 const struct skge_tx_desc
*t
= e
->desc
;
3673 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3674 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3675 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3678 seq_printf(seq
, "\nRx Ring: \n");
3679 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3680 const struct skge_rx_desc
*r
= e
->desc
;
3682 if (r
->control
& BMU_OWN
)
3685 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3686 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3687 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3693 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3695 return single_open(file
, skge_debug_show
, inode
->i_private
);
3698 static const struct file_operations skge_debug_fops
= {
3699 .owner
= THIS_MODULE
,
3700 .open
= skge_debug_open
,
3702 .llseek
= seq_lseek
,
3703 .release
= single_release
,
3707 * Use network device events to create/remove/rename
3708 * debugfs file entries
3710 static int skge_device_event(struct notifier_block
*unused
,
3711 unsigned long event
, void *ptr
)
3713 struct net_device
*dev
= ptr
;
3714 struct skge_port
*skge
;
3717 if (dev
->open
!= &skge_up
|| !skge_debug
)
3720 skge
= netdev_priv(dev
);
3722 case NETDEV_CHANGENAME
:
3723 if (skge
->debugfs
) {
3724 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3725 skge_debug
, dev
->name
);
3729 pr_info(PFX
"%s: rename failed\n", dev
->name
);
3730 debugfs_remove(skge
->debugfs
);
3735 case NETDEV_GOING_DOWN
:
3736 if (skge
->debugfs
) {
3737 debugfs_remove(skge
->debugfs
);
3738 skge
->debugfs
= NULL
;
3743 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3746 if (!d
|| IS_ERR(d
))
3747 pr_info(PFX
"%s: debugfs create failed\n",
3758 static struct notifier_block skge_notifier
= {
3759 .notifier_call
= skge_device_event
,
3763 static __init
void skge_debug_init(void)
3767 ent
= debugfs_create_dir("skge", NULL
);
3768 if (!ent
|| IS_ERR(ent
)) {
3769 pr_info(PFX
"debugfs create directory failed\n");
3774 register_netdevice_notifier(&skge_notifier
);
3777 static __exit
void skge_debug_cleanup(void)
3780 unregister_netdevice_notifier(&skge_notifier
);
3781 debugfs_remove(skge_debug
);
3787 #define skge_debug_init()
3788 #define skge_debug_cleanup()
3791 /* Initialize network device */
3792 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3795 struct skge_port
*skge
;
3796 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3799 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3803 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3804 dev
->open
= skge_up
;
3805 dev
->stop
= skge_down
;
3806 dev
->do_ioctl
= skge_ioctl
;
3807 dev
->hard_start_xmit
= skge_xmit_frame
;
3808 dev
->get_stats
= skge_get_stats
;
3809 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3810 dev
->set_multicast_list
= genesis_set_multicast
;
3812 dev
->set_multicast_list
= yukon_set_multicast
;
3814 dev
->set_mac_address
= skge_set_mac_address
;
3815 dev
->change_mtu
= skge_change_mtu
;
3816 SET_ETHTOOL_OPS(dev
, &skge_ethtool_ops
);
3817 dev
->tx_timeout
= skge_tx_timeout
;
3818 dev
->watchdog_timeo
= TX_WATCHDOG
;
3819 #ifdef CONFIG_NET_POLL_CONTROLLER
3820 dev
->poll_controller
= skge_netpoll
;
3822 dev
->irq
= hw
->pdev
->irq
;
3825 dev
->features
|= NETIF_F_HIGHDMA
;
3827 skge
= netdev_priv(dev
);
3828 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3831 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3833 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3834 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3836 /* Auto speed and flow control */
3837 skge
->autoneg
= AUTONEG_ENABLE
;
3838 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3841 skge
->advertising
= skge_supported_modes(hw
);
3843 if (pci_wake_enabled(hw
->pdev
))
3844 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3846 hw
->dev
[port
] = dev
;
3850 /* Only used for Genesis XMAC */
3851 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3853 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3854 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3858 /* read the mac address */
3859 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3860 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3862 /* device is off until link detection */
3863 netif_carrier_off(dev
);
3864 netif_stop_queue(dev
);
3869 static void __devinit
skge_show_addr(struct net_device
*dev
)
3871 const struct skge_port
*skge
= netdev_priv(dev
);
3872 DECLARE_MAC_BUF(mac
);
3874 if (netif_msg_probe(skge
))
3875 printk(KERN_INFO PFX
"%s: addr %s\n",
3876 dev
->name
, print_mac(mac
, dev
->dev_addr
));
3879 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3880 const struct pci_device_id
*ent
)
3882 struct net_device
*dev
, *dev1
;
3884 int err
, using_dac
= 0;
3886 err
= pci_enable_device(pdev
);
3888 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3892 err
= pci_request_regions(pdev
, DRV_NAME
);
3894 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3895 goto err_out_disable_pdev
;
3898 pci_set_master(pdev
);
3900 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3902 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3903 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
3905 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3909 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3910 goto err_out_free_regions
;
3914 /* byte swap descriptors in hardware */
3918 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3919 reg
|= PCI_REV_DESC
;
3920 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3925 hw
= kzalloc(sizeof(*hw
), GFP_KERNEL
);
3927 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3928 goto err_out_free_regions
;
3932 spin_lock_init(&hw
->hw_lock
);
3933 spin_lock_init(&hw
->phy_lock
);
3934 tasklet_init(&hw
->phy_task
, &skge_extirq
, (unsigned long) hw
);
3936 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3938 dev_err(&pdev
->dev
, "cannot map device registers\n");
3939 goto err_out_free_hw
;
3942 err
= skge_reset(hw
);
3944 goto err_out_iounmap
;
3946 printk(KERN_INFO PFX DRV_VERSION
" addr 0x%llx irq %d chip %s rev %d\n",
3947 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3948 skge_board_name(hw
), hw
->chip_rev
);
3950 dev
= skge_devinit(hw
, 0, using_dac
);
3952 goto err_out_led_off
;
3954 /* Some motherboards are broken and has zero in ROM. */
3955 if (!is_valid_ether_addr(dev
->dev_addr
))
3956 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3958 err
= register_netdev(dev
);
3960 dev_err(&pdev
->dev
, "cannot register net device\n");
3961 goto err_out_free_netdev
;
3964 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, dev
->name
, hw
);
3966 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3967 dev
->name
, pdev
->irq
);
3968 goto err_out_unregister
;
3970 skge_show_addr(dev
);
3972 if (hw
->ports
> 1 && (dev1
= skge_devinit(hw
, 1, using_dac
))) {
3973 if (register_netdev(dev1
) == 0)
3974 skge_show_addr(dev1
);
3976 /* Failure to register second port need not be fatal */
3977 dev_warn(&pdev
->dev
, "register of second port failed\n");
3982 pci_set_drvdata(pdev
, hw
);
3987 unregister_netdev(dev
);
3988 err_out_free_netdev
:
3991 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3996 err_out_free_regions
:
3997 pci_release_regions(pdev
);
3998 err_out_disable_pdev
:
3999 pci_disable_device(pdev
);
4000 pci_set_drvdata(pdev
, NULL
);
4005 static void __devexit
skge_remove(struct pci_dev
*pdev
)
4007 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4008 struct net_device
*dev0
, *dev1
;
4013 flush_scheduled_work();
4015 if ((dev1
= hw
->dev
[1]))
4016 unregister_netdev(dev1
);
4018 unregister_netdev(dev0
);
4020 tasklet_disable(&hw
->phy_task
);
4022 spin_lock_irq(&hw
->hw_lock
);
4024 skge_write32(hw
, B0_IMSK
, 0);
4025 skge_read32(hw
, B0_IMSK
);
4026 spin_unlock_irq(&hw
->hw_lock
);
4028 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4029 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4031 free_irq(pdev
->irq
, hw
);
4032 pci_release_regions(pdev
);
4033 pci_disable_device(pdev
);
4040 pci_set_drvdata(pdev
, NULL
);
4044 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4046 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4047 int i
, err
, wol
= 0;
4052 err
= pci_save_state(pdev
);
4056 for (i
= 0; i
< hw
->ports
; i
++) {
4057 struct net_device
*dev
= hw
->dev
[i
];
4058 struct skge_port
*skge
= netdev_priv(dev
);
4060 if (netif_running(dev
))
4063 skge_wol_init(skge
);
4068 skge_write32(hw
, B0_IMSK
, 0);
4069 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), wol
);
4070 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4075 static int skge_resume(struct pci_dev
*pdev
)
4077 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4083 err
= pci_set_power_state(pdev
, PCI_D0
);
4087 err
= pci_restore_state(pdev
);
4091 pci_enable_wake(pdev
, PCI_D0
, 0);
4093 err
= skge_reset(hw
);
4097 for (i
= 0; i
< hw
->ports
; i
++) {
4098 struct net_device
*dev
= hw
->dev
[i
];
4100 if (netif_running(dev
)) {
4104 printk(KERN_ERR PFX
"%s: could not up: %d\n",
4116 static void skge_shutdown(struct pci_dev
*pdev
)
4118 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4124 for (i
= 0; i
< hw
->ports
; i
++) {
4125 struct net_device
*dev
= hw
->dev
[i
];
4126 struct skge_port
*skge
= netdev_priv(dev
);
4129 skge_wol_init(skge
);
4133 pci_enable_wake(pdev
, PCI_D3hot
, wol
);
4134 pci_enable_wake(pdev
, PCI_D3cold
, wol
);
4136 pci_disable_device(pdev
);
4137 pci_set_power_state(pdev
, PCI_D3hot
);
4141 static struct pci_driver skge_driver
= {
4143 .id_table
= skge_id_table
,
4144 .probe
= skge_probe
,
4145 .remove
= __devexit_p(skge_remove
),
4147 .suspend
= skge_suspend
,
4148 .resume
= skge_resume
,
4150 .shutdown
= skge_shutdown
,
4153 static int __init
skge_init_module(void)
4156 return pci_register_driver(&skge_driver
);
4159 static void __exit
skge_cleanup_module(void)
4161 pci_unregister_driver(&skge_driver
);
4162 skge_debug_cleanup();
4165 module_init(skge_init_module
);
4166 module_exit(skge_cleanup_module
);