2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
111 static inline int SlabFrozen(struct page
*page
)
113 return page
->flags
& FROZEN
;
116 static inline void SetSlabFrozen(struct page
*page
)
118 page
->flags
|= FROZEN
;
121 static inline void ClearSlabFrozen(struct page
*page
)
123 page
->flags
&= ~FROZEN
;
126 static inline int SlabDebug(struct page
*page
)
128 return page
->flags
& SLABDEBUG
;
131 static inline void SetSlabDebug(struct page
*page
)
133 page
->flags
|= SLABDEBUG
;
136 static inline void ClearSlabDebug(struct page
*page
)
138 page
->flags
&= ~SLABDEBUG
;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
155 * Small page size. Make sure that we do not fragment memory
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
163 * Large page machines are customarily able to handle larger
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
175 #define MIN_PARTIAL 5
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
182 #define MAX_PARTIAL 10
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
188 * Set of flags that will prevent slab merging
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
208 /* Not all arches define cache_line_size */
209 #ifndef cache_line_size
210 #define cache_line_size() L1_CACHE_BYTES
213 static int kmem_size
= sizeof(struct kmem_cache
);
216 static struct notifier_block slab_notifier
;
220 DOWN
, /* No slab functionality available */
221 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
222 UP
, /* Everything works but does not show up in sysfs */
226 /* A list of all slab caches on the system */
227 static DECLARE_RWSEM(slub_lock
);
228 static LIST_HEAD(slab_caches
);
231 * Tracking user of a slab.
234 void *addr
; /* Called from address */
235 int cpu
; /* Was running on cpu */
236 int pid
; /* Pid context */
237 unsigned long when
; /* When did the operation occur */
240 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
242 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243 static int sysfs_slab_add(struct kmem_cache
*);
244 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
245 static void sysfs_slab_remove(struct kmem_cache
*);
247 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
248 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
250 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
256 /********************************************************************
257 * Core slab cache functions
258 *******************************************************************/
260 int slab_is_available(void)
262 return slab_state
>= UP
;
265 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
268 return s
->node
[node
];
270 return &s
->local_node
;
274 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
277 return s
->cpu_slab
[cpu
];
283 static inline int check_valid_pointer(struct kmem_cache
*s
,
284 struct page
*page
, const void *object
)
291 base
= page_address(page
);
292 if (object
< base
|| object
>= base
+ s
->objects
* s
->size
||
293 (object
- base
) % s
->size
) {
301 * Slow version of get and set free pointer.
303 * This version requires touching the cache lines of kmem_cache which
304 * we avoid to do in the fast alloc free paths. There we obtain the offset
305 * from the page struct.
307 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
309 return *(void **)(object
+ s
->offset
);
312 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
314 *(void **)(object
+ s
->offset
) = fp
;
317 /* Loop over all objects in a slab */
318 #define for_each_object(__p, __s, __addr) \
319 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
323 #define for_each_free_object(__p, __s, __free) \
324 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
326 /* Determine object index from a given position */
327 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
329 return (p
- addr
) / s
->size
;
332 #ifdef CONFIG_SLUB_DEBUG
336 #ifdef CONFIG_SLUB_DEBUG_ON
337 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
339 static int slub_debug
;
342 static char *slub_debug_slabs
;
347 static void print_section(char *text
, u8
*addr
, unsigned int length
)
355 for (i
= 0; i
< length
; i
++) {
357 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
360 printk(KERN_CONT
" %02x", addr
[i
]);
362 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
364 printk(KERN_CONT
" %s\n", ascii
);
371 printk(KERN_CONT
" ");
375 printk(KERN_CONT
" %s\n", ascii
);
379 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
380 enum track_item alloc
)
385 p
= object
+ s
->offset
+ sizeof(void *);
387 p
= object
+ s
->inuse
;
392 static void set_track(struct kmem_cache
*s
, void *object
,
393 enum track_item alloc
, void *addr
)
398 p
= object
+ s
->offset
+ sizeof(void *);
400 p
= object
+ s
->inuse
;
405 p
->cpu
= smp_processor_id();
406 p
->pid
= current
? current
->pid
: -1;
409 memset(p
, 0, sizeof(struct track
));
412 static void init_tracking(struct kmem_cache
*s
, void *object
)
414 if (!(s
->flags
& SLAB_STORE_USER
))
417 set_track(s
, object
, TRACK_FREE
, NULL
);
418 set_track(s
, object
, TRACK_ALLOC
, NULL
);
421 static void print_track(const char *s
, struct track
*t
)
426 printk(KERN_ERR
"INFO: %s in ", s
);
427 __print_symbol("%s", (unsigned long)t
->addr
);
428 printk(" age=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
431 static void print_tracking(struct kmem_cache
*s
, void *object
)
433 if (!(s
->flags
& SLAB_STORE_USER
))
436 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
437 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
440 static void print_page_info(struct page
*page
)
442 printk(KERN_ERR
"INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
443 page
, page
->inuse
, page
->freelist
, page
->flags
);
447 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
453 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
455 printk(KERN_ERR
"========================================"
456 "=====================================\n");
457 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
458 printk(KERN_ERR
"----------------------------------------"
459 "-------------------------------------\n\n");
462 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
468 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
470 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
473 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
475 unsigned int off
; /* Offset of last byte */
476 u8
*addr
= page_address(page
);
478 print_tracking(s
, p
);
480 print_page_info(page
);
482 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
483 p
, p
- addr
, get_freepointer(s
, p
));
486 print_section("Bytes b4", p
- 16, 16);
488 print_section("Object", p
, min(s
->objsize
, 128));
490 if (s
->flags
& SLAB_RED_ZONE
)
491 print_section("Redzone", p
+ s
->objsize
,
492 s
->inuse
- s
->objsize
);
495 off
= s
->offset
+ sizeof(void *);
499 if (s
->flags
& SLAB_STORE_USER
)
500 off
+= 2 * sizeof(struct track
);
503 /* Beginning of the filler is the free pointer */
504 print_section("Padding", p
+ off
, s
->size
- off
);
509 static void object_err(struct kmem_cache
*s
, struct page
*page
,
510 u8
*object
, char *reason
)
513 print_trailer(s
, page
, object
);
516 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
522 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
525 print_page_info(page
);
529 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
533 if (s
->flags
& __OBJECT_POISON
) {
534 memset(p
, POISON_FREE
, s
->objsize
- 1);
535 p
[s
->objsize
- 1] = POISON_END
;
538 if (s
->flags
& SLAB_RED_ZONE
)
539 memset(p
+ s
->objsize
,
540 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
541 s
->inuse
- s
->objsize
);
544 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
547 if (*start
!= (u8
)value
)
555 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
556 void *from
, void *to
)
558 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
559 memset(from
, data
, to
- from
);
562 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
563 u8
*object
, char *what
,
564 u8
*start
, unsigned int value
, unsigned int bytes
)
569 fault
= check_bytes(start
, value
, bytes
);
574 while (end
> fault
&& end
[-1] == value
)
577 slab_bug(s
, "%s overwritten", what
);
578 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
579 fault
, end
- 1, fault
[0], value
);
580 print_trailer(s
, page
, object
);
582 restore_bytes(s
, what
, value
, fault
, end
);
590 * Bytes of the object to be managed.
591 * If the freepointer may overlay the object then the free
592 * pointer is the first word of the object.
594 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
597 * object + s->objsize
598 * Padding to reach word boundary. This is also used for Redzoning.
599 * Padding is extended by another word if Redzoning is enabled and
602 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
603 * 0xcc (RED_ACTIVE) for objects in use.
606 * Meta data starts here.
608 * A. Free pointer (if we cannot overwrite object on free)
609 * B. Tracking data for SLAB_STORE_USER
610 * C. Padding to reach required alignment boundary or at mininum
611 * one word if debuggin is on to be able to detect writes
612 * before the word boundary.
614 * Padding is done using 0x5a (POISON_INUSE)
617 * Nothing is used beyond s->size.
619 * If slabcaches are merged then the objsize and inuse boundaries are mostly
620 * ignored. And therefore no slab options that rely on these boundaries
621 * may be used with merged slabcaches.
624 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
626 unsigned long off
= s
->inuse
; /* The end of info */
629 /* Freepointer is placed after the object. */
630 off
+= sizeof(void *);
632 if (s
->flags
& SLAB_STORE_USER
)
633 /* We also have user information there */
634 off
+= 2 * sizeof(struct track
);
639 return check_bytes_and_report(s
, page
, p
, "Object padding",
640 p
+ off
, POISON_INUSE
, s
->size
- off
);
643 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
651 if (!(s
->flags
& SLAB_POISON
))
654 start
= page_address(page
);
655 end
= start
+ (PAGE_SIZE
<< s
->order
);
656 length
= s
->objects
* s
->size
;
657 remainder
= end
- (start
+ length
);
661 fault
= check_bytes(start
+ length
, POISON_INUSE
, remainder
);
664 while (end
> fault
&& end
[-1] == POISON_INUSE
)
667 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
668 print_section("Padding", start
, length
);
670 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
674 static int check_object(struct kmem_cache
*s
, struct page
*page
,
675 void *object
, int active
)
678 u8
*endobject
= object
+ s
->objsize
;
680 if (s
->flags
& SLAB_RED_ZONE
) {
682 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
684 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
685 endobject
, red
, s
->inuse
- s
->objsize
))
688 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
)
689 check_bytes_and_report(s
, page
, p
, "Alignment padding", endobject
,
690 POISON_INUSE
, s
->inuse
- s
->objsize
);
693 if (s
->flags
& SLAB_POISON
) {
694 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
695 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
696 POISON_FREE
, s
->objsize
- 1) ||
697 !check_bytes_and_report(s
, page
, p
, "Poison",
698 p
+ s
->objsize
- 1, POISON_END
, 1)))
701 * check_pad_bytes cleans up on its own.
703 check_pad_bytes(s
, page
, p
);
706 if (!s
->offset
&& active
)
708 * Object and freepointer overlap. Cannot check
709 * freepointer while object is allocated.
713 /* Check free pointer validity */
714 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
715 object_err(s
, page
, p
, "Freepointer corrupt");
717 * No choice but to zap it and thus loose the remainder
718 * of the free objects in this slab. May cause
719 * another error because the object count is now wrong.
721 set_freepointer(s
, p
, NULL
);
727 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
729 VM_BUG_ON(!irqs_disabled());
731 if (!PageSlab(page
)) {
732 slab_err(s
, page
, "Not a valid slab page");
735 if (page
->inuse
> s
->objects
) {
736 slab_err(s
, page
, "inuse %u > max %u",
737 s
->name
, page
->inuse
, s
->objects
);
740 /* Slab_pad_check fixes things up after itself */
741 slab_pad_check(s
, page
);
746 * Determine if a certain object on a page is on the freelist. Must hold the
747 * slab lock to guarantee that the chains are in a consistent state.
749 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
752 void *fp
= page
->freelist
;
755 while (fp
&& nr
<= s
->objects
) {
758 if (!check_valid_pointer(s
, page
, fp
)) {
760 object_err(s
, page
, object
,
761 "Freechain corrupt");
762 set_freepointer(s
, object
, NULL
);
765 slab_err(s
, page
, "Freepointer corrupt");
766 page
->freelist
= NULL
;
767 page
->inuse
= s
->objects
;
768 slab_fix(s
, "Freelist cleared");
774 fp
= get_freepointer(s
, object
);
778 if (page
->inuse
!= s
->objects
- nr
) {
779 slab_err(s
, page
, "Wrong object count. Counter is %d but "
780 "counted were %d", page
->inuse
, s
->objects
- nr
);
781 page
->inuse
= s
->objects
- nr
;
782 slab_fix(s
, "Object count adjusted.");
784 return search
== NULL
;
787 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
, int alloc
)
789 if (s
->flags
& SLAB_TRACE
) {
790 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
792 alloc
? "alloc" : "free",
797 print_section("Object", (void *)object
, s
->objsize
);
804 * Tracking of fully allocated slabs for debugging purposes.
806 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
808 spin_lock(&n
->list_lock
);
809 list_add(&page
->lru
, &n
->full
);
810 spin_unlock(&n
->list_lock
);
813 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
815 struct kmem_cache_node
*n
;
817 if (!(s
->flags
& SLAB_STORE_USER
))
820 n
= get_node(s
, page_to_nid(page
));
822 spin_lock(&n
->list_lock
);
823 list_del(&page
->lru
);
824 spin_unlock(&n
->list_lock
);
827 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
830 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
833 init_object(s
, object
, 0);
834 init_tracking(s
, object
);
837 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
838 void *object
, void *addr
)
840 if (!check_slab(s
, page
))
843 if (object
&& !on_freelist(s
, page
, object
)) {
844 object_err(s
, page
, object
, "Object already allocated");
848 if (!check_valid_pointer(s
, page
, object
)) {
849 object_err(s
, page
, object
, "Freelist Pointer check fails");
853 if (object
&& !check_object(s
, page
, object
, 0))
856 /* Success perform special debug activities for allocs */
857 if (s
->flags
& SLAB_STORE_USER
)
858 set_track(s
, object
, TRACK_ALLOC
, addr
);
859 trace(s
, page
, object
, 1);
860 init_object(s
, object
, 1);
864 if (PageSlab(page
)) {
866 * If this is a slab page then lets do the best we can
867 * to avoid issues in the future. Marking all objects
868 * as used avoids touching the remaining objects.
870 slab_fix(s
, "Marking all objects used");
871 page
->inuse
= s
->objects
;
872 page
->freelist
= NULL
;
877 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
878 void *object
, void *addr
)
880 if (!check_slab(s
, page
))
883 if (!check_valid_pointer(s
, page
, object
)) {
884 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
888 if (on_freelist(s
, page
, object
)) {
889 object_err(s
, page
, object
, "Object already free");
893 if (!check_object(s
, page
, object
, 1))
896 if (unlikely(s
!= page
->slab
)) {
898 slab_err(s
, page
, "Attempt to free object(0x%p) "
899 "outside of slab", object
);
903 "SLUB <none>: no slab for object 0x%p.\n",
907 object_err(s
, page
, object
,
908 "page slab pointer corrupt.");
912 /* Special debug activities for freeing objects */
913 if (!SlabFrozen(page
) && !page
->freelist
)
914 remove_full(s
, page
);
915 if (s
->flags
& SLAB_STORE_USER
)
916 set_track(s
, object
, TRACK_FREE
, addr
);
917 trace(s
, page
, object
, 0);
918 init_object(s
, object
, 0);
922 slab_fix(s
, "Object at 0x%p not freed", object
);
926 static int __init
setup_slub_debug(char *str
)
928 slub_debug
= DEBUG_DEFAULT_FLAGS
;
929 if (*str
++ != '=' || !*str
)
931 * No options specified. Switch on full debugging.
937 * No options but restriction on slabs. This means full
938 * debugging for slabs matching a pattern.
945 * Switch off all debugging measures.
950 * Determine which debug features should be switched on
952 for (; *str
&& *str
!= ','; str
++) {
953 switch (tolower(*str
)) {
955 slub_debug
|= SLAB_DEBUG_FREE
;
958 slub_debug
|= SLAB_RED_ZONE
;
961 slub_debug
|= SLAB_POISON
;
964 slub_debug
|= SLAB_STORE_USER
;
967 slub_debug
|= SLAB_TRACE
;
970 printk(KERN_ERR
"slub_debug option '%c' "
971 "unknown. skipped\n", *str
);
977 slub_debug_slabs
= str
+ 1;
982 __setup("slub_debug", setup_slub_debug
);
984 static unsigned long kmem_cache_flags(unsigned long objsize
,
985 unsigned long flags
, const char *name
,
986 void (*ctor
)(struct kmem_cache
*, void *))
989 * The page->offset field is only 16 bit wide. This is an offset
990 * in units of words from the beginning of an object. If the slab
991 * size is bigger then we cannot move the free pointer behind the
994 * On 32 bit platforms the limit is 256k. On 64bit platforms
997 * Debugging or ctor may create a need to move the free
998 * pointer. Fail if this happens.
1000 if (objsize
>= 65535 * sizeof(void *)) {
1001 BUG_ON(flags
& (SLAB_RED_ZONE
| SLAB_POISON
|
1002 SLAB_STORE_USER
| SLAB_DESTROY_BY_RCU
));
1006 * Enable debugging if selected on the kernel commandline.
1008 if (slub_debug
&& (!slub_debug_slabs
||
1009 strncmp(slub_debug_slabs
, name
,
1010 strlen(slub_debug_slabs
)) == 0))
1011 flags
|= slub_debug
;
1017 static inline void setup_object_debug(struct kmem_cache
*s
,
1018 struct page
*page
, void *object
) {}
1020 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1021 struct page
*page
, void *object
, void *addr
) { return 0; }
1023 static inline int free_debug_processing(struct kmem_cache
*s
,
1024 struct page
*page
, void *object
, void *addr
) { return 0; }
1026 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1028 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1029 void *object
, int active
) { return 1; }
1030 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1031 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1032 unsigned long flags
, const char *name
,
1033 void (*ctor
)(struct kmem_cache
*, void *))
1037 #define slub_debug 0
1040 * Slab allocation and freeing
1042 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1045 int pages
= 1 << s
->order
;
1048 flags
|= __GFP_COMP
;
1050 if (s
->flags
& SLAB_CACHE_DMA
)
1053 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
1054 flags
|= __GFP_RECLAIMABLE
;
1057 page
= alloc_pages(flags
, s
->order
);
1059 page
= alloc_pages_node(node
, flags
, s
->order
);
1064 mod_zone_page_state(page_zone(page
),
1065 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1066 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1072 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1075 setup_object_debug(s
, page
, object
);
1076 if (unlikely(s
->ctor
))
1080 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1083 struct kmem_cache_node
*n
;
1088 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1090 page
= allocate_slab(s
,
1091 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1095 n
= get_node(s
, page_to_nid(page
));
1097 atomic_long_inc(&n
->nr_slabs
);
1099 page
->flags
|= 1 << PG_slab
;
1100 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1101 SLAB_STORE_USER
| SLAB_TRACE
))
1104 start
= page_address(page
);
1106 if (unlikely(s
->flags
& SLAB_POISON
))
1107 memset(start
, POISON_INUSE
, PAGE_SIZE
<< s
->order
);
1110 for_each_object(p
, s
, start
) {
1111 setup_object(s
, page
, last
);
1112 set_freepointer(s
, last
, p
);
1115 setup_object(s
, page
, last
);
1116 set_freepointer(s
, last
, NULL
);
1118 page
->freelist
= start
;
1124 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1126 int pages
= 1 << s
->order
;
1128 if (unlikely(SlabDebug(page
))) {
1131 slab_pad_check(s
, page
);
1132 for_each_object(p
, s
, page_address(page
))
1133 check_object(s
, page
, p
, 0);
1134 ClearSlabDebug(page
);
1137 mod_zone_page_state(page_zone(page
),
1138 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1139 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1142 __free_pages(page
, s
->order
);
1145 static void rcu_free_slab(struct rcu_head
*h
)
1149 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1150 __free_slab(page
->slab
, page
);
1153 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1155 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1157 * RCU free overloads the RCU head over the LRU
1159 struct rcu_head
*head
= (void *)&page
->lru
;
1161 call_rcu(head
, rcu_free_slab
);
1163 __free_slab(s
, page
);
1166 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1168 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1170 atomic_long_dec(&n
->nr_slabs
);
1171 reset_page_mapcount(page
);
1172 __ClearPageSlab(page
);
1177 * Per slab locking using the pagelock
1179 static __always_inline
void slab_lock(struct page
*page
)
1181 bit_spin_lock(PG_locked
, &page
->flags
);
1184 static __always_inline
void slab_unlock(struct page
*page
)
1186 bit_spin_unlock(PG_locked
, &page
->flags
);
1189 static __always_inline
int slab_trylock(struct page
*page
)
1193 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1198 * Management of partially allocated slabs
1200 static void add_partial(struct kmem_cache_node
*n
,
1201 struct page
*page
, int tail
)
1203 spin_lock(&n
->list_lock
);
1206 list_add_tail(&page
->lru
, &n
->partial
);
1208 list_add(&page
->lru
, &n
->partial
);
1209 spin_unlock(&n
->list_lock
);
1212 static void remove_partial(struct kmem_cache
*s
,
1215 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1217 spin_lock(&n
->list_lock
);
1218 list_del(&page
->lru
);
1220 spin_unlock(&n
->list_lock
);
1224 * Lock slab and remove from the partial list.
1226 * Must hold list_lock.
1228 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
, struct page
*page
)
1230 if (slab_trylock(page
)) {
1231 list_del(&page
->lru
);
1233 SetSlabFrozen(page
);
1240 * Try to allocate a partial slab from a specific node.
1242 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1247 * Racy check. If we mistakenly see no partial slabs then we
1248 * just allocate an empty slab. If we mistakenly try to get a
1249 * partial slab and there is none available then get_partials()
1252 if (!n
|| !n
->nr_partial
)
1255 spin_lock(&n
->list_lock
);
1256 list_for_each_entry(page
, &n
->partial
, lru
)
1257 if (lock_and_freeze_slab(n
, page
))
1261 spin_unlock(&n
->list_lock
);
1266 * Get a page from somewhere. Search in increasing NUMA distances.
1268 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1271 struct zonelist
*zonelist
;
1276 * The defrag ratio allows a configuration of the tradeoffs between
1277 * inter node defragmentation and node local allocations. A lower
1278 * defrag_ratio increases the tendency to do local allocations
1279 * instead of attempting to obtain partial slabs from other nodes.
1281 * If the defrag_ratio is set to 0 then kmalloc() always
1282 * returns node local objects. If the ratio is higher then kmalloc()
1283 * may return off node objects because partial slabs are obtained
1284 * from other nodes and filled up.
1286 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1287 * defrag_ratio = 1000) then every (well almost) allocation will
1288 * first attempt to defrag slab caches on other nodes. This means
1289 * scanning over all nodes to look for partial slabs which may be
1290 * expensive if we do it every time we are trying to find a slab
1291 * with available objects.
1293 if (!s
->remote_node_defrag_ratio
||
1294 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1297 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
1298 ->node_zonelists
[gfp_zone(flags
)];
1299 for (z
= zonelist
->zones
; *z
; z
++) {
1300 struct kmem_cache_node
*n
;
1302 n
= get_node(s
, zone_to_nid(*z
));
1304 if (n
&& cpuset_zone_allowed_hardwall(*z
, flags
) &&
1305 n
->nr_partial
> MIN_PARTIAL
) {
1306 page
= get_partial_node(n
);
1316 * Get a partial page, lock it and return it.
1318 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1321 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1323 page
= get_partial_node(get_node(s
, searchnode
));
1324 if (page
|| (flags
& __GFP_THISNODE
))
1327 return get_any_partial(s
, flags
);
1331 * Move a page back to the lists.
1333 * Must be called with the slab lock held.
1335 * On exit the slab lock will have been dropped.
1337 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1339 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1341 ClearSlabFrozen(page
);
1345 add_partial(n
, page
, tail
);
1346 else if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1351 if (n
->nr_partial
< MIN_PARTIAL
) {
1353 * Adding an empty slab to the partial slabs in order
1354 * to avoid page allocator overhead. This slab needs
1355 * to come after the other slabs with objects in
1356 * order to fill them up. That way the size of the
1357 * partial list stays small. kmem_cache_shrink can
1358 * reclaim empty slabs from the partial list.
1360 add_partial(n
, page
, 1);
1364 discard_slab(s
, page
);
1370 * Remove the cpu slab
1372 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1374 struct page
*page
= c
->page
;
1377 * Merge cpu freelist into freelist. Typically we get here
1378 * because both freelists are empty. So this is unlikely
1381 while (unlikely(c
->freelist
)) {
1384 tail
= 0; /* Hot objects. Put the slab first */
1386 /* Retrieve object from cpu_freelist */
1387 object
= c
->freelist
;
1388 c
->freelist
= c
->freelist
[c
->offset
];
1390 /* And put onto the regular freelist */
1391 object
[c
->offset
] = page
->freelist
;
1392 page
->freelist
= object
;
1396 unfreeze_slab(s
, page
, tail
);
1399 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1402 deactivate_slab(s
, c
);
1407 * Called from IPI handler with interrupts disabled.
1409 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1411 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1413 if (likely(c
&& c
->page
))
1417 static void flush_cpu_slab(void *d
)
1419 struct kmem_cache
*s
= d
;
1421 __flush_cpu_slab(s
, smp_processor_id());
1424 static void flush_all(struct kmem_cache
*s
)
1427 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1429 unsigned long flags
;
1431 local_irq_save(flags
);
1433 local_irq_restore(flags
);
1438 * Check if the objects in a per cpu structure fit numa
1439 * locality expectations.
1441 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1444 if (node
!= -1 && c
->node
!= node
)
1451 * Slow path. The lockless freelist is empty or we need to perform
1454 * Interrupts are disabled.
1456 * Processing is still very fast if new objects have been freed to the
1457 * regular freelist. In that case we simply take over the regular freelist
1458 * as the lockless freelist and zap the regular freelist.
1460 * If that is not working then we fall back to the partial lists. We take the
1461 * first element of the freelist as the object to allocate now and move the
1462 * rest of the freelist to the lockless freelist.
1464 * And if we were unable to get a new slab from the partial slab lists then
1465 * we need to allocate a new slab. This is slowest path since we may sleep.
1467 static void *__slab_alloc(struct kmem_cache
*s
,
1468 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1477 if (unlikely(!node_match(c
, node
)))
1480 object
= c
->page
->freelist
;
1481 if (unlikely(!object
))
1483 if (unlikely(SlabDebug(c
->page
)))
1486 object
= c
->page
->freelist
;
1487 c
->freelist
= object
[c
->offset
];
1488 c
->page
->inuse
= s
->objects
;
1489 c
->page
->freelist
= NULL
;
1490 c
->node
= page_to_nid(c
->page
);
1491 slab_unlock(c
->page
);
1495 deactivate_slab(s
, c
);
1498 new = get_partial(s
, gfpflags
, node
);
1504 if (gfpflags
& __GFP_WAIT
)
1507 new = new_slab(s
, gfpflags
, node
);
1509 if (gfpflags
& __GFP_WAIT
)
1510 local_irq_disable();
1513 c
= get_cpu_slab(s
, smp_processor_id());
1523 object
= c
->page
->freelist
;
1524 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1528 c
->page
->freelist
= object
[c
->offset
];
1530 slab_unlock(c
->page
);
1535 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1536 * have the fastpath folded into their functions. So no function call
1537 * overhead for requests that can be satisfied on the fastpath.
1539 * The fastpath works by first checking if the lockless freelist can be used.
1540 * If not then __slab_alloc is called for slow processing.
1542 * Otherwise we can simply pick the next object from the lockless free list.
1544 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1545 gfp_t gfpflags
, int node
, void *addr
)
1548 unsigned long flags
;
1549 struct kmem_cache_cpu
*c
;
1551 local_irq_save(flags
);
1552 c
= get_cpu_slab(s
, smp_processor_id());
1553 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1555 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1558 object
= c
->freelist
;
1559 c
->freelist
= object
[c
->offset
];
1561 local_irq_restore(flags
);
1563 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1564 memset(object
, 0, c
->objsize
);
1569 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1571 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1573 EXPORT_SYMBOL(kmem_cache_alloc
);
1576 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1578 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1580 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1584 * Slow patch handling. This may still be called frequently since objects
1585 * have a longer lifetime than the cpu slabs in most processing loads.
1587 * So we still attempt to reduce cache line usage. Just take the slab
1588 * lock and free the item. If there is no additional partial page
1589 * handling required then we can return immediately.
1591 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1592 void *x
, void *addr
, unsigned int offset
)
1595 void **object
= (void *)x
;
1599 if (unlikely(SlabDebug(page
)))
1602 prior
= object
[offset
] = page
->freelist
;
1603 page
->freelist
= object
;
1606 if (unlikely(SlabFrozen(page
)))
1609 if (unlikely(!page
->inuse
))
1613 * Objects left in the slab. If it
1614 * was not on the partial list before
1617 if (unlikely(!prior
))
1618 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1627 * Slab still on the partial list.
1629 remove_partial(s
, page
);
1632 discard_slab(s
, page
);
1636 if (!free_debug_processing(s
, page
, x
, addr
))
1642 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1643 * can perform fastpath freeing without additional function calls.
1645 * The fastpath is only possible if we are freeing to the current cpu slab
1646 * of this processor. This typically the case if we have just allocated
1649 * If fastpath is not possible then fall back to __slab_free where we deal
1650 * with all sorts of special processing.
1652 static __always_inline
void slab_free(struct kmem_cache
*s
,
1653 struct page
*page
, void *x
, void *addr
)
1655 void **object
= (void *)x
;
1656 unsigned long flags
;
1657 struct kmem_cache_cpu
*c
;
1659 local_irq_save(flags
);
1660 debug_check_no_locks_freed(object
, s
->objsize
);
1661 c
= get_cpu_slab(s
, smp_processor_id());
1662 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1663 object
[c
->offset
] = c
->freelist
;
1664 c
->freelist
= object
;
1666 __slab_free(s
, page
, x
, addr
, c
->offset
);
1668 local_irq_restore(flags
);
1671 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1675 page
= virt_to_head_page(x
);
1677 slab_free(s
, page
, x
, __builtin_return_address(0));
1679 EXPORT_SYMBOL(kmem_cache_free
);
1681 /* Figure out on which slab object the object resides */
1682 static struct page
*get_object_page(const void *x
)
1684 struct page
*page
= virt_to_head_page(x
);
1686 if (!PageSlab(page
))
1693 * Object placement in a slab is made very easy because we always start at
1694 * offset 0. If we tune the size of the object to the alignment then we can
1695 * get the required alignment by putting one properly sized object after
1698 * Notice that the allocation order determines the sizes of the per cpu
1699 * caches. Each processor has always one slab available for allocations.
1700 * Increasing the allocation order reduces the number of times that slabs
1701 * must be moved on and off the partial lists and is therefore a factor in
1706 * Mininum / Maximum order of slab pages. This influences locking overhead
1707 * and slab fragmentation. A higher order reduces the number of partial slabs
1708 * and increases the number of allocations possible without having to
1709 * take the list_lock.
1711 static int slub_min_order
;
1712 static int slub_max_order
= DEFAULT_MAX_ORDER
;
1713 static int slub_min_objects
= DEFAULT_MIN_OBJECTS
;
1716 * Merge control. If this is set then no merging of slab caches will occur.
1717 * (Could be removed. This was introduced to pacify the merge skeptics.)
1719 static int slub_nomerge
;
1722 * Calculate the order of allocation given an slab object size.
1724 * The order of allocation has significant impact on performance and other
1725 * system components. Generally order 0 allocations should be preferred since
1726 * order 0 does not cause fragmentation in the page allocator. Larger objects
1727 * be problematic to put into order 0 slabs because there may be too much
1728 * unused space left. We go to a higher order if more than 1/8th of the slab
1731 * In order to reach satisfactory performance we must ensure that a minimum
1732 * number of objects is in one slab. Otherwise we may generate too much
1733 * activity on the partial lists which requires taking the list_lock. This is
1734 * less a concern for large slabs though which are rarely used.
1736 * slub_max_order specifies the order where we begin to stop considering the
1737 * number of objects in a slab as critical. If we reach slub_max_order then
1738 * we try to keep the page order as low as possible. So we accept more waste
1739 * of space in favor of a small page order.
1741 * Higher order allocations also allow the placement of more objects in a
1742 * slab and thereby reduce object handling overhead. If the user has
1743 * requested a higher mininum order then we start with that one instead of
1744 * the smallest order which will fit the object.
1746 static inline int slab_order(int size
, int min_objects
,
1747 int max_order
, int fract_leftover
)
1751 int min_order
= slub_min_order
;
1753 for (order
= max(min_order
,
1754 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1755 order
<= max_order
; order
++) {
1757 unsigned long slab_size
= PAGE_SIZE
<< order
;
1759 if (slab_size
< min_objects
* size
)
1762 rem
= slab_size
% size
;
1764 if (rem
<= slab_size
/ fract_leftover
)
1772 static inline int calculate_order(int size
)
1779 * Attempt to find best configuration for a slab. This
1780 * works by first attempting to generate a layout with
1781 * the best configuration and backing off gradually.
1783 * First we reduce the acceptable waste in a slab. Then
1784 * we reduce the minimum objects required in a slab.
1786 min_objects
= slub_min_objects
;
1787 while (min_objects
> 1) {
1789 while (fraction
>= 4) {
1790 order
= slab_order(size
, min_objects
,
1791 slub_max_order
, fraction
);
1792 if (order
<= slub_max_order
)
1800 * We were unable to place multiple objects in a slab. Now
1801 * lets see if we can place a single object there.
1803 order
= slab_order(size
, 1, slub_max_order
, 1);
1804 if (order
<= slub_max_order
)
1808 * Doh this slab cannot be placed using slub_max_order.
1810 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1811 if (order
<= MAX_ORDER
)
1817 * Figure out what the alignment of the objects will be.
1819 static unsigned long calculate_alignment(unsigned long flags
,
1820 unsigned long align
, unsigned long size
)
1823 * If the user wants hardware cache aligned objects then
1824 * follow that suggestion if the object is sufficiently
1827 * The hardware cache alignment cannot override the
1828 * specified alignment though. If that is greater
1831 if ((flags
& SLAB_HWCACHE_ALIGN
) &&
1832 size
> cache_line_size() / 2)
1833 return max_t(unsigned long, align
, cache_line_size());
1835 if (align
< ARCH_SLAB_MINALIGN
)
1836 return ARCH_SLAB_MINALIGN
;
1838 return ALIGN(align
, sizeof(void *));
1841 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1842 struct kmem_cache_cpu
*c
)
1847 c
->offset
= s
->offset
/ sizeof(void *);
1848 c
->objsize
= s
->objsize
;
1851 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1854 atomic_long_set(&n
->nr_slabs
, 0);
1855 spin_lock_init(&n
->list_lock
);
1856 INIT_LIST_HEAD(&n
->partial
);
1857 #ifdef CONFIG_SLUB_DEBUG
1858 INIT_LIST_HEAD(&n
->full
);
1864 * Per cpu array for per cpu structures.
1866 * The per cpu array places all kmem_cache_cpu structures from one processor
1867 * close together meaning that it becomes possible that multiple per cpu
1868 * structures are contained in one cacheline. This may be particularly
1869 * beneficial for the kmalloc caches.
1871 * A desktop system typically has around 60-80 slabs. With 100 here we are
1872 * likely able to get per cpu structures for all caches from the array defined
1873 * here. We must be able to cover all kmalloc caches during bootstrap.
1875 * If the per cpu array is exhausted then fall back to kmalloc
1876 * of individual cachelines. No sharing is possible then.
1878 #define NR_KMEM_CACHE_CPU 100
1880 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1881 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1883 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1884 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1886 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1887 int cpu
, gfp_t flags
)
1889 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1892 per_cpu(kmem_cache_cpu_free
, cpu
) =
1893 (void *)c
->freelist
;
1895 /* Table overflow: So allocate ourselves */
1897 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1898 flags
, cpu_to_node(cpu
));
1903 init_kmem_cache_cpu(s
, c
);
1907 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
1909 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
1910 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
1914 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
1915 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
1918 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
1922 for_each_online_cpu(cpu
) {
1923 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1926 s
->cpu_slab
[cpu
] = NULL
;
1927 free_kmem_cache_cpu(c
, cpu
);
1932 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
1936 for_each_online_cpu(cpu
) {
1937 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1942 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
1944 free_kmem_cache_cpus(s
);
1947 s
->cpu_slab
[cpu
] = c
;
1953 * Initialize the per cpu array.
1955 static void init_alloc_cpu_cpu(int cpu
)
1959 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
1962 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
1963 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
1965 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
1968 static void __init
init_alloc_cpu(void)
1972 for_each_online_cpu(cpu
)
1973 init_alloc_cpu_cpu(cpu
);
1977 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
1978 static inline void init_alloc_cpu(void) {}
1980 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
1982 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
1989 * No kmalloc_node yet so do it by hand. We know that this is the first
1990 * slab on the node for this slabcache. There are no concurrent accesses
1993 * Note that this function only works on the kmalloc_node_cache
1994 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1995 * memory on a fresh node that has no slab structures yet.
1997 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2001 struct kmem_cache_node
*n
;
2002 unsigned long flags
;
2004 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2006 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2009 if (page_to_nid(page
) != node
) {
2010 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2012 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2013 "in order to be able to continue\n");
2018 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2020 kmalloc_caches
->node
[node
] = n
;
2021 #ifdef CONFIG_SLUB_DEBUG
2022 init_object(kmalloc_caches
, n
, 1);
2023 init_tracking(kmalloc_caches
, n
);
2025 init_kmem_cache_node(n
);
2026 atomic_long_inc(&n
->nr_slabs
);
2028 * lockdep requires consistent irq usage for each lock
2029 * so even though there cannot be a race this early in
2030 * the boot sequence, we still disable irqs.
2032 local_irq_save(flags
);
2033 add_partial(n
, page
, 0);
2034 local_irq_restore(flags
);
2038 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2042 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2043 struct kmem_cache_node
*n
= s
->node
[node
];
2044 if (n
&& n
!= &s
->local_node
)
2045 kmem_cache_free(kmalloc_caches
, n
);
2046 s
->node
[node
] = NULL
;
2050 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2055 if (slab_state
>= UP
)
2056 local_node
= page_to_nid(virt_to_page(s
));
2060 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2061 struct kmem_cache_node
*n
;
2063 if (local_node
== node
)
2066 if (slab_state
== DOWN
) {
2067 n
= early_kmem_cache_node_alloc(gfpflags
,
2071 n
= kmem_cache_alloc_node(kmalloc_caches
,
2075 free_kmem_cache_nodes(s
);
2081 init_kmem_cache_node(n
);
2086 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2090 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2092 init_kmem_cache_node(&s
->local_node
);
2098 * calculate_sizes() determines the order and the distribution of data within
2101 static int calculate_sizes(struct kmem_cache
*s
)
2103 unsigned long flags
= s
->flags
;
2104 unsigned long size
= s
->objsize
;
2105 unsigned long align
= s
->align
;
2108 * Determine if we can poison the object itself. If the user of
2109 * the slab may touch the object after free or before allocation
2110 * then we should never poison the object itself.
2112 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2114 s
->flags
|= __OBJECT_POISON
;
2116 s
->flags
&= ~__OBJECT_POISON
;
2119 * Round up object size to the next word boundary. We can only
2120 * place the free pointer at word boundaries and this determines
2121 * the possible location of the free pointer.
2123 size
= ALIGN(size
, sizeof(void *));
2125 #ifdef CONFIG_SLUB_DEBUG
2127 * If we are Redzoning then check if there is some space between the
2128 * end of the object and the free pointer. If not then add an
2129 * additional word to have some bytes to store Redzone information.
2131 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2132 size
+= sizeof(void *);
2136 * With that we have determined the number of bytes in actual use
2137 * by the object. This is the potential offset to the free pointer.
2141 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2144 * Relocate free pointer after the object if it is not
2145 * permitted to overwrite the first word of the object on
2148 * This is the case if we do RCU, have a constructor or
2149 * destructor or are poisoning the objects.
2152 size
+= sizeof(void *);
2155 #ifdef CONFIG_SLUB_DEBUG
2156 if (flags
& SLAB_STORE_USER
)
2158 * Need to store information about allocs and frees after
2161 size
+= 2 * sizeof(struct track
);
2163 if (flags
& SLAB_RED_ZONE
)
2165 * Add some empty padding so that we can catch
2166 * overwrites from earlier objects rather than let
2167 * tracking information or the free pointer be
2168 * corrupted if an user writes before the start
2171 size
+= sizeof(void *);
2175 * Determine the alignment based on various parameters that the
2176 * user specified and the dynamic determination of cache line size
2179 align
= calculate_alignment(flags
, align
, s
->objsize
);
2182 * SLUB stores one object immediately after another beginning from
2183 * offset 0. In order to align the objects we have to simply size
2184 * each object to conform to the alignment.
2186 size
= ALIGN(size
, align
);
2189 s
->order
= calculate_order(size
);
2194 * Determine the number of objects per slab
2196 s
->objects
= (PAGE_SIZE
<< s
->order
) / size
;
2198 return !!s
->objects
;
2202 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2203 const char *name
, size_t size
,
2204 size_t align
, unsigned long flags
,
2205 void (*ctor
)(struct kmem_cache
*, void *))
2207 memset(s
, 0, kmem_size
);
2212 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2214 if (!calculate_sizes(s
))
2219 s
->remote_node_defrag_ratio
= 100;
2221 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2224 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2226 free_kmem_cache_nodes(s
);
2228 if (flags
& SLAB_PANIC
)
2229 panic("Cannot create slab %s size=%lu realsize=%u "
2230 "order=%u offset=%u flags=%lx\n",
2231 s
->name
, (unsigned long)size
, s
->size
, s
->order
,
2237 * Check if a given pointer is valid
2239 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2243 page
= get_object_page(object
);
2245 if (!page
|| s
!= page
->slab
)
2246 /* No slab or wrong slab */
2249 if (!check_valid_pointer(s
, page
, object
))
2253 * We could also check if the object is on the slabs freelist.
2254 * But this would be too expensive and it seems that the main
2255 * purpose of kmem_ptr_valid is to check if the object belongs
2256 * to a certain slab.
2260 EXPORT_SYMBOL(kmem_ptr_validate
);
2263 * Determine the size of a slab object
2265 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2269 EXPORT_SYMBOL(kmem_cache_size
);
2271 const char *kmem_cache_name(struct kmem_cache
*s
)
2275 EXPORT_SYMBOL(kmem_cache_name
);
2278 * Attempt to free all slabs on a node. Return the number of slabs we
2279 * were unable to free.
2281 static int free_list(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
2282 struct list_head
*list
)
2284 int slabs_inuse
= 0;
2285 unsigned long flags
;
2286 struct page
*page
, *h
;
2288 spin_lock_irqsave(&n
->list_lock
, flags
);
2289 list_for_each_entry_safe(page
, h
, list
, lru
)
2291 list_del(&page
->lru
);
2292 discard_slab(s
, page
);
2295 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2300 * Release all resources used by a slab cache.
2302 static inline int kmem_cache_close(struct kmem_cache
*s
)
2308 /* Attempt to free all objects */
2309 free_kmem_cache_cpus(s
);
2310 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2311 struct kmem_cache_node
*n
= get_node(s
, node
);
2313 n
->nr_partial
-= free_list(s
, n
, &n
->partial
);
2314 if (atomic_long_read(&n
->nr_slabs
))
2317 free_kmem_cache_nodes(s
);
2322 * Close a cache and release the kmem_cache structure
2323 * (must be used for caches created using kmem_cache_create)
2325 void kmem_cache_destroy(struct kmem_cache
*s
)
2327 down_write(&slub_lock
);
2331 up_write(&slub_lock
);
2332 if (kmem_cache_close(s
))
2334 sysfs_slab_remove(s
);
2336 up_write(&slub_lock
);
2338 EXPORT_SYMBOL(kmem_cache_destroy
);
2340 /********************************************************************
2342 *******************************************************************/
2344 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
] __cacheline_aligned
;
2345 EXPORT_SYMBOL(kmalloc_caches
);
2347 #ifdef CONFIG_ZONE_DMA
2348 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
];
2351 static int __init
setup_slub_min_order(char *str
)
2353 get_option(&str
, &slub_min_order
);
2358 __setup("slub_min_order=", setup_slub_min_order
);
2360 static int __init
setup_slub_max_order(char *str
)
2362 get_option(&str
, &slub_max_order
);
2367 __setup("slub_max_order=", setup_slub_max_order
);
2369 static int __init
setup_slub_min_objects(char *str
)
2371 get_option(&str
, &slub_min_objects
);
2376 __setup("slub_min_objects=", setup_slub_min_objects
);
2378 static int __init
setup_slub_nomerge(char *str
)
2384 __setup("slub_nomerge", setup_slub_nomerge
);
2386 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2387 const char *name
, int size
, gfp_t gfp_flags
)
2389 unsigned int flags
= 0;
2391 if (gfp_flags
& SLUB_DMA
)
2392 flags
= SLAB_CACHE_DMA
;
2394 down_write(&slub_lock
);
2395 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2399 list_add(&s
->list
, &slab_caches
);
2400 up_write(&slub_lock
);
2401 if (sysfs_slab_add(s
))
2406 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2409 #ifdef CONFIG_ZONE_DMA
2411 static void sysfs_add_func(struct work_struct
*w
)
2413 struct kmem_cache
*s
;
2415 down_write(&slub_lock
);
2416 list_for_each_entry(s
, &slab_caches
, list
) {
2417 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2418 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2422 up_write(&slub_lock
);
2425 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2427 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2429 struct kmem_cache
*s
;
2433 s
= kmalloc_caches_dma
[index
];
2437 /* Dynamically create dma cache */
2438 if (flags
& __GFP_WAIT
)
2439 down_write(&slub_lock
);
2441 if (!down_write_trylock(&slub_lock
))
2445 if (kmalloc_caches_dma
[index
])
2448 realsize
= kmalloc_caches
[index
].objsize
;
2449 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d", (unsigned int)realsize
),
2450 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2452 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2453 realsize
, ARCH_KMALLOC_MINALIGN
,
2454 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2460 list_add(&s
->list
, &slab_caches
);
2461 kmalloc_caches_dma
[index
] = s
;
2463 schedule_work(&sysfs_add_work
);
2466 up_write(&slub_lock
);
2468 return kmalloc_caches_dma
[index
];
2473 * Conversion table for small slabs sizes / 8 to the index in the
2474 * kmalloc array. This is necessary for slabs < 192 since we have non power
2475 * of two cache sizes there. The size of larger slabs can be determined using
2478 static s8 size_index
[24] = {
2505 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2511 return ZERO_SIZE_PTR
;
2513 index
= size_index
[(size
- 1) / 8];
2515 index
= fls(size
- 1);
2517 #ifdef CONFIG_ZONE_DMA
2518 if (unlikely((flags
& SLUB_DMA
)))
2519 return dma_kmalloc_cache(index
, flags
);
2522 return &kmalloc_caches
[index
];
2525 void *__kmalloc(size_t size
, gfp_t flags
)
2527 struct kmem_cache
*s
;
2529 if (unlikely(size
> PAGE_SIZE
/ 2))
2530 return (void *)__get_free_pages(flags
| __GFP_COMP
,
2533 s
= get_slab(size
, flags
);
2535 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2538 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2540 EXPORT_SYMBOL(__kmalloc
);
2543 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2545 struct kmem_cache
*s
;
2547 if (unlikely(size
> PAGE_SIZE
/ 2))
2548 return (void *)__get_free_pages(flags
| __GFP_COMP
,
2551 s
= get_slab(size
, flags
);
2553 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2556 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2558 EXPORT_SYMBOL(__kmalloc_node
);
2561 size_t ksize(const void *object
)
2564 struct kmem_cache
*s
;
2567 if (unlikely(object
== ZERO_SIZE_PTR
))
2570 page
= virt_to_head_page(object
);
2573 if (unlikely(!PageSlab(page
)))
2574 return PAGE_SIZE
<< compound_order(page
);
2580 * Debugging requires use of the padding between object
2581 * and whatever may come after it.
2583 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2587 * If we have the need to store the freelist pointer
2588 * back there or track user information then we can
2589 * only use the space before that information.
2591 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2595 * Else we can use all the padding etc for the allocation
2599 EXPORT_SYMBOL(ksize
);
2601 void kfree(const void *x
)
2605 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2608 page
= virt_to_head_page(x
);
2609 if (unlikely(!PageSlab(page
))) {
2613 slab_free(page
->slab
, page
, (void *)x
, __builtin_return_address(0));
2615 EXPORT_SYMBOL(kfree
);
2617 static unsigned long count_partial(struct kmem_cache_node
*n
)
2619 unsigned long flags
;
2620 unsigned long x
= 0;
2623 spin_lock_irqsave(&n
->list_lock
, flags
);
2624 list_for_each_entry(page
, &n
->partial
, lru
)
2626 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2631 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2632 * the remaining slabs by the number of items in use. The slabs with the
2633 * most items in use come first. New allocations will then fill those up
2634 * and thus they can be removed from the partial lists.
2636 * The slabs with the least items are placed last. This results in them
2637 * being allocated from last increasing the chance that the last objects
2638 * are freed in them.
2640 int kmem_cache_shrink(struct kmem_cache
*s
)
2644 struct kmem_cache_node
*n
;
2647 struct list_head
*slabs_by_inuse
=
2648 kmalloc(sizeof(struct list_head
) * s
->objects
, GFP_KERNEL
);
2649 unsigned long flags
;
2651 if (!slabs_by_inuse
)
2655 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2656 n
= get_node(s
, node
);
2661 for (i
= 0; i
< s
->objects
; i
++)
2662 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2664 spin_lock_irqsave(&n
->list_lock
, flags
);
2667 * Build lists indexed by the items in use in each slab.
2669 * Note that concurrent frees may occur while we hold the
2670 * list_lock. page->inuse here is the upper limit.
2672 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2673 if (!page
->inuse
&& slab_trylock(page
)) {
2675 * Must hold slab lock here because slab_free
2676 * may have freed the last object and be
2677 * waiting to release the slab.
2679 list_del(&page
->lru
);
2682 discard_slab(s
, page
);
2684 list_move(&page
->lru
,
2685 slabs_by_inuse
+ page
->inuse
);
2690 * Rebuild the partial list with the slabs filled up most
2691 * first and the least used slabs at the end.
2693 for (i
= s
->objects
- 1; i
>= 0; i
--)
2694 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2696 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2699 kfree(slabs_by_inuse
);
2702 EXPORT_SYMBOL(kmem_cache_shrink
);
2704 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2705 static int slab_mem_going_offline_callback(void *arg
)
2707 struct kmem_cache
*s
;
2709 down_read(&slub_lock
);
2710 list_for_each_entry(s
, &slab_caches
, list
)
2711 kmem_cache_shrink(s
);
2712 up_read(&slub_lock
);
2717 static void slab_mem_offline_callback(void *arg
)
2719 struct kmem_cache_node
*n
;
2720 struct kmem_cache
*s
;
2721 struct memory_notify
*marg
= arg
;
2724 offline_node
= marg
->status_change_nid
;
2727 * If the node still has available memory. we need kmem_cache_node
2730 if (offline_node
< 0)
2733 down_read(&slub_lock
);
2734 list_for_each_entry(s
, &slab_caches
, list
) {
2735 n
= get_node(s
, offline_node
);
2738 * if n->nr_slabs > 0, slabs still exist on the node
2739 * that is going down. We were unable to free them,
2740 * and offline_pages() function shoudn't call this
2741 * callback. So, we must fail.
2743 BUG_ON(atomic_long_read(&n
->nr_slabs
));
2745 s
->node
[offline_node
] = NULL
;
2746 kmem_cache_free(kmalloc_caches
, n
);
2749 up_read(&slub_lock
);
2752 static int slab_mem_going_online_callback(void *arg
)
2754 struct kmem_cache_node
*n
;
2755 struct kmem_cache
*s
;
2756 struct memory_notify
*marg
= arg
;
2757 int nid
= marg
->status_change_nid
;
2761 * If the node's memory is already available, then kmem_cache_node is
2762 * already created. Nothing to do.
2768 * We are bringing a node online. No memory is availabe yet. We must
2769 * allocate a kmem_cache_node structure in order to bring the node
2772 down_read(&slub_lock
);
2773 list_for_each_entry(s
, &slab_caches
, list
) {
2775 * XXX: kmem_cache_alloc_node will fallback to other nodes
2776 * since memory is not yet available from the node that
2779 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2784 init_kmem_cache_node(n
);
2788 up_read(&slub_lock
);
2792 static int slab_memory_callback(struct notifier_block
*self
,
2793 unsigned long action
, void *arg
)
2798 case MEM_GOING_ONLINE
:
2799 ret
= slab_mem_going_online_callback(arg
);
2801 case MEM_GOING_OFFLINE
:
2802 ret
= slab_mem_going_offline_callback(arg
);
2805 case MEM_CANCEL_ONLINE
:
2806 slab_mem_offline_callback(arg
);
2809 case MEM_CANCEL_OFFLINE
:
2813 ret
= notifier_from_errno(ret
);
2817 #endif /* CONFIG_MEMORY_HOTPLUG */
2819 /********************************************************************
2820 * Basic setup of slabs
2821 *******************************************************************/
2823 void __init
kmem_cache_init(void)
2832 * Must first have the slab cache available for the allocations of the
2833 * struct kmem_cache_node's. There is special bootstrap code in
2834 * kmem_cache_open for slab_state == DOWN.
2836 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2837 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2838 kmalloc_caches
[0].refcount
= -1;
2841 hotplug_memory_notifier(slab_memory_callback
, 1);
2844 /* Able to allocate the per node structures */
2845 slab_state
= PARTIAL
;
2847 /* Caches that are not of the two-to-the-power-of size */
2848 if (KMALLOC_MIN_SIZE
<= 64) {
2849 create_kmalloc_cache(&kmalloc_caches
[1],
2850 "kmalloc-96", 96, GFP_KERNEL
);
2853 if (KMALLOC_MIN_SIZE
<= 128) {
2854 create_kmalloc_cache(&kmalloc_caches
[2],
2855 "kmalloc-192", 192, GFP_KERNEL
);
2859 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++) {
2860 create_kmalloc_cache(&kmalloc_caches
[i
],
2861 "kmalloc", 1 << i
, GFP_KERNEL
);
2867 * Patch up the size_index table if we have strange large alignment
2868 * requirements for the kmalloc array. This is only the case for
2869 * mips it seems. The standard arches will not generate any code here.
2871 * Largest permitted alignment is 256 bytes due to the way we
2872 * handle the index determination for the smaller caches.
2874 * Make sure that nothing crazy happens if someone starts tinkering
2875 * around with ARCH_KMALLOC_MINALIGN
2877 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
2878 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
2880 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
2881 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
2885 /* Provide the correct kmalloc names now that the caches are up */
2886 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++)
2887 kmalloc_caches
[i
]. name
=
2888 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
2891 register_cpu_notifier(&slab_notifier
);
2892 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
2893 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
2895 kmem_size
= sizeof(struct kmem_cache
);
2899 printk(KERN_INFO
"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2900 " CPUs=%d, Nodes=%d\n",
2901 caches
, cache_line_size(),
2902 slub_min_order
, slub_max_order
, slub_min_objects
,
2903 nr_cpu_ids
, nr_node_ids
);
2907 * Find a mergeable slab cache
2909 static int slab_unmergeable(struct kmem_cache
*s
)
2911 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
2918 * We may have set a slab to be unmergeable during bootstrap.
2920 if (s
->refcount
< 0)
2926 static struct kmem_cache
*find_mergeable(size_t size
,
2927 size_t align
, unsigned long flags
, const char *name
,
2928 void (*ctor
)(struct kmem_cache
*, void *))
2930 struct kmem_cache
*s
;
2932 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
2938 size
= ALIGN(size
, sizeof(void *));
2939 align
= calculate_alignment(flags
, align
, size
);
2940 size
= ALIGN(size
, align
);
2941 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
2943 list_for_each_entry(s
, &slab_caches
, list
) {
2944 if (slab_unmergeable(s
))
2950 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
2953 * Check if alignment is compatible.
2954 * Courtesy of Adrian Drzewiecki
2956 if ((s
->size
& ~(align
- 1)) != s
->size
)
2959 if (s
->size
- size
>= sizeof(void *))
2967 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
2968 size_t align
, unsigned long flags
,
2969 void (*ctor
)(struct kmem_cache
*, void *))
2971 struct kmem_cache
*s
;
2973 down_write(&slub_lock
);
2974 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
2980 * Adjust the object sizes so that we clear
2981 * the complete object on kzalloc.
2983 s
->objsize
= max(s
->objsize
, (int)size
);
2986 * And then we need to update the object size in the
2987 * per cpu structures
2989 for_each_online_cpu(cpu
)
2990 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
2991 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
2992 up_write(&slub_lock
);
2993 if (sysfs_slab_alias(s
, name
))
2997 s
= kmalloc(kmem_size
, GFP_KERNEL
);
2999 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3000 size
, align
, flags
, ctor
)) {
3001 list_add(&s
->list
, &slab_caches
);
3002 up_write(&slub_lock
);
3003 if (sysfs_slab_add(s
))
3009 up_write(&slub_lock
);
3012 if (flags
& SLAB_PANIC
)
3013 panic("Cannot create slabcache %s\n", name
);
3018 EXPORT_SYMBOL(kmem_cache_create
);
3022 * Use the cpu notifier to insure that the cpu slabs are flushed when
3025 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3026 unsigned long action
, void *hcpu
)
3028 long cpu
= (long)hcpu
;
3029 struct kmem_cache
*s
;
3030 unsigned long flags
;
3033 case CPU_UP_PREPARE
:
3034 case CPU_UP_PREPARE_FROZEN
:
3035 init_alloc_cpu_cpu(cpu
);
3036 down_read(&slub_lock
);
3037 list_for_each_entry(s
, &slab_caches
, list
)
3038 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3040 up_read(&slub_lock
);
3043 case CPU_UP_CANCELED
:
3044 case CPU_UP_CANCELED_FROZEN
:
3046 case CPU_DEAD_FROZEN
:
3047 down_read(&slub_lock
);
3048 list_for_each_entry(s
, &slab_caches
, list
) {
3049 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3051 local_irq_save(flags
);
3052 __flush_cpu_slab(s
, cpu
);
3053 local_irq_restore(flags
);
3054 free_kmem_cache_cpu(c
, cpu
);
3055 s
->cpu_slab
[cpu
] = NULL
;
3057 up_read(&slub_lock
);
3065 static struct notifier_block __cpuinitdata slab_notifier
= {
3066 &slab_cpuup_callback
, NULL
, 0
3071 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3073 struct kmem_cache
*s
;
3075 if (unlikely(size
> PAGE_SIZE
/ 2))
3076 return (void *)__get_free_pages(gfpflags
| __GFP_COMP
,
3078 s
= get_slab(size
, gfpflags
);
3080 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3083 return slab_alloc(s
, gfpflags
, -1, caller
);
3086 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3087 int node
, void *caller
)
3089 struct kmem_cache
*s
;
3091 if (unlikely(size
> PAGE_SIZE
/ 2))
3092 return (void *)__get_free_pages(gfpflags
| __GFP_COMP
,
3094 s
= get_slab(size
, gfpflags
);
3096 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3099 return slab_alloc(s
, gfpflags
, node
, caller
);
3102 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3103 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3107 void *addr
= page_address(page
);
3109 if (!check_slab(s
, page
) ||
3110 !on_freelist(s
, page
, NULL
))
3113 /* Now we know that a valid freelist exists */
3114 bitmap_zero(map
, s
->objects
);
3116 for_each_free_object(p
, s
, page
->freelist
) {
3117 set_bit(slab_index(p
, s
, addr
), map
);
3118 if (!check_object(s
, page
, p
, 0))
3122 for_each_object(p
, s
, addr
)
3123 if (!test_bit(slab_index(p
, s
, addr
), map
))
3124 if (!check_object(s
, page
, p
, 1))
3129 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3132 if (slab_trylock(page
)) {
3133 validate_slab(s
, page
, map
);
3136 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3139 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3140 if (!SlabDebug(page
))
3141 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3142 "on slab 0x%p\n", s
->name
, page
);
3144 if (SlabDebug(page
))
3145 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3146 "slab 0x%p\n", s
->name
, page
);
3150 static int validate_slab_node(struct kmem_cache
*s
,
3151 struct kmem_cache_node
*n
, unsigned long *map
)
3153 unsigned long count
= 0;
3155 unsigned long flags
;
3157 spin_lock_irqsave(&n
->list_lock
, flags
);
3159 list_for_each_entry(page
, &n
->partial
, lru
) {
3160 validate_slab_slab(s
, page
, map
);
3163 if (count
!= n
->nr_partial
)
3164 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3165 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3167 if (!(s
->flags
& SLAB_STORE_USER
))
3170 list_for_each_entry(page
, &n
->full
, lru
) {
3171 validate_slab_slab(s
, page
, map
);
3174 if (count
!= atomic_long_read(&n
->nr_slabs
))
3175 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3176 "counter=%ld\n", s
->name
, count
,
3177 atomic_long_read(&n
->nr_slabs
));
3180 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3184 static long validate_slab_cache(struct kmem_cache
*s
)
3187 unsigned long count
= 0;
3188 unsigned long *map
= kmalloc(BITS_TO_LONGS(s
->objects
) *
3189 sizeof(unsigned long), GFP_KERNEL
);
3195 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3196 struct kmem_cache_node
*n
= get_node(s
, node
);
3198 count
+= validate_slab_node(s
, n
, map
);
3204 #ifdef SLUB_RESILIENCY_TEST
3205 static void resiliency_test(void)
3209 printk(KERN_ERR
"SLUB resiliency testing\n");
3210 printk(KERN_ERR
"-----------------------\n");
3211 printk(KERN_ERR
"A. Corruption after allocation\n");
3213 p
= kzalloc(16, GFP_KERNEL
);
3215 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3216 " 0x12->0x%p\n\n", p
+ 16);
3218 validate_slab_cache(kmalloc_caches
+ 4);
3220 /* Hmmm... The next two are dangerous */
3221 p
= kzalloc(32, GFP_KERNEL
);
3222 p
[32 + sizeof(void *)] = 0x34;
3223 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3224 " 0x34 -> -0x%p\n", p
);
3225 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
3227 validate_slab_cache(kmalloc_caches
+ 5);
3228 p
= kzalloc(64, GFP_KERNEL
);
3229 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3231 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3233 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
3234 validate_slab_cache(kmalloc_caches
+ 6);
3236 printk(KERN_ERR
"\nB. Corruption after free\n");
3237 p
= kzalloc(128, GFP_KERNEL
);
3240 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3241 validate_slab_cache(kmalloc_caches
+ 7);
3243 p
= kzalloc(256, GFP_KERNEL
);
3246 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
3247 validate_slab_cache(kmalloc_caches
+ 8);
3249 p
= kzalloc(512, GFP_KERNEL
);
3252 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3253 validate_slab_cache(kmalloc_caches
+ 9);
3256 static void resiliency_test(void) {};
3260 * Generate lists of code addresses where slabcache objects are allocated
3265 unsigned long count
;
3278 unsigned long count
;
3279 struct location
*loc
;
3282 static void free_loc_track(struct loc_track
*t
)
3285 free_pages((unsigned long)t
->loc
,
3286 get_order(sizeof(struct location
) * t
->max
));
3289 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3294 order
= get_order(sizeof(struct location
) * max
);
3296 l
= (void *)__get_free_pages(flags
, order
);
3301 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3309 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3310 const struct track
*track
)
3312 long start
, end
, pos
;
3315 unsigned long age
= jiffies
- track
->when
;
3321 pos
= start
+ (end
- start
+ 1) / 2;
3324 * There is nothing at "end". If we end up there
3325 * we need to add something to before end.
3330 caddr
= t
->loc
[pos
].addr
;
3331 if (track
->addr
== caddr
) {
3337 if (age
< l
->min_time
)
3339 if (age
> l
->max_time
)
3342 if (track
->pid
< l
->min_pid
)
3343 l
->min_pid
= track
->pid
;
3344 if (track
->pid
> l
->max_pid
)
3345 l
->max_pid
= track
->pid
;
3347 cpu_set(track
->cpu
, l
->cpus
);
3349 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3353 if (track
->addr
< caddr
)
3360 * Not found. Insert new tracking element.
3362 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3368 (t
->count
- pos
) * sizeof(struct location
));
3371 l
->addr
= track
->addr
;
3375 l
->min_pid
= track
->pid
;
3376 l
->max_pid
= track
->pid
;
3377 cpus_clear(l
->cpus
);
3378 cpu_set(track
->cpu
, l
->cpus
);
3379 nodes_clear(l
->nodes
);
3380 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3384 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3385 struct page
*page
, enum track_item alloc
)
3387 void *addr
= page_address(page
);
3388 DECLARE_BITMAP(map
, s
->objects
);
3391 bitmap_zero(map
, s
->objects
);
3392 for_each_free_object(p
, s
, page
->freelist
)
3393 set_bit(slab_index(p
, s
, addr
), map
);
3395 for_each_object(p
, s
, addr
)
3396 if (!test_bit(slab_index(p
, s
, addr
), map
))
3397 add_location(t
, s
, get_track(s
, p
, alloc
));
3400 static int list_locations(struct kmem_cache
*s
, char *buf
,
3401 enum track_item alloc
)
3405 struct loc_track t
= { 0, 0, NULL
};
3408 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3410 return sprintf(buf
, "Out of memory\n");
3412 /* Push back cpu slabs */
3415 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3416 struct kmem_cache_node
*n
= get_node(s
, node
);
3417 unsigned long flags
;
3420 if (!atomic_long_read(&n
->nr_slabs
))
3423 spin_lock_irqsave(&n
->list_lock
, flags
);
3424 list_for_each_entry(page
, &n
->partial
, lru
)
3425 process_slab(&t
, s
, page
, alloc
);
3426 list_for_each_entry(page
, &n
->full
, lru
)
3427 process_slab(&t
, s
, page
, alloc
);
3428 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3431 for (i
= 0; i
< t
.count
; i
++) {
3432 struct location
*l
= &t
.loc
[i
];
3434 if (len
> PAGE_SIZE
- 100)
3436 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3439 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3441 len
+= sprintf(buf
+ len
, "<not-available>");
3443 if (l
->sum_time
!= l
->min_time
) {
3444 unsigned long remainder
;
3446 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3448 div_long_long_rem(l
->sum_time
, l
->count
, &remainder
),
3451 len
+= sprintf(buf
+ len
, " age=%ld",
3454 if (l
->min_pid
!= l
->max_pid
)
3455 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3456 l
->min_pid
, l
->max_pid
);
3458 len
+= sprintf(buf
+ len
, " pid=%ld",
3461 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3462 len
< PAGE_SIZE
- 60) {
3463 len
+= sprintf(buf
+ len
, " cpus=");
3464 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3468 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3469 len
< PAGE_SIZE
- 60) {
3470 len
+= sprintf(buf
+ len
, " nodes=");
3471 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3475 len
+= sprintf(buf
+ len
, "\n");
3480 len
+= sprintf(buf
, "No data\n");
3484 enum slab_stat_type
{
3491 #define SO_FULL (1 << SL_FULL)
3492 #define SO_PARTIAL (1 << SL_PARTIAL)
3493 #define SO_CPU (1 << SL_CPU)
3494 #define SO_OBJECTS (1 << SL_OBJECTS)
3496 static unsigned long slab_objects(struct kmem_cache
*s
,
3497 char *buf
, unsigned long flags
)
3499 unsigned long total
= 0;
3503 unsigned long *nodes
;
3504 unsigned long *per_cpu
;
3506 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3507 per_cpu
= nodes
+ nr_node_ids
;
3509 for_each_possible_cpu(cpu
) {
3511 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3521 if (flags
& SO_CPU
) {
3522 if (flags
& SO_OBJECTS
)
3533 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3534 struct kmem_cache_node
*n
= get_node(s
, node
);
3536 if (flags
& SO_PARTIAL
) {
3537 if (flags
& SO_OBJECTS
)
3538 x
= count_partial(n
);
3545 if (flags
& SO_FULL
) {
3546 int full_slabs
= atomic_long_read(&n
->nr_slabs
)
3550 if (flags
& SO_OBJECTS
)
3551 x
= full_slabs
* s
->objects
;
3559 x
= sprintf(buf
, "%lu", total
);
3561 for_each_node_state(node
, N_NORMAL_MEMORY
)
3563 x
+= sprintf(buf
+ x
, " N%d=%lu",
3567 return x
+ sprintf(buf
+ x
, "\n");
3570 static int any_slab_objects(struct kmem_cache
*s
)
3575 for_each_possible_cpu(cpu
) {
3576 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3582 for_each_online_node(node
) {
3583 struct kmem_cache_node
*n
= get_node(s
, node
);
3588 if (n
->nr_partial
|| atomic_long_read(&n
->nr_slabs
))
3594 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3595 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3597 struct slab_attribute
{
3598 struct attribute attr
;
3599 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3600 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3603 #define SLAB_ATTR_RO(_name) \
3604 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3606 #define SLAB_ATTR(_name) \
3607 static struct slab_attribute _name##_attr = \
3608 __ATTR(_name, 0644, _name##_show, _name##_store)
3610 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3612 return sprintf(buf
, "%d\n", s
->size
);
3614 SLAB_ATTR_RO(slab_size
);
3616 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3618 return sprintf(buf
, "%d\n", s
->align
);
3620 SLAB_ATTR_RO(align
);
3622 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3624 return sprintf(buf
, "%d\n", s
->objsize
);
3626 SLAB_ATTR_RO(object_size
);
3628 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3630 return sprintf(buf
, "%d\n", s
->objects
);
3632 SLAB_ATTR_RO(objs_per_slab
);
3634 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3636 return sprintf(buf
, "%d\n", s
->order
);
3638 SLAB_ATTR_RO(order
);
3640 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3643 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3645 return n
+ sprintf(buf
+ n
, "\n");
3651 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3653 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3655 SLAB_ATTR_RO(aliases
);
3657 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3659 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
);
3661 SLAB_ATTR_RO(slabs
);
3663 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3665 return slab_objects(s
, buf
, SO_PARTIAL
);
3667 SLAB_ATTR_RO(partial
);
3669 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3671 return slab_objects(s
, buf
, SO_CPU
);
3673 SLAB_ATTR_RO(cpu_slabs
);
3675 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3677 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
|SO_OBJECTS
);
3679 SLAB_ATTR_RO(objects
);
3681 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3683 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3686 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3687 const char *buf
, size_t length
)
3689 s
->flags
&= ~SLAB_DEBUG_FREE
;
3691 s
->flags
|= SLAB_DEBUG_FREE
;
3694 SLAB_ATTR(sanity_checks
);
3696 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3698 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3701 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3704 s
->flags
&= ~SLAB_TRACE
;
3706 s
->flags
|= SLAB_TRACE
;
3711 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3713 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3716 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3717 const char *buf
, size_t length
)
3719 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3721 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3724 SLAB_ATTR(reclaim_account
);
3726 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3728 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3730 SLAB_ATTR_RO(hwcache_align
);
3732 #ifdef CONFIG_ZONE_DMA
3733 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3735 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3737 SLAB_ATTR_RO(cache_dma
);
3740 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3742 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3744 SLAB_ATTR_RO(destroy_by_rcu
);
3746 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3748 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3751 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3752 const char *buf
, size_t length
)
3754 if (any_slab_objects(s
))
3757 s
->flags
&= ~SLAB_RED_ZONE
;
3759 s
->flags
|= SLAB_RED_ZONE
;
3763 SLAB_ATTR(red_zone
);
3765 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3767 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3770 static ssize_t
poison_store(struct kmem_cache
*s
,
3771 const char *buf
, size_t length
)
3773 if (any_slab_objects(s
))
3776 s
->flags
&= ~SLAB_POISON
;
3778 s
->flags
|= SLAB_POISON
;
3784 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3786 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3789 static ssize_t
store_user_store(struct kmem_cache
*s
,
3790 const char *buf
, size_t length
)
3792 if (any_slab_objects(s
))
3795 s
->flags
&= ~SLAB_STORE_USER
;
3797 s
->flags
|= SLAB_STORE_USER
;
3801 SLAB_ATTR(store_user
);
3803 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
3808 static ssize_t
validate_store(struct kmem_cache
*s
,
3809 const char *buf
, size_t length
)
3813 if (buf
[0] == '1') {
3814 ret
= validate_slab_cache(s
);
3820 SLAB_ATTR(validate
);
3822 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
3827 static ssize_t
shrink_store(struct kmem_cache
*s
,
3828 const char *buf
, size_t length
)
3830 if (buf
[0] == '1') {
3831 int rc
= kmem_cache_shrink(s
);
3841 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
3843 if (!(s
->flags
& SLAB_STORE_USER
))
3845 return list_locations(s
, buf
, TRACK_ALLOC
);
3847 SLAB_ATTR_RO(alloc_calls
);
3849 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
3851 if (!(s
->flags
& SLAB_STORE_USER
))
3853 return list_locations(s
, buf
, TRACK_FREE
);
3855 SLAB_ATTR_RO(free_calls
);
3858 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
3860 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
3863 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
3864 const char *buf
, size_t length
)
3866 int n
= simple_strtoul(buf
, NULL
, 10);
3869 s
->remote_node_defrag_ratio
= n
* 10;
3872 SLAB_ATTR(remote_node_defrag_ratio
);
3875 static struct attribute
*slab_attrs
[] = {
3876 &slab_size_attr
.attr
,
3877 &object_size_attr
.attr
,
3878 &objs_per_slab_attr
.attr
,
3883 &cpu_slabs_attr
.attr
,
3887 &sanity_checks_attr
.attr
,
3889 &hwcache_align_attr
.attr
,
3890 &reclaim_account_attr
.attr
,
3891 &destroy_by_rcu_attr
.attr
,
3892 &red_zone_attr
.attr
,
3894 &store_user_attr
.attr
,
3895 &validate_attr
.attr
,
3897 &alloc_calls_attr
.attr
,
3898 &free_calls_attr
.attr
,
3899 #ifdef CONFIG_ZONE_DMA
3900 &cache_dma_attr
.attr
,
3903 &remote_node_defrag_ratio_attr
.attr
,
3908 static struct attribute_group slab_attr_group
= {
3909 .attrs
= slab_attrs
,
3912 static ssize_t
slab_attr_show(struct kobject
*kobj
,
3913 struct attribute
*attr
,
3916 struct slab_attribute
*attribute
;
3917 struct kmem_cache
*s
;
3920 attribute
= to_slab_attr(attr
);
3923 if (!attribute
->show
)
3926 err
= attribute
->show(s
, buf
);
3931 static ssize_t
slab_attr_store(struct kobject
*kobj
,
3932 struct attribute
*attr
,
3933 const char *buf
, size_t len
)
3935 struct slab_attribute
*attribute
;
3936 struct kmem_cache
*s
;
3939 attribute
= to_slab_attr(attr
);
3942 if (!attribute
->store
)
3945 err
= attribute
->store(s
, buf
, len
);
3950 static void kmem_cache_release(struct kobject
*kobj
)
3952 struct kmem_cache
*s
= to_slab(kobj
);
3957 static struct sysfs_ops slab_sysfs_ops
= {
3958 .show
= slab_attr_show
,
3959 .store
= slab_attr_store
,
3962 static struct kobj_type slab_ktype
= {
3963 .sysfs_ops
= &slab_sysfs_ops
,
3964 .release
= kmem_cache_release
3967 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
3969 struct kobj_type
*ktype
= get_ktype(kobj
);
3971 if (ktype
== &slab_ktype
)
3976 static struct kset_uevent_ops slab_uevent_ops
= {
3977 .filter
= uevent_filter
,
3980 static struct kset
*slab_kset
;
3982 #define ID_STR_LENGTH 64
3984 /* Create a unique string id for a slab cache:
3986 * :[flags-]size:[memory address of kmemcache]
3988 static char *create_unique_id(struct kmem_cache
*s
)
3990 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
3997 * First flags affecting slabcache operations. We will only
3998 * get here for aliasable slabs so we do not need to support
3999 * too many flags. The flags here must cover all flags that
4000 * are matched during merging to guarantee that the id is
4003 if (s
->flags
& SLAB_CACHE_DMA
)
4005 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4007 if (s
->flags
& SLAB_DEBUG_FREE
)
4011 p
+= sprintf(p
, "%07d", s
->size
);
4012 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4016 static int sysfs_slab_add(struct kmem_cache
*s
)
4022 if (slab_state
< SYSFS
)
4023 /* Defer until later */
4026 unmergeable
= slab_unmergeable(s
);
4029 * Slabcache can never be merged so we can use the name proper.
4030 * This is typically the case for debug situations. In that
4031 * case we can catch duplicate names easily.
4033 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4037 * Create a unique name for the slab as a target
4040 name
= create_unique_id(s
);
4043 s
->kobj
.kset
= slab_kset
;
4044 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4046 kobject_put(&s
->kobj
);
4050 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4053 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4055 /* Setup first alias */
4056 sysfs_slab_alias(s
, s
->name
);
4062 static void sysfs_slab_remove(struct kmem_cache
*s
)
4064 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4065 kobject_del(&s
->kobj
);
4066 kobject_put(&s
->kobj
);
4070 * Need to buffer aliases during bootup until sysfs becomes
4071 * available lest we loose that information.
4073 struct saved_alias
{
4074 struct kmem_cache
*s
;
4076 struct saved_alias
*next
;
4079 static struct saved_alias
*alias_list
;
4081 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4083 struct saved_alias
*al
;
4085 if (slab_state
== SYSFS
) {
4087 * If we have a leftover link then remove it.
4089 sysfs_remove_link(&slab_kset
->kobj
, name
);
4090 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4093 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4099 al
->next
= alias_list
;
4104 static int __init
slab_sysfs_init(void)
4106 struct kmem_cache
*s
;
4109 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4111 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4117 list_for_each_entry(s
, &slab_caches
, list
) {
4118 err
= sysfs_slab_add(s
);
4120 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4121 " to sysfs\n", s
->name
);
4124 while (alias_list
) {
4125 struct saved_alias
*al
= alias_list
;
4127 alias_list
= alias_list
->next
;
4128 err
= sysfs_slab_alias(al
->s
, al
->name
);
4130 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4131 " %s to sysfs\n", s
->name
);
4139 __initcall(slab_sysfs_init
);
4143 * The /proc/slabinfo ABI
4145 #ifdef CONFIG_SLABINFO
4147 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4148 size_t count
, loff_t
*ppos
)
4154 static void print_slabinfo_header(struct seq_file
*m
)
4156 seq_puts(m
, "slabinfo - version: 2.1\n");
4157 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4158 "<objperslab> <pagesperslab>");
4159 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4160 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4164 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4168 down_read(&slub_lock
);
4170 print_slabinfo_header(m
);
4172 return seq_list_start(&slab_caches
, *pos
);
4175 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4177 return seq_list_next(p
, &slab_caches
, pos
);
4180 static void s_stop(struct seq_file
*m
, void *p
)
4182 up_read(&slub_lock
);
4185 static int s_show(struct seq_file
*m
, void *p
)
4187 unsigned long nr_partials
= 0;
4188 unsigned long nr_slabs
= 0;
4189 unsigned long nr_inuse
= 0;
4190 unsigned long nr_objs
;
4191 struct kmem_cache
*s
;
4194 s
= list_entry(p
, struct kmem_cache
, list
);
4196 for_each_online_node(node
) {
4197 struct kmem_cache_node
*n
= get_node(s
, node
);
4202 nr_partials
+= n
->nr_partial
;
4203 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4204 nr_inuse
+= count_partial(n
);
4207 nr_objs
= nr_slabs
* s
->objects
;
4208 nr_inuse
+= (nr_slabs
- nr_partials
) * s
->objects
;
4210 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4211 nr_objs
, s
->size
, s
->objects
, (1 << s
->order
));
4212 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4213 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4219 const struct seq_operations slabinfo_op
= {
4226 #endif /* CONFIG_SLABINFO */