Merge branches 'release' and 'wmi-2.6.25' into release
[linux-2.6/zen-sources.git] / mm / memory.c
blob9d073fa0a2d02631f53ba3117e80b32efc2b9ae9
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
72 unsigned long num_physpages;
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
80 void * high_memory;
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
86 * Randomize the address space (stacks, mmaps, brk, etc.).
88 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
89 * as ancient (libc5 based) binaries can segfault. )
91 int randomize_va_space __read_mostly =
92 #ifdef CONFIG_COMPAT_BRK
94 #else
96 #endif
98 static int __init disable_randmaps(char *s)
100 randomize_va_space = 0;
101 return 1;
103 __setup("norandmaps", disable_randmaps);
107 * If a p?d_bad entry is found while walking page tables, report
108 * the error, before resetting entry to p?d_none. Usually (but
109 * very seldom) called out from the p?d_none_or_clear_bad macros.
112 void pgd_clear_bad(pgd_t *pgd)
114 pgd_ERROR(*pgd);
115 pgd_clear(pgd);
118 void pud_clear_bad(pud_t *pud)
120 pud_ERROR(*pud);
121 pud_clear(pud);
124 void pmd_clear_bad(pmd_t *pmd)
126 pmd_ERROR(*pmd);
127 pmd_clear(pmd);
131 * Note: this doesn't free the actual pages themselves. That
132 * has been handled earlier when unmapping all the memory regions.
134 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136 struct page *page = pmd_page(*pmd);
137 pmd_clear(pmd);
138 pte_lock_deinit(page);
139 pte_free_tlb(tlb, page);
140 dec_zone_page_state(page, NR_PAGETABLE);
141 tlb->mm->nr_ptes--;
144 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
145 unsigned long addr, unsigned long end,
146 unsigned long floor, unsigned long ceiling)
148 pmd_t *pmd;
149 unsigned long next;
150 unsigned long start;
152 start = addr;
153 pmd = pmd_offset(pud, addr);
154 do {
155 next = pmd_addr_end(addr, end);
156 if (pmd_none_or_clear_bad(pmd))
157 continue;
158 free_pte_range(tlb, pmd);
159 } while (pmd++, addr = next, addr != end);
161 start &= PUD_MASK;
162 if (start < floor)
163 return;
164 if (ceiling) {
165 ceiling &= PUD_MASK;
166 if (!ceiling)
167 return;
169 if (end - 1 > ceiling - 1)
170 return;
172 pmd = pmd_offset(pud, start);
173 pud_clear(pud);
174 pmd_free_tlb(tlb, pmd);
177 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
178 unsigned long addr, unsigned long end,
179 unsigned long floor, unsigned long ceiling)
181 pud_t *pud;
182 unsigned long next;
183 unsigned long start;
185 start = addr;
186 pud = pud_offset(pgd, addr);
187 do {
188 next = pud_addr_end(addr, end);
189 if (pud_none_or_clear_bad(pud))
190 continue;
191 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
192 } while (pud++, addr = next, addr != end);
194 start &= PGDIR_MASK;
195 if (start < floor)
196 return;
197 if (ceiling) {
198 ceiling &= PGDIR_MASK;
199 if (!ceiling)
200 return;
202 if (end - 1 > ceiling - 1)
203 return;
205 pud = pud_offset(pgd, start);
206 pgd_clear(pgd);
207 pud_free_tlb(tlb, pud);
211 * This function frees user-level page tables of a process.
213 * Must be called with pagetable lock held.
215 void free_pgd_range(struct mmu_gather **tlb,
216 unsigned long addr, unsigned long end,
217 unsigned long floor, unsigned long ceiling)
219 pgd_t *pgd;
220 unsigned long next;
221 unsigned long start;
224 * The next few lines have given us lots of grief...
226 * Why are we testing PMD* at this top level? Because often
227 * there will be no work to do at all, and we'd prefer not to
228 * go all the way down to the bottom just to discover that.
230 * Why all these "- 1"s? Because 0 represents both the bottom
231 * of the address space and the top of it (using -1 for the
232 * top wouldn't help much: the masks would do the wrong thing).
233 * The rule is that addr 0 and floor 0 refer to the bottom of
234 * the address space, but end 0 and ceiling 0 refer to the top
235 * Comparisons need to use "end - 1" and "ceiling - 1" (though
236 * that end 0 case should be mythical).
238 * Wherever addr is brought up or ceiling brought down, we must
239 * be careful to reject "the opposite 0" before it confuses the
240 * subsequent tests. But what about where end is brought down
241 * by PMD_SIZE below? no, end can't go down to 0 there.
243 * Whereas we round start (addr) and ceiling down, by different
244 * masks at different levels, in order to test whether a table
245 * now has no other vmas using it, so can be freed, we don't
246 * bother to round floor or end up - the tests don't need that.
249 addr &= PMD_MASK;
250 if (addr < floor) {
251 addr += PMD_SIZE;
252 if (!addr)
253 return;
255 if (ceiling) {
256 ceiling &= PMD_MASK;
257 if (!ceiling)
258 return;
260 if (end - 1 > ceiling - 1)
261 end -= PMD_SIZE;
262 if (addr > end - 1)
263 return;
265 start = addr;
266 pgd = pgd_offset((*tlb)->mm, addr);
267 do {
268 next = pgd_addr_end(addr, end);
269 if (pgd_none_or_clear_bad(pgd))
270 continue;
271 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
272 } while (pgd++, addr = next, addr != end);
275 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
276 unsigned long floor, unsigned long ceiling)
278 while (vma) {
279 struct vm_area_struct *next = vma->vm_next;
280 unsigned long addr = vma->vm_start;
283 * Hide vma from rmap and vmtruncate before freeing pgtables
285 anon_vma_unlink(vma);
286 unlink_file_vma(vma);
288 if (is_vm_hugetlb_page(vma)) {
289 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
290 floor, next? next->vm_start: ceiling);
291 } else {
293 * Optimization: gather nearby vmas into one call down
295 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
296 && !is_vm_hugetlb_page(next)) {
297 vma = next;
298 next = vma->vm_next;
299 anon_vma_unlink(vma);
300 unlink_file_vma(vma);
302 free_pgd_range(tlb, addr, vma->vm_end,
303 floor, next? next->vm_start: ceiling);
305 vma = next;
309 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311 struct page *new = pte_alloc_one(mm, address);
312 if (!new)
313 return -ENOMEM;
315 pte_lock_init(new);
316 spin_lock(&mm->page_table_lock);
317 if (pmd_present(*pmd)) { /* Another has populated it */
318 pte_lock_deinit(new);
319 pte_free(mm, new);
320 } else {
321 mm->nr_ptes++;
322 inc_zone_page_state(new, NR_PAGETABLE);
323 pmd_populate(mm, pmd, new);
325 spin_unlock(&mm->page_table_lock);
326 return 0;
329 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
331 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
332 if (!new)
333 return -ENOMEM;
335 spin_lock(&init_mm.page_table_lock);
336 if (pmd_present(*pmd)) /* Another has populated it */
337 pte_free_kernel(&init_mm, new);
338 else
339 pmd_populate_kernel(&init_mm, pmd, new);
340 spin_unlock(&init_mm.page_table_lock);
341 return 0;
344 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
346 if (file_rss)
347 add_mm_counter(mm, file_rss, file_rss);
348 if (anon_rss)
349 add_mm_counter(mm, anon_rss, anon_rss);
353 * This function is called to print an error when a bad pte
354 * is found. For example, we might have a PFN-mapped pte in
355 * a region that doesn't allow it.
357 * The calling function must still handle the error.
359 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
361 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
362 "vm_flags = %lx, vaddr = %lx\n",
363 (long long)pte_val(pte),
364 (vma->vm_mm == current->mm ? current->comm : "???"),
365 vma->vm_flags, vaddr);
366 dump_stack();
369 static inline int is_cow_mapping(unsigned int flags)
371 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
375 * This function gets the "struct page" associated with a pte.
377 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
378 * will have each page table entry just pointing to a raw page frame
379 * number, and as far as the VM layer is concerned, those do not have
380 * pages associated with them - even if the PFN might point to memory
381 * that otherwise is perfectly fine and has a "struct page".
383 * The way we recognize those mappings is through the rules set up
384 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
385 * and the vm_pgoff will point to the first PFN mapped: thus every
386 * page that is a raw mapping will always honor the rule
388 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
390 * and if that isn't true, the page has been COW'ed (in which case it
391 * _does_ have a "struct page" associated with it even if it is in a
392 * VM_PFNMAP range).
394 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
396 unsigned long pfn = pte_pfn(pte);
398 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
399 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
400 if (pfn == vma->vm_pgoff + off)
401 return NULL;
402 if (!is_cow_mapping(vma->vm_flags))
403 return NULL;
406 #ifdef CONFIG_DEBUG_VM
408 * Add some anal sanity checks for now. Eventually,
409 * we should just do "return pfn_to_page(pfn)", but
410 * in the meantime we check that we get a valid pfn,
411 * and that the resulting page looks ok.
413 if (unlikely(!pfn_valid(pfn))) {
414 print_bad_pte(vma, pte, addr);
415 return NULL;
417 #endif
420 * NOTE! We still have PageReserved() pages in the page
421 * tables.
423 * The PAGE_ZERO() pages and various VDSO mappings can
424 * cause them to exist.
426 return pfn_to_page(pfn);
430 * copy one vm_area from one task to the other. Assumes the page tables
431 * already present in the new task to be cleared in the whole range
432 * covered by this vma.
435 static inline void
436 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
437 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
438 unsigned long addr, int *rss)
440 unsigned long vm_flags = vma->vm_flags;
441 pte_t pte = *src_pte;
442 struct page *page;
444 /* pte contains position in swap or file, so copy. */
445 if (unlikely(!pte_present(pte))) {
446 if (!pte_file(pte)) {
447 swp_entry_t entry = pte_to_swp_entry(pte);
449 swap_duplicate(entry);
450 /* make sure dst_mm is on swapoff's mmlist. */
451 if (unlikely(list_empty(&dst_mm->mmlist))) {
452 spin_lock(&mmlist_lock);
453 if (list_empty(&dst_mm->mmlist))
454 list_add(&dst_mm->mmlist,
455 &src_mm->mmlist);
456 spin_unlock(&mmlist_lock);
458 if (is_write_migration_entry(entry) &&
459 is_cow_mapping(vm_flags)) {
461 * COW mappings require pages in both parent
462 * and child to be set to read.
464 make_migration_entry_read(&entry);
465 pte = swp_entry_to_pte(entry);
466 set_pte_at(src_mm, addr, src_pte, pte);
469 goto out_set_pte;
473 * If it's a COW mapping, write protect it both
474 * in the parent and the child
476 if (is_cow_mapping(vm_flags)) {
477 ptep_set_wrprotect(src_mm, addr, src_pte);
478 pte = pte_wrprotect(pte);
482 * If it's a shared mapping, mark it clean in
483 * the child
485 if (vm_flags & VM_SHARED)
486 pte = pte_mkclean(pte);
487 pte = pte_mkold(pte);
489 page = vm_normal_page(vma, addr, pte);
490 if (page) {
491 get_page(page);
492 page_dup_rmap(page, vma, addr);
493 rss[!!PageAnon(page)]++;
496 out_set_pte:
497 set_pte_at(dst_mm, addr, dst_pte, pte);
500 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
501 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
502 unsigned long addr, unsigned long end)
504 pte_t *src_pte, *dst_pte;
505 spinlock_t *src_ptl, *dst_ptl;
506 int progress = 0;
507 int rss[2];
509 again:
510 rss[1] = rss[0] = 0;
511 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
512 if (!dst_pte)
513 return -ENOMEM;
514 src_pte = pte_offset_map_nested(src_pmd, addr);
515 src_ptl = pte_lockptr(src_mm, src_pmd);
516 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
517 arch_enter_lazy_mmu_mode();
519 do {
521 * We are holding two locks at this point - either of them
522 * could generate latencies in another task on another CPU.
524 if (progress >= 32) {
525 progress = 0;
526 if (need_resched() ||
527 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
528 break;
530 if (pte_none(*src_pte)) {
531 progress++;
532 continue;
534 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
535 progress += 8;
536 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
538 arch_leave_lazy_mmu_mode();
539 spin_unlock(src_ptl);
540 pte_unmap_nested(src_pte - 1);
541 add_mm_rss(dst_mm, rss[0], rss[1]);
542 pte_unmap_unlock(dst_pte - 1, dst_ptl);
543 cond_resched();
544 if (addr != end)
545 goto again;
546 return 0;
549 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
550 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
551 unsigned long addr, unsigned long end)
553 pmd_t *src_pmd, *dst_pmd;
554 unsigned long next;
556 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
557 if (!dst_pmd)
558 return -ENOMEM;
559 src_pmd = pmd_offset(src_pud, addr);
560 do {
561 next = pmd_addr_end(addr, end);
562 if (pmd_none_or_clear_bad(src_pmd))
563 continue;
564 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
565 vma, addr, next))
566 return -ENOMEM;
567 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
568 return 0;
571 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
572 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
573 unsigned long addr, unsigned long end)
575 pud_t *src_pud, *dst_pud;
576 unsigned long next;
578 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
579 if (!dst_pud)
580 return -ENOMEM;
581 src_pud = pud_offset(src_pgd, addr);
582 do {
583 next = pud_addr_end(addr, end);
584 if (pud_none_or_clear_bad(src_pud))
585 continue;
586 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
587 vma, addr, next))
588 return -ENOMEM;
589 } while (dst_pud++, src_pud++, addr = next, addr != end);
590 return 0;
593 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
594 struct vm_area_struct *vma)
596 pgd_t *src_pgd, *dst_pgd;
597 unsigned long next;
598 unsigned long addr = vma->vm_start;
599 unsigned long end = vma->vm_end;
602 * Don't copy ptes where a page fault will fill them correctly.
603 * Fork becomes much lighter when there are big shared or private
604 * readonly mappings. The tradeoff is that copy_page_range is more
605 * efficient than faulting.
607 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
608 if (!vma->anon_vma)
609 return 0;
612 if (is_vm_hugetlb_page(vma))
613 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
615 dst_pgd = pgd_offset(dst_mm, addr);
616 src_pgd = pgd_offset(src_mm, addr);
617 do {
618 next = pgd_addr_end(addr, end);
619 if (pgd_none_or_clear_bad(src_pgd))
620 continue;
621 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
622 vma, addr, next))
623 return -ENOMEM;
624 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
625 return 0;
628 static unsigned long zap_pte_range(struct mmu_gather *tlb,
629 struct vm_area_struct *vma, pmd_t *pmd,
630 unsigned long addr, unsigned long end,
631 long *zap_work, struct zap_details *details)
633 struct mm_struct *mm = tlb->mm;
634 pte_t *pte;
635 spinlock_t *ptl;
636 int file_rss = 0;
637 int anon_rss = 0;
639 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
640 arch_enter_lazy_mmu_mode();
641 do {
642 pte_t ptent = *pte;
643 if (pte_none(ptent)) {
644 (*zap_work)--;
645 continue;
648 (*zap_work) -= PAGE_SIZE;
650 if (pte_present(ptent)) {
651 struct page *page;
653 page = vm_normal_page(vma, addr, ptent);
654 if (unlikely(details) && page) {
656 * unmap_shared_mapping_pages() wants to
657 * invalidate cache without truncating:
658 * unmap shared but keep private pages.
660 if (details->check_mapping &&
661 details->check_mapping != page->mapping)
662 continue;
664 * Each page->index must be checked when
665 * invalidating or truncating nonlinear.
667 if (details->nonlinear_vma &&
668 (page->index < details->first_index ||
669 page->index > details->last_index))
670 continue;
672 ptent = ptep_get_and_clear_full(mm, addr, pte,
673 tlb->fullmm);
674 tlb_remove_tlb_entry(tlb, pte, addr);
675 if (unlikely(!page))
676 continue;
677 if (unlikely(details) && details->nonlinear_vma
678 && linear_page_index(details->nonlinear_vma,
679 addr) != page->index)
680 set_pte_at(mm, addr, pte,
681 pgoff_to_pte(page->index));
682 if (PageAnon(page))
683 anon_rss--;
684 else {
685 if (pte_dirty(ptent))
686 set_page_dirty(page);
687 if (pte_young(ptent))
688 SetPageReferenced(page);
689 file_rss--;
691 page_remove_rmap(page, vma);
692 tlb_remove_page(tlb, page);
693 continue;
696 * If details->check_mapping, we leave swap entries;
697 * if details->nonlinear_vma, we leave file entries.
699 if (unlikely(details))
700 continue;
701 if (!pte_file(ptent))
702 free_swap_and_cache(pte_to_swp_entry(ptent));
703 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
704 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
706 add_mm_rss(mm, file_rss, anon_rss);
707 arch_leave_lazy_mmu_mode();
708 pte_unmap_unlock(pte - 1, ptl);
710 return addr;
713 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
714 struct vm_area_struct *vma, pud_t *pud,
715 unsigned long addr, unsigned long end,
716 long *zap_work, struct zap_details *details)
718 pmd_t *pmd;
719 unsigned long next;
721 pmd = pmd_offset(pud, addr);
722 do {
723 next = pmd_addr_end(addr, end);
724 if (pmd_none_or_clear_bad(pmd)) {
725 (*zap_work)--;
726 continue;
728 next = zap_pte_range(tlb, vma, pmd, addr, next,
729 zap_work, details);
730 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
732 return addr;
735 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
736 struct vm_area_struct *vma, pgd_t *pgd,
737 unsigned long addr, unsigned long end,
738 long *zap_work, struct zap_details *details)
740 pud_t *pud;
741 unsigned long next;
743 pud = pud_offset(pgd, addr);
744 do {
745 next = pud_addr_end(addr, end);
746 if (pud_none_or_clear_bad(pud)) {
747 (*zap_work)--;
748 continue;
750 next = zap_pmd_range(tlb, vma, pud, addr, next,
751 zap_work, details);
752 } while (pud++, addr = next, (addr != end && *zap_work > 0));
754 return addr;
757 static unsigned long unmap_page_range(struct mmu_gather *tlb,
758 struct vm_area_struct *vma,
759 unsigned long addr, unsigned long end,
760 long *zap_work, struct zap_details *details)
762 pgd_t *pgd;
763 unsigned long next;
765 if (details && !details->check_mapping && !details->nonlinear_vma)
766 details = NULL;
768 BUG_ON(addr >= end);
769 tlb_start_vma(tlb, vma);
770 pgd = pgd_offset(vma->vm_mm, addr);
771 do {
772 next = pgd_addr_end(addr, end);
773 if (pgd_none_or_clear_bad(pgd)) {
774 (*zap_work)--;
775 continue;
777 next = zap_pud_range(tlb, vma, pgd, addr, next,
778 zap_work, details);
779 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
780 tlb_end_vma(tlb, vma);
782 return addr;
785 #ifdef CONFIG_PREEMPT
786 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
787 #else
788 /* No preempt: go for improved straight-line efficiency */
789 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
790 #endif
793 * unmap_vmas - unmap a range of memory covered by a list of vma's
794 * @tlbp: address of the caller's struct mmu_gather
795 * @vma: the starting vma
796 * @start_addr: virtual address at which to start unmapping
797 * @end_addr: virtual address at which to end unmapping
798 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
799 * @details: details of nonlinear truncation or shared cache invalidation
801 * Returns the end address of the unmapping (restart addr if interrupted).
803 * Unmap all pages in the vma list.
805 * We aim to not hold locks for too long (for scheduling latency reasons).
806 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
807 * return the ending mmu_gather to the caller.
809 * Only addresses between `start' and `end' will be unmapped.
811 * The VMA list must be sorted in ascending virtual address order.
813 * unmap_vmas() assumes that the caller will flush the whole unmapped address
814 * range after unmap_vmas() returns. So the only responsibility here is to
815 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
816 * drops the lock and schedules.
818 unsigned long unmap_vmas(struct mmu_gather **tlbp,
819 struct vm_area_struct *vma, unsigned long start_addr,
820 unsigned long end_addr, unsigned long *nr_accounted,
821 struct zap_details *details)
823 long zap_work = ZAP_BLOCK_SIZE;
824 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
825 int tlb_start_valid = 0;
826 unsigned long start = start_addr;
827 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
828 int fullmm = (*tlbp)->fullmm;
830 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
831 unsigned long end;
833 start = max(vma->vm_start, start_addr);
834 if (start >= vma->vm_end)
835 continue;
836 end = min(vma->vm_end, end_addr);
837 if (end <= vma->vm_start)
838 continue;
840 if (vma->vm_flags & VM_ACCOUNT)
841 *nr_accounted += (end - start) >> PAGE_SHIFT;
843 while (start != end) {
844 if (!tlb_start_valid) {
845 tlb_start = start;
846 tlb_start_valid = 1;
849 if (unlikely(is_vm_hugetlb_page(vma))) {
850 unmap_hugepage_range(vma, start, end);
851 zap_work -= (end - start) /
852 (HPAGE_SIZE / PAGE_SIZE);
853 start = end;
854 } else
855 start = unmap_page_range(*tlbp, vma,
856 start, end, &zap_work, details);
858 if (zap_work > 0) {
859 BUG_ON(start != end);
860 break;
863 tlb_finish_mmu(*tlbp, tlb_start, start);
865 if (need_resched() ||
866 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
867 if (i_mmap_lock) {
868 *tlbp = NULL;
869 goto out;
871 cond_resched();
874 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
875 tlb_start_valid = 0;
876 zap_work = ZAP_BLOCK_SIZE;
879 out:
880 return start; /* which is now the end (or restart) address */
884 * zap_page_range - remove user pages in a given range
885 * @vma: vm_area_struct holding the applicable pages
886 * @address: starting address of pages to zap
887 * @size: number of bytes to zap
888 * @details: details of nonlinear truncation or shared cache invalidation
890 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
891 unsigned long size, struct zap_details *details)
893 struct mm_struct *mm = vma->vm_mm;
894 struct mmu_gather *tlb;
895 unsigned long end = address + size;
896 unsigned long nr_accounted = 0;
898 lru_add_drain();
899 tlb = tlb_gather_mmu(mm, 0);
900 update_hiwater_rss(mm);
901 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
902 if (tlb)
903 tlb_finish_mmu(tlb, address, end);
904 return end;
908 * Do a quick page-table lookup for a single page.
910 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
911 unsigned int flags)
913 pgd_t *pgd;
914 pud_t *pud;
915 pmd_t *pmd;
916 pte_t *ptep, pte;
917 spinlock_t *ptl;
918 struct page *page;
919 struct mm_struct *mm = vma->vm_mm;
921 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
922 if (!IS_ERR(page)) {
923 BUG_ON(flags & FOLL_GET);
924 goto out;
927 page = NULL;
928 pgd = pgd_offset(mm, address);
929 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
930 goto no_page_table;
932 pud = pud_offset(pgd, address);
933 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
934 goto no_page_table;
936 pmd = pmd_offset(pud, address);
937 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
938 goto no_page_table;
940 if (pmd_huge(*pmd)) {
941 BUG_ON(flags & FOLL_GET);
942 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
943 goto out;
946 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
947 if (!ptep)
948 goto out;
950 pte = *ptep;
951 if (!pte_present(pte))
952 goto unlock;
953 if ((flags & FOLL_WRITE) && !pte_write(pte))
954 goto unlock;
955 page = vm_normal_page(vma, address, pte);
956 if (unlikely(!page))
957 goto unlock;
959 if (flags & FOLL_GET)
960 get_page(page);
961 if (flags & FOLL_TOUCH) {
962 if ((flags & FOLL_WRITE) &&
963 !pte_dirty(pte) && !PageDirty(page))
964 set_page_dirty(page);
965 mark_page_accessed(page);
967 unlock:
968 pte_unmap_unlock(ptep, ptl);
969 out:
970 return page;
972 no_page_table:
974 * When core dumping an enormous anonymous area that nobody
975 * has touched so far, we don't want to allocate page tables.
977 if (flags & FOLL_ANON) {
978 page = ZERO_PAGE(0);
979 if (flags & FOLL_GET)
980 get_page(page);
981 BUG_ON(flags & FOLL_WRITE);
983 return page;
986 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
987 unsigned long start, int len, int write, int force,
988 struct page **pages, struct vm_area_struct **vmas)
990 int i;
991 unsigned int vm_flags;
994 * Require read or write permissions.
995 * If 'force' is set, we only require the "MAY" flags.
997 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
998 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
999 i = 0;
1001 do {
1002 struct vm_area_struct *vma;
1003 unsigned int foll_flags;
1005 vma = find_extend_vma(mm, start);
1006 if (!vma && in_gate_area(tsk, start)) {
1007 unsigned long pg = start & PAGE_MASK;
1008 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1009 pgd_t *pgd;
1010 pud_t *pud;
1011 pmd_t *pmd;
1012 pte_t *pte;
1013 if (write) /* user gate pages are read-only */
1014 return i ? : -EFAULT;
1015 if (pg > TASK_SIZE)
1016 pgd = pgd_offset_k(pg);
1017 else
1018 pgd = pgd_offset_gate(mm, pg);
1019 BUG_ON(pgd_none(*pgd));
1020 pud = pud_offset(pgd, pg);
1021 BUG_ON(pud_none(*pud));
1022 pmd = pmd_offset(pud, pg);
1023 if (pmd_none(*pmd))
1024 return i ? : -EFAULT;
1025 pte = pte_offset_map(pmd, pg);
1026 if (pte_none(*pte)) {
1027 pte_unmap(pte);
1028 return i ? : -EFAULT;
1030 if (pages) {
1031 struct page *page = vm_normal_page(gate_vma, start, *pte);
1032 pages[i] = page;
1033 if (page)
1034 get_page(page);
1036 pte_unmap(pte);
1037 if (vmas)
1038 vmas[i] = gate_vma;
1039 i++;
1040 start += PAGE_SIZE;
1041 len--;
1042 continue;
1045 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1046 || !(vm_flags & vma->vm_flags))
1047 return i ? : -EFAULT;
1049 if (is_vm_hugetlb_page(vma)) {
1050 i = follow_hugetlb_page(mm, vma, pages, vmas,
1051 &start, &len, i, write);
1052 continue;
1055 foll_flags = FOLL_TOUCH;
1056 if (pages)
1057 foll_flags |= FOLL_GET;
1058 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1059 (!vma->vm_ops || (!vma->vm_ops->nopage &&
1060 !vma->vm_ops->fault)))
1061 foll_flags |= FOLL_ANON;
1063 do {
1064 struct page *page;
1067 * If tsk is ooming, cut off its access to large memory
1068 * allocations. It has a pending SIGKILL, but it can't
1069 * be processed until returning to user space.
1071 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1072 return -ENOMEM;
1074 if (write)
1075 foll_flags |= FOLL_WRITE;
1077 cond_resched();
1078 while (!(page = follow_page(vma, start, foll_flags))) {
1079 int ret;
1080 ret = handle_mm_fault(mm, vma, start,
1081 foll_flags & FOLL_WRITE);
1082 if (ret & VM_FAULT_ERROR) {
1083 if (ret & VM_FAULT_OOM)
1084 return i ? i : -ENOMEM;
1085 else if (ret & VM_FAULT_SIGBUS)
1086 return i ? i : -EFAULT;
1087 BUG();
1089 if (ret & VM_FAULT_MAJOR)
1090 tsk->maj_flt++;
1091 else
1092 tsk->min_flt++;
1095 * The VM_FAULT_WRITE bit tells us that
1096 * do_wp_page has broken COW when necessary,
1097 * even if maybe_mkwrite decided not to set
1098 * pte_write. We can thus safely do subsequent
1099 * page lookups as if they were reads.
1101 if (ret & VM_FAULT_WRITE)
1102 foll_flags &= ~FOLL_WRITE;
1104 cond_resched();
1106 if (pages) {
1107 pages[i] = page;
1109 flush_anon_page(vma, page, start);
1110 flush_dcache_page(page);
1112 if (vmas)
1113 vmas[i] = vma;
1114 i++;
1115 start += PAGE_SIZE;
1116 len--;
1117 } while (len && start < vma->vm_end);
1118 } while (len);
1119 return i;
1121 EXPORT_SYMBOL(get_user_pages);
1123 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1124 spinlock_t **ptl)
1126 pgd_t * pgd = pgd_offset(mm, addr);
1127 pud_t * pud = pud_alloc(mm, pgd, addr);
1128 if (pud) {
1129 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1130 if (pmd)
1131 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1133 return NULL;
1137 * This is the old fallback for page remapping.
1139 * For historical reasons, it only allows reserved pages. Only
1140 * old drivers should use this, and they needed to mark their
1141 * pages reserved for the old functions anyway.
1143 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1145 int retval;
1146 pte_t *pte;
1147 spinlock_t *ptl;
1149 retval = -EINVAL;
1150 if (PageAnon(page))
1151 goto out;
1152 retval = -ENOMEM;
1153 flush_dcache_page(page);
1154 pte = get_locked_pte(mm, addr, &ptl);
1155 if (!pte)
1156 goto out;
1157 retval = -EBUSY;
1158 if (!pte_none(*pte))
1159 goto out_unlock;
1161 /* Ok, finally just insert the thing.. */
1162 get_page(page);
1163 inc_mm_counter(mm, file_rss);
1164 page_add_file_rmap(page);
1165 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1167 retval = 0;
1168 out_unlock:
1169 pte_unmap_unlock(pte, ptl);
1170 out:
1171 return retval;
1175 * vm_insert_page - insert single page into user vma
1176 * @vma: user vma to map to
1177 * @addr: target user address of this page
1178 * @page: source kernel page
1180 * This allows drivers to insert individual pages they've allocated
1181 * into a user vma.
1183 * The page has to be a nice clean _individual_ kernel allocation.
1184 * If you allocate a compound page, you need to have marked it as
1185 * such (__GFP_COMP), or manually just split the page up yourself
1186 * (see split_page()).
1188 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1189 * took an arbitrary page protection parameter. This doesn't allow
1190 * that. Your vma protection will have to be set up correctly, which
1191 * means that if you want a shared writable mapping, you'd better
1192 * ask for a shared writable mapping!
1194 * The page does not need to be reserved.
1196 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1198 if (addr < vma->vm_start || addr >= vma->vm_end)
1199 return -EFAULT;
1200 if (!page_count(page))
1201 return -EINVAL;
1202 vma->vm_flags |= VM_INSERTPAGE;
1203 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1205 EXPORT_SYMBOL(vm_insert_page);
1208 * vm_insert_pfn - insert single pfn into user vma
1209 * @vma: user vma to map to
1210 * @addr: target user address of this page
1211 * @pfn: source kernel pfn
1213 * Similar to vm_inert_page, this allows drivers to insert individual pages
1214 * they've allocated into a user vma. Same comments apply.
1216 * This function should only be called from a vm_ops->fault handler, and
1217 * in that case the handler should return NULL.
1219 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1220 unsigned long pfn)
1222 struct mm_struct *mm = vma->vm_mm;
1223 int retval;
1224 pte_t *pte, entry;
1225 spinlock_t *ptl;
1227 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1228 BUG_ON(is_cow_mapping(vma->vm_flags));
1230 retval = -ENOMEM;
1231 pte = get_locked_pte(mm, addr, &ptl);
1232 if (!pte)
1233 goto out;
1234 retval = -EBUSY;
1235 if (!pte_none(*pte))
1236 goto out_unlock;
1238 /* Ok, finally just insert the thing.. */
1239 entry = pfn_pte(pfn, vma->vm_page_prot);
1240 set_pte_at(mm, addr, pte, entry);
1241 update_mmu_cache(vma, addr, entry);
1243 retval = 0;
1244 out_unlock:
1245 pte_unmap_unlock(pte, ptl);
1247 out:
1248 return retval;
1250 EXPORT_SYMBOL(vm_insert_pfn);
1253 * maps a range of physical memory into the requested pages. the old
1254 * mappings are removed. any references to nonexistent pages results
1255 * in null mappings (currently treated as "copy-on-access")
1257 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1258 unsigned long addr, unsigned long end,
1259 unsigned long pfn, pgprot_t prot)
1261 pte_t *pte;
1262 spinlock_t *ptl;
1264 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1265 if (!pte)
1266 return -ENOMEM;
1267 arch_enter_lazy_mmu_mode();
1268 do {
1269 BUG_ON(!pte_none(*pte));
1270 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1271 pfn++;
1272 } while (pte++, addr += PAGE_SIZE, addr != end);
1273 arch_leave_lazy_mmu_mode();
1274 pte_unmap_unlock(pte - 1, ptl);
1275 return 0;
1278 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1279 unsigned long addr, unsigned long end,
1280 unsigned long pfn, pgprot_t prot)
1282 pmd_t *pmd;
1283 unsigned long next;
1285 pfn -= addr >> PAGE_SHIFT;
1286 pmd = pmd_alloc(mm, pud, addr);
1287 if (!pmd)
1288 return -ENOMEM;
1289 do {
1290 next = pmd_addr_end(addr, end);
1291 if (remap_pte_range(mm, pmd, addr, next,
1292 pfn + (addr >> PAGE_SHIFT), prot))
1293 return -ENOMEM;
1294 } while (pmd++, addr = next, addr != end);
1295 return 0;
1298 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1299 unsigned long addr, unsigned long end,
1300 unsigned long pfn, pgprot_t prot)
1302 pud_t *pud;
1303 unsigned long next;
1305 pfn -= addr >> PAGE_SHIFT;
1306 pud = pud_alloc(mm, pgd, addr);
1307 if (!pud)
1308 return -ENOMEM;
1309 do {
1310 next = pud_addr_end(addr, end);
1311 if (remap_pmd_range(mm, pud, addr, next,
1312 pfn + (addr >> PAGE_SHIFT), prot))
1313 return -ENOMEM;
1314 } while (pud++, addr = next, addr != end);
1315 return 0;
1319 * remap_pfn_range - remap kernel memory to userspace
1320 * @vma: user vma to map to
1321 * @addr: target user address to start at
1322 * @pfn: physical address of kernel memory
1323 * @size: size of map area
1324 * @prot: page protection flags for this mapping
1326 * Note: this is only safe if the mm semaphore is held when called.
1328 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1329 unsigned long pfn, unsigned long size, pgprot_t prot)
1331 pgd_t *pgd;
1332 unsigned long next;
1333 unsigned long end = addr + PAGE_ALIGN(size);
1334 struct mm_struct *mm = vma->vm_mm;
1335 int err;
1338 * Physically remapped pages are special. Tell the
1339 * rest of the world about it:
1340 * VM_IO tells people not to look at these pages
1341 * (accesses can have side effects).
1342 * VM_RESERVED is specified all over the place, because
1343 * in 2.4 it kept swapout's vma scan off this vma; but
1344 * in 2.6 the LRU scan won't even find its pages, so this
1345 * flag means no more than count its pages in reserved_vm,
1346 * and omit it from core dump, even when VM_IO turned off.
1347 * VM_PFNMAP tells the core MM that the base pages are just
1348 * raw PFN mappings, and do not have a "struct page" associated
1349 * with them.
1351 * There's a horrible special case to handle copy-on-write
1352 * behaviour that some programs depend on. We mark the "original"
1353 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1355 if (is_cow_mapping(vma->vm_flags)) {
1356 if (addr != vma->vm_start || end != vma->vm_end)
1357 return -EINVAL;
1358 vma->vm_pgoff = pfn;
1361 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1363 BUG_ON(addr >= end);
1364 pfn -= addr >> PAGE_SHIFT;
1365 pgd = pgd_offset(mm, addr);
1366 flush_cache_range(vma, addr, end);
1367 do {
1368 next = pgd_addr_end(addr, end);
1369 err = remap_pud_range(mm, pgd, addr, next,
1370 pfn + (addr >> PAGE_SHIFT), prot);
1371 if (err)
1372 break;
1373 } while (pgd++, addr = next, addr != end);
1374 return err;
1376 EXPORT_SYMBOL(remap_pfn_range);
1378 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1379 unsigned long addr, unsigned long end,
1380 pte_fn_t fn, void *data)
1382 pte_t *pte;
1383 int err;
1384 struct page *pmd_page;
1385 spinlock_t *uninitialized_var(ptl);
1387 pte = (mm == &init_mm) ?
1388 pte_alloc_kernel(pmd, addr) :
1389 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1390 if (!pte)
1391 return -ENOMEM;
1393 BUG_ON(pmd_huge(*pmd));
1395 pmd_page = pmd_page(*pmd);
1397 do {
1398 err = fn(pte, pmd_page, addr, data);
1399 if (err)
1400 break;
1401 } while (pte++, addr += PAGE_SIZE, addr != end);
1403 if (mm != &init_mm)
1404 pte_unmap_unlock(pte-1, ptl);
1405 return err;
1408 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1409 unsigned long addr, unsigned long end,
1410 pte_fn_t fn, void *data)
1412 pmd_t *pmd;
1413 unsigned long next;
1414 int err;
1416 pmd = pmd_alloc(mm, pud, addr);
1417 if (!pmd)
1418 return -ENOMEM;
1419 do {
1420 next = pmd_addr_end(addr, end);
1421 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1422 if (err)
1423 break;
1424 } while (pmd++, addr = next, addr != end);
1425 return err;
1428 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1429 unsigned long addr, unsigned long end,
1430 pte_fn_t fn, void *data)
1432 pud_t *pud;
1433 unsigned long next;
1434 int err;
1436 pud = pud_alloc(mm, pgd, addr);
1437 if (!pud)
1438 return -ENOMEM;
1439 do {
1440 next = pud_addr_end(addr, end);
1441 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1442 if (err)
1443 break;
1444 } while (pud++, addr = next, addr != end);
1445 return err;
1449 * Scan a region of virtual memory, filling in page tables as necessary
1450 * and calling a provided function on each leaf page table.
1452 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1453 unsigned long size, pte_fn_t fn, void *data)
1455 pgd_t *pgd;
1456 unsigned long next;
1457 unsigned long end = addr + size;
1458 int err;
1460 BUG_ON(addr >= end);
1461 pgd = pgd_offset(mm, addr);
1462 do {
1463 next = pgd_addr_end(addr, end);
1464 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1465 if (err)
1466 break;
1467 } while (pgd++, addr = next, addr != end);
1468 return err;
1470 EXPORT_SYMBOL_GPL(apply_to_page_range);
1473 * handle_pte_fault chooses page fault handler according to an entry
1474 * which was read non-atomically. Before making any commitment, on
1475 * those architectures or configurations (e.g. i386 with PAE) which
1476 * might give a mix of unmatched parts, do_swap_page and do_file_page
1477 * must check under lock before unmapping the pte and proceeding
1478 * (but do_wp_page is only called after already making such a check;
1479 * and do_anonymous_page and do_no_page can safely check later on).
1481 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1482 pte_t *page_table, pte_t orig_pte)
1484 int same = 1;
1485 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1486 if (sizeof(pte_t) > sizeof(unsigned long)) {
1487 spinlock_t *ptl = pte_lockptr(mm, pmd);
1488 spin_lock(ptl);
1489 same = pte_same(*page_table, orig_pte);
1490 spin_unlock(ptl);
1492 #endif
1493 pte_unmap(page_table);
1494 return same;
1498 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1499 * servicing faults for write access. In the normal case, do always want
1500 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1501 * that do not have writing enabled, when used by access_process_vm.
1503 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1505 if (likely(vma->vm_flags & VM_WRITE))
1506 pte = pte_mkwrite(pte);
1507 return pte;
1510 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1513 * If the source page was a PFN mapping, we don't have
1514 * a "struct page" for it. We do a best-effort copy by
1515 * just copying from the original user address. If that
1516 * fails, we just zero-fill it. Live with it.
1518 if (unlikely(!src)) {
1519 void *kaddr = kmap_atomic(dst, KM_USER0);
1520 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1523 * This really shouldn't fail, because the page is there
1524 * in the page tables. But it might just be unreadable,
1525 * in which case we just give up and fill the result with
1526 * zeroes.
1528 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1529 memset(kaddr, 0, PAGE_SIZE);
1530 kunmap_atomic(kaddr, KM_USER0);
1531 flush_dcache_page(dst);
1532 } else
1533 copy_user_highpage(dst, src, va, vma);
1537 * This routine handles present pages, when users try to write
1538 * to a shared page. It is done by copying the page to a new address
1539 * and decrementing the shared-page counter for the old page.
1541 * Note that this routine assumes that the protection checks have been
1542 * done by the caller (the low-level page fault routine in most cases).
1543 * Thus we can safely just mark it writable once we've done any necessary
1544 * COW.
1546 * We also mark the page dirty at this point even though the page will
1547 * change only once the write actually happens. This avoids a few races,
1548 * and potentially makes it more efficient.
1550 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1551 * but allow concurrent faults), with pte both mapped and locked.
1552 * We return with mmap_sem still held, but pte unmapped and unlocked.
1554 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1555 unsigned long address, pte_t *page_table, pmd_t *pmd,
1556 spinlock_t *ptl, pte_t orig_pte)
1558 struct page *old_page, *new_page;
1559 pte_t entry;
1560 int reuse = 0, ret = 0;
1561 int page_mkwrite = 0;
1562 struct page *dirty_page = NULL;
1564 old_page = vm_normal_page(vma, address, orig_pte);
1565 if (!old_page)
1566 goto gotten;
1569 * Take out anonymous pages first, anonymous shared vmas are
1570 * not dirty accountable.
1572 if (PageAnon(old_page)) {
1573 if (!TestSetPageLocked(old_page)) {
1574 reuse = can_share_swap_page(old_page);
1575 unlock_page(old_page);
1577 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1578 (VM_WRITE|VM_SHARED))) {
1580 * Only catch write-faults on shared writable pages,
1581 * read-only shared pages can get COWed by
1582 * get_user_pages(.write=1, .force=1).
1584 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1586 * Notify the address space that the page is about to
1587 * become writable so that it can prohibit this or wait
1588 * for the page to get into an appropriate state.
1590 * We do this without the lock held, so that it can
1591 * sleep if it needs to.
1593 page_cache_get(old_page);
1594 pte_unmap_unlock(page_table, ptl);
1596 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1597 goto unwritable_page;
1600 * Since we dropped the lock we need to revalidate
1601 * the PTE as someone else may have changed it. If
1602 * they did, we just return, as we can count on the
1603 * MMU to tell us if they didn't also make it writable.
1605 page_table = pte_offset_map_lock(mm, pmd, address,
1606 &ptl);
1607 page_cache_release(old_page);
1608 if (!pte_same(*page_table, orig_pte))
1609 goto unlock;
1611 page_mkwrite = 1;
1613 dirty_page = old_page;
1614 get_page(dirty_page);
1615 reuse = 1;
1618 if (reuse) {
1619 flush_cache_page(vma, address, pte_pfn(orig_pte));
1620 entry = pte_mkyoung(orig_pte);
1621 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1622 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1623 update_mmu_cache(vma, address, entry);
1624 ret |= VM_FAULT_WRITE;
1625 goto unlock;
1629 * Ok, we need to copy. Oh, well..
1631 page_cache_get(old_page);
1632 gotten:
1633 pte_unmap_unlock(page_table, ptl);
1635 if (unlikely(anon_vma_prepare(vma)))
1636 goto oom;
1637 VM_BUG_ON(old_page == ZERO_PAGE(0));
1638 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1639 if (!new_page)
1640 goto oom;
1641 cow_user_page(new_page, old_page, address, vma);
1642 __SetPageUptodate(new_page);
1645 * Re-check the pte - we dropped the lock
1647 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1648 if (likely(pte_same(*page_table, orig_pte))) {
1649 if (old_page) {
1650 page_remove_rmap(old_page, vma);
1651 if (!PageAnon(old_page)) {
1652 dec_mm_counter(mm, file_rss);
1653 inc_mm_counter(mm, anon_rss);
1655 } else
1656 inc_mm_counter(mm, anon_rss);
1657 flush_cache_page(vma, address, pte_pfn(orig_pte));
1658 entry = mk_pte(new_page, vma->vm_page_prot);
1659 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1661 * Clear the pte entry and flush it first, before updating the
1662 * pte with the new entry. This will avoid a race condition
1663 * seen in the presence of one thread doing SMC and another
1664 * thread doing COW.
1666 ptep_clear_flush(vma, address, page_table);
1667 set_pte_at(mm, address, page_table, entry);
1668 update_mmu_cache(vma, address, entry);
1669 lru_cache_add_active(new_page);
1670 page_add_new_anon_rmap(new_page, vma, address);
1672 /* Free the old page.. */
1673 new_page = old_page;
1674 ret |= VM_FAULT_WRITE;
1676 if (new_page)
1677 page_cache_release(new_page);
1678 if (old_page)
1679 page_cache_release(old_page);
1680 unlock:
1681 pte_unmap_unlock(page_table, ptl);
1682 if (dirty_page) {
1683 if (vma->vm_file)
1684 file_update_time(vma->vm_file);
1687 * Yes, Virginia, this is actually required to prevent a race
1688 * with clear_page_dirty_for_io() from clearing the page dirty
1689 * bit after it clear all dirty ptes, but before a racing
1690 * do_wp_page installs a dirty pte.
1692 * do_no_page is protected similarly.
1694 wait_on_page_locked(dirty_page);
1695 set_page_dirty_balance(dirty_page, page_mkwrite);
1696 put_page(dirty_page);
1698 return ret;
1699 oom:
1700 if (old_page)
1701 page_cache_release(old_page);
1702 return VM_FAULT_OOM;
1704 unwritable_page:
1705 page_cache_release(old_page);
1706 return VM_FAULT_SIGBUS;
1710 * Helper functions for unmap_mapping_range().
1712 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1714 * We have to restart searching the prio_tree whenever we drop the lock,
1715 * since the iterator is only valid while the lock is held, and anyway
1716 * a later vma might be split and reinserted earlier while lock dropped.
1718 * The list of nonlinear vmas could be handled more efficiently, using
1719 * a placeholder, but handle it in the same way until a need is shown.
1720 * It is important to search the prio_tree before nonlinear list: a vma
1721 * may become nonlinear and be shifted from prio_tree to nonlinear list
1722 * while the lock is dropped; but never shifted from list to prio_tree.
1724 * In order to make forward progress despite restarting the search,
1725 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1726 * quickly skip it next time around. Since the prio_tree search only
1727 * shows us those vmas affected by unmapping the range in question, we
1728 * can't efficiently keep all vmas in step with mapping->truncate_count:
1729 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1730 * mapping->truncate_count and vma->vm_truncate_count are protected by
1731 * i_mmap_lock.
1733 * In order to make forward progress despite repeatedly restarting some
1734 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1735 * and restart from that address when we reach that vma again. It might
1736 * have been split or merged, shrunk or extended, but never shifted: so
1737 * restart_addr remains valid so long as it remains in the vma's range.
1738 * unmap_mapping_range forces truncate_count to leap over page-aligned
1739 * values so we can save vma's restart_addr in its truncate_count field.
1741 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1743 static void reset_vma_truncate_counts(struct address_space *mapping)
1745 struct vm_area_struct *vma;
1746 struct prio_tree_iter iter;
1748 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1749 vma->vm_truncate_count = 0;
1750 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1751 vma->vm_truncate_count = 0;
1754 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1755 unsigned long start_addr, unsigned long end_addr,
1756 struct zap_details *details)
1758 unsigned long restart_addr;
1759 int need_break;
1762 * files that support invalidating or truncating portions of the
1763 * file from under mmaped areas must have their ->fault function
1764 * return a locked page (and set VM_FAULT_LOCKED in the return).
1765 * This provides synchronisation against concurrent unmapping here.
1768 again:
1769 restart_addr = vma->vm_truncate_count;
1770 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1771 start_addr = restart_addr;
1772 if (start_addr >= end_addr) {
1773 /* Top of vma has been split off since last time */
1774 vma->vm_truncate_count = details->truncate_count;
1775 return 0;
1779 restart_addr = zap_page_range(vma, start_addr,
1780 end_addr - start_addr, details);
1781 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1783 if (restart_addr >= end_addr) {
1784 /* We have now completed this vma: mark it so */
1785 vma->vm_truncate_count = details->truncate_count;
1786 if (!need_break)
1787 return 0;
1788 } else {
1789 /* Note restart_addr in vma's truncate_count field */
1790 vma->vm_truncate_count = restart_addr;
1791 if (!need_break)
1792 goto again;
1795 spin_unlock(details->i_mmap_lock);
1796 cond_resched();
1797 spin_lock(details->i_mmap_lock);
1798 return -EINTR;
1801 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1802 struct zap_details *details)
1804 struct vm_area_struct *vma;
1805 struct prio_tree_iter iter;
1806 pgoff_t vba, vea, zba, zea;
1808 restart:
1809 vma_prio_tree_foreach(vma, &iter, root,
1810 details->first_index, details->last_index) {
1811 /* Skip quickly over those we have already dealt with */
1812 if (vma->vm_truncate_count == details->truncate_count)
1813 continue;
1815 vba = vma->vm_pgoff;
1816 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1817 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1818 zba = details->first_index;
1819 if (zba < vba)
1820 zba = vba;
1821 zea = details->last_index;
1822 if (zea > vea)
1823 zea = vea;
1825 if (unmap_mapping_range_vma(vma,
1826 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1827 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1828 details) < 0)
1829 goto restart;
1833 static inline void unmap_mapping_range_list(struct list_head *head,
1834 struct zap_details *details)
1836 struct vm_area_struct *vma;
1839 * In nonlinear VMAs there is no correspondence between virtual address
1840 * offset and file offset. So we must perform an exhaustive search
1841 * across *all* the pages in each nonlinear VMA, not just the pages
1842 * whose virtual address lies outside the file truncation point.
1844 restart:
1845 list_for_each_entry(vma, head, shared.vm_set.list) {
1846 /* Skip quickly over those we have already dealt with */
1847 if (vma->vm_truncate_count == details->truncate_count)
1848 continue;
1849 details->nonlinear_vma = vma;
1850 if (unmap_mapping_range_vma(vma, vma->vm_start,
1851 vma->vm_end, details) < 0)
1852 goto restart;
1857 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1858 * @mapping: the address space containing mmaps to be unmapped.
1859 * @holebegin: byte in first page to unmap, relative to the start of
1860 * the underlying file. This will be rounded down to a PAGE_SIZE
1861 * boundary. Note that this is different from vmtruncate(), which
1862 * must keep the partial page. In contrast, we must get rid of
1863 * partial pages.
1864 * @holelen: size of prospective hole in bytes. This will be rounded
1865 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1866 * end of the file.
1867 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1868 * but 0 when invalidating pagecache, don't throw away private data.
1870 void unmap_mapping_range(struct address_space *mapping,
1871 loff_t const holebegin, loff_t const holelen, int even_cows)
1873 struct zap_details details;
1874 pgoff_t hba = holebegin >> PAGE_SHIFT;
1875 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1877 /* Check for overflow. */
1878 if (sizeof(holelen) > sizeof(hlen)) {
1879 long long holeend =
1880 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1881 if (holeend & ~(long long)ULONG_MAX)
1882 hlen = ULONG_MAX - hba + 1;
1885 details.check_mapping = even_cows? NULL: mapping;
1886 details.nonlinear_vma = NULL;
1887 details.first_index = hba;
1888 details.last_index = hba + hlen - 1;
1889 if (details.last_index < details.first_index)
1890 details.last_index = ULONG_MAX;
1891 details.i_mmap_lock = &mapping->i_mmap_lock;
1893 spin_lock(&mapping->i_mmap_lock);
1895 /* Protect against endless unmapping loops */
1896 mapping->truncate_count++;
1897 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1898 if (mapping->truncate_count == 0)
1899 reset_vma_truncate_counts(mapping);
1900 mapping->truncate_count++;
1902 details.truncate_count = mapping->truncate_count;
1904 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1905 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1906 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1907 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1908 spin_unlock(&mapping->i_mmap_lock);
1910 EXPORT_SYMBOL(unmap_mapping_range);
1913 * vmtruncate - unmap mappings "freed" by truncate() syscall
1914 * @inode: inode of the file used
1915 * @offset: file offset to start truncating
1917 * NOTE! We have to be ready to update the memory sharing
1918 * between the file and the memory map for a potential last
1919 * incomplete page. Ugly, but necessary.
1921 int vmtruncate(struct inode * inode, loff_t offset)
1923 if (inode->i_size < offset) {
1924 unsigned long limit;
1926 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1927 if (limit != RLIM_INFINITY && offset > limit)
1928 goto out_sig;
1929 if (offset > inode->i_sb->s_maxbytes)
1930 goto out_big;
1931 i_size_write(inode, offset);
1932 } else {
1933 struct address_space *mapping = inode->i_mapping;
1936 * truncation of in-use swapfiles is disallowed - it would
1937 * cause subsequent swapout to scribble on the now-freed
1938 * blocks.
1940 if (IS_SWAPFILE(inode))
1941 return -ETXTBSY;
1942 i_size_write(inode, offset);
1945 * unmap_mapping_range is called twice, first simply for
1946 * efficiency so that truncate_inode_pages does fewer
1947 * single-page unmaps. However after this first call, and
1948 * before truncate_inode_pages finishes, it is possible for
1949 * private pages to be COWed, which remain after
1950 * truncate_inode_pages finishes, hence the second
1951 * unmap_mapping_range call must be made for correctness.
1953 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1954 truncate_inode_pages(mapping, offset);
1955 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1958 if (inode->i_op && inode->i_op->truncate)
1959 inode->i_op->truncate(inode);
1960 return 0;
1962 out_sig:
1963 send_sig(SIGXFSZ, current, 0);
1964 out_big:
1965 return -EFBIG;
1967 EXPORT_SYMBOL(vmtruncate);
1969 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1971 struct address_space *mapping = inode->i_mapping;
1974 * If the underlying filesystem is not going to provide
1975 * a way to truncate a range of blocks (punch a hole) -
1976 * we should return failure right now.
1978 if (!inode->i_op || !inode->i_op->truncate_range)
1979 return -ENOSYS;
1981 mutex_lock(&inode->i_mutex);
1982 down_write(&inode->i_alloc_sem);
1983 unmap_mapping_range(mapping, offset, (end - offset), 1);
1984 truncate_inode_pages_range(mapping, offset, end);
1985 unmap_mapping_range(mapping, offset, (end - offset), 1);
1986 inode->i_op->truncate_range(inode, offset, end);
1987 up_write(&inode->i_alloc_sem);
1988 mutex_unlock(&inode->i_mutex);
1990 return 0;
1994 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1995 * but allow concurrent faults), and pte mapped but not yet locked.
1996 * We return with mmap_sem still held, but pte unmapped and unlocked.
1998 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1999 unsigned long address, pte_t *page_table, pmd_t *pmd,
2000 int write_access, pte_t orig_pte)
2002 spinlock_t *ptl;
2003 struct page *page;
2004 swp_entry_t entry;
2005 pte_t pte;
2006 int ret = 0;
2008 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2009 goto out;
2011 entry = pte_to_swp_entry(orig_pte);
2012 if (is_migration_entry(entry)) {
2013 migration_entry_wait(mm, pmd, address);
2014 goto out;
2016 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2017 page = lookup_swap_cache(entry);
2018 if (!page) {
2019 grab_swap_token(); /* Contend for token _before_ read-in */
2020 page = swapin_readahead(entry,
2021 GFP_HIGHUSER_MOVABLE, vma, address);
2022 if (!page) {
2024 * Back out if somebody else faulted in this pte
2025 * while we released the pte lock.
2027 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2028 if (likely(pte_same(*page_table, orig_pte)))
2029 ret = VM_FAULT_OOM;
2030 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2031 goto unlock;
2034 /* Had to read the page from swap area: Major fault */
2035 ret = VM_FAULT_MAJOR;
2036 count_vm_event(PGMAJFAULT);
2039 mark_page_accessed(page);
2040 lock_page(page);
2041 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2044 * Back out if somebody else already faulted in this pte.
2046 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2047 if (unlikely(!pte_same(*page_table, orig_pte)))
2048 goto out_nomap;
2050 if (unlikely(!PageUptodate(page))) {
2051 ret = VM_FAULT_SIGBUS;
2052 goto out_nomap;
2055 /* The page isn't present yet, go ahead with the fault. */
2057 inc_mm_counter(mm, anon_rss);
2058 pte = mk_pte(page, vma->vm_page_prot);
2059 if (write_access && can_share_swap_page(page)) {
2060 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2061 write_access = 0;
2064 flush_icache_page(vma, page);
2065 set_pte_at(mm, address, page_table, pte);
2066 page_add_anon_rmap(page, vma, address);
2068 swap_free(entry);
2069 if (vm_swap_full())
2070 remove_exclusive_swap_page(page);
2071 unlock_page(page);
2073 if (write_access) {
2074 /* XXX: We could OR the do_wp_page code with this one? */
2075 if (do_wp_page(mm, vma, address,
2076 page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2077 ret = VM_FAULT_OOM;
2078 goto out;
2081 /* No need to invalidate - it was non-present before */
2082 update_mmu_cache(vma, address, pte);
2083 unlock:
2084 pte_unmap_unlock(page_table, ptl);
2085 out:
2086 return ret;
2087 out_nomap:
2088 pte_unmap_unlock(page_table, ptl);
2089 unlock_page(page);
2090 page_cache_release(page);
2091 return ret;
2095 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2096 * but allow concurrent faults), and pte mapped but not yet locked.
2097 * We return with mmap_sem still held, but pte unmapped and unlocked.
2099 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2100 unsigned long address, pte_t *page_table, pmd_t *pmd,
2101 int write_access)
2103 struct page *page;
2104 spinlock_t *ptl;
2105 pte_t entry;
2107 /* Allocate our own private page. */
2108 pte_unmap(page_table);
2110 if (unlikely(anon_vma_prepare(vma)))
2111 goto oom;
2112 page = alloc_zeroed_user_highpage_movable(vma, address);
2113 if (!page)
2114 goto oom;
2115 __SetPageUptodate(page);
2117 entry = mk_pte(page, vma->vm_page_prot);
2118 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2120 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2121 if (!pte_none(*page_table))
2122 goto release;
2123 inc_mm_counter(mm, anon_rss);
2124 lru_cache_add_active(page);
2125 page_add_new_anon_rmap(page, vma, address);
2126 set_pte_at(mm, address, page_table, entry);
2128 /* No need to invalidate - it was non-present before */
2129 update_mmu_cache(vma, address, entry);
2130 unlock:
2131 pte_unmap_unlock(page_table, ptl);
2132 return 0;
2133 release:
2134 page_cache_release(page);
2135 goto unlock;
2136 oom:
2137 return VM_FAULT_OOM;
2141 * __do_fault() tries to create a new page mapping. It aggressively
2142 * tries to share with existing pages, but makes a separate copy if
2143 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2144 * the next page fault.
2146 * As this is called only for pages that do not currently exist, we
2147 * do not need to flush old virtual caches or the TLB.
2149 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2150 * but allow concurrent faults), and pte neither mapped nor locked.
2151 * We return with mmap_sem still held, but pte unmapped and unlocked.
2153 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2154 unsigned long address, pmd_t *pmd,
2155 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2157 pte_t *page_table;
2158 spinlock_t *ptl;
2159 struct page *page;
2160 pte_t entry;
2161 int anon = 0;
2162 struct page *dirty_page = NULL;
2163 struct vm_fault vmf;
2164 int ret;
2165 int page_mkwrite = 0;
2167 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2168 vmf.pgoff = pgoff;
2169 vmf.flags = flags;
2170 vmf.page = NULL;
2172 BUG_ON(vma->vm_flags & VM_PFNMAP);
2174 if (likely(vma->vm_ops->fault)) {
2175 ret = vma->vm_ops->fault(vma, &vmf);
2176 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2177 return ret;
2178 } else {
2179 /* Legacy ->nopage path */
2180 ret = 0;
2181 vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2182 /* no page was available -- either SIGBUS or OOM */
2183 if (unlikely(vmf.page == NOPAGE_SIGBUS))
2184 return VM_FAULT_SIGBUS;
2185 else if (unlikely(vmf.page == NOPAGE_OOM))
2186 return VM_FAULT_OOM;
2190 * For consistency in subsequent calls, make the faulted page always
2191 * locked.
2193 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2194 lock_page(vmf.page);
2195 else
2196 VM_BUG_ON(!PageLocked(vmf.page));
2199 * Should we do an early C-O-W break?
2201 page = vmf.page;
2202 if (flags & FAULT_FLAG_WRITE) {
2203 if (!(vma->vm_flags & VM_SHARED)) {
2204 anon = 1;
2205 if (unlikely(anon_vma_prepare(vma))) {
2206 ret = VM_FAULT_OOM;
2207 goto out;
2209 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2210 vma, address);
2211 if (!page) {
2212 ret = VM_FAULT_OOM;
2213 goto out;
2215 copy_user_highpage(page, vmf.page, address, vma);
2216 __SetPageUptodate(page);
2217 } else {
2219 * If the page will be shareable, see if the backing
2220 * address space wants to know that the page is about
2221 * to become writable
2223 if (vma->vm_ops->page_mkwrite) {
2224 unlock_page(page);
2225 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2226 ret = VM_FAULT_SIGBUS;
2227 anon = 1; /* no anon but release vmf.page */
2228 goto out_unlocked;
2230 lock_page(page);
2232 * XXX: this is not quite right (racy vs
2233 * invalidate) to unlock and relock the page
2234 * like this, however a better fix requires
2235 * reworking page_mkwrite locking API, which
2236 * is better done later.
2238 if (!page->mapping) {
2239 ret = 0;
2240 anon = 1; /* no anon but release vmf.page */
2241 goto out;
2243 page_mkwrite = 1;
2249 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2252 * This silly early PAGE_DIRTY setting removes a race
2253 * due to the bad i386 page protection. But it's valid
2254 * for other architectures too.
2256 * Note that if write_access is true, we either now have
2257 * an exclusive copy of the page, or this is a shared mapping,
2258 * so we can make it writable and dirty to avoid having to
2259 * handle that later.
2261 /* Only go through if we didn't race with anybody else... */
2262 if (likely(pte_same(*page_table, orig_pte))) {
2263 flush_icache_page(vma, page);
2264 entry = mk_pte(page, vma->vm_page_prot);
2265 if (flags & FAULT_FLAG_WRITE)
2266 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2267 set_pte_at(mm, address, page_table, entry);
2268 if (anon) {
2269 inc_mm_counter(mm, anon_rss);
2270 lru_cache_add_active(page);
2271 page_add_new_anon_rmap(page, vma, address);
2272 } else {
2273 inc_mm_counter(mm, file_rss);
2274 page_add_file_rmap(page);
2275 if (flags & FAULT_FLAG_WRITE) {
2276 dirty_page = page;
2277 get_page(dirty_page);
2281 /* no need to invalidate: a not-present page won't be cached */
2282 update_mmu_cache(vma, address, entry);
2283 } else {
2284 if (anon)
2285 page_cache_release(page);
2286 else
2287 anon = 1; /* no anon but release faulted_page */
2290 pte_unmap_unlock(page_table, ptl);
2292 out:
2293 unlock_page(vmf.page);
2294 out_unlocked:
2295 if (anon)
2296 page_cache_release(vmf.page);
2297 else if (dirty_page) {
2298 if (vma->vm_file)
2299 file_update_time(vma->vm_file);
2301 set_page_dirty_balance(dirty_page, page_mkwrite);
2302 put_page(dirty_page);
2305 return ret;
2308 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2309 unsigned long address, pte_t *page_table, pmd_t *pmd,
2310 int write_access, pte_t orig_pte)
2312 pgoff_t pgoff = (((address & PAGE_MASK)
2313 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2314 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2316 pte_unmap(page_table);
2317 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2322 * do_no_pfn() tries to create a new page mapping for a page without
2323 * a struct_page backing it
2325 * As this is called only for pages that do not currently exist, we
2326 * do not need to flush old virtual caches or the TLB.
2328 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2329 * but allow concurrent faults), and pte mapped but not yet locked.
2330 * We return with mmap_sem still held, but pte unmapped and unlocked.
2332 * It is expected that the ->nopfn handler always returns the same pfn
2333 * for a given virtual mapping.
2335 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2337 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2338 unsigned long address, pte_t *page_table, pmd_t *pmd,
2339 int write_access)
2341 spinlock_t *ptl;
2342 pte_t entry;
2343 unsigned long pfn;
2345 pte_unmap(page_table);
2346 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2347 BUG_ON(is_cow_mapping(vma->vm_flags));
2349 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2350 if (unlikely(pfn == NOPFN_OOM))
2351 return VM_FAULT_OOM;
2352 else if (unlikely(pfn == NOPFN_SIGBUS))
2353 return VM_FAULT_SIGBUS;
2354 else if (unlikely(pfn == NOPFN_REFAULT))
2355 return 0;
2357 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2359 /* Only go through if we didn't race with anybody else... */
2360 if (pte_none(*page_table)) {
2361 entry = pfn_pte(pfn, vma->vm_page_prot);
2362 if (write_access)
2363 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2364 set_pte_at(mm, address, page_table, entry);
2366 pte_unmap_unlock(page_table, ptl);
2367 return 0;
2371 * Fault of a previously existing named mapping. Repopulate the pte
2372 * from the encoded file_pte if possible. This enables swappable
2373 * nonlinear vmas.
2375 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2376 * but allow concurrent faults), and pte mapped but not yet locked.
2377 * We return with mmap_sem still held, but pte unmapped and unlocked.
2379 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2380 unsigned long address, pte_t *page_table, pmd_t *pmd,
2381 int write_access, pte_t orig_pte)
2383 unsigned int flags = FAULT_FLAG_NONLINEAR |
2384 (write_access ? FAULT_FLAG_WRITE : 0);
2385 pgoff_t pgoff;
2387 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2388 return 0;
2390 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2391 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2393 * Page table corrupted: show pte and kill process.
2395 print_bad_pte(vma, orig_pte, address);
2396 return VM_FAULT_OOM;
2399 pgoff = pte_to_pgoff(orig_pte);
2400 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2404 * These routines also need to handle stuff like marking pages dirty
2405 * and/or accessed for architectures that don't do it in hardware (most
2406 * RISC architectures). The early dirtying is also good on the i386.
2408 * There is also a hook called "update_mmu_cache()" that architectures
2409 * with external mmu caches can use to update those (ie the Sparc or
2410 * PowerPC hashed page tables that act as extended TLBs).
2412 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2413 * but allow concurrent faults), and pte mapped but not yet locked.
2414 * We return with mmap_sem still held, but pte unmapped and unlocked.
2416 static inline int handle_pte_fault(struct mm_struct *mm,
2417 struct vm_area_struct *vma, unsigned long address,
2418 pte_t *pte, pmd_t *pmd, int write_access)
2420 pte_t entry;
2421 spinlock_t *ptl;
2423 entry = *pte;
2424 if (!pte_present(entry)) {
2425 if (pte_none(entry)) {
2426 if (vma->vm_ops) {
2427 if (vma->vm_ops->fault || vma->vm_ops->nopage)
2428 return do_linear_fault(mm, vma, address,
2429 pte, pmd, write_access, entry);
2430 if (unlikely(vma->vm_ops->nopfn))
2431 return do_no_pfn(mm, vma, address, pte,
2432 pmd, write_access);
2434 return do_anonymous_page(mm, vma, address,
2435 pte, pmd, write_access);
2437 if (pte_file(entry))
2438 return do_nonlinear_fault(mm, vma, address,
2439 pte, pmd, write_access, entry);
2440 return do_swap_page(mm, vma, address,
2441 pte, pmd, write_access, entry);
2444 ptl = pte_lockptr(mm, pmd);
2445 spin_lock(ptl);
2446 if (unlikely(!pte_same(*pte, entry)))
2447 goto unlock;
2448 if (write_access) {
2449 if (!pte_write(entry))
2450 return do_wp_page(mm, vma, address,
2451 pte, pmd, ptl, entry);
2452 entry = pte_mkdirty(entry);
2454 entry = pte_mkyoung(entry);
2455 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2456 update_mmu_cache(vma, address, entry);
2457 } else {
2459 * This is needed only for protection faults but the arch code
2460 * is not yet telling us if this is a protection fault or not.
2461 * This still avoids useless tlb flushes for .text page faults
2462 * with threads.
2464 if (write_access)
2465 flush_tlb_page(vma, address);
2467 unlock:
2468 pte_unmap_unlock(pte, ptl);
2469 return 0;
2473 * By the time we get here, we already hold the mm semaphore
2475 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2476 unsigned long address, int write_access)
2478 pgd_t *pgd;
2479 pud_t *pud;
2480 pmd_t *pmd;
2481 pte_t *pte;
2483 __set_current_state(TASK_RUNNING);
2485 count_vm_event(PGFAULT);
2487 if (unlikely(is_vm_hugetlb_page(vma)))
2488 return hugetlb_fault(mm, vma, address, write_access);
2490 pgd = pgd_offset(mm, address);
2491 pud = pud_alloc(mm, pgd, address);
2492 if (!pud)
2493 return VM_FAULT_OOM;
2494 pmd = pmd_alloc(mm, pud, address);
2495 if (!pmd)
2496 return VM_FAULT_OOM;
2497 pte = pte_alloc_map(mm, pmd, address);
2498 if (!pte)
2499 return VM_FAULT_OOM;
2501 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2504 #ifndef __PAGETABLE_PUD_FOLDED
2506 * Allocate page upper directory.
2507 * We've already handled the fast-path in-line.
2509 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2511 pud_t *new = pud_alloc_one(mm, address);
2512 if (!new)
2513 return -ENOMEM;
2515 spin_lock(&mm->page_table_lock);
2516 if (pgd_present(*pgd)) /* Another has populated it */
2517 pud_free(mm, new);
2518 else
2519 pgd_populate(mm, pgd, new);
2520 spin_unlock(&mm->page_table_lock);
2521 return 0;
2523 #endif /* __PAGETABLE_PUD_FOLDED */
2525 #ifndef __PAGETABLE_PMD_FOLDED
2527 * Allocate page middle directory.
2528 * We've already handled the fast-path in-line.
2530 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2532 pmd_t *new = pmd_alloc_one(mm, address);
2533 if (!new)
2534 return -ENOMEM;
2536 spin_lock(&mm->page_table_lock);
2537 #ifndef __ARCH_HAS_4LEVEL_HACK
2538 if (pud_present(*pud)) /* Another has populated it */
2539 pmd_free(mm, new);
2540 else
2541 pud_populate(mm, pud, new);
2542 #else
2543 if (pgd_present(*pud)) /* Another has populated it */
2544 pmd_free(mm, new);
2545 else
2546 pgd_populate(mm, pud, new);
2547 #endif /* __ARCH_HAS_4LEVEL_HACK */
2548 spin_unlock(&mm->page_table_lock);
2549 return 0;
2551 #endif /* __PAGETABLE_PMD_FOLDED */
2553 int make_pages_present(unsigned long addr, unsigned long end)
2555 int ret, len, write;
2556 struct vm_area_struct * vma;
2558 vma = find_vma(current->mm, addr);
2559 if (!vma)
2560 return -1;
2561 write = (vma->vm_flags & VM_WRITE) != 0;
2562 BUG_ON(addr >= end);
2563 BUG_ON(end > vma->vm_end);
2564 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2565 ret = get_user_pages(current, current->mm, addr,
2566 len, write, 0, NULL, NULL);
2567 if (ret < 0)
2568 return ret;
2569 return ret == len ? 0 : -1;
2572 #if !defined(__HAVE_ARCH_GATE_AREA)
2574 #if defined(AT_SYSINFO_EHDR)
2575 static struct vm_area_struct gate_vma;
2577 static int __init gate_vma_init(void)
2579 gate_vma.vm_mm = NULL;
2580 gate_vma.vm_start = FIXADDR_USER_START;
2581 gate_vma.vm_end = FIXADDR_USER_END;
2582 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2583 gate_vma.vm_page_prot = __P101;
2585 * Make sure the vDSO gets into every core dump.
2586 * Dumping its contents makes post-mortem fully interpretable later
2587 * without matching up the same kernel and hardware config to see
2588 * what PC values meant.
2590 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2591 return 0;
2593 __initcall(gate_vma_init);
2594 #endif
2596 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2598 #ifdef AT_SYSINFO_EHDR
2599 return &gate_vma;
2600 #else
2601 return NULL;
2602 #endif
2605 int in_gate_area_no_task(unsigned long addr)
2607 #ifdef AT_SYSINFO_EHDR
2608 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2609 return 1;
2610 #endif
2611 return 0;
2614 #endif /* __HAVE_ARCH_GATE_AREA */
2617 * Access another process' address space.
2618 * Source/target buffer must be kernel space,
2619 * Do not walk the page table directly, use get_user_pages
2621 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2623 struct mm_struct *mm;
2624 struct vm_area_struct *vma;
2625 struct page *page;
2626 void *old_buf = buf;
2628 mm = get_task_mm(tsk);
2629 if (!mm)
2630 return 0;
2632 down_read(&mm->mmap_sem);
2633 /* ignore errors, just check how much was successfully transferred */
2634 while (len) {
2635 int bytes, ret, offset;
2636 void *maddr;
2638 ret = get_user_pages(tsk, mm, addr, 1,
2639 write, 1, &page, &vma);
2640 if (ret <= 0)
2641 break;
2643 bytes = len;
2644 offset = addr & (PAGE_SIZE-1);
2645 if (bytes > PAGE_SIZE-offset)
2646 bytes = PAGE_SIZE-offset;
2648 maddr = kmap(page);
2649 if (write) {
2650 copy_to_user_page(vma, page, addr,
2651 maddr + offset, buf, bytes);
2652 set_page_dirty_lock(page);
2653 } else {
2654 copy_from_user_page(vma, page, addr,
2655 buf, maddr + offset, bytes);
2657 kunmap(page);
2658 page_cache_release(page);
2659 len -= bytes;
2660 buf += bytes;
2661 addr += bytes;
2663 up_read(&mm->mmap_sem);
2664 mmput(mm);
2666 return buf - old_buf;
2670 * Print the name of a VMA.
2672 void print_vma_addr(char *prefix, unsigned long ip)
2674 struct mm_struct *mm = current->mm;
2675 struct vm_area_struct *vma;
2677 down_read(&mm->mmap_sem);
2678 vma = find_vma(mm, ip);
2679 if (vma && vma->vm_file) {
2680 struct file *f = vma->vm_file;
2681 char *buf = (char *)__get_free_page(GFP_KERNEL);
2682 if (buf) {
2683 char *p, *s;
2685 p = d_path(f->f_dentry, f->f_vfsmnt, buf, PAGE_SIZE);
2686 if (IS_ERR(p))
2687 p = "?";
2688 s = strrchr(p, '/');
2689 if (s)
2690 p = s+1;
2691 printk("%s%s[%lx+%lx]", prefix, p,
2692 vma->vm_start,
2693 vma->vm_end - vma->vm_start);
2694 free_page((unsigned long)buf);
2697 up_read(&current->mm->mmap_sem);