4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/types.h>
38 #include <linux/wait.h>
40 struct dma_pool
{ /* the pool */
41 struct list_head page_list
;
48 wait_queue_head_t waitq
;
49 struct list_head pools
;
52 struct dma_page
{ /* cacheable header for 'allocation' bytes */
53 struct list_head page_list
;
60 #define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000)
62 static DEFINE_MUTEX(pools_lock
);
65 show_pools(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
70 struct dma_page
*page
;
71 struct dma_pool
*pool
;
76 temp
= scnprintf(next
, size
, "poolinfo - 0.1\n");
80 mutex_lock(&pools_lock
);
81 list_for_each_entry(pool
, &dev
->dma_pools
, pools
) {
85 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
87 blocks
+= page
->in_use
;
90 /* per-pool info, no real statistics yet */
91 temp
= scnprintf(next
, size
, "%-16s %4u %4Zu %4Zu %2u\n",
93 pages
* (pool
->allocation
/ pool
->size
),
98 mutex_unlock(&pools_lock
);
100 return PAGE_SIZE
- size
;
103 static DEVICE_ATTR(pools
, S_IRUGO
, show_pools
, NULL
);
106 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
107 * @name: name of pool, for diagnostics
108 * @dev: device that will be doing the DMA
109 * @size: size of the blocks in this pool.
110 * @align: alignment requirement for blocks; must be a power of two
111 * @boundary: returned blocks won't cross this power of two boundary
112 * Context: !in_interrupt()
114 * Returns a dma allocation pool with the requested characteristics, or
115 * null if one can't be created. Given one of these pools, dma_pool_alloc()
116 * may be used to allocate memory. Such memory will all have "consistent"
117 * DMA mappings, accessible by the device and its driver without using
118 * cache flushing primitives. The actual size of blocks allocated may be
119 * larger than requested because of alignment.
121 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
122 * cross that size boundary. This is useful for devices which have
123 * addressing restrictions on individual DMA transfers, such as not crossing
124 * boundaries of 4KBytes.
126 struct dma_pool
*dma_pool_create(const char *name
, struct device
*dev
,
127 size_t size
, size_t align
, size_t boundary
)
129 struct dma_pool
*retval
;
134 } else if (align
& (align
- 1)) {
140 } else if (size
< 4) {
144 if ((size
% align
) != 0)
145 size
= ALIGN(size
, align
);
147 allocation
= max_t(size_t, size
, PAGE_SIZE
);
150 boundary
= allocation
;
151 } else if ((boundary
< size
) || (boundary
& (boundary
- 1))) {
155 retval
= kmalloc_node(sizeof(*retval
), GFP_KERNEL
, dev_to_node(dev
));
159 strlcpy(retval
->name
, name
, sizeof(retval
->name
));
163 INIT_LIST_HEAD(&retval
->page_list
);
164 spin_lock_init(&retval
->lock
);
166 retval
->boundary
= boundary
;
167 retval
->allocation
= allocation
;
168 init_waitqueue_head(&retval
->waitq
);
173 mutex_lock(&pools_lock
);
174 if (list_empty(&dev
->dma_pools
))
175 ret
= device_create_file(dev
, &dev_attr_pools
);
178 /* note: not currently insisting "name" be unique */
180 list_add(&retval
->pools
, &dev
->dma_pools
);
185 mutex_unlock(&pools_lock
);
187 INIT_LIST_HEAD(&retval
->pools
);
191 EXPORT_SYMBOL(dma_pool_create
);
193 static void pool_initialise_page(struct dma_pool
*pool
, struct dma_page
*page
)
195 unsigned int offset
= 0;
196 unsigned int next_boundary
= pool
->boundary
;
199 unsigned int next
= offset
+ pool
->size
;
200 if (unlikely((next
+ pool
->size
) >= next_boundary
)) {
201 next
= next_boundary
;
202 next_boundary
+= pool
->boundary
;
204 *(int *)(page
->vaddr
+ offset
) = next
;
206 } while (offset
< pool
->allocation
);
209 static struct dma_page
*pool_alloc_page(struct dma_pool
*pool
, gfp_t mem_flags
)
211 struct dma_page
*page
;
213 page
= kmalloc(sizeof(*page
), mem_flags
);
216 page
->vaddr
= dma_alloc_coherent(pool
->dev
, pool
->allocation
,
217 &page
->dma
, mem_flags
);
219 #ifdef CONFIG_DEBUG_SLAB
220 memset(page
->vaddr
, POOL_POISON_FREED
, pool
->allocation
);
222 pool_initialise_page(pool
, page
);
223 list_add(&page
->page_list
, &pool
->page_list
);
233 static inline int is_page_busy(struct dma_page
*page
)
235 return page
->in_use
!= 0;
238 static void pool_free_page(struct dma_pool
*pool
, struct dma_page
*page
)
240 dma_addr_t dma
= page
->dma
;
242 #ifdef CONFIG_DEBUG_SLAB
243 memset(page
->vaddr
, POOL_POISON_FREED
, pool
->allocation
);
245 dma_free_coherent(pool
->dev
, pool
->allocation
, page
->vaddr
, dma
);
246 list_del(&page
->page_list
);
251 * dma_pool_destroy - destroys a pool of dma memory blocks.
252 * @pool: dma pool that will be destroyed
253 * Context: !in_interrupt()
255 * Caller guarantees that no more memory from the pool is in use,
256 * and that nothing will try to use the pool after this call.
258 void dma_pool_destroy(struct dma_pool
*pool
)
260 mutex_lock(&pools_lock
);
261 list_del(&pool
->pools
);
262 if (pool
->dev
&& list_empty(&pool
->dev
->dma_pools
))
263 device_remove_file(pool
->dev
, &dev_attr_pools
);
264 mutex_unlock(&pools_lock
);
266 while (!list_empty(&pool
->page_list
)) {
267 struct dma_page
*page
;
268 page
= list_entry(pool
->page_list
.next
,
269 struct dma_page
, page_list
);
270 if (is_page_busy(page
)) {
273 "dma_pool_destroy %s, %p busy\n",
274 pool
->name
, page
->vaddr
);
277 "dma_pool_destroy %s, %p busy\n",
278 pool
->name
, page
->vaddr
);
279 /* leak the still-in-use consistent memory */
280 list_del(&page
->page_list
);
283 pool_free_page(pool
, page
);
288 EXPORT_SYMBOL(dma_pool_destroy
);
291 * dma_pool_alloc - get a block of consistent memory
292 * @pool: dma pool that will produce the block
293 * @mem_flags: GFP_* bitmask
294 * @handle: pointer to dma address of block
296 * This returns the kernel virtual address of a currently unused block,
297 * and reports its dma address through the handle.
298 * If such a memory block can't be allocated, %NULL is returned.
300 void *dma_pool_alloc(struct dma_pool
*pool
, gfp_t mem_flags
,
304 struct dma_page
*page
;
308 spin_lock_irqsave(&pool
->lock
, flags
);
310 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
311 if (page
->offset
< pool
->allocation
)
314 page
= pool_alloc_page(pool
, GFP_ATOMIC
);
316 if (mem_flags
& __GFP_WAIT
) {
317 DECLARE_WAITQUEUE(wait
, current
);
319 __set_current_state(TASK_INTERRUPTIBLE
);
320 __add_wait_queue(&pool
->waitq
, &wait
);
321 spin_unlock_irqrestore(&pool
->lock
, flags
);
323 schedule_timeout(POOL_TIMEOUT_JIFFIES
);
325 spin_lock_irqsave(&pool
->lock
, flags
);
326 __remove_wait_queue(&pool
->waitq
, &wait
);
335 offset
= page
->offset
;
336 page
->offset
= *(int *)(page
->vaddr
+ offset
);
337 retval
= offset
+ page
->vaddr
;
338 *handle
= offset
+ page
->dma
;
339 #ifdef CONFIG_DEBUG_SLAB
340 memset(retval
, POOL_POISON_ALLOCATED
, pool
->size
);
343 spin_unlock_irqrestore(&pool
->lock
, flags
);
346 EXPORT_SYMBOL(dma_pool_alloc
);
348 static struct dma_page
*pool_find_page(struct dma_pool
*pool
, dma_addr_t dma
)
351 struct dma_page
*page
;
353 spin_lock_irqsave(&pool
->lock
, flags
);
354 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
357 if (dma
< (page
->dma
+ pool
->allocation
))
362 spin_unlock_irqrestore(&pool
->lock
, flags
);
367 * dma_pool_free - put block back into dma pool
368 * @pool: the dma pool holding the block
369 * @vaddr: virtual address of block
370 * @dma: dma address of block
372 * Caller promises neither device nor driver will again touch this block
373 * unless it is first re-allocated.
375 void dma_pool_free(struct dma_pool
*pool
, void *vaddr
, dma_addr_t dma
)
377 struct dma_page
*page
;
381 page
= pool_find_page(pool
, dma
);
385 "dma_pool_free %s, %p/%lx (bad dma)\n",
386 pool
->name
, vaddr
, (unsigned long)dma
);
388 printk(KERN_ERR
"dma_pool_free %s, %p/%lx (bad dma)\n",
389 pool
->name
, vaddr
, (unsigned long)dma
);
393 offset
= vaddr
- page
->vaddr
;
394 #ifdef CONFIG_DEBUG_SLAB
395 if ((dma
- page
->dma
) != offset
) {
398 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
399 pool
->name
, vaddr
, (unsigned long long)dma
);
402 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
403 pool
->name
, vaddr
, (unsigned long long)dma
);
407 unsigned int chain
= page
->offset
;
408 while (chain
< pool
->allocation
) {
409 if (chain
!= offset
) {
410 chain
= *(int *)(page
->vaddr
+ chain
);
414 dev_err(pool
->dev
, "dma_pool_free %s, dma %Lx "
415 "already free\n", pool
->name
,
416 (unsigned long long)dma
);
418 printk(KERN_ERR
"dma_pool_free %s, dma %Lx "
419 "already free\n", pool
->name
,
420 (unsigned long long)dma
);
424 memset(vaddr
, POOL_POISON_FREED
, pool
->size
);
427 spin_lock_irqsave(&pool
->lock
, flags
);
429 *(int *)vaddr
= page
->offset
;
430 page
->offset
= offset
;
431 if (waitqueue_active(&pool
->waitq
))
432 wake_up_locked(&pool
->waitq
);
434 * Resist a temptation to do
435 * if (!is_page_busy(page)) pool_free_page(pool, page);
436 * Better have a few empty pages hang around.
438 spin_unlock_irqrestore(&pool
->lock
, flags
);
440 EXPORT_SYMBOL(dma_pool_free
);
445 static void dmam_pool_release(struct device
*dev
, void *res
)
447 struct dma_pool
*pool
= *(struct dma_pool
**)res
;
449 dma_pool_destroy(pool
);
452 static int dmam_pool_match(struct device
*dev
, void *res
, void *match_data
)
454 return *(struct dma_pool
**)res
== match_data
;
458 * dmam_pool_create - Managed dma_pool_create()
459 * @name: name of pool, for diagnostics
460 * @dev: device that will be doing the DMA
461 * @size: size of the blocks in this pool.
462 * @align: alignment requirement for blocks; must be a power of two
463 * @allocation: returned blocks won't cross this boundary (or zero)
465 * Managed dma_pool_create(). DMA pool created with this function is
466 * automatically destroyed on driver detach.
468 struct dma_pool
*dmam_pool_create(const char *name
, struct device
*dev
,
469 size_t size
, size_t align
, size_t allocation
)
471 struct dma_pool
**ptr
, *pool
;
473 ptr
= devres_alloc(dmam_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
477 pool
= *ptr
= dma_pool_create(name
, dev
, size
, align
, allocation
);
479 devres_add(dev
, ptr
);
485 EXPORT_SYMBOL(dmam_pool_create
);
488 * dmam_pool_destroy - Managed dma_pool_destroy()
489 * @pool: dma pool that will be destroyed
491 * Managed dma_pool_destroy().
493 void dmam_pool_destroy(struct dma_pool
*pool
)
495 struct device
*dev
= pool
->dev
;
497 dma_pool_destroy(pool
);
498 WARN_ON(devres_destroy(dev
, dmam_pool_release
, dmam_pool_match
, pool
));
500 EXPORT_SYMBOL(dmam_pool_destroy
);