KVM: Avoid guest virtual addresses in string pio userspace interface
[linux-2.6/zen-sources.git] / drivers / kvm / kvm_main.c
blob205998c141fbc5f12754d323b955923434a7cfbb
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/magic.h>
24 #include <asm/processor.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <asm/msr.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <asm/uaccess.h>
32 #include <linux/reboot.h>
33 #include <asm/io.h>
34 #include <linux/debugfs.h>
35 #include <linux/highmem.h>
36 #include <linux/file.h>
37 #include <asm/desc.h>
38 #include <linux/sysdev.h>
39 #include <linux/cpu.h>
40 #include <linux/file.h>
41 #include <linux/fs.h>
42 #include <linux/mount.h>
44 #include "x86_emulate.h"
45 #include "segment_descriptor.h"
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
53 struct kvm_arch_ops *kvm_arch_ops;
54 struct kvm_stat kvm_stat;
55 EXPORT_SYMBOL_GPL(kvm_stat);
57 static struct kvm_stats_debugfs_item {
58 const char *name;
59 u32 *data;
60 struct dentry *dentry;
61 } debugfs_entries[] = {
62 { "pf_fixed", &kvm_stat.pf_fixed },
63 { "pf_guest", &kvm_stat.pf_guest },
64 { "tlb_flush", &kvm_stat.tlb_flush },
65 { "invlpg", &kvm_stat.invlpg },
66 { "exits", &kvm_stat.exits },
67 { "io_exits", &kvm_stat.io_exits },
68 { "mmio_exits", &kvm_stat.mmio_exits },
69 { "signal_exits", &kvm_stat.signal_exits },
70 { "irq_window", &kvm_stat.irq_window_exits },
71 { "halt_exits", &kvm_stat.halt_exits },
72 { "request_irq", &kvm_stat.request_irq_exits },
73 { "irq_exits", &kvm_stat.irq_exits },
74 { NULL, NULL }
77 static struct dentry *debugfs_dir;
79 struct vfsmount *kvmfs_mnt;
81 #define MAX_IO_MSRS 256
83 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
84 #define LMSW_GUEST_MASK 0x0eULL
85 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
86 #define CR8_RESEVED_BITS (~0x0fULL)
87 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
89 #ifdef CONFIG_X86_64
90 // LDT or TSS descriptor in the GDT. 16 bytes.
91 struct segment_descriptor_64 {
92 struct segment_descriptor s;
93 u32 base_higher;
94 u32 pad_zero;
97 #endif
99 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
100 unsigned long arg);
102 static struct inode *kvmfs_inode(struct file_operations *fops)
104 int error = -ENOMEM;
105 struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
107 if (!inode)
108 goto eexit_1;
110 inode->i_fop = fops;
113 * Mark the inode dirty from the very beginning,
114 * that way it will never be moved to the dirty
115 * list because mark_inode_dirty() will think
116 * that it already _is_ on the dirty list.
118 inode->i_state = I_DIRTY;
119 inode->i_mode = S_IRUSR | S_IWUSR;
120 inode->i_uid = current->fsuid;
121 inode->i_gid = current->fsgid;
122 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
123 return inode;
125 eexit_1:
126 return ERR_PTR(error);
129 static struct file *kvmfs_file(struct inode *inode, void *private_data)
131 struct file *file = get_empty_filp();
133 if (!file)
134 return ERR_PTR(-ENFILE);
136 file->f_path.mnt = mntget(kvmfs_mnt);
137 file->f_path.dentry = d_alloc_anon(inode);
138 if (!file->f_path.dentry)
139 return ERR_PTR(-ENOMEM);
140 file->f_mapping = inode->i_mapping;
142 file->f_pos = 0;
143 file->f_flags = O_RDWR;
144 file->f_op = inode->i_fop;
145 file->f_mode = FMODE_READ | FMODE_WRITE;
146 file->f_version = 0;
147 file->private_data = private_data;
148 return file;
151 unsigned long segment_base(u16 selector)
153 struct descriptor_table gdt;
154 struct segment_descriptor *d;
155 unsigned long table_base;
156 typedef unsigned long ul;
157 unsigned long v;
159 if (selector == 0)
160 return 0;
162 asm ("sgdt %0" : "=m"(gdt));
163 table_base = gdt.base;
165 if (selector & 4) { /* from ldt */
166 u16 ldt_selector;
168 asm ("sldt %0" : "=g"(ldt_selector));
169 table_base = segment_base(ldt_selector);
171 d = (struct segment_descriptor *)(table_base + (selector & ~7));
172 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
173 #ifdef CONFIG_X86_64
174 if (d->system == 0
175 && (d->type == 2 || d->type == 9 || d->type == 11))
176 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
177 #endif
178 return v;
180 EXPORT_SYMBOL_GPL(segment_base);
182 static inline int valid_vcpu(int n)
184 return likely(n >= 0 && n < KVM_MAX_VCPUS);
187 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
188 void *dest)
190 unsigned char *host_buf = dest;
191 unsigned long req_size = size;
193 while (size) {
194 hpa_t paddr;
195 unsigned now;
196 unsigned offset;
197 hva_t guest_buf;
199 paddr = gva_to_hpa(vcpu, addr);
201 if (is_error_hpa(paddr))
202 break;
204 guest_buf = (hva_t)kmap_atomic(
205 pfn_to_page(paddr >> PAGE_SHIFT),
206 KM_USER0);
207 offset = addr & ~PAGE_MASK;
208 guest_buf |= offset;
209 now = min(size, PAGE_SIZE - offset);
210 memcpy(host_buf, (void*)guest_buf, now);
211 host_buf += now;
212 addr += now;
213 size -= now;
214 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
216 return req_size - size;
218 EXPORT_SYMBOL_GPL(kvm_read_guest);
220 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
221 void *data)
223 unsigned char *host_buf = data;
224 unsigned long req_size = size;
226 while (size) {
227 hpa_t paddr;
228 unsigned now;
229 unsigned offset;
230 hva_t guest_buf;
231 gfn_t gfn;
233 paddr = gva_to_hpa(vcpu, addr);
235 if (is_error_hpa(paddr))
236 break;
238 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
239 mark_page_dirty(vcpu->kvm, gfn);
240 guest_buf = (hva_t)kmap_atomic(
241 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
242 offset = addr & ~PAGE_MASK;
243 guest_buf |= offset;
244 now = min(size, PAGE_SIZE - offset);
245 memcpy((void*)guest_buf, host_buf, now);
246 host_buf += now;
247 addr += now;
248 size -= now;
249 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
251 return req_size - size;
253 EXPORT_SYMBOL_GPL(kvm_write_guest);
256 * Switches to specified vcpu, until a matching vcpu_put()
258 static void vcpu_load(struct kvm_vcpu *vcpu)
260 mutex_lock(&vcpu->mutex);
261 kvm_arch_ops->vcpu_load(vcpu);
265 * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
266 * if the slot is not populated.
268 static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
270 struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
272 mutex_lock(&vcpu->mutex);
273 if (!vcpu->vmcs) {
274 mutex_unlock(&vcpu->mutex);
275 return NULL;
277 kvm_arch_ops->vcpu_load(vcpu);
278 return vcpu;
281 static void vcpu_put(struct kvm_vcpu *vcpu)
283 kvm_arch_ops->vcpu_put(vcpu);
284 mutex_unlock(&vcpu->mutex);
287 static struct kvm *kvm_create_vm(void)
289 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
290 int i;
292 if (!kvm)
293 return ERR_PTR(-ENOMEM);
295 spin_lock_init(&kvm->lock);
296 INIT_LIST_HEAD(&kvm->active_mmu_pages);
297 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
298 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
300 mutex_init(&vcpu->mutex);
301 vcpu->cpu = -1;
302 vcpu->kvm = kvm;
303 vcpu->mmu.root_hpa = INVALID_PAGE;
304 INIT_LIST_HEAD(&vcpu->free_pages);
305 spin_lock(&kvm_lock);
306 list_add(&kvm->vm_list, &vm_list);
307 spin_unlock(&kvm_lock);
309 return kvm;
312 static int kvm_dev_open(struct inode *inode, struct file *filp)
314 return 0;
318 * Free any memory in @free but not in @dont.
320 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
321 struct kvm_memory_slot *dont)
323 int i;
325 if (!dont || free->phys_mem != dont->phys_mem)
326 if (free->phys_mem) {
327 for (i = 0; i < free->npages; ++i)
328 if (free->phys_mem[i])
329 __free_page(free->phys_mem[i]);
330 vfree(free->phys_mem);
333 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
334 vfree(free->dirty_bitmap);
336 free->phys_mem = NULL;
337 free->npages = 0;
338 free->dirty_bitmap = NULL;
341 static void kvm_free_physmem(struct kvm *kvm)
343 int i;
345 for (i = 0; i < kvm->nmemslots; ++i)
346 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
349 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
351 int i;
353 for (i = 0; i < 2; ++i)
354 if (vcpu->pio.guest_pages[i]) {
355 __free_page(vcpu->pio.guest_pages[i]);
356 vcpu->pio.guest_pages[i] = NULL;
360 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
362 if (!vcpu->vmcs)
363 return;
365 vcpu_load(vcpu);
366 kvm_mmu_destroy(vcpu);
367 vcpu_put(vcpu);
368 kvm_arch_ops->vcpu_free(vcpu);
369 free_page((unsigned long)vcpu->run);
370 vcpu->run = NULL;
371 free_page((unsigned long)vcpu->pio_data);
372 vcpu->pio_data = NULL;
373 free_pio_guest_pages(vcpu);
376 static void kvm_free_vcpus(struct kvm *kvm)
378 unsigned int i;
380 for (i = 0; i < KVM_MAX_VCPUS; ++i)
381 kvm_free_vcpu(&kvm->vcpus[i]);
384 static int kvm_dev_release(struct inode *inode, struct file *filp)
386 return 0;
389 static void kvm_destroy_vm(struct kvm *kvm)
391 spin_lock(&kvm_lock);
392 list_del(&kvm->vm_list);
393 spin_unlock(&kvm_lock);
394 kvm_free_vcpus(kvm);
395 kvm_free_physmem(kvm);
396 kfree(kvm);
399 static int kvm_vm_release(struct inode *inode, struct file *filp)
401 struct kvm *kvm = filp->private_data;
403 kvm_destroy_vm(kvm);
404 return 0;
407 static void inject_gp(struct kvm_vcpu *vcpu)
409 kvm_arch_ops->inject_gp(vcpu, 0);
413 * Load the pae pdptrs. Return true is they are all valid.
415 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
417 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
418 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
419 int i;
420 u64 pdpte;
421 u64 *pdpt;
422 int ret;
423 struct kvm_memory_slot *memslot;
425 spin_lock(&vcpu->kvm->lock);
426 memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
427 /* FIXME: !memslot - emulate? 0xff? */
428 pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
430 ret = 1;
431 for (i = 0; i < 4; ++i) {
432 pdpte = pdpt[offset + i];
433 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
434 ret = 0;
435 goto out;
439 for (i = 0; i < 4; ++i)
440 vcpu->pdptrs[i] = pdpt[offset + i];
442 out:
443 kunmap_atomic(pdpt, KM_USER0);
444 spin_unlock(&vcpu->kvm->lock);
446 return ret;
449 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
451 if (cr0 & CR0_RESEVED_BITS) {
452 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
453 cr0, vcpu->cr0);
454 inject_gp(vcpu);
455 return;
458 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
459 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
460 inject_gp(vcpu);
461 return;
464 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
465 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
466 "and a clear PE flag\n");
467 inject_gp(vcpu);
468 return;
471 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
472 #ifdef CONFIG_X86_64
473 if ((vcpu->shadow_efer & EFER_LME)) {
474 int cs_db, cs_l;
476 if (!is_pae(vcpu)) {
477 printk(KERN_DEBUG "set_cr0: #GP, start paging "
478 "in long mode while PAE is disabled\n");
479 inject_gp(vcpu);
480 return;
482 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
483 if (cs_l) {
484 printk(KERN_DEBUG "set_cr0: #GP, start paging "
485 "in long mode while CS.L == 1\n");
486 inject_gp(vcpu);
487 return;
490 } else
491 #endif
492 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
493 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
494 "reserved bits\n");
495 inject_gp(vcpu);
496 return;
501 kvm_arch_ops->set_cr0(vcpu, cr0);
502 vcpu->cr0 = cr0;
504 spin_lock(&vcpu->kvm->lock);
505 kvm_mmu_reset_context(vcpu);
506 spin_unlock(&vcpu->kvm->lock);
507 return;
509 EXPORT_SYMBOL_GPL(set_cr0);
511 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
513 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
514 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
516 EXPORT_SYMBOL_GPL(lmsw);
518 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
520 if (cr4 & CR4_RESEVED_BITS) {
521 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
522 inject_gp(vcpu);
523 return;
526 if (is_long_mode(vcpu)) {
527 if (!(cr4 & CR4_PAE_MASK)) {
528 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
529 "in long mode\n");
530 inject_gp(vcpu);
531 return;
533 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
534 && !load_pdptrs(vcpu, vcpu->cr3)) {
535 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
536 inject_gp(vcpu);
539 if (cr4 & CR4_VMXE_MASK) {
540 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
541 inject_gp(vcpu);
542 return;
544 kvm_arch_ops->set_cr4(vcpu, cr4);
545 spin_lock(&vcpu->kvm->lock);
546 kvm_mmu_reset_context(vcpu);
547 spin_unlock(&vcpu->kvm->lock);
549 EXPORT_SYMBOL_GPL(set_cr4);
551 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
553 if (is_long_mode(vcpu)) {
554 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
555 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
556 inject_gp(vcpu);
557 return;
559 } else {
560 if (cr3 & CR3_RESEVED_BITS) {
561 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
562 inject_gp(vcpu);
563 return;
565 if (is_paging(vcpu) && is_pae(vcpu) &&
566 !load_pdptrs(vcpu, cr3)) {
567 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
568 "reserved bits\n");
569 inject_gp(vcpu);
570 return;
574 vcpu->cr3 = cr3;
575 spin_lock(&vcpu->kvm->lock);
577 * Does the new cr3 value map to physical memory? (Note, we
578 * catch an invalid cr3 even in real-mode, because it would
579 * cause trouble later on when we turn on paging anyway.)
581 * A real CPU would silently accept an invalid cr3 and would
582 * attempt to use it - with largely undefined (and often hard
583 * to debug) behavior on the guest side.
585 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
586 inject_gp(vcpu);
587 else
588 vcpu->mmu.new_cr3(vcpu);
589 spin_unlock(&vcpu->kvm->lock);
591 EXPORT_SYMBOL_GPL(set_cr3);
593 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
595 if ( cr8 & CR8_RESEVED_BITS) {
596 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
597 inject_gp(vcpu);
598 return;
600 vcpu->cr8 = cr8;
602 EXPORT_SYMBOL_GPL(set_cr8);
604 void fx_init(struct kvm_vcpu *vcpu)
606 struct __attribute__ ((__packed__)) fx_image_s {
607 u16 control; //fcw
608 u16 status; //fsw
609 u16 tag; // ftw
610 u16 opcode; //fop
611 u64 ip; // fpu ip
612 u64 operand;// fpu dp
613 u32 mxcsr;
614 u32 mxcsr_mask;
616 } *fx_image;
618 fx_save(vcpu->host_fx_image);
619 fpu_init();
620 fx_save(vcpu->guest_fx_image);
621 fx_restore(vcpu->host_fx_image);
623 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
624 fx_image->mxcsr = 0x1f80;
625 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
626 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
628 EXPORT_SYMBOL_GPL(fx_init);
630 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
632 spin_lock(&vcpu->kvm->lock);
633 kvm_mmu_slot_remove_write_access(vcpu, slot);
634 spin_unlock(&vcpu->kvm->lock);
638 * Allocate some memory and give it an address in the guest physical address
639 * space.
641 * Discontiguous memory is allowed, mostly for framebuffers.
643 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
644 struct kvm_memory_region *mem)
646 int r;
647 gfn_t base_gfn;
648 unsigned long npages;
649 unsigned long i;
650 struct kvm_memory_slot *memslot;
651 struct kvm_memory_slot old, new;
652 int memory_config_version;
654 r = -EINVAL;
655 /* General sanity checks */
656 if (mem->memory_size & (PAGE_SIZE - 1))
657 goto out;
658 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
659 goto out;
660 if (mem->slot >= KVM_MEMORY_SLOTS)
661 goto out;
662 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
663 goto out;
665 memslot = &kvm->memslots[mem->slot];
666 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
667 npages = mem->memory_size >> PAGE_SHIFT;
669 if (!npages)
670 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
672 raced:
673 spin_lock(&kvm->lock);
675 memory_config_version = kvm->memory_config_version;
676 new = old = *memslot;
678 new.base_gfn = base_gfn;
679 new.npages = npages;
680 new.flags = mem->flags;
682 /* Disallow changing a memory slot's size. */
683 r = -EINVAL;
684 if (npages && old.npages && npages != old.npages)
685 goto out_unlock;
687 /* Check for overlaps */
688 r = -EEXIST;
689 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
690 struct kvm_memory_slot *s = &kvm->memslots[i];
692 if (s == memslot)
693 continue;
694 if (!((base_gfn + npages <= s->base_gfn) ||
695 (base_gfn >= s->base_gfn + s->npages)))
696 goto out_unlock;
699 * Do memory allocations outside lock. memory_config_version will
700 * detect any races.
702 spin_unlock(&kvm->lock);
704 /* Deallocate if slot is being removed */
705 if (!npages)
706 new.phys_mem = NULL;
708 /* Free page dirty bitmap if unneeded */
709 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
710 new.dirty_bitmap = NULL;
712 r = -ENOMEM;
714 /* Allocate if a slot is being created */
715 if (npages && !new.phys_mem) {
716 new.phys_mem = vmalloc(npages * sizeof(struct page *));
718 if (!new.phys_mem)
719 goto out_free;
721 memset(new.phys_mem, 0, npages * sizeof(struct page *));
722 for (i = 0; i < npages; ++i) {
723 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
724 | __GFP_ZERO);
725 if (!new.phys_mem[i])
726 goto out_free;
727 set_page_private(new.phys_mem[i],0);
731 /* Allocate page dirty bitmap if needed */
732 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
733 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
735 new.dirty_bitmap = vmalloc(dirty_bytes);
736 if (!new.dirty_bitmap)
737 goto out_free;
738 memset(new.dirty_bitmap, 0, dirty_bytes);
741 spin_lock(&kvm->lock);
743 if (memory_config_version != kvm->memory_config_version) {
744 spin_unlock(&kvm->lock);
745 kvm_free_physmem_slot(&new, &old);
746 goto raced;
749 r = -EAGAIN;
750 if (kvm->busy)
751 goto out_unlock;
753 if (mem->slot >= kvm->nmemslots)
754 kvm->nmemslots = mem->slot + 1;
756 *memslot = new;
757 ++kvm->memory_config_version;
759 spin_unlock(&kvm->lock);
761 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
762 struct kvm_vcpu *vcpu;
764 vcpu = vcpu_load_slot(kvm, i);
765 if (!vcpu)
766 continue;
767 if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
768 do_remove_write_access(vcpu, mem->slot);
769 kvm_mmu_reset_context(vcpu);
770 vcpu_put(vcpu);
773 kvm_free_physmem_slot(&old, &new);
774 return 0;
776 out_unlock:
777 spin_unlock(&kvm->lock);
778 out_free:
779 kvm_free_physmem_slot(&new, &old);
780 out:
781 return r;
785 * Get (and clear) the dirty memory log for a memory slot.
787 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
788 struct kvm_dirty_log *log)
790 struct kvm_memory_slot *memslot;
791 int r, i;
792 int n;
793 int cleared;
794 unsigned long any = 0;
796 spin_lock(&kvm->lock);
799 * Prevent changes to guest memory configuration even while the lock
800 * is not taken.
802 ++kvm->busy;
803 spin_unlock(&kvm->lock);
804 r = -EINVAL;
805 if (log->slot >= KVM_MEMORY_SLOTS)
806 goto out;
808 memslot = &kvm->memslots[log->slot];
809 r = -ENOENT;
810 if (!memslot->dirty_bitmap)
811 goto out;
813 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
815 for (i = 0; !any && i < n/sizeof(long); ++i)
816 any = memslot->dirty_bitmap[i];
818 r = -EFAULT;
819 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
820 goto out;
822 if (any) {
823 cleared = 0;
824 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
825 struct kvm_vcpu *vcpu;
827 vcpu = vcpu_load_slot(kvm, i);
828 if (!vcpu)
829 continue;
830 if (!cleared) {
831 do_remove_write_access(vcpu, log->slot);
832 memset(memslot->dirty_bitmap, 0, n);
833 cleared = 1;
835 kvm_arch_ops->tlb_flush(vcpu);
836 vcpu_put(vcpu);
840 r = 0;
842 out:
843 spin_lock(&kvm->lock);
844 --kvm->busy;
845 spin_unlock(&kvm->lock);
846 return r;
849 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
851 int i;
853 for (i = 0; i < kvm->nmemslots; ++i) {
854 struct kvm_memory_slot *memslot = &kvm->memslots[i];
856 if (gfn >= memslot->base_gfn
857 && gfn < memslot->base_gfn + memslot->npages)
858 return memslot;
860 return NULL;
862 EXPORT_SYMBOL_GPL(gfn_to_memslot);
864 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
866 int i;
867 struct kvm_memory_slot *memslot = NULL;
868 unsigned long rel_gfn;
870 for (i = 0; i < kvm->nmemslots; ++i) {
871 memslot = &kvm->memslots[i];
873 if (gfn >= memslot->base_gfn
874 && gfn < memslot->base_gfn + memslot->npages) {
876 if (!memslot || !memslot->dirty_bitmap)
877 return;
879 rel_gfn = gfn - memslot->base_gfn;
881 /* avoid RMW */
882 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
883 set_bit(rel_gfn, memslot->dirty_bitmap);
884 return;
889 static int emulator_read_std(unsigned long addr,
890 unsigned long *val,
891 unsigned int bytes,
892 struct x86_emulate_ctxt *ctxt)
894 struct kvm_vcpu *vcpu = ctxt->vcpu;
895 void *data = val;
897 while (bytes) {
898 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
899 unsigned offset = addr & (PAGE_SIZE-1);
900 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
901 unsigned long pfn;
902 struct kvm_memory_slot *memslot;
903 void *page;
905 if (gpa == UNMAPPED_GVA)
906 return X86EMUL_PROPAGATE_FAULT;
907 pfn = gpa >> PAGE_SHIFT;
908 memslot = gfn_to_memslot(vcpu->kvm, pfn);
909 if (!memslot)
910 return X86EMUL_UNHANDLEABLE;
911 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
913 memcpy(data, page + offset, tocopy);
915 kunmap_atomic(page, KM_USER0);
917 bytes -= tocopy;
918 data += tocopy;
919 addr += tocopy;
922 return X86EMUL_CONTINUE;
925 static int emulator_write_std(unsigned long addr,
926 unsigned long val,
927 unsigned int bytes,
928 struct x86_emulate_ctxt *ctxt)
930 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
931 addr, bytes);
932 return X86EMUL_UNHANDLEABLE;
935 static int emulator_read_emulated(unsigned long addr,
936 unsigned long *val,
937 unsigned int bytes,
938 struct x86_emulate_ctxt *ctxt)
940 struct kvm_vcpu *vcpu = ctxt->vcpu;
942 if (vcpu->mmio_read_completed) {
943 memcpy(val, vcpu->mmio_data, bytes);
944 vcpu->mmio_read_completed = 0;
945 return X86EMUL_CONTINUE;
946 } else if (emulator_read_std(addr, val, bytes, ctxt)
947 == X86EMUL_CONTINUE)
948 return X86EMUL_CONTINUE;
949 else {
950 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
952 if (gpa == UNMAPPED_GVA)
953 return X86EMUL_PROPAGATE_FAULT;
954 vcpu->mmio_needed = 1;
955 vcpu->mmio_phys_addr = gpa;
956 vcpu->mmio_size = bytes;
957 vcpu->mmio_is_write = 0;
959 return X86EMUL_UNHANDLEABLE;
963 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
964 unsigned long val, int bytes)
966 struct kvm_memory_slot *m;
967 struct page *page;
968 void *virt;
970 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
971 return 0;
972 m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
973 if (!m)
974 return 0;
975 page = gfn_to_page(m, gpa >> PAGE_SHIFT);
976 kvm_mmu_pre_write(vcpu, gpa, bytes);
977 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
978 virt = kmap_atomic(page, KM_USER0);
979 memcpy(virt + offset_in_page(gpa), &val, bytes);
980 kunmap_atomic(virt, KM_USER0);
981 kvm_mmu_post_write(vcpu, gpa, bytes);
982 return 1;
985 static int emulator_write_emulated(unsigned long addr,
986 unsigned long val,
987 unsigned int bytes,
988 struct x86_emulate_ctxt *ctxt)
990 struct kvm_vcpu *vcpu = ctxt->vcpu;
991 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
993 if (gpa == UNMAPPED_GVA)
994 return X86EMUL_PROPAGATE_FAULT;
996 if (emulator_write_phys(vcpu, gpa, val, bytes))
997 return X86EMUL_CONTINUE;
999 vcpu->mmio_needed = 1;
1000 vcpu->mmio_phys_addr = gpa;
1001 vcpu->mmio_size = bytes;
1002 vcpu->mmio_is_write = 1;
1003 memcpy(vcpu->mmio_data, &val, bytes);
1005 return X86EMUL_CONTINUE;
1008 static int emulator_cmpxchg_emulated(unsigned long addr,
1009 unsigned long old,
1010 unsigned long new,
1011 unsigned int bytes,
1012 struct x86_emulate_ctxt *ctxt)
1014 static int reported;
1016 if (!reported) {
1017 reported = 1;
1018 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1020 return emulator_write_emulated(addr, new, bytes, ctxt);
1023 #ifdef CONFIG_X86_32
1025 static int emulator_cmpxchg8b_emulated(unsigned long addr,
1026 unsigned long old_lo,
1027 unsigned long old_hi,
1028 unsigned long new_lo,
1029 unsigned long new_hi,
1030 struct x86_emulate_ctxt *ctxt)
1032 static int reported;
1033 int r;
1035 if (!reported) {
1036 reported = 1;
1037 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
1039 r = emulator_write_emulated(addr, new_lo, 4, ctxt);
1040 if (r != X86EMUL_CONTINUE)
1041 return r;
1042 return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
1045 #endif
1047 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1049 return kvm_arch_ops->get_segment_base(vcpu, seg);
1052 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1054 return X86EMUL_CONTINUE;
1057 int emulate_clts(struct kvm_vcpu *vcpu)
1059 unsigned long cr0;
1061 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1062 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1063 kvm_arch_ops->set_cr0(vcpu, cr0);
1064 return X86EMUL_CONTINUE;
1067 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1069 struct kvm_vcpu *vcpu = ctxt->vcpu;
1071 switch (dr) {
1072 case 0 ... 3:
1073 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1074 return X86EMUL_CONTINUE;
1075 default:
1076 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1077 __FUNCTION__, dr);
1078 return X86EMUL_UNHANDLEABLE;
1082 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1084 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1085 int exception;
1087 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1088 if (exception) {
1089 /* FIXME: better handling */
1090 return X86EMUL_UNHANDLEABLE;
1092 return X86EMUL_CONTINUE;
1095 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1097 static int reported;
1098 u8 opcodes[4];
1099 unsigned long rip = ctxt->vcpu->rip;
1100 unsigned long rip_linear;
1102 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1104 if (reported)
1105 return;
1107 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1109 printk(KERN_ERR "emulation failed but !mmio_needed?"
1110 " rip %lx %02x %02x %02x %02x\n",
1111 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1112 reported = 1;
1115 struct x86_emulate_ops emulate_ops = {
1116 .read_std = emulator_read_std,
1117 .write_std = emulator_write_std,
1118 .read_emulated = emulator_read_emulated,
1119 .write_emulated = emulator_write_emulated,
1120 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1121 #ifdef CONFIG_X86_32
1122 .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
1123 #endif
1126 int emulate_instruction(struct kvm_vcpu *vcpu,
1127 struct kvm_run *run,
1128 unsigned long cr2,
1129 u16 error_code)
1131 struct x86_emulate_ctxt emulate_ctxt;
1132 int r;
1133 int cs_db, cs_l;
1135 kvm_arch_ops->cache_regs(vcpu);
1137 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1139 emulate_ctxt.vcpu = vcpu;
1140 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1141 emulate_ctxt.cr2 = cr2;
1142 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1143 ? X86EMUL_MODE_REAL : cs_l
1144 ? X86EMUL_MODE_PROT64 : cs_db
1145 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1147 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1148 emulate_ctxt.cs_base = 0;
1149 emulate_ctxt.ds_base = 0;
1150 emulate_ctxt.es_base = 0;
1151 emulate_ctxt.ss_base = 0;
1152 } else {
1153 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1154 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1155 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1156 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1159 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1160 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1162 vcpu->mmio_is_write = 0;
1163 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1165 if ((r || vcpu->mmio_is_write) && run) {
1166 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1167 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1168 run->mmio.len = vcpu->mmio_size;
1169 run->mmio.is_write = vcpu->mmio_is_write;
1172 if (r) {
1173 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1174 return EMULATE_DONE;
1175 if (!vcpu->mmio_needed) {
1176 report_emulation_failure(&emulate_ctxt);
1177 return EMULATE_FAIL;
1179 return EMULATE_DO_MMIO;
1182 kvm_arch_ops->decache_regs(vcpu);
1183 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1185 if (vcpu->mmio_is_write)
1186 return EMULATE_DO_MMIO;
1188 return EMULATE_DONE;
1190 EXPORT_SYMBOL_GPL(emulate_instruction);
1192 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1194 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1196 kvm_arch_ops->cache_regs(vcpu);
1197 ret = -KVM_EINVAL;
1198 #ifdef CONFIG_X86_64
1199 if (is_long_mode(vcpu)) {
1200 nr = vcpu->regs[VCPU_REGS_RAX];
1201 a0 = vcpu->regs[VCPU_REGS_RDI];
1202 a1 = vcpu->regs[VCPU_REGS_RSI];
1203 a2 = vcpu->regs[VCPU_REGS_RDX];
1204 a3 = vcpu->regs[VCPU_REGS_RCX];
1205 a4 = vcpu->regs[VCPU_REGS_R8];
1206 a5 = vcpu->regs[VCPU_REGS_R9];
1207 } else
1208 #endif
1210 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1211 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1212 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1213 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1214 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1215 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1216 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1218 switch (nr) {
1219 default:
1220 run->hypercall.args[0] = a0;
1221 run->hypercall.args[1] = a1;
1222 run->hypercall.args[2] = a2;
1223 run->hypercall.args[3] = a3;
1224 run->hypercall.args[4] = a4;
1225 run->hypercall.args[5] = a5;
1226 run->hypercall.ret = ret;
1227 run->hypercall.longmode = is_long_mode(vcpu);
1228 kvm_arch_ops->decache_regs(vcpu);
1229 return 0;
1231 vcpu->regs[VCPU_REGS_RAX] = ret;
1232 kvm_arch_ops->decache_regs(vcpu);
1233 return 1;
1235 EXPORT_SYMBOL_GPL(kvm_hypercall);
1237 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1239 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1242 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1244 struct descriptor_table dt = { limit, base };
1246 kvm_arch_ops->set_gdt(vcpu, &dt);
1249 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1251 struct descriptor_table dt = { limit, base };
1253 kvm_arch_ops->set_idt(vcpu, &dt);
1256 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1257 unsigned long *rflags)
1259 lmsw(vcpu, msw);
1260 *rflags = kvm_arch_ops->get_rflags(vcpu);
1263 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1265 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1266 switch (cr) {
1267 case 0:
1268 return vcpu->cr0;
1269 case 2:
1270 return vcpu->cr2;
1271 case 3:
1272 return vcpu->cr3;
1273 case 4:
1274 return vcpu->cr4;
1275 default:
1276 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1277 return 0;
1281 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1282 unsigned long *rflags)
1284 switch (cr) {
1285 case 0:
1286 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1287 *rflags = kvm_arch_ops->get_rflags(vcpu);
1288 break;
1289 case 2:
1290 vcpu->cr2 = val;
1291 break;
1292 case 3:
1293 set_cr3(vcpu, val);
1294 break;
1295 case 4:
1296 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1297 break;
1298 default:
1299 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1304 * Register the para guest with the host:
1306 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1308 struct kvm_vcpu_para_state *para_state;
1309 hpa_t para_state_hpa, hypercall_hpa;
1310 struct page *para_state_page;
1311 unsigned char *hypercall;
1312 gpa_t hypercall_gpa;
1314 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1315 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1318 * Needs to be page aligned:
1320 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1321 goto err_gp;
1323 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1324 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1325 if (is_error_hpa(para_state_hpa))
1326 goto err_gp;
1328 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1329 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1330 para_state = kmap_atomic(para_state_page, KM_USER0);
1332 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1333 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1335 para_state->host_version = KVM_PARA_API_VERSION;
1337 * We cannot support guests that try to register themselves
1338 * with a newer API version than the host supports:
1340 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1341 para_state->ret = -KVM_EINVAL;
1342 goto err_kunmap_skip;
1345 hypercall_gpa = para_state->hypercall_gpa;
1346 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1347 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1348 if (is_error_hpa(hypercall_hpa)) {
1349 para_state->ret = -KVM_EINVAL;
1350 goto err_kunmap_skip;
1353 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1354 vcpu->para_state_page = para_state_page;
1355 vcpu->para_state_gpa = para_state_gpa;
1356 vcpu->hypercall_gpa = hypercall_gpa;
1358 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1359 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1360 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1361 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1362 kunmap_atomic(hypercall, KM_USER1);
1364 para_state->ret = 0;
1365 err_kunmap_skip:
1366 kunmap_atomic(para_state, KM_USER0);
1367 return 0;
1368 err_gp:
1369 return 1;
1372 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1374 u64 data;
1376 switch (msr) {
1377 case 0xc0010010: /* SYSCFG */
1378 case 0xc0010015: /* HWCR */
1379 case MSR_IA32_PLATFORM_ID:
1380 case MSR_IA32_P5_MC_ADDR:
1381 case MSR_IA32_P5_MC_TYPE:
1382 case MSR_IA32_MC0_CTL:
1383 case MSR_IA32_MCG_STATUS:
1384 case MSR_IA32_MCG_CAP:
1385 case MSR_IA32_MC0_MISC:
1386 case MSR_IA32_MC0_MISC+4:
1387 case MSR_IA32_MC0_MISC+8:
1388 case MSR_IA32_MC0_MISC+12:
1389 case MSR_IA32_MC0_MISC+16:
1390 case MSR_IA32_UCODE_REV:
1391 case MSR_IA32_PERF_STATUS:
1392 /* MTRR registers */
1393 case 0xfe:
1394 case 0x200 ... 0x2ff:
1395 data = 0;
1396 break;
1397 case 0xcd: /* fsb frequency */
1398 data = 3;
1399 break;
1400 case MSR_IA32_APICBASE:
1401 data = vcpu->apic_base;
1402 break;
1403 case MSR_IA32_MISC_ENABLE:
1404 data = vcpu->ia32_misc_enable_msr;
1405 break;
1406 #ifdef CONFIG_X86_64
1407 case MSR_EFER:
1408 data = vcpu->shadow_efer;
1409 break;
1410 #endif
1411 default:
1412 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1413 return 1;
1415 *pdata = data;
1416 return 0;
1418 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1421 * Reads an msr value (of 'msr_index') into 'pdata'.
1422 * Returns 0 on success, non-0 otherwise.
1423 * Assumes vcpu_load() was already called.
1425 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1427 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1430 #ifdef CONFIG_X86_64
1432 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1434 if (efer & EFER_RESERVED_BITS) {
1435 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1436 efer);
1437 inject_gp(vcpu);
1438 return;
1441 if (is_paging(vcpu)
1442 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1443 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1444 inject_gp(vcpu);
1445 return;
1448 kvm_arch_ops->set_efer(vcpu, efer);
1450 efer &= ~EFER_LMA;
1451 efer |= vcpu->shadow_efer & EFER_LMA;
1453 vcpu->shadow_efer = efer;
1456 #endif
1458 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1460 switch (msr) {
1461 #ifdef CONFIG_X86_64
1462 case MSR_EFER:
1463 set_efer(vcpu, data);
1464 break;
1465 #endif
1466 case MSR_IA32_MC0_STATUS:
1467 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1468 __FUNCTION__, data);
1469 break;
1470 case MSR_IA32_UCODE_REV:
1471 case MSR_IA32_UCODE_WRITE:
1472 case 0x200 ... 0x2ff: /* MTRRs */
1473 break;
1474 case MSR_IA32_APICBASE:
1475 vcpu->apic_base = data;
1476 break;
1477 case MSR_IA32_MISC_ENABLE:
1478 vcpu->ia32_misc_enable_msr = data;
1479 break;
1481 * This is the 'probe whether the host is KVM' logic:
1483 case MSR_KVM_API_MAGIC:
1484 return vcpu_register_para(vcpu, data);
1486 default:
1487 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1488 return 1;
1490 return 0;
1492 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1495 * Writes msr value into into the appropriate "register".
1496 * Returns 0 on success, non-0 otherwise.
1497 * Assumes vcpu_load() was already called.
1499 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1501 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1504 void kvm_resched(struct kvm_vcpu *vcpu)
1506 vcpu_put(vcpu);
1507 cond_resched();
1508 vcpu_load(vcpu);
1510 EXPORT_SYMBOL_GPL(kvm_resched);
1512 void load_msrs(struct vmx_msr_entry *e, int n)
1514 int i;
1516 for (i = 0; i < n; ++i)
1517 wrmsrl(e[i].index, e[i].data);
1519 EXPORT_SYMBOL_GPL(load_msrs);
1521 void save_msrs(struct vmx_msr_entry *e, int n)
1523 int i;
1525 for (i = 0; i < n; ++i)
1526 rdmsrl(e[i].index, e[i].data);
1528 EXPORT_SYMBOL_GPL(save_msrs);
1530 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1532 int i;
1533 u32 function;
1534 struct kvm_cpuid_entry *e, *best;
1536 kvm_arch_ops->cache_regs(vcpu);
1537 function = vcpu->regs[VCPU_REGS_RAX];
1538 vcpu->regs[VCPU_REGS_RAX] = 0;
1539 vcpu->regs[VCPU_REGS_RBX] = 0;
1540 vcpu->regs[VCPU_REGS_RCX] = 0;
1541 vcpu->regs[VCPU_REGS_RDX] = 0;
1542 best = NULL;
1543 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1544 e = &vcpu->cpuid_entries[i];
1545 if (e->function == function) {
1546 best = e;
1547 break;
1550 * Both basic or both extended?
1552 if (((e->function ^ function) & 0x80000000) == 0)
1553 if (!best || e->function > best->function)
1554 best = e;
1556 if (best) {
1557 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1558 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1559 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1560 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1562 kvm_arch_ops->decache_regs(vcpu);
1563 kvm_arch_ops->skip_emulated_instruction(vcpu);
1565 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1567 static int pio_copy_data(struct kvm_vcpu *vcpu)
1569 void *p = vcpu->pio_data;
1570 void *q;
1571 unsigned bytes;
1572 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1574 kvm_arch_ops->vcpu_put(vcpu);
1575 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1576 PAGE_KERNEL);
1577 if (!q) {
1578 kvm_arch_ops->vcpu_load(vcpu);
1579 free_pio_guest_pages(vcpu);
1580 return -ENOMEM;
1582 q += vcpu->pio.guest_page_offset;
1583 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1584 if (vcpu->pio.in)
1585 memcpy(q, p, bytes);
1586 else
1587 memcpy(p, q, bytes);
1588 q -= vcpu->pio.guest_page_offset;
1589 vunmap(q);
1590 kvm_arch_ops->vcpu_load(vcpu);
1591 free_pio_guest_pages(vcpu);
1592 return 0;
1595 static int complete_pio(struct kvm_vcpu *vcpu)
1597 struct kvm_pio_request *io = &vcpu->pio;
1598 long delta;
1599 int r;
1601 kvm_arch_ops->cache_regs(vcpu);
1603 if (!io->string) {
1604 if (io->in)
1605 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1606 io->size);
1607 } else {
1608 if (io->in) {
1609 r = pio_copy_data(vcpu);
1610 if (r) {
1611 kvm_arch_ops->cache_regs(vcpu);
1612 return r;
1616 delta = 1;
1617 if (io->rep) {
1618 delta *= io->cur_count;
1620 * The size of the register should really depend on
1621 * current address size.
1623 vcpu->regs[VCPU_REGS_RCX] -= delta;
1625 if (io->down)
1626 delta = -delta;
1627 delta *= io->size;
1628 if (io->in)
1629 vcpu->regs[VCPU_REGS_RDI] += delta;
1630 else
1631 vcpu->regs[VCPU_REGS_RSI] += delta;
1634 vcpu->run->io_completed = 0;
1636 kvm_arch_ops->decache_regs(vcpu);
1638 io->count -= io->cur_count;
1639 io->cur_count = 0;
1641 if (!io->count)
1642 kvm_arch_ops->skip_emulated_instruction(vcpu);
1643 return 0;
1646 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1647 int size, unsigned long count, int string, int down,
1648 gva_t address, int rep, unsigned port)
1650 unsigned now, in_page;
1651 int i;
1652 int nr_pages = 1;
1653 struct page *page;
1655 vcpu->run->exit_reason = KVM_EXIT_IO;
1656 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1657 vcpu->run->io.size = size;
1658 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1659 vcpu->run->io.count = count;
1660 vcpu->run->io.port = port;
1661 vcpu->pio.count = count;
1662 vcpu->pio.cur_count = count;
1663 vcpu->pio.size = size;
1664 vcpu->pio.in = in;
1665 vcpu->pio.string = string;
1666 vcpu->pio.down = down;
1667 vcpu->pio.guest_page_offset = offset_in_page(address);
1668 vcpu->pio.rep = rep;
1670 if (!string) {
1671 kvm_arch_ops->cache_regs(vcpu);
1672 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1673 kvm_arch_ops->decache_regs(vcpu);
1674 return 0;
1677 if (!count) {
1678 kvm_arch_ops->skip_emulated_instruction(vcpu);
1679 return 1;
1682 now = min(count, PAGE_SIZE / size);
1684 if (!down)
1685 in_page = PAGE_SIZE - offset_in_page(address);
1686 else
1687 in_page = offset_in_page(address) + size;
1688 now = min(count, (unsigned long)in_page / size);
1689 if (!now) {
1691 * String I/O straddles page boundary. Pin two guest pages
1692 * so that we satisfy atomicity constraints. Do just one
1693 * transaction to avoid complexity.
1695 nr_pages = 2;
1696 now = 1;
1698 if (down) {
1700 * String I/O in reverse. Yuck. Kill the guest, fix later.
1702 printk(KERN_ERR "kvm: guest string pio down\n");
1703 inject_gp(vcpu);
1704 return 1;
1706 vcpu->run->io.count = now;
1707 vcpu->pio.cur_count = now;
1709 for (i = 0; i < nr_pages; ++i) {
1710 spin_lock(&vcpu->kvm->lock);
1711 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1712 if (page)
1713 get_page(page);
1714 vcpu->pio.guest_pages[i] = page;
1715 spin_unlock(&vcpu->kvm->lock);
1716 if (!page) {
1717 inject_gp(vcpu);
1718 free_pio_guest_pages(vcpu);
1719 return 1;
1723 if (!vcpu->pio.in)
1724 return pio_copy_data(vcpu);
1725 return 0;
1727 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1729 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1731 int r;
1732 sigset_t sigsaved;
1734 vcpu_load(vcpu);
1736 if (vcpu->sigset_active)
1737 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1739 /* re-sync apic's tpr */
1740 vcpu->cr8 = kvm_run->cr8;
1742 if (kvm_run->io_completed) {
1743 if (vcpu->pio.cur_count) {
1744 r = complete_pio(vcpu);
1745 if (r)
1746 goto out;
1747 } else {
1748 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1749 vcpu->mmio_read_completed = 1;
1753 vcpu->mmio_needed = 0;
1755 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1756 kvm_arch_ops->cache_regs(vcpu);
1757 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1758 kvm_arch_ops->decache_regs(vcpu);
1761 r = kvm_arch_ops->run(vcpu, kvm_run);
1763 out:
1764 if (vcpu->sigset_active)
1765 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1767 vcpu_put(vcpu);
1768 return r;
1771 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1772 struct kvm_regs *regs)
1774 vcpu_load(vcpu);
1776 kvm_arch_ops->cache_regs(vcpu);
1778 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1779 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1780 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1781 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1782 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1783 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1784 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1785 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1786 #ifdef CONFIG_X86_64
1787 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1788 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1789 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1790 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1791 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1792 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1793 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1794 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1795 #endif
1797 regs->rip = vcpu->rip;
1798 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1801 * Don't leak debug flags in case they were set for guest debugging
1803 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1804 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1806 vcpu_put(vcpu);
1808 return 0;
1811 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1812 struct kvm_regs *regs)
1814 vcpu_load(vcpu);
1816 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1817 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1818 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1819 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1820 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1821 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1822 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1823 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1824 #ifdef CONFIG_X86_64
1825 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1826 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1827 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1828 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1829 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1830 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1831 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1832 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1833 #endif
1835 vcpu->rip = regs->rip;
1836 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1838 kvm_arch_ops->decache_regs(vcpu);
1840 vcpu_put(vcpu);
1842 return 0;
1845 static void get_segment(struct kvm_vcpu *vcpu,
1846 struct kvm_segment *var, int seg)
1848 return kvm_arch_ops->get_segment(vcpu, var, seg);
1851 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1852 struct kvm_sregs *sregs)
1854 struct descriptor_table dt;
1856 vcpu_load(vcpu);
1858 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1859 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1860 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1861 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1862 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1863 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1865 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1866 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1868 kvm_arch_ops->get_idt(vcpu, &dt);
1869 sregs->idt.limit = dt.limit;
1870 sregs->idt.base = dt.base;
1871 kvm_arch_ops->get_gdt(vcpu, &dt);
1872 sregs->gdt.limit = dt.limit;
1873 sregs->gdt.base = dt.base;
1875 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1876 sregs->cr0 = vcpu->cr0;
1877 sregs->cr2 = vcpu->cr2;
1878 sregs->cr3 = vcpu->cr3;
1879 sregs->cr4 = vcpu->cr4;
1880 sregs->cr8 = vcpu->cr8;
1881 sregs->efer = vcpu->shadow_efer;
1882 sregs->apic_base = vcpu->apic_base;
1884 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1885 sizeof sregs->interrupt_bitmap);
1887 vcpu_put(vcpu);
1889 return 0;
1892 static void set_segment(struct kvm_vcpu *vcpu,
1893 struct kvm_segment *var, int seg)
1895 return kvm_arch_ops->set_segment(vcpu, var, seg);
1898 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1899 struct kvm_sregs *sregs)
1901 int mmu_reset_needed = 0;
1902 int i;
1903 struct descriptor_table dt;
1905 vcpu_load(vcpu);
1907 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1908 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1909 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1910 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1911 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1912 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1914 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1915 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1917 dt.limit = sregs->idt.limit;
1918 dt.base = sregs->idt.base;
1919 kvm_arch_ops->set_idt(vcpu, &dt);
1920 dt.limit = sregs->gdt.limit;
1921 dt.base = sregs->gdt.base;
1922 kvm_arch_ops->set_gdt(vcpu, &dt);
1924 vcpu->cr2 = sregs->cr2;
1925 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1926 vcpu->cr3 = sregs->cr3;
1928 vcpu->cr8 = sregs->cr8;
1930 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1931 #ifdef CONFIG_X86_64
1932 kvm_arch_ops->set_efer(vcpu, sregs->efer);
1933 #endif
1934 vcpu->apic_base = sregs->apic_base;
1936 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1938 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1939 kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1941 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1942 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1943 if (!is_long_mode(vcpu) && is_pae(vcpu))
1944 load_pdptrs(vcpu, vcpu->cr3);
1946 if (mmu_reset_needed)
1947 kvm_mmu_reset_context(vcpu);
1949 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1950 sizeof vcpu->irq_pending);
1951 vcpu->irq_summary = 0;
1952 for (i = 0; i < NR_IRQ_WORDS; ++i)
1953 if (vcpu->irq_pending[i])
1954 __set_bit(i, &vcpu->irq_summary);
1956 vcpu_put(vcpu);
1958 return 0;
1962 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1963 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1965 * This list is modified at module load time to reflect the
1966 * capabilities of the host cpu.
1968 static u32 msrs_to_save[] = {
1969 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1970 MSR_K6_STAR,
1971 #ifdef CONFIG_X86_64
1972 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1973 #endif
1974 MSR_IA32_TIME_STAMP_COUNTER,
1977 static unsigned num_msrs_to_save;
1979 static u32 emulated_msrs[] = {
1980 MSR_IA32_MISC_ENABLE,
1983 static __init void kvm_init_msr_list(void)
1985 u32 dummy[2];
1986 unsigned i, j;
1988 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1989 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1990 continue;
1991 if (j < i)
1992 msrs_to_save[j] = msrs_to_save[i];
1993 j++;
1995 num_msrs_to_save = j;
1999 * Adapt set_msr() to msr_io()'s calling convention
2001 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2003 return set_msr(vcpu, index, *data);
2007 * Read or write a bunch of msrs. All parameters are kernel addresses.
2009 * @return number of msrs set successfully.
2011 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2012 struct kvm_msr_entry *entries,
2013 int (*do_msr)(struct kvm_vcpu *vcpu,
2014 unsigned index, u64 *data))
2016 int i;
2018 vcpu_load(vcpu);
2020 for (i = 0; i < msrs->nmsrs; ++i)
2021 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2022 break;
2024 vcpu_put(vcpu);
2026 return i;
2030 * Read or write a bunch of msrs. Parameters are user addresses.
2032 * @return number of msrs set successfully.
2034 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2035 int (*do_msr)(struct kvm_vcpu *vcpu,
2036 unsigned index, u64 *data),
2037 int writeback)
2039 struct kvm_msrs msrs;
2040 struct kvm_msr_entry *entries;
2041 int r, n;
2042 unsigned size;
2044 r = -EFAULT;
2045 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2046 goto out;
2048 r = -E2BIG;
2049 if (msrs.nmsrs >= MAX_IO_MSRS)
2050 goto out;
2052 r = -ENOMEM;
2053 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2054 entries = vmalloc(size);
2055 if (!entries)
2056 goto out;
2058 r = -EFAULT;
2059 if (copy_from_user(entries, user_msrs->entries, size))
2060 goto out_free;
2062 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2063 if (r < 0)
2064 goto out_free;
2066 r = -EFAULT;
2067 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2068 goto out_free;
2070 r = n;
2072 out_free:
2073 vfree(entries);
2074 out:
2075 return r;
2079 * Translate a guest virtual address to a guest physical address.
2081 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2082 struct kvm_translation *tr)
2084 unsigned long vaddr = tr->linear_address;
2085 gpa_t gpa;
2087 vcpu_load(vcpu);
2088 spin_lock(&vcpu->kvm->lock);
2089 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2090 tr->physical_address = gpa;
2091 tr->valid = gpa != UNMAPPED_GVA;
2092 tr->writeable = 1;
2093 tr->usermode = 0;
2094 spin_unlock(&vcpu->kvm->lock);
2095 vcpu_put(vcpu);
2097 return 0;
2100 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2101 struct kvm_interrupt *irq)
2103 if (irq->irq < 0 || irq->irq >= 256)
2104 return -EINVAL;
2105 vcpu_load(vcpu);
2107 set_bit(irq->irq, vcpu->irq_pending);
2108 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2110 vcpu_put(vcpu);
2112 return 0;
2115 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2116 struct kvm_debug_guest *dbg)
2118 int r;
2120 vcpu_load(vcpu);
2122 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2124 vcpu_put(vcpu);
2126 return r;
2129 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2130 unsigned long address,
2131 int *type)
2133 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2134 unsigned long pgoff;
2135 struct page *page;
2137 *type = VM_FAULT_MINOR;
2138 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2139 if (pgoff == 0)
2140 page = virt_to_page(vcpu->run);
2141 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2142 page = virt_to_page(vcpu->pio_data);
2143 else
2144 return NOPAGE_SIGBUS;
2145 get_page(page);
2146 return page;
2149 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2150 .nopage = kvm_vcpu_nopage,
2153 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2155 vma->vm_ops = &kvm_vcpu_vm_ops;
2156 return 0;
2159 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2161 struct kvm_vcpu *vcpu = filp->private_data;
2163 fput(vcpu->kvm->filp);
2164 return 0;
2167 static struct file_operations kvm_vcpu_fops = {
2168 .release = kvm_vcpu_release,
2169 .unlocked_ioctl = kvm_vcpu_ioctl,
2170 .compat_ioctl = kvm_vcpu_ioctl,
2171 .mmap = kvm_vcpu_mmap,
2175 * Allocates an inode for the vcpu.
2177 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2179 int fd, r;
2180 struct inode *inode;
2181 struct file *file;
2183 atomic_inc(&vcpu->kvm->filp->f_count);
2184 inode = kvmfs_inode(&kvm_vcpu_fops);
2185 if (IS_ERR(inode)) {
2186 r = PTR_ERR(inode);
2187 goto out1;
2190 file = kvmfs_file(inode, vcpu);
2191 if (IS_ERR(file)) {
2192 r = PTR_ERR(file);
2193 goto out2;
2196 r = get_unused_fd();
2197 if (r < 0)
2198 goto out3;
2199 fd = r;
2200 fd_install(fd, file);
2202 return fd;
2204 out3:
2205 fput(file);
2206 out2:
2207 iput(inode);
2208 out1:
2209 fput(vcpu->kvm->filp);
2210 return r;
2214 * Creates some virtual cpus. Good luck creating more than one.
2216 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2218 int r;
2219 struct kvm_vcpu *vcpu;
2220 struct page *page;
2222 r = -EINVAL;
2223 if (!valid_vcpu(n))
2224 goto out;
2226 vcpu = &kvm->vcpus[n];
2228 mutex_lock(&vcpu->mutex);
2230 if (vcpu->vmcs) {
2231 mutex_unlock(&vcpu->mutex);
2232 return -EEXIST;
2235 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2236 r = -ENOMEM;
2237 if (!page)
2238 goto out_unlock;
2239 vcpu->run = page_address(page);
2241 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2242 r = -ENOMEM;
2243 if (!page)
2244 goto out_free_run;
2245 vcpu->pio_data = page_address(page);
2247 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2248 FX_IMAGE_ALIGN);
2249 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2251 r = kvm_arch_ops->vcpu_create(vcpu);
2252 if (r < 0)
2253 goto out_free_vcpus;
2255 r = kvm_mmu_create(vcpu);
2256 if (r < 0)
2257 goto out_free_vcpus;
2259 kvm_arch_ops->vcpu_load(vcpu);
2260 r = kvm_mmu_setup(vcpu);
2261 if (r >= 0)
2262 r = kvm_arch_ops->vcpu_setup(vcpu);
2263 vcpu_put(vcpu);
2265 if (r < 0)
2266 goto out_free_vcpus;
2268 r = create_vcpu_fd(vcpu);
2269 if (r < 0)
2270 goto out_free_vcpus;
2272 return r;
2274 out_free_vcpus:
2275 kvm_free_vcpu(vcpu);
2276 out_free_run:
2277 free_page((unsigned long)vcpu->run);
2278 vcpu->run = NULL;
2279 out_unlock:
2280 mutex_unlock(&vcpu->mutex);
2281 out:
2282 return r;
2285 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2286 struct kvm_cpuid *cpuid,
2287 struct kvm_cpuid_entry __user *entries)
2289 int r;
2291 r = -E2BIG;
2292 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2293 goto out;
2294 r = -EFAULT;
2295 if (copy_from_user(&vcpu->cpuid_entries, entries,
2296 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2297 goto out;
2298 vcpu->cpuid_nent = cpuid->nent;
2299 return 0;
2301 out:
2302 return r;
2305 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2307 if (sigset) {
2308 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2309 vcpu->sigset_active = 1;
2310 vcpu->sigset = *sigset;
2311 } else
2312 vcpu->sigset_active = 0;
2313 return 0;
2316 static long kvm_vcpu_ioctl(struct file *filp,
2317 unsigned int ioctl, unsigned long arg)
2319 struct kvm_vcpu *vcpu = filp->private_data;
2320 void __user *argp = (void __user *)arg;
2321 int r = -EINVAL;
2323 switch (ioctl) {
2324 case KVM_RUN:
2325 r = -EINVAL;
2326 if (arg)
2327 goto out;
2328 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2329 break;
2330 case KVM_GET_REGS: {
2331 struct kvm_regs kvm_regs;
2333 memset(&kvm_regs, 0, sizeof kvm_regs);
2334 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2335 if (r)
2336 goto out;
2337 r = -EFAULT;
2338 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2339 goto out;
2340 r = 0;
2341 break;
2343 case KVM_SET_REGS: {
2344 struct kvm_regs kvm_regs;
2346 r = -EFAULT;
2347 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2348 goto out;
2349 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2350 if (r)
2351 goto out;
2352 r = 0;
2353 break;
2355 case KVM_GET_SREGS: {
2356 struct kvm_sregs kvm_sregs;
2358 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2359 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2360 if (r)
2361 goto out;
2362 r = -EFAULT;
2363 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2364 goto out;
2365 r = 0;
2366 break;
2368 case KVM_SET_SREGS: {
2369 struct kvm_sregs kvm_sregs;
2371 r = -EFAULT;
2372 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2373 goto out;
2374 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2375 if (r)
2376 goto out;
2377 r = 0;
2378 break;
2380 case KVM_TRANSLATE: {
2381 struct kvm_translation tr;
2383 r = -EFAULT;
2384 if (copy_from_user(&tr, argp, sizeof tr))
2385 goto out;
2386 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2387 if (r)
2388 goto out;
2389 r = -EFAULT;
2390 if (copy_to_user(argp, &tr, sizeof tr))
2391 goto out;
2392 r = 0;
2393 break;
2395 case KVM_INTERRUPT: {
2396 struct kvm_interrupt irq;
2398 r = -EFAULT;
2399 if (copy_from_user(&irq, argp, sizeof irq))
2400 goto out;
2401 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2402 if (r)
2403 goto out;
2404 r = 0;
2405 break;
2407 case KVM_DEBUG_GUEST: {
2408 struct kvm_debug_guest dbg;
2410 r = -EFAULT;
2411 if (copy_from_user(&dbg, argp, sizeof dbg))
2412 goto out;
2413 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2414 if (r)
2415 goto out;
2416 r = 0;
2417 break;
2419 case KVM_GET_MSRS:
2420 r = msr_io(vcpu, argp, get_msr, 1);
2421 break;
2422 case KVM_SET_MSRS:
2423 r = msr_io(vcpu, argp, do_set_msr, 0);
2424 break;
2425 case KVM_SET_CPUID: {
2426 struct kvm_cpuid __user *cpuid_arg = argp;
2427 struct kvm_cpuid cpuid;
2429 r = -EFAULT;
2430 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2431 goto out;
2432 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2433 if (r)
2434 goto out;
2435 break;
2437 case KVM_SET_SIGNAL_MASK: {
2438 struct kvm_signal_mask __user *sigmask_arg = argp;
2439 struct kvm_signal_mask kvm_sigmask;
2440 sigset_t sigset, *p;
2442 p = NULL;
2443 if (argp) {
2444 r = -EFAULT;
2445 if (copy_from_user(&kvm_sigmask, argp,
2446 sizeof kvm_sigmask))
2447 goto out;
2448 r = -EINVAL;
2449 if (kvm_sigmask.len != sizeof sigset)
2450 goto out;
2451 r = -EFAULT;
2452 if (copy_from_user(&sigset, sigmask_arg->sigset,
2453 sizeof sigset))
2454 goto out;
2455 p = &sigset;
2457 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2458 break;
2460 default:
2463 out:
2464 return r;
2467 static long kvm_vm_ioctl(struct file *filp,
2468 unsigned int ioctl, unsigned long arg)
2470 struct kvm *kvm = filp->private_data;
2471 void __user *argp = (void __user *)arg;
2472 int r = -EINVAL;
2474 switch (ioctl) {
2475 case KVM_CREATE_VCPU:
2476 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2477 if (r < 0)
2478 goto out;
2479 break;
2480 case KVM_SET_MEMORY_REGION: {
2481 struct kvm_memory_region kvm_mem;
2483 r = -EFAULT;
2484 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2485 goto out;
2486 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2487 if (r)
2488 goto out;
2489 break;
2491 case KVM_GET_DIRTY_LOG: {
2492 struct kvm_dirty_log log;
2494 r = -EFAULT;
2495 if (copy_from_user(&log, argp, sizeof log))
2496 goto out;
2497 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2498 if (r)
2499 goto out;
2500 break;
2502 default:
2505 out:
2506 return r;
2509 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2510 unsigned long address,
2511 int *type)
2513 struct kvm *kvm = vma->vm_file->private_data;
2514 unsigned long pgoff;
2515 struct kvm_memory_slot *slot;
2516 struct page *page;
2518 *type = VM_FAULT_MINOR;
2519 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2520 slot = gfn_to_memslot(kvm, pgoff);
2521 if (!slot)
2522 return NOPAGE_SIGBUS;
2523 page = gfn_to_page(slot, pgoff);
2524 if (!page)
2525 return NOPAGE_SIGBUS;
2526 get_page(page);
2527 return page;
2530 static struct vm_operations_struct kvm_vm_vm_ops = {
2531 .nopage = kvm_vm_nopage,
2534 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2536 vma->vm_ops = &kvm_vm_vm_ops;
2537 return 0;
2540 static struct file_operations kvm_vm_fops = {
2541 .release = kvm_vm_release,
2542 .unlocked_ioctl = kvm_vm_ioctl,
2543 .compat_ioctl = kvm_vm_ioctl,
2544 .mmap = kvm_vm_mmap,
2547 static int kvm_dev_ioctl_create_vm(void)
2549 int fd, r;
2550 struct inode *inode;
2551 struct file *file;
2552 struct kvm *kvm;
2554 inode = kvmfs_inode(&kvm_vm_fops);
2555 if (IS_ERR(inode)) {
2556 r = PTR_ERR(inode);
2557 goto out1;
2560 kvm = kvm_create_vm();
2561 if (IS_ERR(kvm)) {
2562 r = PTR_ERR(kvm);
2563 goto out2;
2566 file = kvmfs_file(inode, kvm);
2567 if (IS_ERR(file)) {
2568 r = PTR_ERR(file);
2569 goto out3;
2571 kvm->filp = file;
2573 r = get_unused_fd();
2574 if (r < 0)
2575 goto out4;
2576 fd = r;
2577 fd_install(fd, file);
2579 return fd;
2581 out4:
2582 fput(file);
2583 out3:
2584 kvm_destroy_vm(kvm);
2585 out2:
2586 iput(inode);
2587 out1:
2588 return r;
2591 static long kvm_dev_ioctl(struct file *filp,
2592 unsigned int ioctl, unsigned long arg)
2594 void __user *argp = (void __user *)arg;
2595 long r = -EINVAL;
2597 switch (ioctl) {
2598 case KVM_GET_API_VERSION:
2599 r = -EINVAL;
2600 if (arg)
2601 goto out;
2602 r = KVM_API_VERSION;
2603 break;
2604 case KVM_CREATE_VM:
2605 r = -EINVAL;
2606 if (arg)
2607 goto out;
2608 r = kvm_dev_ioctl_create_vm();
2609 break;
2610 case KVM_GET_MSR_INDEX_LIST: {
2611 struct kvm_msr_list __user *user_msr_list = argp;
2612 struct kvm_msr_list msr_list;
2613 unsigned n;
2615 r = -EFAULT;
2616 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2617 goto out;
2618 n = msr_list.nmsrs;
2619 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2620 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2621 goto out;
2622 r = -E2BIG;
2623 if (n < num_msrs_to_save)
2624 goto out;
2625 r = -EFAULT;
2626 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2627 num_msrs_to_save * sizeof(u32)))
2628 goto out;
2629 if (copy_to_user(user_msr_list->indices
2630 + num_msrs_to_save * sizeof(u32),
2631 &emulated_msrs,
2632 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2633 goto out;
2634 r = 0;
2635 break;
2637 case KVM_CHECK_EXTENSION:
2639 * No extensions defined at present.
2641 r = 0;
2642 break;
2643 case KVM_GET_VCPU_MMAP_SIZE:
2644 r = -EINVAL;
2645 if (arg)
2646 goto out;
2647 r = 2 * PAGE_SIZE;
2648 break;
2649 default:
2652 out:
2653 return r;
2656 static struct file_operations kvm_chardev_ops = {
2657 .open = kvm_dev_open,
2658 .release = kvm_dev_release,
2659 .unlocked_ioctl = kvm_dev_ioctl,
2660 .compat_ioctl = kvm_dev_ioctl,
2663 static struct miscdevice kvm_dev = {
2664 KVM_MINOR,
2665 "kvm",
2666 &kvm_chardev_ops,
2669 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2670 void *v)
2672 if (val == SYS_RESTART) {
2674 * Some (well, at least mine) BIOSes hang on reboot if
2675 * in vmx root mode.
2677 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2678 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2680 return NOTIFY_OK;
2683 static struct notifier_block kvm_reboot_notifier = {
2684 .notifier_call = kvm_reboot,
2685 .priority = 0,
2689 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2690 * cached on it.
2692 static void decache_vcpus_on_cpu(int cpu)
2694 struct kvm *vm;
2695 struct kvm_vcpu *vcpu;
2696 int i;
2698 spin_lock(&kvm_lock);
2699 list_for_each_entry(vm, &vm_list, vm_list)
2700 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2701 vcpu = &vm->vcpus[i];
2703 * If the vcpu is locked, then it is running on some
2704 * other cpu and therefore it is not cached on the
2705 * cpu in question.
2707 * If it's not locked, check the last cpu it executed
2708 * on.
2710 if (mutex_trylock(&vcpu->mutex)) {
2711 if (vcpu->cpu == cpu) {
2712 kvm_arch_ops->vcpu_decache(vcpu);
2713 vcpu->cpu = -1;
2715 mutex_unlock(&vcpu->mutex);
2718 spin_unlock(&kvm_lock);
2721 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2722 void *v)
2724 int cpu = (long)v;
2726 switch (val) {
2727 case CPU_DOWN_PREPARE:
2728 case CPU_UP_CANCELED:
2729 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2730 cpu);
2731 decache_vcpus_on_cpu(cpu);
2732 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
2733 NULL, 0, 1);
2734 break;
2735 case CPU_ONLINE:
2736 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2737 cpu);
2738 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
2739 NULL, 0, 1);
2740 break;
2742 return NOTIFY_OK;
2745 static struct notifier_block kvm_cpu_notifier = {
2746 .notifier_call = kvm_cpu_hotplug,
2747 .priority = 20, /* must be > scheduler priority */
2750 static __init void kvm_init_debug(void)
2752 struct kvm_stats_debugfs_item *p;
2754 debugfs_dir = debugfs_create_dir("kvm", NULL);
2755 for (p = debugfs_entries; p->name; ++p)
2756 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2757 p->data);
2760 static void kvm_exit_debug(void)
2762 struct kvm_stats_debugfs_item *p;
2764 for (p = debugfs_entries; p->name; ++p)
2765 debugfs_remove(p->dentry);
2766 debugfs_remove(debugfs_dir);
2769 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2771 decache_vcpus_on_cpu(raw_smp_processor_id());
2772 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2773 return 0;
2776 static int kvm_resume(struct sys_device *dev)
2778 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2779 return 0;
2782 static struct sysdev_class kvm_sysdev_class = {
2783 set_kset_name("kvm"),
2784 .suspend = kvm_suspend,
2785 .resume = kvm_resume,
2788 static struct sys_device kvm_sysdev = {
2789 .id = 0,
2790 .cls = &kvm_sysdev_class,
2793 hpa_t bad_page_address;
2795 static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
2796 const char *dev_name, void *data, struct vfsmount *mnt)
2798 return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt);
2801 static struct file_system_type kvm_fs_type = {
2802 .name = "kvmfs",
2803 .get_sb = kvmfs_get_sb,
2804 .kill_sb = kill_anon_super,
2807 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2809 int r;
2811 if (kvm_arch_ops) {
2812 printk(KERN_ERR "kvm: already loaded the other module\n");
2813 return -EEXIST;
2816 if (!ops->cpu_has_kvm_support()) {
2817 printk(KERN_ERR "kvm: no hardware support\n");
2818 return -EOPNOTSUPP;
2820 if (ops->disabled_by_bios()) {
2821 printk(KERN_ERR "kvm: disabled by bios\n");
2822 return -EOPNOTSUPP;
2825 kvm_arch_ops = ops;
2827 r = kvm_arch_ops->hardware_setup();
2828 if (r < 0)
2829 goto out;
2831 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2832 r = register_cpu_notifier(&kvm_cpu_notifier);
2833 if (r)
2834 goto out_free_1;
2835 register_reboot_notifier(&kvm_reboot_notifier);
2837 r = sysdev_class_register(&kvm_sysdev_class);
2838 if (r)
2839 goto out_free_2;
2841 r = sysdev_register(&kvm_sysdev);
2842 if (r)
2843 goto out_free_3;
2845 kvm_chardev_ops.owner = module;
2847 r = misc_register(&kvm_dev);
2848 if (r) {
2849 printk (KERN_ERR "kvm: misc device register failed\n");
2850 goto out_free;
2853 return r;
2855 out_free:
2856 sysdev_unregister(&kvm_sysdev);
2857 out_free_3:
2858 sysdev_class_unregister(&kvm_sysdev_class);
2859 out_free_2:
2860 unregister_reboot_notifier(&kvm_reboot_notifier);
2861 unregister_cpu_notifier(&kvm_cpu_notifier);
2862 out_free_1:
2863 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2864 kvm_arch_ops->hardware_unsetup();
2865 out:
2866 kvm_arch_ops = NULL;
2867 return r;
2870 void kvm_exit_arch(void)
2872 misc_deregister(&kvm_dev);
2873 sysdev_unregister(&kvm_sysdev);
2874 sysdev_class_unregister(&kvm_sysdev_class);
2875 unregister_reboot_notifier(&kvm_reboot_notifier);
2876 unregister_cpu_notifier(&kvm_cpu_notifier);
2877 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2878 kvm_arch_ops->hardware_unsetup();
2879 kvm_arch_ops = NULL;
2882 static __init int kvm_init(void)
2884 static struct page *bad_page;
2885 int r;
2887 r = register_filesystem(&kvm_fs_type);
2888 if (r)
2889 goto out3;
2891 kvmfs_mnt = kern_mount(&kvm_fs_type);
2892 r = PTR_ERR(kvmfs_mnt);
2893 if (IS_ERR(kvmfs_mnt))
2894 goto out2;
2895 kvm_init_debug();
2897 kvm_init_msr_list();
2899 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2900 r = -ENOMEM;
2901 goto out;
2904 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2905 memset(__va(bad_page_address), 0, PAGE_SIZE);
2907 return 0;
2909 out:
2910 kvm_exit_debug();
2911 mntput(kvmfs_mnt);
2912 out2:
2913 unregister_filesystem(&kvm_fs_type);
2914 out3:
2915 return r;
2918 static __exit void kvm_exit(void)
2920 kvm_exit_debug();
2921 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2922 mntput(kvmfs_mnt);
2923 unregister_filesystem(&kvm_fs_type);
2926 module_init(kvm_init)
2927 module_exit(kvm_exit)
2929 EXPORT_SYMBOL_GPL(kvm_init_arch);
2930 EXPORT_SYMBOL_GPL(kvm_exit_arch);