swapin needs gfp_mask for loop on tmpfs
[linux-2.6/zen-sources.git] / mm / swap_state.c
blobe7875642e2cf8ddbd1c94d9edb4561fcf7035c37
1 /*
2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
21 #include <asm/pgtable.h>
24 * swapper_space is a fiction, retained to simplify the path through
25 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
26 * future use of radix_tree tags in the swap cache.
28 static const struct address_space_operations swap_aops = {
29 .writepage = swap_writepage,
30 .sync_page = block_sync_page,
31 .set_page_dirty = __set_page_dirty_nobuffers,
32 .migratepage = migrate_page,
35 static struct backing_dev_info swap_backing_dev_info = {
36 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
37 .unplug_io_fn = swap_unplug_io_fn,
40 struct address_space swapper_space = {
41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 .tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock),
43 .a_ops = &swap_aops,
44 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
45 .backing_dev_info = &swap_backing_dev_info,
48 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
50 static struct {
51 unsigned long add_total;
52 unsigned long del_total;
53 unsigned long find_success;
54 unsigned long find_total;
55 unsigned long noent_race;
56 unsigned long exist_race;
57 } swap_cache_info;
59 void show_swap_cache_info(void)
61 printk("Swap cache: add %lu, delete %lu, find %lu/%lu, race %lu+%lu\n",
62 swap_cache_info.add_total, swap_cache_info.del_total,
63 swap_cache_info.find_success, swap_cache_info.find_total,
64 swap_cache_info.noent_race, swap_cache_info.exist_race);
65 printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
66 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
70 * __add_to_swap_cache resembles add_to_page_cache on swapper_space,
71 * but sets SwapCache flag and private instead of mapping and index.
73 static int __add_to_swap_cache(struct page *page, swp_entry_t entry,
74 gfp_t gfp_mask)
76 int error;
78 BUG_ON(!PageLocked(page));
79 BUG_ON(PageSwapCache(page));
80 BUG_ON(PagePrivate(page));
81 error = radix_tree_preload(gfp_mask);
82 if (!error) {
83 write_lock_irq(&swapper_space.tree_lock);
84 error = radix_tree_insert(&swapper_space.page_tree,
85 entry.val, page);
86 if (!error) {
87 page_cache_get(page);
88 SetPageSwapCache(page);
89 set_page_private(page, entry.val);
90 total_swapcache_pages++;
91 __inc_zone_page_state(page, NR_FILE_PAGES);
93 write_unlock_irq(&swapper_space.tree_lock);
94 radix_tree_preload_end();
96 return error;
99 static int add_to_swap_cache(struct page *page, swp_entry_t entry,
100 gfp_t gfp_mask)
102 int error;
104 BUG_ON(PageLocked(page));
105 if (!swap_duplicate(entry)) {
106 INC_CACHE_INFO(noent_race);
107 return -ENOENT;
109 SetPageLocked(page);
110 error = __add_to_swap_cache(page, entry, gfp_mask & GFP_KERNEL);
112 * Anon pages are already on the LRU, we don't run lru_cache_add here.
114 if (error) {
115 ClearPageLocked(page);
116 swap_free(entry);
117 if (error == -EEXIST)
118 INC_CACHE_INFO(exist_race);
119 return error;
121 INC_CACHE_INFO(add_total);
122 return 0;
126 * This must be called only on pages that have
127 * been verified to be in the swap cache.
129 void __delete_from_swap_cache(struct page *page)
131 BUG_ON(!PageLocked(page));
132 BUG_ON(!PageSwapCache(page));
133 BUG_ON(PageWriteback(page));
134 BUG_ON(PagePrivate(page));
136 radix_tree_delete(&swapper_space.page_tree, page_private(page));
137 set_page_private(page, 0);
138 ClearPageSwapCache(page);
139 total_swapcache_pages--;
140 __dec_zone_page_state(page, NR_FILE_PAGES);
141 INC_CACHE_INFO(del_total);
145 * add_to_swap - allocate swap space for a page
146 * @page: page we want to move to swap
148 * Allocate swap space for the page and add the page to the
149 * swap cache. Caller needs to hold the page lock.
151 int add_to_swap(struct page * page, gfp_t gfp_mask)
153 swp_entry_t entry;
154 int err;
156 BUG_ON(!PageLocked(page));
158 for (;;) {
159 entry = get_swap_page();
160 if (!entry.val)
161 return 0;
164 * Radix-tree node allocations from PF_MEMALLOC contexts could
165 * completely exhaust the page allocator. __GFP_NOMEMALLOC
166 * stops emergency reserves from being allocated.
168 * TODO: this could cause a theoretical memory reclaim
169 * deadlock in the swap out path.
172 * Add it to the swap cache and mark it dirty
174 err = __add_to_swap_cache(page, entry,
175 gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
177 switch (err) {
178 case 0: /* Success */
179 SetPageUptodate(page);
180 SetPageDirty(page);
181 INC_CACHE_INFO(add_total);
182 return 1;
183 case -EEXIST:
184 /* Raced with "speculative" read_swap_cache_async */
185 INC_CACHE_INFO(exist_race);
186 swap_free(entry);
187 continue;
188 default:
189 /* -ENOMEM radix-tree allocation failure */
190 swap_free(entry);
191 return 0;
197 * This must be called only on pages that have
198 * been verified to be in the swap cache and locked.
199 * It will never put the page into the free list,
200 * the caller has a reference on the page.
202 void delete_from_swap_cache(struct page *page)
204 swp_entry_t entry;
206 entry.val = page_private(page);
208 write_lock_irq(&swapper_space.tree_lock);
209 __delete_from_swap_cache(page);
210 write_unlock_irq(&swapper_space.tree_lock);
212 swap_free(entry);
213 page_cache_release(page);
217 * Strange swizzling function only for use by shmem_writepage
219 int move_to_swap_cache(struct page *page, swp_entry_t entry)
221 int err = __add_to_swap_cache(page, entry, GFP_ATOMIC);
222 if (!err) {
223 remove_from_page_cache(page);
224 page_cache_release(page); /* pagecache ref */
225 if (!swap_duplicate(entry))
226 BUG();
227 SetPageDirty(page);
228 INC_CACHE_INFO(add_total);
229 } else if (err == -EEXIST)
230 INC_CACHE_INFO(exist_race);
231 return err;
235 * Strange swizzling function for shmem_getpage (and shmem_unuse)
237 int move_from_swap_cache(struct page *page, unsigned long index,
238 struct address_space *mapping)
240 int err = add_to_page_cache(page, mapping, index, GFP_ATOMIC);
241 if (!err) {
242 delete_from_swap_cache(page);
243 /* shift page from clean_pages to dirty_pages list */
244 ClearPageDirty(page);
245 set_page_dirty(page);
247 return err;
251 * If we are the only user, then try to free up the swap cache.
253 * Its ok to check for PageSwapCache without the page lock
254 * here because we are going to recheck again inside
255 * exclusive_swap_page() _with_ the lock.
256 * - Marcelo
258 static inline void free_swap_cache(struct page *page)
260 if (PageSwapCache(page) && !TestSetPageLocked(page)) {
261 remove_exclusive_swap_page(page);
262 unlock_page(page);
267 * Perform a free_page(), also freeing any swap cache associated with
268 * this page if it is the last user of the page.
270 void free_page_and_swap_cache(struct page *page)
272 free_swap_cache(page);
273 page_cache_release(page);
277 * Passed an array of pages, drop them all from swapcache and then release
278 * them. They are removed from the LRU and freed if this is their last use.
280 void free_pages_and_swap_cache(struct page **pages, int nr)
282 struct page **pagep = pages;
284 lru_add_drain();
285 while (nr) {
286 int todo = min(nr, PAGEVEC_SIZE);
287 int i;
289 for (i = 0; i < todo; i++)
290 free_swap_cache(pagep[i]);
291 release_pages(pagep, todo, 0);
292 pagep += todo;
293 nr -= todo;
298 * Lookup a swap entry in the swap cache. A found page will be returned
299 * unlocked and with its refcount incremented - we rely on the kernel
300 * lock getting page table operations atomic even if we drop the page
301 * lock before returning.
303 struct page * lookup_swap_cache(swp_entry_t entry)
305 struct page *page;
307 page = find_get_page(&swapper_space, entry.val);
309 if (page)
310 INC_CACHE_INFO(find_success);
312 INC_CACHE_INFO(find_total);
313 return page;
317 * Locate a page of swap in physical memory, reserving swap cache space
318 * and reading the disk if it is not already cached.
319 * A failure return means that either the page allocation failed or that
320 * the swap entry is no longer in use.
322 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
323 struct vm_area_struct *vma, unsigned long addr)
325 struct page *found_page, *new_page = NULL;
326 int err;
328 do {
330 * First check the swap cache. Since this is normally
331 * called after lookup_swap_cache() failed, re-calling
332 * that would confuse statistics.
334 found_page = find_get_page(&swapper_space, entry.val);
335 if (found_page)
336 break;
339 * Get a new page to read into from swap.
341 if (!new_page) {
342 new_page = alloc_page_vma(gfp_mask, vma, addr);
343 if (!new_page)
344 break; /* Out of memory */
348 * Associate the page with swap entry in the swap cache.
349 * May fail (-ENOENT) if swap entry has been freed since
350 * our caller observed it. May fail (-EEXIST) if there
351 * is already a page associated with this entry in the
352 * swap cache: added by a racing read_swap_cache_async,
353 * or by try_to_swap_out (or shmem_writepage) re-using
354 * the just freed swap entry for an existing page.
355 * May fail (-ENOMEM) if radix-tree node allocation failed.
357 err = add_to_swap_cache(new_page, entry, gfp_mask);
358 if (!err) {
360 * Initiate read into locked page and return.
362 lru_cache_add_active(new_page);
363 swap_readpage(NULL, new_page);
364 return new_page;
366 } while (err != -ENOENT && err != -ENOMEM);
368 if (new_page)
369 page_cache_release(new_page);
370 return found_page;
374 * swapin_readahead - swap in pages in hope we need them soon
375 * @entry: swap entry of this memory
376 * @vma: user vma this address belongs to
377 * @addr: target address for mempolicy
379 * Returns the struct page for entry and addr, after queueing swapin.
381 * Primitive swap readahead code. We simply read an aligned block of
382 * (1 << page_cluster) entries in the swap area. This method is chosen
383 * because it doesn't cost us any seek time. We also make sure to queue
384 * the 'original' request together with the readahead ones...
386 * This has been extended to use the NUMA policies from the mm triggering
387 * the readahead.
389 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
391 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
392 struct vm_area_struct *vma, unsigned long addr)
394 int nr_pages;
395 struct page *page;
396 unsigned long offset;
397 unsigned long end_offset;
400 * Get starting offset for readaround, and number of pages to read.
401 * Adjust starting address by readbehind (for NUMA interleave case)?
402 * No, it's very unlikely that swap layout would follow vma layout,
403 * more likely that neighbouring swap pages came from the same node:
404 * so use the same "addr" to choose the same node for each swap read.
406 nr_pages = valid_swaphandles(entry, &offset);
407 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
408 /* Ok, do the async read-ahead now */
409 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
410 gfp_mask, vma, addr);
411 if (!page)
412 break;
413 page_cache_release(page);
415 lru_add_drain(); /* Push any new pages onto the LRU now */
416 return read_swap_cache_async(entry, gfp_mask, vma, addr);