swapin needs gfp_mask for loop on tmpfs
[linux-2.6/zen-sources.git] / mm / shmem.c
blob55b696aa3ddda666e929e9cfab19bcbfb0d834fa
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC 0x01021994
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN VM_READ
71 #define SHMEM_TRUNCATE VM_WRITE
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT 64
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81 SGP_QUICK, /* don't try more than file page cache lookup */
82 SGP_READ, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE, /* don't exceed i_size, may allocate page */
84 SGP_WRITE, /* may exceed i_size, may allocate page */
85 SGP_FAULT, /* same as SGP_CACHE, return with page locked */
88 static int shmem_getpage(struct inode *inode, unsigned long idx,
89 struct page **pagep, enum sgp_type sgp, int *type);
91 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
94 * The above definition of ENTRIES_PER_PAGE, and the use of
95 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
96 * might be reconsidered if it ever diverges from PAGE_SIZE.
98 * Mobility flags are masked out as swap vectors cannot move
100 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
101 PAGE_CACHE_SHIFT-PAGE_SHIFT);
104 static inline void shmem_dir_free(struct page *page)
106 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
109 static struct page **shmem_dir_map(struct page *page)
111 return (struct page **)kmap_atomic(page, KM_USER0);
114 static inline void shmem_dir_unmap(struct page **dir)
116 kunmap_atomic(dir, KM_USER0);
119 static swp_entry_t *shmem_swp_map(struct page *page)
121 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
124 static inline void shmem_swp_balance_unmap(void)
127 * When passing a pointer to an i_direct entry, to code which
128 * also handles indirect entries and so will shmem_swp_unmap,
129 * we must arrange for the preempt count to remain in balance.
130 * What kmap_atomic of a lowmem page does depends on config
131 * and architecture, so pretend to kmap_atomic some lowmem page.
133 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
136 static inline void shmem_swp_unmap(swp_entry_t *entry)
138 kunmap_atomic(entry, KM_USER1);
141 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
143 return sb->s_fs_info;
147 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
148 * for shared memory and for shared anonymous (/dev/zero) mappings
149 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
150 * consistent with the pre-accounting of private mappings ...
152 static inline int shmem_acct_size(unsigned long flags, loff_t size)
154 return (flags & VM_ACCOUNT)?
155 security_vm_enough_memory(VM_ACCT(size)): 0;
158 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
160 if (flags & VM_ACCOUNT)
161 vm_unacct_memory(VM_ACCT(size));
165 * ... whereas tmpfs objects are accounted incrementally as
166 * pages are allocated, in order to allow huge sparse files.
167 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
168 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170 static inline int shmem_acct_block(unsigned long flags)
172 return (flags & VM_ACCOUNT)?
173 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
176 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178 if (!(flags & VM_ACCOUNT))
179 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
182 static const struct super_operations shmem_ops;
183 static const struct address_space_operations shmem_aops;
184 static const struct file_operations shmem_file_operations;
185 static const struct inode_operations shmem_inode_operations;
186 static const struct inode_operations shmem_dir_inode_operations;
187 static const struct inode_operations shmem_special_inode_operations;
188 static struct vm_operations_struct shmem_vm_ops;
190 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
191 .ra_pages = 0, /* No readahead */
192 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
193 .unplug_io_fn = default_unplug_io_fn,
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_SPINLOCK(shmem_swaplist_lock);
199 static void shmem_free_blocks(struct inode *inode, long pages)
201 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
202 if (sbinfo->max_blocks) {
203 spin_lock(&sbinfo->stat_lock);
204 sbinfo->free_blocks += pages;
205 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
206 spin_unlock(&sbinfo->stat_lock);
211 * shmem_recalc_inode - recalculate the size of an inode
213 * @inode: inode to recalc
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
221 * It has to be called with the spinlock held.
223 static void shmem_recalc_inode(struct inode *inode)
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 long freed;
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 if (freed > 0) {
230 info->alloced -= freed;
231 shmem_unacct_blocks(info->flags, freed);
232 shmem_free_blocks(inode, freed);
237 * shmem_swp_entry - find the swap vector position in the info structure
239 * @info: info structure for the inode
240 * @index: index of the page to find
241 * @page: optional page to add to the structure. Has to be preset to
242 * all zeros
244 * If there is no space allocated yet it will return NULL when
245 * page is NULL, else it will use the page for the needed block,
246 * setting it to NULL on return to indicate that it has been used.
248 * The swap vector is organized the following way:
250 * There are SHMEM_NR_DIRECT entries directly stored in the
251 * shmem_inode_info structure. So small files do not need an addional
252 * allocation.
254 * For pages with index > SHMEM_NR_DIRECT there is the pointer
255 * i_indirect which points to a page which holds in the first half
256 * doubly indirect blocks, in the second half triple indirect blocks:
258 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
259 * following layout (for SHMEM_NR_DIRECT == 16):
261 * i_indirect -> dir --> 16-19
262 * | +-> 20-23
264 * +-->dir2 --> 24-27
265 * | +-> 28-31
266 * | +-> 32-35
267 * | +-> 36-39
269 * +-->dir3 --> 40-43
270 * +-> 44-47
271 * +-> 48-51
272 * +-> 52-55
274 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
276 unsigned long offset;
277 struct page **dir;
278 struct page *subdir;
280 if (index < SHMEM_NR_DIRECT) {
281 shmem_swp_balance_unmap();
282 return info->i_direct+index;
284 if (!info->i_indirect) {
285 if (page) {
286 info->i_indirect = *page;
287 *page = NULL;
289 return NULL; /* need another page */
292 index -= SHMEM_NR_DIRECT;
293 offset = index % ENTRIES_PER_PAGE;
294 index /= ENTRIES_PER_PAGE;
295 dir = shmem_dir_map(info->i_indirect);
297 if (index >= ENTRIES_PER_PAGE/2) {
298 index -= ENTRIES_PER_PAGE/2;
299 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
300 index %= ENTRIES_PER_PAGE;
301 subdir = *dir;
302 if (!subdir) {
303 if (page) {
304 *dir = *page;
305 *page = NULL;
307 shmem_dir_unmap(dir);
308 return NULL; /* need another page */
310 shmem_dir_unmap(dir);
311 dir = shmem_dir_map(subdir);
314 dir += index;
315 subdir = *dir;
316 if (!subdir) {
317 if (!page || !(subdir = *page)) {
318 shmem_dir_unmap(dir);
319 return NULL; /* need a page */
321 *dir = subdir;
322 *page = NULL;
324 shmem_dir_unmap(dir);
325 return shmem_swp_map(subdir) + offset;
328 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
330 long incdec = value? 1: -1;
332 entry->val = value;
333 info->swapped += incdec;
334 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
335 struct page *page = kmap_atomic_to_page(entry);
336 set_page_private(page, page_private(page) + incdec);
341 * shmem_swp_alloc - get the position of the swap entry for the page.
342 * If it does not exist allocate the entry.
344 * @info: info structure for the inode
345 * @index: index of the page to find
346 * @sgp: check and recheck i_size? skip allocation?
348 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
350 struct inode *inode = &info->vfs_inode;
351 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
352 struct page *page = NULL;
353 swp_entry_t *entry;
355 if (sgp != SGP_WRITE &&
356 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
357 return ERR_PTR(-EINVAL);
359 while (!(entry = shmem_swp_entry(info, index, &page))) {
360 if (sgp == SGP_READ)
361 return shmem_swp_map(ZERO_PAGE(0));
363 * Test free_blocks against 1 not 0, since we have 1 data
364 * page (and perhaps indirect index pages) yet to allocate:
365 * a waste to allocate index if we cannot allocate data.
367 if (sbinfo->max_blocks) {
368 spin_lock(&sbinfo->stat_lock);
369 if (sbinfo->free_blocks <= 1) {
370 spin_unlock(&sbinfo->stat_lock);
371 return ERR_PTR(-ENOSPC);
373 sbinfo->free_blocks--;
374 inode->i_blocks += BLOCKS_PER_PAGE;
375 spin_unlock(&sbinfo->stat_lock);
378 spin_unlock(&info->lock);
379 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
380 if (page)
381 set_page_private(page, 0);
382 spin_lock(&info->lock);
384 if (!page) {
385 shmem_free_blocks(inode, 1);
386 return ERR_PTR(-ENOMEM);
388 if (sgp != SGP_WRITE &&
389 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
390 entry = ERR_PTR(-EINVAL);
391 break;
393 if (info->next_index <= index)
394 info->next_index = index + 1;
396 if (page) {
397 /* another task gave its page, or truncated the file */
398 shmem_free_blocks(inode, 1);
399 shmem_dir_free(page);
401 if (info->next_index <= index && !IS_ERR(entry))
402 info->next_index = index + 1;
403 return entry;
407 * shmem_free_swp - free some swap entries in a directory
409 * @dir: pointer to the directory
410 * @edir: pointer after last entry of the directory
411 * @punch_lock: pointer to spinlock when needed for the holepunch case
413 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
414 spinlock_t *punch_lock)
416 spinlock_t *punch_unlock = NULL;
417 swp_entry_t *ptr;
418 int freed = 0;
420 for (ptr = dir; ptr < edir; ptr++) {
421 if (ptr->val) {
422 if (unlikely(punch_lock)) {
423 punch_unlock = punch_lock;
424 punch_lock = NULL;
425 spin_lock(punch_unlock);
426 if (!ptr->val)
427 continue;
429 free_swap_and_cache(*ptr);
430 *ptr = (swp_entry_t){0};
431 freed++;
434 if (punch_unlock)
435 spin_unlock(punch_unlock);
436 return freed;
439 static int shmem_map_and_free_swp(struct page *subdir, int offset,
440 int limit, struct page ***dir, spinlock_t *punch_lock)
442 swp_entry_t *ptr;
443 int freed = 0;
445 ptr = shmem_swp_map(subdir);
446 for (; offset < limit; offset += LATENCY_LIMIT) {
447 int size = limit - offset;
448 if (size > LATENCY_LIMIT)
449 size = LATENCY_LIMIT;
450 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
451 punch_lock);
452 if (need_resched()) {
453 shmem_swp_unmap(ptr);
454 if (*dir) {
455 shmem_dir_unmap(*dir);
456 *dir = NULL;
458 cond_resched();
459 ptr = shmem_swp_map(subdir);
462 shmem_swp_unmap(ptr);
463 return freed;
466 static void shmem_free_pages(struct list_head *next)
468 struct page *page;
469 int freed = 0;
471 do {
472 page = container_of(next, struct page, lru);
473 next = next->next;
474 shmem_dir_free(page);
475 freed++;
476 if (freed >= LATENCY_LIMIT) {
477 cond_resched();
478 freed = 0;
480 } while (next);
483 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
485 struct shmem_inode_info *info = SHMEM_I(inode);
486 unsigned long idx;
487 unsigned long size;
488 unsigned long limit;
489 unsigned long stage;
490 unsigned long diroff;
491 struct page **dir;
492 struct page *topdir;
493 struct page *middir;
494 struct page *subdir;
495 swp_entry_t *ptr;
496 LIST_HEAD(pages_to_free);
497 long nr_pages_to_free = 0;
498 long nr_swaps_freed = 0;
499 int offset;
500 int freed;
501 int punch_hole;
502 spinlock_t *needs_lock;
503 spinlock_t *punch_lock;
504 unsigned long upper_limit;
506 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
507 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
508 if (idx >= info->next_index)
509 return;
511 spin_lock(&info->lock);
512 info->flags |= SHMEM_TRUNCATE;
513 if (likely(end == (loff_t) -1)) {
514 limit = info->next_index;
515 upper_limit = SHMEM_MAX_INDEX;
516 info->next_index = idx;
517 needs_lock = NULL;
518 punch_hole = 0;
519 } else {
520 if (end + 1 >= inode->i_size) { /* we may free a little more */
521 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
522 PAGE_CACHE_SHIFT;
523 upper_limit = SHMEM_MAX_INDEX;
524 } else {
525 limit = (end + 1) >> PAGE_CACHE_SHIFT;
526 upper_limit = limit;
528 needs_lock = &info->lock;
529 punch_hole = 1;
532 topdir = info->i_indirect;
533 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
534 info->i_indirect = NULL;
535 nr_pages_to_free++;
536 list_add(&topdir->lru, &pages_to_free);
538 spin_unlock(&info->lock);
540 if (info->swapped && idx < SHMEM_NR_DIRECT) {
541 ptr = info->i_direct;
542 size = limit;
543 if (size > SHMEM_NR_DIRECT)
544 size = SHMEM_NR_DIRECT;
545 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
549 * If there are no indirect blocks or we are punching a hole
550 * below indirect blocks, nothing to be done.
552 if (!topdir || limit <= SHMEM_NR_DIRECT)
553 goto done2;
556 * The truncation case has already dropped info->lock, and we're safe
557 * because i_size and next_index have already been lowered, preventing
558 * access beyond. But in the punch_hole case, we still need to take
559 * the lock when updating the swap directory, because there might be
560 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
561 * shmem_writepage. However, whenever we find we can remove a whole
562 * directory page (not at the misaligned start or end of the range),
563 * we first NULLify its pointer in the level above, and then have no
564 * need to take the lock when updating its contents: needs_lock and
565 * punch_lock (either pointing to info->lock or NULL) manage this.
568 upper_limit -= SHMEM_NR_DIRECT;
569 limit -= SHMEM_NR_DIRECT;
570 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
571 offset = idx % ENTRIES_PER_PAGE;
572 idx -= offset;
574 dir = shmem_dir_map(topdir);
575 stage = ENTRIES_PER_PAGEPAGE/2;
576 if (idx < ENTRIES_PER_PAGEPAGE/2) {
577 middir = topdir;
578 diroff = idx/ENTRIES_PER_PAGE;
579 } else {
580 dir += ENTRIES_PER_PAGE/2;
581 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
582 while (stage <= idx)
583 stage += ENTRIES_PER_PAGEPAGE;
584 middir = *dir;
585 if (*dir) {
586 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
587 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
588 if (!diroff && !offset && upper_limit >= stage) {
589 if (needs_lock) {
590 spin_lock(needs_lock);
591 *dir = NULL;
592 spin_unlock(needs_lock);
593 needs_lock = NULL;
594 } else
595 *dir = NULL;
596 nr_pages_to_free++;
597 list_add(&middir->lru, &pages_to_free);
599 shmem_dir_unmap(dir);
600 dir = shmem_dir_map(middir);
601 } else {
602 diroff = 0;
603 offset = 0;
604 idx = stage;
608 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
609 if (unlikely(idx == stage)) {
610 shmem_dir_unmap(dir);
611 dir = shmem_dir_map(topdir) +
612 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
613 while (!*dir) {
614 dir++;
615 idx += ENTRIES_PER_PAGEPAGE;
616 if (idx >= limit)
617 goto done1;
619 stage = idx + ENTRIES_PER_PAGEPAGE;
620 middir = *dir;
621 if (punch_hole)
622 needs_lock = &info->lock;
623 if (upper_limit >= stage) {
624 if (needs_lock) {
625 spin_lock(needs_lock);
626 *dir = NULL;
627 spin_unlock(needs_lock);
628 needs_lock = NULL;
629 } else
630 *dir = NULL;
631 nr_pages_to_free++;
632 list_add(&middir->lru, &pages_to_free);
634 shmem_dir_unmap(dir);
635 cond_resched();
636 dir = shmem_dir_map(middir);
637 diroff = 0;
639 punch_lock = needs_lock;
640 subdir = dir[diroff];
641 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
642 if (needs_lock) {
643 spin_lock(needs_lock);
644 dir[diroff] = NULL;
645 spin_unlock(needs_lock);
646 punch_lock = NULL;
647 } else
648 dir[diroff] = NULL;
649 nr_pages_to_free++;
650 list_add(&subdir->lru, &pages_to_free);
652 if (subdir && page_private(subdir) /* has swap entries */) {
653 size = limit - idx;
654 if (size > ENTRIES_PER_PAGE)
655 size = ENTRIES_PER_PAGE;
656 freed = shmem_map_and_free_swp(subdir,
657 offset, size, &dir, punch_lock);
658 if (!dir)
659 dir = shmem_dir_map(middir);
660 nr_swaps_freed += freed;
661 if (offset || punch_lock) {
662 spin_lock(&info->lock);
663 set_page_private(subdir,
664 page_private(subdir) - freed);
665 spin_unlock(&info->lock);
666 } else
667 BUG_ON(page_private(subdir) != freed);
669 offset = 0;
671 done1:
672 shmem_dir_unmap(dir);
673 done2:
674 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
676 * Call truncate_inode_pages again: racing shmem_unuse_inode
677 * may have swizzled a page in from swap since vmtruncate or
678 * generic_delete_inode did it, before we lowered next_index.
679 * Also, though shmem_getpage checks i_size before adding to
680 * cache, no recheck after: so fix the narrow window there too.
682 * Recalling truncate_inode_pages_range and unmap_mapping_range
683 * every time for punch_hole (which never got a chance to clear
684 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
685 * yet hardly ever necessary: try to optimize them out later.
687 truncate_inode_pages_range(inode->i_mapping, start, end);
688 if (punch_hole)
689 unmap_mapping_range(inode->i_mapping, start,
690 end - start, 1);
693 spin_lock(&info->lock);
694 info->flags &= ~SHMEM_TRUNCATE;
695 info->swapped -= nr_swaps_freed;
696 if (nr_pages_to_free)
697 shmem_free_blocks(inode, nr_pages_to_free);
698 shmem_recalc_inode(inode);
699 spin_unlock(&info->lock);
702 * Empty swap vector directory pages to be freed?
704 if (!list_empty(&pages_to_free)) {
705 pages_to_free.prev->next = NULL;
706 shmem_free_pages(pages_to_free.next);
710 static void shmem_truncate(struct inode *inode)
712 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
715 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
717 struct inode *inode = dentry->d_inode;
718 struct page *page = NULL;
719 int error;
721 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
722 if (attr->ia_size < inode->i_size) {
724 * If truncating down to a partial page, then
725 * if that page is already allocated, hold it
726 * in memory until the truncation is over, so
727 * truncate_partial_page cannnot miss it were
728 * it assigned to swap.
730 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
731 (void) shmem_getpage(inode,
732 attr->ia_size>>PAGE_CACHE_SHIFT,
733 &page, SGP_READ, NULL);
736 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
737 * detect if any pages might have been added to cache
738 * after truncate_inode_pages. But we needn't bother
739 * if it's being fully truncated to zero-length: the
740 * nrpages check is efficient enough in that case.
742 if (attr->ia_size) {
743 struct shmem_inode_info *info = SHMEM_I(inode);
744 spin_lock(&info->lock);
745 info->flags &= ~SHMEM_PAGEIN;
746 spin_unlock(&info->lock);
751 error = inode_change_ok(inode, attr);
752 if (!error)
753 error = inode_setattr(inode, attr);
754 #ifdef CONFIG_TMPFS_POSIX_ACL
755 if (!error && (attr->ia_valid & ATTR_MODE))
756 error = generic_acl_chmod(inode, &shmem_acl_ops);
757 #endif
758 if (page)
759 page_cache_release(page);
760 return error;
763 static void shmem_delete_inode(struct inode *inode)
765 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
766 struct shmem_inode_info *info = SHMEM_I(inode);
768 if (inode->i_op->truncate == shmem_truncate) {
769 truncate_inode_pages(inode->i_mapping, 0);
770 shmem_unacct_size(info->flags, inode->i_size);
771 inode->i_size = 0;
772 shmem_truncate(inode);
773 if (!list_empty(&info->swaplist)) {
774 spin_lock(&shmem_swaplist_lock);
775 list_del_init(&info->swaplist);
776 spin_unlock(&shmem_swaplist_lock);
779 BUG_ON(inode->i_blocks);
780 if (sbinfo->max_inodes) {
781 spin_lock(&sbinfo->stat_lock);
782 sbinfo->free_inodes++;
783 spin_unlock(&sbinfo->stat_lock);
785 clear_inode(inode);
788 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
790 swp_entry_t *ptr;
792 for (ptr = dir; ptr < edir; ptr++) {
793 if (ptr->val == entry.val)
794 return ptr - dir;
796 return -1;
799 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
801 struct inode *inode;
802 unsigned long idx;
803 unsigned long size;
804 unsigned long limit;
805 unsigned long stage;
806 struct page **dir;
807 struct page *subdir;
808 swp_entry_t *ptr;
809 int offset;
811 idx = 0;
812 ptr = info->i_direct;
813 spin_lock(&info->lock);
814 limit = info->next_index;
815 size = limit;
816 if (size > SHMEM_NR_DIRECT)
817 size = SHMEM_NR_DIRECT;
818 offset = shmem_find_swp(entry, ptr, ptr+size);
819 if (offset >= 0) {
820 shmem_swp_balance_unmap();
821 goto found;
823 if (!info->i_indirect)
824 goto lost2;
826 dir = shmem_dir_map(info->i_indirect);
827 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
829 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
830 if (unlikely(idx == stage)) {
831 shmem_dir_unmap(dir-1);
832 dir = shmem_dir_map(info->i_indirect) +
833 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
834 while (!*dir) {
835 dir++;
836 idx += ENTRIES_PER_PAGEPAGE;
837 if (idx >= limit)
838 goto lost1;
840 stage = idx + ENTRIES_PER_PAGEPAGE;
841 subdir = *dir;
842 shmem_dir_unmap(dir);
843 dir = shmem_dir_map(subdir);
845 subdir = *dir;
846 if (subdir && page_private(subdir)) {
847 ptr = shmem_swp_map(subdir);
848 size = limit - idx;
849 if (size > ENTRIES_PER_PAGE)
850 size = ENTRIES_PER_PAGE;
851 offset = shmem_find_swp(entry, ptr, ptr+size);
852 if (offset >= 0) {
853 shmem_dir_unmap(dir);
854 goto found;
856 shmem_swp_unmap(ptr);
859 lost1:
860 shmem_dir_unmap(dir-1);
861 lost2:
862 spin_unlock(&info->lock);
863 return 0;
864 found:
865 idx += offset;
866 inode = &info->vfs_inode;
867 if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
868 info->flags |= SHMEM_PAGEIN;
869 shmem_swp_set(info, ptr + offset, 0);
871 shmem_swp_unmap(ptr);
872 spin_unlock(&info->lock);
874 * Decrement swap count even when the entry is left behind:
875 * try_to_unuse will skip over mms, then reincrement count.
877 swap_free(entry);
878 return 1;
882 * shmem_unuse() search for an eventually swapped out shmem page.
884 int shmem_unuse(swp_entry_t entry, struct page *page)
886 struct list_head *p, *next;
887 struct shmem_inode_info *info;
888 int found = 0;
890 spin_lock(&shmem_swaplist_lock);
891 list_for_each_safe(p, next, &shmem_swaplist) {
892 info = list_entry(p, struct shmem_inode_info, swaplist);
893 if (!info->swapped)
894 list_del_init(&info->swaplist);
895 else if (shmem_unuse_inode(info, entry, page)) {
896 /* move head to start search for next from here */
897 list_move_tail(&shmem_swaplist, &info->swaplist);
898 found = 1;
899 break;
902 spin_unlock(&shmem_swaplist_lock);
903 return found;
907 * Move the page from the page cache to the swap cache.
909 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
911 struct shmem_inode_info *info;
912 swp_entry_t *entry, swap;
913 struct address_space *mapping;
914 unsigned long index;
915 struct inode *inode;
917 BUG_ON(!PageLocked(page));
919 * shmem_backing_dev_info's capabilities prevent regular writeback or
920 * sync from ever calling shmem_writepage; but a stacking filesystem
921 * may use the ->writepage of its underlying filesystem, in which case
922 * we want to do nothing when that underlying filesystem is tmpfs
923 * (writing out to swap is useful as a response to memory pressure, but
924 * of no use to stabilize the data) - just redirty the page, unlock it
925 * and claim success in this case. AOP_WRITEPAGE_ACTIVATE, and the
926 * page_mapped check below, must be avoided unless we're in reclaim.
928 if (!wbc->for_reclaim) {
929 set_page_dirty(page);
930 unlock_page(page);
931 return 0;
933 BUG_ON(page_mapped(page));
935 mapping = page->mapping;
936 index = page->index;
937 inode = mapping->host;
938 info = SHMEM_I(inode);
939 if (info->flags & VM_LOCKED)
940 goto redirty;
941 swap = get_swap_page();
942 if (!swap.val)
943 goto redirty;
945 spin_lock(&info->lock);
946 shmem_recalc_inode(inode);
947 if (index >= info->next_index) {
948 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
949 goto unlock;
951 entry = shmem_swp_entry(info, index, NULL);
952 BUG_ON(!entry);
953 BUG_ON(entry->val);
955 if (move_to_swap_cache(page, swap) == 0) {
956 shmem_swp_set(info, entry, swap.val);
957 shmem_swp_unmap(entry);
958 spin_unlock(&info->lock);
959 if (list_empty(&info->swaplist)) {
960 spin_lock(&shmem_swaplist_lock);
961 /* move instead of add in case we're racing */
962 list_move_tail(&info->swaplist, &shmem_swaplist);
963 spin_unlock(&shmem_swaplist_lock);
965 unlock_page(page);
966 return 0;
969 shmem_swp_unmap(entry);
970 unlock:
971 spin_unlock(&info->lock);
972 swap_free(swap);
973 redirty:
974 set_page_dirty(page);
975 return AOP_WRITEPAGE_ACTIVATE; /* Return with the page locked */
978 #ifdef CONFIG_NUMA
979 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
981 char *nodelist = strchr(value, ':');
982 int err = 1;
984 if (nodelist) {
985 /* NUL-terminate policy string */
986 *nodelist++ = '\0';
987 if (nodelist_parse(nodelist, *policy_nodes))
988 goto out;
989 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
990 goto out;
992 if (!strcmp(value, "default")) {
993 *policy = MPOL_DEFAULT;
994 /* Don't allow a nodelist */
995 if (!nodelist)
996 err = 0;
997 } else if (!strcmp(value, "prefer")) {
998 *policy = MPOL_PREFERRED;
999 /* Insist on a nodelist of one node only */
1000 if (nodelist) {
1001 char *rest = nodelist;
1002 while (isdigit(*rest))
1003 rest++;
1004 if (!*rest)
1005 err = 0;
1007 } else if (!strcmp(value, "bind")) {
1008 *policy = MPOL_BIND;
1009 /* Insist on a nodelist */
1010 if (nodelist)
1011 err = 0;
1012 } else if (!strcmp(value, "interleave")) {
1013 *policy = MPOL_INTERLEAVE;
1015 * Default to online nodes with memory if no nodelist
1017 if (!nodelist)
1018 *policy_nodes = node_states[N_HIGH_MEMORY];
1019 err = 0;
1021 out:
1022 /* Restore string for error message */
1023 if (nodelist)
1024 *--nodelist = ':';
1025 return err;
1028 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1029 struct shmem_inode_info *info, unsigned long idx)
1031 struct vm_area_struct pvma;
1032 struct page *page;
1034 /* Create a pseudo vma that just contains the policy */
1035 pvma.vm_start = 0;
1036 pvma.vm_pgoff = idx;
1037 pvma.vm_ops = NULL;
1038 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1039 page = swapin_readahead(entry, gfp, &pvma, 0);
1040 mpol_free(pvma.vm_policy);
1041 return page;
1044 static struct page *shmem_alloc_page(gfp_t gfp,
1045 struct shmem_inode_info *info, unsigned long idx)
1047 struct vm_area_struct pvma;
1048 struct page *page;
1050 /* Create a pseudo vma that just contains the policy */
1051 pvma.vm_start = 0;
1052 pvma.vm_pgoff = idx;
1053 pvma.vm_ops = NULL;
1054 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1055 page = alloc_page_vma(gfp, &pvma, 0);
1056 mpol_free(pvma.vm_policy);
1057 return page;
1059 #else
1060 static inline int shmem_parse_mpol(char *value, int *policy,
1061 nodemask_t *policy_nodes)
1063 return 1;
1066 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1067 struct shmem_inode_info *info, unsigned long idx)
1069 return swapin_readahead(entry, gfp, NULL, 0);
1072 static inline struct page *shmem_alloc_page(gfp_t gfp,
1073 struct shmem_inode_info *info, unsigned long idx)
1075 return alloc_page(gfp);
1077 #endif
1080 * shmem_getpage - either get the page from swap or allocate a new one
1082 * If we allocate a new one we do not mark it dirty. That's up to the
1083 * vm. If we swap it in we mark it dirty since we also free the swap
1084 * entry since a page cannot live in both the swap and page cache
1086 static int shmem_getpage(struct inode *inode, unsigned long idx,
1087 struct page **pagep, enum sgp_type sgp, int *type)
1089 struct address_space *mapping = inode->i_mapping;
1090 struct shmem_inode_info *info = SHMEM_I(inode);
1091 struct shmem_sb_info *sbinfo;
1092 struct page *filepage = *pagep;
1093 struct page *swappage;
1094 swp_entry_t *entry;
1095 swp_entry_t swap;
1096 gfp_t gfp;
1097 int error;
1099 if (idx >= SHMEM_MAX_INDEX)
1100 return -EFBIG;
1102 if (type)
1103 *type = 0;
1106 * Normally, filepage is NULL on entry, and either found
1107 * uptodate immediately, or allocated and zeroed, or read
1108 * in under swappage, which is then assigned to filepage.
1109 * But shmem_readpage and shmem_write_begin pass in a locked
1110 * filepage, which may be found not uptodate by other callers
1111 * too, and may need to be copied from the swappage read in.
1113 repeat:
1114 if (!filepage)
1115 filepage = find_lock_page(mapping, idx);
1116 if (filepage && PageUptodate(filepage))
1117 goto done;
1118 error = 0;
1119 if (sgp == SGP_QUICK)
1120 goto failed;
1121 gfp = mapping_gfp_mask(mapping);
1123 spin_lock(&info->lock);
1124 shmem_recalc_inode(inode);
1125 entry = shmem_swp_alloc(info, idx, sgp);
1126 if (IS_ERR(entry)) {
1127 spin_unlock(&info->lock);
1128 error = PTR_ERR(entry);
1129 goto failed;
1131 swap = *entry;
1133 if (swap.val) {
1134 /* Look it up and read it in.. */
1135 swappage = lookup_swap_cache(swap);
1136 if (!swappage) {
1137 shmem_swp_unmap(entry);
1138 /* here we actually do the io */
1139 if (type && !(*type & VM_FAULT_MAJOR)) {
1140 __count_vm_event(PGMAJFAULT);
1141 *type |= VM_FAULT_MAJOR;
1143 spin_unlock(&info->lock);
1144 swappage = shmem_swapin(swap, gfp, info, idx);
1145 if (!swappage) {
1146 spin_lock(&info->lock);
1147 entry = shmem_swp_alloc(info, idx, sgp);
1148 if (IS_ERR(entry))
1149 error = PTR_ERR(entry);
1150 else {
1151 if (entry->val == swap.val)
1152 error = -ENOMEM;
1153 shmem_swp_unmap(entry);
1155 spin_unlock(&info->lock);
1156 if (error)
1157 goto failed;
1158 goto repeat;
1160 wait_on_page_locked(swappage);
1161 page_cache_release(swappage);
1162 goto repeat;
1165 /* We have to do this with page locked to prevent races */
1166 if (TestSetPageLocked(swappage)) {
1167 shmem_swp_unmap(entry);
1168 spin_unlock(&info->lock);
1169 wait_on_page_locked(swappage);
1170 page_cache_release(swappage);
1171 goto repeat;
1173 if (PageWriteback(swappage)) {
1174 shmem_swp_unmap(entry);
1175 spin_unlock(&info->lock);
1176 wait_on_page_writeback(swappage);
1177 unlock_page(swappage);
1178 page_cache_release(swappage);
1179 goto repeat;
1181 if (!PageUptodate(swappage)) {
1182 shmem_swp_unmap(entry);
1183 spin_unlock(&info->lock);
1184 unlock_page(swappage);
1185 page_cache_release(swappage);
1186 error = -EIO;
1187 goto failed;
1190 if (filepage) {
1191 shmem_swp_set(info, entry, 0);
1192 shmem_swp_unmap(entry);
1193 delete_from_swap_cache(swappage);
1194 spin_unlock(&info->lock);
1195 copy_highpage(filepage, swappage);
1196 unlock_page(swappage);
1197 page_cache_release(swappage);
1198 flush_dcache_page(filepage);
1199 SetPageUptodate(filepage);
1200 set_page_dirty(filepage);
1201 swap_free(swap);
1202 } else if (!(error = move_from_swap_cache(
1203 swappage, idx, mapping))) {
1204 info->flags |= SHMEM_PAGEIN;
1205 shmem_swp_set(info, entry, 0);
1206 shmem_swp_unmap(entry);
1207 spin_unlock(&info->lock);
1208 filepage = swappage;
1209 swap_free(swap);
1210 } else {
1211 shmem_swp_unmap(entry);
1212 spin_unlock(&info->lock);
1213 unlock_page(swappage);
1214 page_cache_release(swappage);
1215 if (error == -ENOMEM) {
1216 /* let kswapd refresh zone for GFP_ATOMICs */
1217 congestion_wait(WRITE, HZ/50);
1219 goto repeat;
1221 } else if (sgp == SGP_READ && !filepage) {
1222 shmem_swp_unmap(entry);
1223 filepage = find_get_page(mapping, idx);
1224 if (filepage &&
1225 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1226 spin_unlock(&info->lock);
1227 wait_on_page_locked(filepage);
1228 page_cache_release(filepage);
1229 filepage = NULL;
1230 goto repeat;
1232 spin_unlock(&info->lock);
1233 } else {
1234 shmem_swp_unmap(entry);
1235 sbinfo = SHMEM_SB(inode->i_sb);
1236 if (sbinfo->max_blocks) {
1237 spin_lock(&sbinfo->stat_lock);
1238 if (sbinfo->free_blocks == 0 ||
1239 shmem_acct_block(info->flags)) {
1240 spin_unlock(&sbinfo->stat_lock);
1241 spin_unlock(&info->lock);
1242 error = -ENOSPC;
1243 goto failed;
1245 sbinfo->free_blocks--;
1246 inode->i_blocks += BLOCKS_PER_PAGE;
1247 spin_unlock(&sbinfo->stat_lock);
1248 } else if (shmem_acct_block(info->flags)) {
1249 spin_unlock(&info->lock);
1250 error = -ENOSPC;
1251 goto failed;
1254 if (!filepage) {
1255 spin_unlock(&info->lock);
1256 filepage = shmem_alloc_page(gfp, info, idx);
1257 if (!filepage) {
1258 shmem_unacct_blocks(info->flags, 1);
1259 shmem_free_blocks(inode, 1);
1260 error = -ENOMEM;
1261 goto failed;
1264 spin_lock(&info->lock);
1265 entry = shmem_swp_alloc(info, idx, sgp);
1266 if (IS_ERR(entry))
1267 error = PTR_ERR(entry);
1268 else {
1269 swap = *entry;
1270 shmem_swp_unmap(entry);
1272 if (error || swap.val || 0 != add_to_page_cache_lru(
1273 filepage, mapping, idx, GFP_ATOMIC)) {
1274 spin_unlock(&info->lock);
1275 page_cache_release(filepage);
1276 shmem_unacct_blocks(info->flags, 1);
1277 shmem_free_blocks(inode, 1);
1278 filepage = NULL;
1279 if (error)
1280 goto failed;
1281 goto repeat;
1283 info->flags |= SHMEM_PAGEIN;
1286 info->alloced++;
1287 spin_unlock(&info->lock);
1288 clear_highpage(filepage);
1289 flush_dcache_page(filepage);
1290 SetPageUptodate(filepage);
1292 done:
1293 if (*pagep != filepage) {
1294 *pagep = filepage;
1295 if (sgp != SGP_FAULT)
1296 unlock_page(filepage);
1299 return 0;
1301 failed:
1302 if (*pagep != filepage) {
1303 unlock_page(filepage);
1304 page_cache_release(filepage);
1306 return error;
1309 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1311 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1312 int error;
1313 int ret;
1315 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1316 return VM_FAULT_SIGBUS;
1318 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_FAULT, &ret);
1319 if (error)
1320 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1322 mark_page_accessed(vmf->page);
1323 return ret | VM_FAULT_LOCKED;
1326 #ifdef CONFIG_NUMA
1327 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1329 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1330 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1333 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1334 unsigned long addr)
1336 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1337 unsigned long idx;
1339 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1340 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1342 #endif
1344 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1346 struct inode *inode = file->f_path.dentry->d_inode;
1347 struct shmem_inode_info *info = SHMEM_I(inode);
1348 int retval = -ENOMEM;
1350 spin_lock(&info->lock);
1351 if (lock && !(info->flags & VM_LOCKED)) {
1352 if (!user_shm_lock(inode->i_size, user))
1353 goto out_nomem;
1354 info->flags |= VM_LOCKED;
1356 if (!lock && (info->flags & VM_LOCKED) && user) {
1357 user_shm_unlock(inode->i_size, user);
1358 info->flags &= ~VM_LOCKED;
1360 retval = 0;
1361 out_nomem:
1362 spin_unlock(&info->lock);
1363 return retval;
1366 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1368 file_accessed(file);
1369 vma->vm_ops = &shmem_vm_ops;
1370 vma->vm_flags |= VM_CAN_NONLINEAR;
1371 return 0;
1374 static struct inode *
1375 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1377 struct inode *inode;
1378 struct shmem_inode_info *info;
1379 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1381 if (sbinfo->max_inodes) {
1382 spin_lock(&sbinfo->stat_lock);
1383 if (!sbinfo->free_inodes) {
1384 spin_unlock(&sbinfo->stat_lock);
1385 return NULL;
1387 sbinfo->free_inodes--;
1388 spin_unlock(&sbinfo->stat_lock);
1391 inode = new_inode(sb);
1392 if (inode) {
1393 inode->i_mode = mode;
1394 inode->i_uid = current->fsuid;
1395 inode->i_gid = current->fsgid;
1396 inode->i_blocks = 0;
1397 inode->i_mapping->a_ops = &shmem_aops;
1398 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1399 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1400 inode->i_generation = get_seconds();
1401 info = SHMEM_I(inode);
1402 memset(info, 0, (char *)inode - (char *)info);
1403 spin_lock_init(&info->lock);
1404 INIT_LIST_HEAD(&info->swaplist);
1406 switch (mode & S_IFMT) {
1407 default:
1408 inode->i_op = &shmem_special_inode_operations;
1409 init_special_inode(inode, mode, dev);
1410 break;
1411 case S_IFREG:
1412 inode->i_op = &shmem_inode_operations;
1413 inode->i_fop = &shmem_file_operations;
1414 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1415 &sbinfo->policy_nodes);
1416 break;
1417 case S_IFDIR:
1418 inc_nlink(inode);
1419 /* Some things misbehave if size == 0 on a directory */
1420 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1421 inode->i_op = &shmem_dir_inode_operations;
1422 inode->i_fop = &simple_dir_operations;
1423 break;
1424 case S_IFLNK:
1426 * Must not load anything in the rbtree,
1427 * mpol_free_shared_policy will not be called.
1429 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1430 NULL);
1431 break;
1433 } else if (sbinfo->max_inodes) {
1434 spin_lock(&sbinfo->stat_lock);
1435 sbinfo->free_inodes++;
1436 spin_unlock(&sbinfo->stat_lock);
1438 return inode;
1441 #ifdef CONFIG_TMPFS
1442 static const struct inode_operations shmem_symlink_inode_operations;
1443 static const struct inode_operations shmem_symlink_inline_operations;
1446 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1447 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1448 * below the loop driver, in the generic fashion that many filesystems support.
1450 static int shmem_readpage(struct file *file, struct page *page)
1452 struct inode *inode = page->mapping->host;
1453 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1454 unlock_page(page);
1455 return error;
1458 static int
1459 shmem_write_begin(struct file *file, struct address_space *mapping,
1460 loff_t pos, unsigned len, unsigned flags,
1461 struct page **pagep, void **fsdata)
1463 struct inode *inode = mapping->host;
1464 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1465 *pagep = NULL;
1466 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1469 static int
1470 shmem_write_end(struct file *file, struct address_space *mapping,
1471 loff_t pos, unsigned len, unsigned copied,
1472 struct page *page, void *fsdata)
1474 struct inode *inode = mapping->host;
1476 set_page_dirty(page);
1477 page_cache_release(page);
1479 if (pos+copied > inode->i_size)
1480 i_size_write(inode, pos+copied);
1482 return copied;
1485 static ssize_t
1486 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1488 struct inode *inode = file->f_path.dentry->d_inode;
1489 loff_t pos;
1490 unsigned long written;
1491 ssize_t err;
1493 if ((ssize_t) count < 0)
1494 return -EINVAL;
1496 if (!access_ok(VERIFY_READ, buf, count))
1497 return -EFAULT;
1499 mutex_lock(&inode->i_mutex);
1501 pos = *ppos;
1502 written = 0;
1504 err = generic_write_checks(file, &pos, &count, 0);
1505 if (err || !count)
1506 goto out;
1508 err = remove_suid(file->f_path.dentry);
1509 if (err)
1510 goto out;
1512 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1514 do {
1515 struct page *page = NULL;
1516 unsigned long bytes, index, offset;
1517 char *kaddr;
1518 int left;
1520 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1521 index = pos >> PAGE_CACHE_SHIFT;
1522 bytes = PAGE_CACHE_SIZE - offset;
1523 if (bytes > count)
1524 bytes = count;
1527 * We don't hold page lock across copy from user -
1528 * what would it guard against? - so no deadlock here.
1529 * But it still may be a good idea to prefault below.
1532 err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1533 if (err)
1534 break;
1536 left = bytes;
1537 if (PageHighMem(page)) {
1538 volatile unsigned char dummy;
1539 __get_user(dummy, buf);
1540 __get_user(dummy, buf + bytes - 1);
1542 kaddr = kmap_atomic(page, KM_USER0);
1543 left = __copy_from_user_inatomic(kaddr + offset,
1544 buf, bytes);
1545 kunmap_atomic(kaddr, KM_USER0);
1547 if (left) {
1548 kaddr = kmap(page);
1549 left = __copy_from_user(kaddr + offset, buf, bytes);
1550 kunmap(page);
1553 written += bytes;
1554 count -= bytes;
1555 pos += bytes;
1556 buf += bytes;
1557 if (pos > inode->i_size)
1558 i_size_write(inode, pos);
1560 flush_dcache_page(page);
1561 set_page_dirty(page);
1562 mark_page_accessed(page);
1563 page_cache_release(page);
1565 if (left) {
1566 pos -= left;
1567 written -= left;
1568 err = -EFAULT;
1569 break;
1573 * Our dirty pages are not counted in nr_dirty,
1574 * and we do not attempt to balance dirty pages.
1577 cond_resched();
1578 } while (count);
1580 *ppos = pos;
1581 if (written)
1582 err = written;
1583 out:
1584 mutex_unlock(&inode->i_mutex);
1585 return err;
1588 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1590 struct inode *inode = filp->f_path.dentry->d_inode;
1591 struct address_space *mapping = inode->i_mapping;
1592 unsigned long index, offset;
1594 index = *ppos >> PAGE_CACHE_SHIFT;
1595 offset = *ppos & ~PAGE_CACHE_MASK;
1597 for (;;) {
1598 struct page *page = NULL;
1599 unsigned long end_index, nr, ret;
1600 loff_t i_size = i_size_read(inode);
1602 end_index = i_size >> PAGE_CACHE_SHIFT;
1603 if (index > end_index)
1604 break;
1605 if (index == end_index) {
1606 nr = i_size & ~PAGE_CACHE_MASK;
1607 if (nr <= offset)
1608 break;
1611 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1612 if (desc->error) {
1613 if (desc->error == -EINVAL)
1614 desc->error = 0;
1615 break;
1619 * We must evaluate after, since reads (unlike writes)
1620 * are called without i_mutex protection against truncate
1622 nr = PAGE_CACHE_SIZE;
1623 i_size = i_size_read(inode);
1624 end_index = i_size >> PAGE_CACHE_SHIFT;
1625 if (index == end_index) {
1626 nr = i_size & ~PAGE_CACHE_MASK;
1627 if (nr <= offset) {
1628 if (page)
1629 page_cache_release(page);
1630 break;
1633 nr -= offset;
1635 if (page) {
1637 * If users can be writing to this page using arbitrary
1638 * virtual addresses, take care about potential aliasing
1639 * before reading the page on the kernel side.
1641 if (mapping_writably_mapped(mapping))
1642 flush_dcache_page(page);
1644 * Mark the page accessed if we read the beginning.
1646 if (!offset)
1647 mark_page_accessed(page);
1648 } else {
1649 page = ZERO_PAGE(0);
1650 page_cache_get(page);
1654 * Ok, we have the page, and it's up-to-date, so
1655 * now we can copy it to user space...
1657 * The actor routine returns how many bytes were actually used..
1658 * NOTE! This may not be the same as how much of a user buffer
1659 * we filled up (we may be padding etc), so we can only update
1660 * "pos" here (the actor routine has to update the user buffer
1661 * pointers and the remaining count).
1663 ret = actor(desc, page, offset, nr);
1664 offset += ret;
1665 index += offset >> PAGE_CACHE_SHIFT;
1666 offset &= ~PAGE_CACHE_MASK;
1668 page_cache_release(page);
1669 if (ret != nr || !desc->count)
1670 break;
1672 cond_resched();
1675 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1676 file_accessed(filp);
1679 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1681 read_descriptor_t desc;
1683 if ((ssize_t) count < 0)
1684 return -EINVAL;
1685 if (!access_ok(VERIFY_WRITE, buf, count))
1686 return -EFAULT;
1687 if (!count)
1688 return 0;
1690 desc.written = 0;
1691 desc.count = count;
1692 desc.arg.buf = buf;
1693 desc.error = 0;
1695 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1696 if (desc.written)
1697 return desc.written;
1698 return desc.error;
1701 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1703 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1705 buf->f_type = TMPFS_MAGIC;
1706 buf->f_bsize = PAGE_CACHE_SIZE;
1707 buf->f_namelen = NAME_MAX;
1708 spin_lock(&sbinfo->stat_lock);
1709 if (sbinfo->max_blocks) {
1710 buf->f_blocks = sbinfo->max_blocks;
1711 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1713 if (sbinfo->max_inodes) {
1714 buf->f_files = sbinfo->max_inodes;
1715 buf->f_ffree = sbinfo->free_inodes;
1717 /* else leave those fields 0 like simple_statfs */
1718 spin_unlock(&sbinfo->stat_lock);
1719 return 0;
1723 * File creation. Allocate an inode, and we're done..
1725 static int
1726 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1728 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1729 int error = -ENOSPC;
1731 if (inode) {
1732 error = security_inode_init_security(inode, dir, NULL, NULL,
1733 NULL);
1734 if (error) {
1735 if (error != -EOPNOTSUPP) {
1736 iput(inode);
1737 return error;
1740 error = shmem_acl_init(inode, dir);
1741 if (error) {
1742 iput(inode);
1743 return error;
1745 if (dir->i_mode & S_ISGID) {
1746 inode->i_gid = dir->i_gid;
1747 if (S_ISDIR(mode))
1748 inode->i_mode |= S_ISGID;
1750 dir->i_size += BOGO_DIRENT_SIZE;
1751 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1752 d_instantiate(dentry, inode);
1753 dget(dentry); /* Extra count - pin the dentry in core */
1755 return error;
1758 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1760 int error;
1762 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1763 return error;
1764 inc_nlink(dir);
1765 return 0;
1768 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1769 struct nameidata *nd)
1771 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1775 * Link a file..
1777 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1779 struct inode *inode = old_dentry->d_inode;
1780 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1783 * No ordinary (disk based) filesystem counts links as inodes;
1784 * but each new link needs a new dentry, pinning lowmem, and
1785 * tmpfs dentries cannot be pruned until they are unlinked.
1787 if (sbinfo->max_inodes) {
1788 spin_lock(&sbinfo->stat_lock);
1789 if (!sbinfo->free_inodes) {
1790 spin_unlock(&sbinfo->stat_lock);
1791 return -ENOSPC;
1793 sbinfo->free_inodes--;
1794 spin_unlock(&sbinfo->stat_lock);
1797 dir->i_size += BOGO_DIRENT_SIZE;
1798 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1799 inc_nlink(inode);
1800 atomic_inc(&inode->i_count); /* New dentry reference */
1801 dget(dentry); /* Extra pinning count for the created dentry */
1802 d_instantiate(dentry, inode);
1803 return 0;
1806 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1808 struct inode *inode = dentry->d_inode;
1810 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1811 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1812 if (sbinfo->max_inodes) {
1813 spin_lock(&sbinfo->stat_lock);
1814 sbinfo->free_inodes++;
1815 spin_unlock(&sbinfo->stat_lock);
1819 dir->i_size -= BOGO_DIRENT_SIZE;
1820 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1821 drop_nlink(inode);
1822 dput(dentry); /* Undo the count from "create" - this does all the work */
1823 return 0;
1826 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1828 if (!simple_empty(dentry))
1829 return -ENOTEMPTY;
1831 drop_nlink(dentry->d_inode);
1832 drop_nlink(dir);
1833 return shmem_unlink(dir, dentry);
1837 * The VFS layer already does all the dentry stuff for rename,
1838 * we just have to decrement the usage count for the target if
1839 * it exists so that the VFS layer correctly free's it when it
1840 * gets overwritten.
1842 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1844 struct inode *inode = old_dentry->d_inode;
1845 int they_are_dirs = S_ISDIR(inode->i_mode);
1847 if (!simple_empty(new_dentry))
1848 return -ENOTEMPTY;
1850 if (new_dentry->d_inode) {
1851 (void) shmem_unlink(new_dir, new_dentry);
1852 if (they_are_dirs)
1853 drop_nlink(old_dir);
1854 } else if (they_are_dirs) {
1855 drop_nlink(old_dir);
1856 inc_nlink(new_dir);
1859 old_dir->i_size -= BOGO_DIRENT_SIZE;
1860 new_dir->i_size += BOGO_DIRENT_SIZE;
1861 old_dir->i_ctime = old_dir->i_mtime =
1862 new_dir->i_ctime = new_dir->i_mtime =
1863 inode->i_ctime = CURRENT_TIME;
1864 return 0;
1867 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1869 int error;
1870 int len;
1871 struct inode *inode;
1872 struct page *page = NULL;
1873 char *kaddr;
1874 struct shmem_inode_info *info;
1876 len = strlen(symname) + 1;
1877 if (len > PAGE_CACHE_SIZE)
1878 return -ENAMETOOLONG;
1880 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1881 if (!inode)
1882 return -ENOSPC;
1884 error = security_inode_init_security(inode, dir, NULL, NULL,
1885 NULL);
1886 if (error) {
1887 if (error != -EOPNOTSUPP) {
1888 iput(inode);
1889 return error;
1891 error = 0;
1894 info = SHMEM_I(inode);
1895 inode->i_size = len-1;
1896 if (len <= (char *)inode - (char *)info) {
1897 /* do it inline */
1898 memcpy(info, symname, len);
1899 inode->i_op = &shmem_symlink_inline_operations;
1900 } else {
1901 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1902 if (error) {
1903 iput(inode);
1904 return error;
1906 inode->i_op = &shmem_symlink_inode_operations;
1907 kaddr = kmap_atomic(page, KM_USER0);
1908 memcpy(kaddr, symname, len);
1909 kunmap_atomic(kaddr, KM_USER0);
1910 set_page_dirty(page);
1911 page_cache_release(page);
1913 if (dir->i_mode & S_ISGID)
1914 inode->i_gid = dir->i_gid;
1915 dir->i_size += BOGO_DIRENT_SIZE;
1916 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1917 d_instantiate(dentry, inode);
1918 dget(dentry);
1919 return 0;
1922 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1924 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1925 return NULL;
1928 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1930 struct page *page = NULL;
1931 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1932 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1933 return page;
1936 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1938 if (!IS_ERR(nd_get_link(nd))) {
1939 struct page *page = cookie;
1940 kunmap(page);
1941 mark_page_accessed(page);
1942 page_cache_release(page);
1946 static const struct inode_operations shmem_symlink_inline_operations = {
1947 .readlink = generic_readlink,
1948 .follow_link = shmem_follow_link_inline,
1951 static const struct inode_operations shmem_symlink_inode_operations = {
1952 .truncate = shmem_truncate,
1953 .readlink = generic_readlink,
1954 .follow_link = shmem_follow_link,
1955 .put_link = shmem_put_link,
1958 #ifdef CONFIG_TMPFS_POSIX_ACL
1960 * Superblocks without xattr inode operations will get security.* xattr
1961 * support from the VFS "for free". As soon as we have any other xattrs
1962 * like ACLs, we also need to implement the security.* handlers at
1963 * filesystem level, though.
1966 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1967 size_t list_len, const char *name,
1968 size_t name_len)
1970 return security_inode_listsecurity(inode, list, list_len);
1973 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1974 void *buffer, size_t size)
1976 if (strcmp(name, "") == 0)
1977 return -EINVAL;
1978 return security_inode_getsecurity(inode, name, buffer, size,
1979 -EOPNOTSUPP);
1982 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1983 const void *value, size_t size, int flags)
1985 if (strcmp(name, "") == 0)
1986 return -EINVAL;
1987 return security_inode_setsecurity(inode, name, value, size, flags);
1990 static struct xattr_handler shmem_xattr_security_handler = {
1991 .prefix = XATTR_SECURITY_PREFIX,
1992 .list = shmem_xattr_security_list,
1993 .get = shmem_xattr_security_get,
1994 .set = shmem_xattr_security_set,
1997 static struct xattr_handler *shmem_xattr_handlers[] = {
1998 &shmem_xattr_acl_access_handler,
1999 &shmem_xattr_acl_default_handler,
2000 &shmem_xattr_security_handler,
2001 NULL
2003 #endif
2005 static struct dentry *shmem_get_parent(struct dentry *child)
2007 return ERR_PTR(-ESTALE);
2010 static int shmem_match(struct inode *ino, void *vfh)
2012 __u32 *fh = vfh;
2013 __u64 inum = fh[2];
2014 inum = (inum << 32) | fh[1];
2015 return ino->i_ino == inum && fh[0] == ino->i_generation;
2018 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2019 struct fid *fid, int fh_len, int fh_type)
2021 struct inode *inode;
2022 struct dentry *dentry = NULL;
2023 u64 inum = fid->raw[2];
2024 inum = (inum << 32) | fid->raw[1];
2026 if (fh_len < 3)
2027 return NULL;
2029 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2030 shmem_match, fid->raw);
2031 if (inode) {
2032 dentry = d_find_alias(inode);
2033 iput(inode);
2036 return dentry;
2039 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2040 int connectable)
2042 struct inode *inode = dentry->d_inode;
2044 if (*len < 3)
2045 return 255;
2047 if (hlist_unhashed(&inode->i_hash)) {
2048 /* Unfortunately insert_inode_hash is not idempotent,
2049 * so as we hash inodes here rather than at creation
2050 * time, we need a lock to ensure we only try
2051 * to do it once
2053 static DEFINE_SPINLOCK(lock);
2054 spin_lock(&lock);
2055 if (hlist_unhashed(&inode->i_hash))
2056 __insert_inode_hash(inode,
2057 inode->i_ino + inode->i_generation);
2058 spin_unlock(&lock);
2061 fh[0] = inode->i_generation;
2062 fh[1] = inode->i_ino;
2063 fh[2] = ((__u64)inode->i_ino) >> 32;
2065 *len = 3;
2066 return 1;
2069 static const struct export_operations shmem_export_ops = {
2070 .get_parent = shmem_get_parent,
2071 .encode_fh = shmem_encode_fh,
2072 .fh_to_dentry = shmem_fh_to_dentry,
2075 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2076 gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2077 int *policy, nodemask_t *policy_nodes)
2079 char *this_char, *value, *rest;
2081 while (options != NULL) {
2082 this_char = options;
2083 for (;;) {
2085 * NUL-terminate this option: unfortunately,
2086 * mount options form a comma-separated list,
2087 * but mpol's nodelist may also contain commas.
2089 options = strchr(options, ',');
2090 if (options == NULL)
2091 break;
2092 options++;
2093 if (!isdigit(*options)) {
2094 options[-1] = '\0';
2095 break;
2098 if (!*this_char)
2099 continue;
2100 if ((value = strchr(this_char,'=')) != NULL) {
2101 *value++ = 0;
2102 } else {
2103 printk(KERN_ERR
2104 "tmpfs: No value for mount option '%s'\n",
2105 this_char);
2106 return 1;
2109 if (!strcmp(this_char,"size")) {
2110 unsigned long long size;
2111 size = memparse(value,&rest);
2112 if (*rest == '%') {
2113 size <<= PAGE_SHIFT;
2114 size *= totalram_pages;
2115 do_div(size, 100);
2116 rest++;
2118 if (*rest)
2119 goto bad_val;
2120 *blocks = size >> PAGE_CACHE_SHIFT;
2121 } else if (!strcmp(this_char,"nr_blocks")) {
2122 *blocks = memparse(value,&rest);
2123 if (*rest)
2124 goto bad_val;
2125 } else if (!strcmp(this_char,"nr_inodes")) {
2126 *inodes = memparse(value,&rest);
2127 if (*rest)
2128 goto bad_val;
2129 } else if (!strcmp(this_char,"mode")) {
2130 if (!mode)
2131 continue;
2132 *mode = simple_strtoul(value,&rest,8);
2133 if (*rest)
2134 goto bad_val;
2135 } else if (!strcmp(this_char,"uid")) {
2136 if (!uid)
2137 continue;
2138 *uid = simple_strtoul(value,&rest,0);
2139 if (*rest)
2140 goto bad_val;
2141 } else if (!strcmp(this_char,"gid")) {
2142 if (!gid)
2143 continue;
2144 *gid = simple_strtoul(value,&rest,0);
2145 if (*rest)
2146 goto bad_val;
2147 } else if (!strcmp(this_char,"mpol")) {
2148 if (shmem_parse_mpol(value,policy,policy_nodes))
2149 goto bad_val;
2150 } else {
2151 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2152 this_char);
2153 return 1;
2156 return 0;
2158 bad_val:
2159 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2160 value, this_char);
2161 return 1;
2165 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2167 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2168 unsigned long max_blocks = sbinfo->max_blocks;
2169 unsigned long max_inodes = sbinfo->max_inodes;
2170 int policy = sbinfo->policy;
2171 nodemask_t policy_nodes = sbinfo->policy_nodes;
2172 unsigned long blocks;
2173 unsigned long inodes;
2174 int error = -EINVAL;
2176 if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2177 &max_inodes, &policy, &policy_nodes))
2178 return error;
2180 spin_lock(&sbinfo->stat_lock);
2181 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2182 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2183 if (max_blocks < blocks)
2184 goto out;
2185 if (max_inodes < inodes)
2186 goto out;
2188 * Those tests also disallow limited->unlimited while any are in
2189 * use, so i_blocks will always be zero when max_blocks is zero;
2190 * but we must separately disallow unlimited->limited, because
2191 * in that case we have no record of how much is already in use.
2193 if (max_blocks && !sbinfo->max_blocks)
2194 goto out;
2195 if (max_inodes && !sbinfo->max_inodes)
2196 goto out;
2198 error = 0;
2199 sbinfo->max_blocks = max_blocks;
2200 sbinfo->free_blocks = max_blocks - blocks;
2201 sbinfo->max_inodes = max_inodes;
2202 sbinfo->free_inodes = max_inodes - inodes;
2203 sbinfo->policy = policy;
2204 sbinfo->policy_nodes = policy_nodes;
2205 out:
2206 spin_unlock(&sbinfo->stat_lock);
2207 return error;
2209 #endif
2211 static void shmem_put_super(struct super_block *sb)
2213 kfree(sb->s_fs_info);
2214 sb->s_fs_info = NULL;
2217 static int shmem_fill_super(struct super_block *sb,
2218 void *data, int silent)
2220 struct inode *inode;
2221 struct dentry *root;
2222 int mode = S_IRWXUGO | S_ISVTX;
2223 uid_t uid = current->fsuid;
2224 gid_t gid = current->fsgid;
2225 int err = -ENOMEM;
2226 struct shmem_sb_info *sbinfo;
2227 unsigned long blocks = 0;
2228 unsigned long inodes = 0;
2229 int policy = MPOL_DEFAULT;
2230 nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2232 #ifdef CONFIG_TMPFS
2234 * Per default we only allow half of the physical ram per
2235 * tmpfs instance, limiting inodes to one per page of lowmem;
2236 * but the internal instance is left unlimited.
2238 if (!(sb->s_flags & MS_NOUSER)) {
2239 blocks = totalram_pages / 2;
2240 inodes = totalram_pages - totalhigh_pages;
2241 if (inodes > blocks)
2242 inodes = blocks;
2243 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2244 &inodes, &policy, &policy_nodes))
2245 return -EINVAL;
2247 sb->s_export_op = &shmem_export_ops;
2248 #else
2249 sb->s_flags |= MS_NOUSER;
2250 #endif
2252 /* Round up to L1_CACHE_BYTES to resist false sharing */
2253 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2254 L1_CACHE_BYTES), GFP_KERNEL);
2255 if (!sbinfo)
2256 return -ENOMEM;
2258 spin_lock_init(&sbinfo->stat_lock);
2259 sbinfo->max_blocks = blocks;
2260 sbinfo->free_blocks = blocks;
2261 sbinfo->max_inodes = inodes;
2262 sbinfo->free_inodes = inodes;
2263 sbinfo->policy = policy;
2264 sbinfo->policy_nodes = policy_nodes;
2266 sb->s_fs_info = sbinfo;
2267 sb->s_maxbytes = SHMEM_MAX_BYTES;
2268 sb->s_blocksize = PAGE_CACHE_SIZE;
2269 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2270 sb->s_magic = TMPFS_MAGIC;
2271 sb->s_op = &shmem_ops;
2272 sb->s_time_gran = 1;
2273 #ifdef CONFIG_TMPFS_POSIX_ACL
2274 sb->s_xattr = shmem_xattr_handlers;
2275 sb->s_flags |= MS_POSIXACL;
2276 #endif
2278 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2279 if (!inode)
2280 goto failed;
2281 inode->i_uid = uid;
2282 inode->i_gid = gid;
2283 root = d_alloc_root(inode);
2284 if (!root)
2285 goto failed_iput;
2286 sb->s_root = root;
2287 return 0;
2289 failed_iput:
2290 iput(inode);
2291 failed:
2292 shmem_put_super(sb);
2293 return err;
2296 static struct kmem_cache *shmem_inode_cachep;
2298 static struct inode *shmem_alloc_inode(struct super_block *sb)
2300 struct shmem_inode_info *p;
2301 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2302 if (!p)
2303 return NULL;
2304 return &p->vfs_inode;
2307 static void shmem_destroy_inode(struct inode *inode)
2309 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2310 /* only struct inode is valid if it's an inline symlink */
2311 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2313 shmem_acl_destroy_inode(inode);
2314 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2317 static void init_once(struct kmem_cache *cachep, void *foo)
2319 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2321 inode_init_once(&p->vfs_inode);
2322 #ifdef CONFIG_TMPFS_POSIX_ACL
2323 p->i_acl = NULL;
2324 p->i_default_acl = NULL;
2325 #endif
2328 static int init_inodecache(void)
2330 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2331 sizeof(struct shmem_inode_info),
2332 0, SLAB_PANIC, init_once);
2333 return 0;
2336 static void destroy_inodecache(void)
2338 kmem_cache_destroy(shmem_inode_cachep);
2341 static const struct address_space_operations shmem_aops = {
2342 .writepage = shmem_writepage,
2343 .set_page_dirty = __set_page_dirty_no_writeback,
2344 #ifdef CONFIG_TMPFS
2345 .readpage = shmem_readpage,
2346 .write_begin = shmem_write_begin,
2347 .write_end = shmem_write_end,
2348 #endif
2349 .migratepage = migrate_page,
2352 static const struct file_operations shmem_file_operations = {
2353 .mmap = shmem_mmap,
2354 #ifdef CONFIG_TMPFS
2355 .llseek = generic_file_llseek,
2356 .read = shmem_file_read,
2357 .write = shmem_file_write,
2358 .fsync = simple_sync_file,
2359 .splice_read = generic_file_splice_read,
2360 .splice_write = generic_file_splice_write,
2361 #endif
2364 static const struct inode_operations shmem_inode_operations = {
2365 .truncate = shmem_truncate,
2366 .setattr = shmem_notify_change,
2367 .truncate_range = shmem_truncate_range,
2368 #ifdef CONFIG_TMPFS_POSIX_ACL
2369 .setxattr = generic_setxattr,
2370 .getxattr = generic_getxattr,
2371 .listxattr = generic_listxattr,
2372 .removexattr = generic_removexattr,
2373 .permission = shmem_permission,
2374 #endif
2378 static const struct inode_operations shmem_dir_inode_operations = {
2379 #ifdef CONFIG_TMPFS
2380 .create = shmem_create,
2381 .lookup = simple_lookup,
2382 .link = shmem_link,
2383 .unlink = shmem_unlink,
2384 .symlink = shmem_symlink,
2385 .mkdir = shmem_mkdir,
2386 .rmdir = shmem_rmdir,
2387 .mknod = shmem_mknod,
2388 .rename = shmem_rename,
2389 #endif
2390 #ifdef CONFIG_TMPFS_POSIX_ACL
2391 .setattr = shmem_notify_change,
2392 .setxattr = generic_setxattr,
2393 .getxattr = generic_getxattr,
2394 .listxattr = generic_listxattr,
2395 .removexattr = generic_removexattr,
2396 .permission = shmem_permission,
2397 #endif
2400 static const struct inode_operations shmem_special_inode_operations = {
2401 #ifdef CONFIG_TMPFS_POSIX_ACL
2402 .setattr = shmem_notify_change,
2403 .setxattr = generic_setxattr,
2404 .getxattr = generic_getxattr,
2405 .listxattr = generic_listxattr,
2406 .removexattr = generic_removexattr,
2407 .permission = shmem_permission,
2408 #endif
2411 static const struct super_operations shmem_ops = {
2412 .alloc_inode = shmem_alloc_inode,
2413 .destroy_inode = shmem_destroy_inode,
2414 #ifdef CONFIG_TMPFS
2415 .statfs = shmem_statfs,
2416 .remount_fs = shmem_remount_fs,
2417 #endif
2418 .delete_inode = shmem_delete_inode,
2419 .drop_inode = generic_delete_inode,
2420 .put_super = shmem_put_super,
2423 static struct vm_operations_struct shmem_vm_ops = {
2424 .fault = shmem_fault,
2425 #ifdef CONFIG_NUMA
2426 .set_policy = shmem_set_policy,
2427 .get_policy = shmem_get_policy,
2428 #endif
2432 static int shmem_get_sb(struct file_system_type *fs_type,
2433 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2435 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2438 static struct file_system_type tmpfs_fs_type = {
2439 .owner = THIS_MODULE,
2440 .name = "tmpfs",
2441 .get_sb = shmem_get_sb,
2442 .kill_sb = kill_litter_super,
2444 static struct vfsmount *shm_mnt;
2446 static int __init init_tmpfs(void)
2448 int error;
2450 error = bdi_init(&shmem_backing_dev_info);
2451 if (error)
2452 goto out4;
2454 error = init_inodecache();
2455 if (error)
2456 goto out3;
2458 error = register_filesystem(&tmpfs_fs_type);
2459 if (error) {
2460 printk(KERN_ERR "Could not register tmpfs\n");
2461 goto out2;
2464 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2465 tmpfs_fs_type.name, NULL);
2466 if (IS_ERR(shm_mnt)) {
2467 error = PTR_ERR(shm_mnt);
2468 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2469 goto out1;
2471 return 0;
2473 out1:
2474 unregister_filesystem(&tmpfs_fs_type);
2475 out2:
2476 destroy_inodecache();
2477 out3:
2478 bdi_destroy(&shmem_backing_dev_info);
2479 out4:
2480 shm_mnt = ERR_PTR(error);
2481 return error;
2483 module_init(init_tmpfs)
2486 * shmem_file_setup - get an unlinked file living in tmpfs
2488 * @name: name for dentry (to be seen in /proc/<pid>/maps
2489 * @size: size to be set for the file
2492 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2494 int error;
2495 struct file *file;
2496 struct inode *inode;
2497 struct dentry *dentry, *root;
2498 struct qstr this;
2500 if (IS_ERR(shm_mnt))
2501 return (void *)shm_mnt;
2503 if (size < 0 || size > SHMEM_MAX_BYTES)
2504 return ERR_PTR(-EINVAL);
2506 if (shmem_acct_size(flags, size))
2507 return ERR_PTR(-ENOMEM);
2509 error = -ENOMEM;
2510 this.name = name;
2511 this.len = strlen(name);
2512 this.hash = 0; /* will go */
2513 root = shm_mnt->mnt_root;
2514 dentry = d_alloc(root, &this);
2515 if (!dentry)
2516 goto put_memory;
2518 error = -ENFILE;
2519 file = get_empty_filp();
2520 if (!file)
2521 goto put_dentry;
2523 error = -ENOSPC;
2524 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2525 if (!inode)
2526 goto close_file;
2528 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2529 d_instantiate(dentry, inode);
2530 inode->i_size = size;
2531 inode->i_nlink = 0; /* It is unlinked */
2532 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2533 &shmem_file_operations);
2534 return file;
2536 close_file:
2537 put_filp(file);
2538 put_dentry:
2539 dput(dentry);
2540 put_memory:
2541 shmem_unacct_size(flags, size);
2542 return ERR_PTR(error);
2546 * shmem_zero_setup - setup a shared anonymous mapping
2548 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2550 int shmem_zero_setup(struct vm_area_struct *vma)
2552 struct file *file;
2553 loff_t size = vma->vm_end - vma->vm_start;
2555 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2556 if (IS_ERR(file))
2557 return PTR_ERR(file);
2559 if (vma->vm_file)
2560 fput(vma->vm_file);
2561 vma->vm_file = file;
2562 vma->vm_ops = &shmem_vm_ops;
2563 return 0;