mtd: fix broken state in CFI driver caused by FL_SHUTDOWN
[linux-2.6/x86.git] / drivers / mtd / chips / cfi_cmdset_0001.c
blob0080452531d6a35df3a651e94d46d0f5ac5df003
1 /*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
5 * (C) 2000 Red Hat. GPL'd
7 * $Id: cfi_cmdset_0001.c,v 1.186 2005/11/23 22:07:52 nico Exp $
10 * 10/10/2000 Nicolas Pitre <nico@cam.org>
11 * - completely revamped method functions so they are aware and
12 * independent of the flash geometry (buswidth, interleave, etc.)
13 * - scalability vs code size is completely set at compile-time
14 * (see include/linux/mtd/cfi.h for selection)
15 * - optimized write buffer method
16 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
17 * - reworked lock/unlock/erase support for var size flash
18 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
19 * - auto unlock sectors on resume for auto locking flash on power up
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/init.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/bitmap.h>
36 #include <linux/mtd/xip.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/compatmac.h>
40 #include <linux/mtd/cfi.h>
42 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
43 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
45 // debugging, turns off buffer write mode if set to 1
46 #define FORCE_WORD_WRITE 0
48 #define MANUFACTURER_INTEL 0x0089
49 #define I82802AB 0x00ad
50 #define I82802AC 0x00ac
51 #define MANUFACTURER_ST 0x0020
52 #define M50LPW080 0x002F
53 #define AT49BV640D 0x02de
55 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
59 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
60 static void cfi_intelext_sync (struct mtd_info *);
61 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
62 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
63 #ifdef CONFIG_MTD_OTP
64 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
65 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
67 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
68 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
69 struct otp_info *, size_t);
70 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
71 struct otp_info *, size_t);
72 #endif
73 static int cfi_intelext_suspend (struct mtd_info *);
74 static void cfi_intelext_resume (struct mtd_info *);
75 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
77 static void cfi_intelext_destroy(struct mtd_info *);
79 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
81 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
82 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
84 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
85 size_t *retlen, u_char **mtdbuf);
86 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
87 size_t len);
89 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
90 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
91 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
92 #include "fwh_lock.h"
97 * *********** SETUP AND PROBE BITS ***********
100 static struct mtd_chip_driver cfi_intelext_chipdrv = {
101 .probe = NULL, /* Not usable directly */
102 .destroy = cfi_intelext_destroy,
103 .name = "cfi_cmdset_0001",
104 .module = THIS_MODULE
107 /* #define DEBUG_LOCK_BITS */
108 /* #define DEBUG_CFI_FEATURES */
110 #ifdef DEBUG_CFI_FEATURES
111 static void cfi_tell_features(struct cfi_pri_intelext *extp)
113 int i;
114 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
115 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
116 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
117 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
118 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
119 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
120 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
121 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
122 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
123 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
124 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
125 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
126 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
127 for (i=11; i<32; i++) {
128 if (extp->FeatureSupport & (1<<i))
129 printk(" - Unknown Bit %X: supported\n", i);
132 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
133 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
134 for (i=1; i<8; i++) {
135 if (extp->SuspendCmdSupport & (1<<i))
136 printk(" - Unknown Bit %X: supported\n", i);
139 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
140 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
141 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
142 for (i=2; i<3; i++) {
143 if (extp->BlkStatusRegMask & (1<<i))
144 printk(" - Unknown Bit %X Active: yes\n",i);
146 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
147 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
148 for (i=6; i<16; i++) {
149 if (extp->BlkStatusRegMask & (1<<i))
150 printk(" - Unknown Bit %X Active: yes\n",i);
153 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
154 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
155 if (extp->VppOptimal)
156 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
157 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
159 #endif
161 /* Atmel chips don't use the same PRI format as Intel chips */
162 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
164 struct map_info *map = mtd->priv;
165 struct cfi_private *cfi = map->fldrv_priv;
166 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
167 struct cfi_pri_atmel atmel_pri;
168 uint32_t features = 0;
170 /* Reverse byteswapping */
171 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
172 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
173 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
175 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
176 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
178 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
180 if (atmel_pri.Features & 0x01) /* chip erase supported */
181 features |= (1<<0);
182 if (atmel_pri.Features & 0x02) /* erase suspend supported */
183 features |= (1<<1);
184 if (atmel_pri.Features & 0x04) /* program suspend supported */
185 features |= (1<<2);
186 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
187 features |= (1<<9);
188 if (atmel_pri.Features & 0x20) /* page mode read supported */
189 features |= (1<<7);
190 if (atmel_pri.Features & 0x40) /* queued erase supported */
191 features |= (1<<4);
192 if (atmel_pri.Features & 0x80) /* Protection bits supported */
193 features |= (1<<6);
195 extp->FeatureSupport = features;
197 /* burst write mode not supported */
198 cfi->cfiq->BufWriteTimeoutTyp = 0;
199 cfi->cfiq->BufWriteTimeoutMax = 0;
202 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
203 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
204 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
206 struct map_info *map = mtd->priv;
207 struct cfi_private *cfi = map->fldrv_priv;
208 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
210 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
211 "erase on write disabled.\n");
212 extp->SuspendCmdSupport &= ~1;
214 #endif
216 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
217 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
219 struct map_info *map = mtd->priv;
220 struct cfi_private *cfi = map->fldrv_priv;
221 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
223 if (cfip && (cfip->FeatureSupport&4)) {
224 cfip->FeatureSupport &= ~4;
225 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
228 #endif
230 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
232 struct map_info *map = mtd->priv;
233 struct cfi_private *cfi = map->fldrv_priv;
235 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
236 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
239 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
241 struct map_info *map = mtd->priv;
242 struct cfi_private *cfi = map->fldrv_priv;
244 /* Note this is done after the region info is endian swapped */
245 cfi->cfiq->EraseRegionInfo[1] =
246 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
249 static void fixup_use_point(struct mtd_info *mtd, void *param)
251 struct map_info *map = mtd->priv;
252 if (!mtd->point && map_is_linear(map)) {
253 mtd->point = cfi_intelext_point;
254 mtd->unpoint = cfi_intelext_unpoint;
258 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
260 struct map_info *map = mtd->priv;
261 struct cfi_private *cfi = map->fldrv_priv;
262 if (cfi->cfiq->BufWriteTimeoutTyp) {
263 printk(KERN_INFO "Using buffer write method\n" );
264 mtd->write = cfi_intelext_write_buffers;
265 mtd->writev = cfi_intelext_writev;
270 * Some chips power-up with all sectors locked by default.
272 static void fixup_unlock_powerup_lock(struct mtd_info *mtd, void *param)
274 struct map_info *map = mtd->priv;
275 struct cfi_private *cfi = map->fldrv_priv;
276 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
278 if (cfip->FeatureSupport&32) {
279 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
280 mtd->flags |= MTD_POWERUP_LOCK;
284 static struct cfi_fixup cfi_fixup_table[] = {
285 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
286 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
287 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
288 #endif
289 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
290 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
291 #endif
292 #if !FORCE_WORD_WRITE
293 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
294 #endif
295 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
296 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
297 { MANUFACTURER_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock, NULL, },
298 { 0, 0, NULL, NULL }
301 static struct cfi_fixup jedec_fixup_table[] = {
302 { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, },
303 { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, },
304 { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, },
305 { 0, 0, NULL, NULL }
307 static struct cfi_fixup fixup_table[] = {
308 /* The CFI vendor ids and the JEDEC vendor IDs appear
309 * to be common. It is like the devices id's are as
310 * well. This table is to pick all cases where
311 * we know that is the case.
313 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
314 { 0, 0, NULL, NULL }
317 static inline struct cfi_pri_intelext *
318 read_pri_intelext(struct map_info *map, __u16 adr)
320 struct cfi_pri_intelext *extp;
321 unsigned int extp_size = sizeof(*extp);
323 again:
324 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
325 if (!extp)
326 return NULL;
328 if (extp->MajorVersion != '1' ||
329 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
330 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
331 "version %c.%c.\n", extp->MajorVersion,
332 extp->MinorVersion);
333 kfree(extp);
334 return NULL;
337 /* Do some byteswapping if necessary */
338 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
339 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
340 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
342 if (extp->MajorVersion == '1' && extp->MinorVersion >= '3') {
343 unsigned int extra_size = 0;
344 int nb_parts, i;
346 /* Protection Register info */
347 extra_size += (extp->NumProtectionFields - 1) *
348 sizeof(struct cfi_intelext_otpinfo);
350 /* Burst Read info */
351 extra_size += 2;
352 if (extp_size < sizeof(*extp) + extra_size)
353 goto need_more;
354 extra_size += extp->extra[extra_size-1];
356 /* Number of hardware-partitions */
357 extra_size += 1;
358 if (extp_size < sizeof(*extp) + extra_size)
359 goto need_more;
360 nb_parts = extp->extra[extra_size - 1];
362 /* skip the sizeof(partregion) field in CFI 1.4 */
363 if (extp->MinorVersion >= '4')
364 extra_size += 2;
366 for (i = 0; i < nb_parts; i++) {
367 struct cfi_intelext_regioninfo *rinfo;
368 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
369 extra_size += sizeof(*rinfo);
370 if (extp_size < sizeof(*extp) + extra_size)
371 goto need_more;
372 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
373 extra_size += (rinfo->NumBlockTypes - 1)
374 * sizeof(struct cfi_intelext_blockinfo);
377 if (extp->MinorVersion >= '4')
378 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
380 if (extp_size < sizeof(*extp) + extra_size) {
381 need_more:
382 extp_size = sizeof(*extp) + extra_size;
383 kfree(extp);
384 if (extp_size > 4096) {
385 printk(KERN_ERR
386 "%s: cfi_pri_intelext is too fat\n",
387 __FUNCTION__);
388 return NULL;
390 goto again;
394 return extp;
397 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
399 struct cfi_private *cfi = map->fldrv_priv;
400 struct mtd_info *mtd;
401 int i;
403 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
404 if (!mtd) {
405 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
406 return NULL;
408 mtd->priv = map;
409 mtd->type = MTD_NORFLASH;
411 /* Fill in the default mtd operations */
412 mtd->erase = cfi_intelext_erase_varsize;
413 mtd->read = cfi_intelext_read;
414 mtd->write = cfi_intelext_write_words;
415 mtd->sync = cfi_intelext_sync;
416 mtd->lock = cfi_intelext_lock;
417 mtd->unlock = cfi_intelext_unlock;
418 mtd->suspend = cfi_intelext_suspend;
419 mtd->resume = cfi_intelext_resume;
420 mtd->flags = MTD_CAP_NORFLASH;
421 mtd->name = map->name;
422 mtd->writesize = 1;
424 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
426 if (cfi->cfi_mode == CFI_MODE_CFI) {
428 * It's a real CFI chip, not one for which the probe
429 * routine faked a CFI structure. So we read the feature
430 * table from it.
432 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
433 struct cfi_pri_intelext *extp;
435 extp = read_pri_intelext(map, adr);
436 if (!extp) {
437 kfree(mtd);
438 return NULL;
441 /* Install our own private info structure */
442 cfi->cmdset_priv = extp;
444 cfi_fixup(mtd, cfi_fixup_table);
446 #ifdef DEBUG_CFI_FEATURES
447 /* Tell the user about it in lots of lovely detail */
448 cfi_tell_features(extp);
449 #endif
451 if(extp->SuspendCmdSupport & 1) {
452 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
455 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
456 /* Apply jedec specific fixups */
457 cfi_fixup(mtd, jedec_fixup_table);
459 /* Apply generic fixups */
460 cfi_fixup(mtd, fixup_table);
462 for (i=0; i< cfi->numchips; i++) {
463 if (cfi->cfiq->WordWriteTimeoutTyp)
464 cfi->chips[i].word_write_time =
465 1<<cfi->cfiq->WordWriteTimeoutTyp;
466 else
467 cfi->chips[i].word_write_time = 50000;
469 if (cfi->cfiq->BufWriteTimeoutTyp)
470 cfi->chips[i].buffer_write_time =
471 1<<cfi->cfiq->BufWriteTimeoutTyp;
472 /* No default; if it isn't specified, we won't use it */
474 if (cfi->cfiq->BlockEraseTimeoutTyp)
475 cfi->chips[i].erase_time =
476 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
477 else
478 cfi->chips[i].erase_time = 2000000;
480 cfi->chips[i].ref_point_counter = 0;
481 init_waitqueue_head(&(cfi->chips[i].wq));
484 map->fldrv = &cfi_intelext_chipdrv;
486 return cfi_intelext_setup(mtd);
488 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
489 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
490 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
491 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
492 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
494 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
496 struct map_info *map = mtd->priv;
497 struct cfi_private *cfi = map->fldrv_priv;
498 unsigned long offset = 0;
499 int i,j;
500 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
502 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
504 mtd->size = devsize * cfi->numchips;
506 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
507 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
508 * mtd->numeraseregions, GFP_KERNEL);
509 if (!mtd->eraseregions) {
510 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
511 goto setup_err;
514 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
515 unsigned long ernum, ersize;
516 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
517 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
519 if (mtd->erasesize < ersize) {
520 mtd->erasesize = ersize;
522 for (j=0; j<cfi->numchips; j++) {
523 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
524 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
525 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
526 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
528 offset += (ersize * ernum);
531 if (offset != devsize) {
532 /* Argh */
533 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
534 goto setup_err;
537 for (i=0; i<mtd->numeraseregions;i++){
538 printk(KERN_DEBUG "erase region %d: offset=0x%x,size=0x%x,blocks=%d\n",
539 i,mtd->eraseregions[i].offset,
540 mtd->eraseregions[i].erasesize,
541 mtd->eraseregions[i].numblocks);
544 #ifdef CONFIG_MTD_OTP
545 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
546 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
547 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
548 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
549 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
550 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
551 #endif
553 /* This function has the potential to distort the reality
554 a bit and therefore should be called last. */
555 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
556 goto setup_err;
558 __module_get(THIS_MODULE);
559 register_reboot_notifier(&mtd->reboot_notifier);
560 return mtd;
562 setup_err:
563 if(mtd) {
564 kfree(mtd->eraseregions);
565 kfree(mtd);
567 kfree(cfi->cmdset_priv);
568 return NULL;
571 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
572 struct cfi_private **pcfi)
574 struct map_info *map = mtd->priv;
575 struct cfi_private *cfi = *pcfi;
576 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
579 * Probing of multi-partition flash chips.
581 * To support multiple partitions when available, we simply arrange
582 * for each of them to have their own flchip structure even if they
583 * are on the same physical chip. This means completely recreating
584 * a new cfi_private structure right here which is a blatent code
585 * layering violation, but this is still the least intrusive
586 * arrangement at this point. This can be rearranged in the future
587 * if someone feels motivated enough. --nico
589 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
590 && extp->FeatureSupport & (1 << 9)) {
591 struct cfi_private *newcfi;
592 struct flchip *chip;
593 struct flchip_shared *shared;
594 int offs, numregions, numparts, partshift, numvirtchips, i, j;
596 /* Protection Register info */
597 offs = (extp->NumProtectionFields - 1) *
598 sizeof(struct cfi_intelext_otpinfo);
600 /* Burst Read info */
601 offs += extp->extra[offs+1]+2;
603 /* Number of partition regions */
604 numregions = extp->extra[offs];
605 offs += 1;
607 /* skip the sizeof(partregion) field in CFI 1.4 */
608 if (extp->MinorVersion >= '4')
609 offs += 2;
611 /* Number of hardware partitions */
612 numparts = 0;
613 for (i = 0; i < numregions; i++) {
614 struct cfi_intelext_regioninfo *rinfo;
615 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
616 numparts += rinfo->NumIdentPartitions;
617 offs += sizeof(*rinfo)
618 + (rinfo->NumBlockTypes - 1) *
619 sizeof(struct cfi_intelext_blockinfo);
622 /* Programming Region info */
623 if (extp->MinorVersion >= '4') {
624 struct cfi_intelext_programming_regioninfo *prinfo;
625 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
626 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
627 mtd->flags &= ~MTD_BIT_WRITEABLE;
628 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
629 map->name, mtd->writesize,
630 cfi->interleave * prinfo->ControlValid,
631 cfi->interleave * prinfo->ControlInvalid);
635 * All functions below currently rely on all chips having
636 * the same geometry so we'll just assume that all hardware
637 * partitions are of the same size too.
639 partshift = cfi->chipshift - __ffs(numparts);
641 if ((1 << partshift) < mtd->erasesize) {
642 printk( KERN_ERR
643 "%s: bad number of hw partitions (%d)\n",
644 __FUNCTION__, numparts);
645 return -EINVAL;
648 numvirtchips = cfi->numchips * numparts;
649 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
650 if (!newcfi)
651 return -ENOMEM;
652 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
653 if (!shared) {
654 kfree(newcfi);
655 return -ENOMEM;
657 memcpy(newcfi, cfi, sizeof(struct cfi_private));
658 newcfi->numchips = numvirtchips;
659 newcfi->chipshift = partshift;
661 chip = &newcfi->chips[0];
662 for (i = 0; i < cfi->numchips; i++) {
663 shared[i].writing = shared[i].erasing = NULL;
664 spin_lock_init(&shared[i].lock);
665 for (j = 0; j < numparts; j++) {
666 *chip = cfi->chips[i];
667 chip->start += j << partshift;
668 chip->priv = &shared[i];
669 /* those should be reset too since
670 they create memory references. */
671 init_waitqueue_head(&chip->wq);
672 spin_lock_init(&chip->_spinlock);
673 chip->mutex = &chip->_spinlock;
674 chip++;
678 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
679 "--> %d partitions of %d KiB\n",
680 map->name, cfi->numchips, cfi->interleave,
681 newcfi->numchips, 1<<(newcfi->chipshift-10));
683 map->fldrv_priv = newcfi;
684 *pcfi = newcfi;
685 kfree(cfi);
688 return 0;
692 * *********** CHIP ACCESS FUNCTIONS ***********
694 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
696 DECLARE_WAITQUEUE(wait, current);
697 struct cfi_private *cfi = map->fldrv_priv;
698 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
699 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
700 unsigned long timeo = jiffies + HZ;
702 switch (chip->state) {
704 case FL_STATUS:
705 for (;;) {
706 status = map_read(map, adr);
707 if (map_word_andequal(map, status, status_OK, status_OK))
708 break;
710 /* At this point we're fine with write operations
711 in other partitions as they don't conflict. */
712 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
713 break;
715 spin_unlock(chip->mutex);
716 cfi_udelay(1);
717 spin_lock(chip->mutex);
718 /* Someone else might have been playing with it. */
719 return -EAGAIN;
721 /* Fall through */
722 case FL_READY:
723 case FL_CFI_QUERY:
724 case FL_JEDEC_QUERY:
725 return 0;
727 case FL_ERASING:
728 if (!cfip ||
729 !(cfip->FeatureSupport & 2) ||
730 !(mode == FL_READY || mode == FL_POINT ||
731 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
732 goto sleep;
735 /* Erase suspend */
736 map_write(map, CMD(0xB0), adr);
738 /* If the flash has finished erasing, then 'erase suspend'
739 * appears to make some (28F320) flash devices switch to
740 * 'read' mode. Make sure that we switch to 'read status'
741 * mode so we get the right data. --rmk
743 map_write(map, CMD(0x70), adr);
744 chip->oldstate = FL_ERASING;
745 chip->state = FL_ERASE_SUSPENDING;
746 chip->erase_suspended = 1;
747 for (;;) {
748 status = map_read(map, adr);
749 if (map_word_andequal(map, status, status_OK, status_OK))
750 break;
752 if (time_after(jiffies, timeo)) {
753 /* Urgh. Resume and pretend we weren't here. */
754 map_write(map, CMD(0xd0), adr);
755 /* Make sure we're in 'read status' mode if it had finished */
756 map_write(map, CMD(0x70), adr);
757 chip->state = FL_ERASING;
758 chip->oldstate = FL_READY;
759 printk(KERN_ERR "%s: Chip not ready after erase "
760 "suspended: status = 0x%lx\n", map->name, status.x[0]);
761 return -EIO;
764 spin_unlock(chip->mutex);
765 cfi_udelay(1);
766 spin_lock(chip->mutex);
767 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
768 So we can just loop here. */
770 chip->state = FL_STATUS;
771 return 0;
773 case FL_XIP_WHILE_ERASING:
774 if (mode != FL_READY && mode != FL_POINT &&
775 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
776 goto sleep;
777 chip->oldstate = chip->state;
778 chip->state = FL_READY;
779 return 0;
781 case FL_SHUTDOWN:
782 /* The machine is rebooting now,so no one can get chip anymore */
783 return -EIO;
784 case FL_POINT:
785 /* Only if there's no operation suspended... */
786 if (mode == FL_READY && chip->oldstate == FL_READY)
787 return 0;
788 /* Fall through */
789 default:
790 sleep:
791 set_current_state(TASK_UNINTERRUPTIBLE);
792 add_wait_queue(&chip->wq, &wait);
793 spin_unlock(chip->mutex);
794 schedule();
795 remove_wait_queue(&chip->wq, &wait);
796 spin_lock(chip->mutex);
797 return -EAGAIN;
801 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
803 int ret;
804 DECLARE_WAITQUEUE(wait, current);
806 retry:
807 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING
808 || mode == FL_OTP_WRITE || mode == FL_SHUTDOWN)) {
810 * OK. We have possibility for contention on the write/erase
811 * operations which are global to the real chip and not per
812 * partition. So let's fight it over in the partition which
813 * currently has authority on the operation.
815 * The rules are as follows:
817 * - any write operation must own shared->writing.
819 * - any erase operation must own _both_ shared->writing and
820 * shared->erasing.
822 * - contention arbitration is handled in the owner's context.
824 * The 'shared' struct can be read and/or written only when
825 * its lock is taken.
827 struct flchip_shared *shared = chip->priv;
828 struct flchip *contender;
829 spin_lock(&shared->lock);
830 contender = shared->writing;
831 if (contender && contender != chip) {
833 * The engine to perform desired operation on this
834 * partition is already in use by someone else.
835 * Let's fight over it in the context of the chip
836 * currently using it. If it is possible to suspend,
837 * that other partition will do just that, otherwise
838 * it'll happily send us to sleep. In any case, when
839 * get_chip returns success we're clear to go ahead.
841 ret = spin_trylock(contender->mutex);
842 spin_unlock(&shared->lock);
843 if (!ret)
844 goto retry;
845 spin_unlock(chip->mutex);
846 ret = chip_ready(map, contender, contender->start, mode);
847 spin_lock(chip->mutex);
849 if (ret == -EAGAIN) {
850 spin_unlock(contender->mutex);
851 goto retry;
853 if (ret) {
854 spin_unlock(contender->mutex);
855 return ret;
857 spin_lock(&shared->lock);
858 spin_unlock(contender->mutex);
861 /* Check if we already have suspended erase
862 * on this chip. Sleep. */
863 if (mode == FL_ERASING && shared->erasing
864 && shared->erasing->oldstate == FL_ERASING) {
865 spin_unlock(&shared->lock);
866 set_current_state(TASK_UNINTERRUPTIBLE);
867 add_wait_queue(&chip->wq, &wait);
868 spin_unlock(chip->mutex);
869 schedule();
870 remove_wait_queue(&chip->wq, &wait);
871 spin_lock(chip->mutex);
872 goto retry;
875 /* We now own it */
876 shared->writing = chip;
877 if (mode == FL_ERASING)
878 shared->erasing = chip;
879 spin_unlock(&shared->lock);
881 ret = chip_ready(map, chip, adr, mode);
882 if (ret == -EAGAIN)
883 goto retry;
885 return ret;
888 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
890 struct cfi_private *cfi = map->fldrv_priv;
892 if (chip->priv) {
893 struct flchip_shared *shared = chip->priv;
894 spin_lock(&shared->lock);
895 if (shared->writing == chip && chip->oldstate == FL_READY) {
896 /* We own the ability to write, but we're done */
897 shared->writing = shared->erasing;
898 if (shared->writing && shared->writing != chip) {
899 /* give back ownership to who we loaned it from */
900 struct flchip *loaner = shared->writing;
901 spin_lock(loaner->mutex);
902 spin_unlock(&shared->lock);
903 spin_unlock(chip->mutex);
904 put_chip(map, loaner, loaner->start);
905 spin_lock(chip->mutex);
906 spin_unlock(loaner->mutex);
907 wake_up(&chip->wq);
908 return;
910 shared->erasing = NULL;
911 shared->writing = NULL;
912 } else if (shared->erasing == chip && shared->writing != chip) {
914 * We own the ability to erase without the ability
915 * to write, which means the erase was suspended
916 * and some other partition is currently writing.
917 * Don't let the switch below mess things up since
918 * we don't have ownership to resume anything.
920 spin_unlock(&shared->lock);
921 wake_up(&chip->wq);
922 return;
924 spin_unlock(&shared->lock);
927 switch(chip->oldstate) {
928 case FL_ERASING:
929 chip->state = chip->oldstate;
930 /* What if one interleaved chip has finished and the
931 other hasn't? The old code would leave the finished
932 one in READY mode. That's bad, and caused -EROFS
933 errors to be returned from do_erase_oneblock because
934 that's the only bit it checked for at the time.
935 As the state machine appears to explicitly allow
936 sending the 0x70 (Read Status) command to an erasing
937 chip and expecting it to be ignored, that's what we
938 do. */
939 map_write(map, CMD(0xd0), adr);
940 map_write(map, CMD(0x70), adr);
941 chip->oldstate = FL_READY;
942 chip->state = FL_ERASING;
943 break;
945 case FL_XIP_WHILE_ERASING:
946 chip->state = chip->oldstate;
947 chip->oldstate = FL_READY;
948 break;
950 case FL_READY:
951 case FL_STATUS:
952 case FL_JEDEC_QUERY:
953 /* We should really make set_vpp() count, rather than doing this */
954 DISABLE_VPP(map);
955 break;
956 default:
957 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
959 wake_up(&chip->wq);
962 #ifdef CONFIG_MTD_XIP
965 * No interrupt what so ever can be serviced while the flash isn't in array
966 * mode. This is ensured by the xip_disable() and xip_enable() functions
967 * enclosing any code path where the flash is known not to be in array mode.
968 * And within a XIP disabled code path, only functions marked with __xipram
969 * may be called and nothing else (it's a good thing to inspect generated
970 * assembly to make sure inline functions were actually inlined and that gcc
971 * didn't emit calls to its own support functions). Also configuring MTD CFI
972 * support to a single buswidth and a single interleave is also recommended.
975 static void xip_disable(struct map_info *map, struct flchip *chip,
976 unsigned long adr)
978 /* TODO: chips with no XIP use should ignore and return */
979 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
980 local_irq_disable();
983 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
984 unsigned long adr)
986 struct cfi_private *cfi = map->fldrv_priv;
987 if (chip->state != FL_POINT && chip->state != FL_READY) {
988 map_write(map, CMD(0xff), adr);
989 chip->state = FL_READY;
991 (void) map_read(map, adr);
992 xip_iprefetch();
993 local_irq_enable();
997 * When a delay is required for the flash operation to complete, the
998 * xip_wait_for_operation() function is polling for both the given timeout
999 * and pending (but still masked) hardware interrupts. Whenever there is an
1000 * interrupt pending then the flash erase or write operation is suspended,
1001 * array mode restored and interrupts unmasked. Task scheduling might also
1002 * happen at that point. The CPU eventually returns from the interrupt or
1003 * the call to schedule() and the suspended flash operation is resumed for
1004 * the remaining of the delay period.
1006 * Warning: this function _will_ fool interrupt latency tracing tools.
1009 static int __xipram xip_wait_for_operation(
1010 struct map_info *map, struct flchip *chip,
1011 unsigned long adr, unsigned int chip_op_time )
1013 struct cfi_private *cfi = map->fldrv_priv;
1014 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1015 map_word status, OK = CMD(0x80);
1016 unsigned long usec, suspended, start, done;
1017 flstate_t oldstate, newstate;
1019 start = xip_currtime();
1020 usec = chip_op_time * 8;
1021 if (usec == 0)
1022 usec = 500000;
1023 done = 0;
1025 do {
1026 cpu_relax();
1027 if (xip_irqpending() && cfip &&
1028 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1029 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1030 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1032 * Let's suspend the erase or write operation when
1033 * supported. Note that we currently don't try to
1034 * suspend interleaved chips if there is already
1035 * another operation suspended (imagine what happens
1036 * when one chip was already done with the current
1037 * operation while another chip suspended it, then
1038 * we resume the whole thing at once). Yes, it
1039 * can happen!
1041 usec -= done;
1042 map_write(map, CMD(0xb0), adr);
1043 map_write(map, CMD(0x70), adr);
1044 suspended = xip_currtime();
1045 do {
1046 if (xip_elapsed_since(suspended) > 100000) {
1048 * The chip doesn't want to suspend
1049 * after waiting for 100 msecs.
1050 * This is a critical error but there
1051 * is not much we can do here.
1053 return -EIO;
1055 status = map_read(map, adr);
1056 } while (!map_word_andequal(map, status, OK, OK));
1058 /* Suspend succeeded */
1059 oldstate = chip->state;
1060 if (oldstate == FL_ERASING) {
1061 if (!map_word_bitsset(map, status, CMD(0x40)))
1062 break;
1063 newstate = FL_XIP_WHILE_ERASING;
1064 chip->erase_suspended = 1;
1065 } else {
1066 if (!map_word_bitsset(map, status, CMD(0x04)))
1067 break;
1068 newstate = FL_XIP_WHILE_WRITING;
1069 chip->write_suspended = 1;
1071 chip->state = newstate;
1072 map_write(map, CMD(0xff), adr);
1073 (void) map_read(map, adr);
1074 asm volatile (".rep 8; nop; .endr");
1075 local_irq_enable();
1076 spin_unlock(chip->mutex);
1077 asm volatile (".rep 8; nop; .endr");
1078 cond_resched();
1081 * We're back. However someone else might have
1082 * decided to go write to the chip if we are in
1083 * a suspended erase state. If so let's wait
1084 * until it's done.
1086 spin_lock(chip->mutex);
1087 while (chip->state != newstate) {
1088 DECLARE_WAITQUEUE(wait, current);
1089 set_current_state(TASK_UNINTERRUPTIBLE);
1090 add_wait_queue(&chip->wq, &wait);
1091 spin_unlock(chip->mutex);
1092 schedule();
1093 remove_wait_queue(&chip->wq, &wait);
1094 spin_lock(chip->mutex);
1096 /* Disallow XIP again */
1097 local_irq_disable();
1099 /* Resume the write or erase operation */
1100 map_write(map, CMD(0xd0), adr);
1101 map_write(map, CMD(0x70), adr);
1102 chip->state = oldstate;
1103 start = xip_currtime();
1104 } else if (usec >= 1000000/HZ) {
1106 * Try to save on CPU power when waiting delay
1107 * is at least a system timer tick period.
1108 * No need to be extremely accurate here.
1110 xip_cpu_idle();
1112 status = map_read(map, adr);
1113 done = xip_elapsed_since(start);
1114 } while (!map_word_andequal(map, status, OK, OK)
1115 && done < usec);
1117 return (done >= usec) ? -ETIME : 0;
1121 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1122 * the flash is actively programming or erasing since we have to poll for
1123 * the operation to complete anyway. We can't do that in a generic way with
1124 * a XIP setup so do it before the actual flash operation in this case
1125 * and stub it out from INVAL_CACHE_AND_WAIT.
1127 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1128 INVALIDATE_CACHED_RANGE(map, from, size)
1130 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec) \
1131 xip_wait_for_operation(map, chip, cmd_adr, usec)
1133 #else
1135 #define xip_disable(map, chip, adr)
1136 #define xip_enable(map, chip, adr)
1137 #define XIP_INVAL_CACHED_RANGE(x...)
1138 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1140 static int inval_cache_and_wait_for_operation(
1141 struct map_info *map, struct flchip *chip,
1142 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1143 unsigned int chip_op_time)
1145 struct cfi_private *cfi = map->fldrv_priv;
1146 map_word status, status_OK = CMD(0x80);
1147 int chip_state = chip->state;
1148 unsigned int timeo, sleep_time;
1150 spin_unlock(chip->mutex);
1151 if (inval_len)
1152 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1153 spin_lock(chip->mutex);
1155 /* set our timeout to 8 times the expected delay */
1156 timeo = chip_op_time * 8;
1157 if (!timeo)
1158 timeo = 500000;
1159 sleep_time = chip_op_time / 2;
1161 for (;;) {
1162 status = map_read(map, cmd_adr);
1163 if (map_word_andequal(map, status, status_OK, status_OK))
1164 break;
1166 if (!timeo) {
1167 map_write(map, CMD(0x70), cmd_adr);
1168 chip->state = FL_STATUS;
1169 return -ETIME;
1172 /* OK Still waiting. Drop the lock, wait a while and retry. */
1173 spin_unlock(chip->mutex);
1174 if (sleep_time >= 1000000/HZ) {
1176 * Half of the normal delay still remaining
1177 * can be performed with a sleeping delay instead
1178 * of busy waiting.
1180 msleep(sleep_time/1000);
1181 timeo -= sleep_time;
1182 sleep_time = 1000000/HZ;
1183 } else {
1184 udelay(1);
1185 cond_resched();
1186 timeo--;
1188 spin_lock(chip->mutex);
1190 while (chip->state != chip_state) {
1191 /* Someone's suspended the operation: sleep */
1192 DECLARE_WAITQUEUE(wait, current);
1193 set_current_state(TASK_UNINTERRUPTIBLE);
1194 add_wait_queue(&chip->wq, &wait);
1195 spin_unlock(chip->mutex);
1196 schedule();
1197 remove_wait_queue(&chip->wq, &wait);
1198 spin_lock(chip->mutex);
1202 /* Done and happy. */
1203 chip->state = FL_STATUS;
1204 return 0;
1207 #endif
1209 #define WAIT_TIMEOUT(map, chip, adr, udelay) \
1210 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay);
1213 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1215 unsigned long cmd_addr;
1216 struct cfi_private *cfi = map->fldrv_priv;
1217 int ret = 0;
1219 adr += chip->start;
1221 /* Ensure cmd read/writes are aligned. */
1222 cmd_addr = adr & ~(map_bankwidth(map)-1);
1224 spin_lock(chip->mutex);
1226 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1228 if (!ret) {
1229 if (chip->state != FL_POINT && chip->state != FL_READY)
1230 map_write(map, CMD(0xff), cmd_addr);
1232 chip->state = FL_POINT;
1233 chip->ref_point_counter++;
1235 spin_unlock(chip->mutex);
1237 return ret;
1240 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
1242 struct map_info *map = mtd->priv;
1243 struct cfi_private *cfi = map->fldrv_priv;
1244 unsigned long ofs, last_end = 0;
1245 int chipnum;
1246 int ret = 0;
1248 if (!map->virt || (from + len > mtd->size))
1249 return -EINVAL;
1251 /* Now lock the chip(s) to POINT state */
1253 /* ofs: offset within the first chip that the first read should start */
1254 chipnum = (from >> cfi->chipshift);
1255 ofs = from - (chipnum << cfi->chipshift);
1257 *mtdbuf = (void *)map->virt + cfi->chips[chipnum].start + ofs;
1258 *retlen = 0;
1260 while (len) {
1261 unsigned long thislen;
1263 if (chipnum >= cfi->numchips)
1264 break;
1266 /* We cannot point across chips that are virtually disjoint */
1267 if (!last_end)
1268 last_end = cfi->chips[chipnum].start;
1269 else if (cfi->chips[chipnum].start != last_end)
1270 break;
1272 if ((len + ofs -1) >> cfi->chipshift)
1273 thislen = (1<<cfi->chipshift) - ofs;
1274 else
1275 thislen = len;
1277 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1278 if (ret)
1279 break;
1281 *retlen += thislen;
1282 len -= thislen;
1284 ofs = 0;
1285 last_end += 1 << cfi->chipshift;
1286 chipnum++;
1288 return 0;
1291 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
1293 struct map_info *map = mtd->priv;
1294 struct cfi_private *cfi = map->fldrv_priv;
1295 unsigned long ofs;
1296 int chipnum;
1298 /* Now unlock the chip(s) POINT state */
1300 /* ofs: offset within the first chip that the first read should start */
1301 chipnum = (from >> cfi->chipshift);
1302 ofs = from - (chipnum << cfi->chipshift);
1304 while (len) {
1305 unsigned long thislen;
1306 struct flchip *chip;
1308 chip = &cfi->chips[chipnum];
1309 if (chipnum >= cfi->numchips)
1310 break;
1312 if ((len + ofs -1) >> cfi->chipshift)
1313 thislen = (1<<cfi->chipshift) - ofs;
1314 else
1315 thislen = len;
1317 spin_lock(chip->mutex);
1318 if (chip->state == FL_POINT) {
1319 chip->ref_point_counter--;
1320 if(chip->ref_point_counter == 0)
1321 chip->state = FL_READY;
1322 } else
1323 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1325 put_chip(map, chip, chip->start);
1326 spin_unlock(chip->mutex);
1328 len -= thislen;
1329 ofs = 0;
1330 chipnum++;
1334 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1336 unsigned long cmd_addr;
1337 struct cfi_private *cfi = map->fldrv_priv;
1338 int ret;
1340 adr += chip->start;
1342 /* Ensure cmd read/writes are aligned. */
1343 cmd_addr = adr & ~(map_bankwidth(map)-1);
1345 spin_lock(chip->mutex);
1346 ret = get_chip(map, chip, cmd_addr, FL_READY);
1347 if (ret) {
1348 spin_unlock(chip->mutex);
1349 return ret;
1352 if (chip->state != FL_POINT && chip->state != FL_READY) {
1353 map_write(map, CMD(0xff), cmd_addr);
1355 chip->state = FL_READY;
1358 map_copy_from(map, buf, adr, len);
1360 put_chip(map, chip, cmd_addr);
1362 spin_unlock(chip->mutex);
1363 return 0;
1366 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1368 struct map_info *map = mtd->priv;
1369 struct cfi_private *cfi = map->fldrv_priv;
1370 unsigned long ofs;
1371 int chipnum;
1372 int ret = 0;
1374 /* ofs: offset within the first chip that the first read should start */
1375 chipnum = (from >> cfi->chipshift);
1376 ofs = from - (chipnum << cfi->chipshift);
1378 *retlen = 0;
1380 while (len) {
1381 unsigned long thislen;
1383 if (chipnum >= cfi->numchips)
1384 break;
1386 if ((len + ofs -1) >> cfi->chipshift)
1387 thislen = (1<<cfi->chipshift) - ofs;
1388 else
1389 thislen = len;
1391 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1392 if (ret)
1393 break;
1395 *retlen += thislen;
1396 len -= thislen;
1397 buf += thislen;
1399 ofs = 0;
1400 chipnum++;
1402 return ret;
1405 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1406 unsigned long adr, map_word datum, int mode)
1408 struct cfi_private *cfi = map->fldrv_priv;
1409 map_word status, write_cmd;
1410 int ret=0;
1412 adr += chip->start;
1414 switch (mode) {
1415 case FL_WRITING:
1416 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0x40) : CMD(0x41);
1417 break;
1418 case FL_OTP_WRITE:
1419 write_cmd = CMD(0xc0);
1420 break;
1421 default:
1422 return -EINVAL;
1425 spin_lock(chip->mutex);
1426 ret = get_chip(map, chip, adr, mode);
1427 if (ret) {
1428 spin_unlock(chip->mutex);
1429 return ret;
1432 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1433 ENABLE_VPP(map);
1434 xip_disable(map, chip, adr);
1435 map_write(map, write_cmd, adr);
1436 map_write(map, datum, adr);
1437 chip->state = mode;
1439 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1440 adr, map_bankwidth(map),
1441 chip->word_write_time);
1442 if (ret) {
1443 xip_enable(map, chip, adr);
1444 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1445 goto out;
1448 /* check for errors */
1449 status = map_read(map, adr);
1450 if (map_word_bitsset(map, status, CMD(0x1a))) {
1451 unsigned long chipstatus = MERGESTATUS(status);
1453 /* reset status */
1454 map_write(map, CMD(0x50), adr);
1455 map_write(map, CMD(0x70), adr);
1456 xip_enable(map, chip, adr);
1458 if (chipstatus & 0x02) {
1459 ret = -EROFS;
1460 } else if (chipstatus & 0x08) {
1461 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1462 ret = -EIO;
1463 } else {
1464 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1465 ret = -EINVAL;
1468 goto out;
1471 xip_enable(map, chip, adr);
1472 out: put_chip(map, chip, adr);
1473 spin_unlock(chip->mutex);
1474 return ret;
1478 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1480 struct map_info *map = mtd->priv;
1481 struct cfi_private *cfi = map->fldrv_priv;
1482 int ret = 0;
1483 int chipnum;
1484 unsigned long ofs;
1486 *retlen = 0;
1487 if (!len)
1488 return 0;
1490 chipnum = to >> cfi->chipshift;
1491 ofs = to - (chipnum << cfi->chipshift);
1493 /* If it's not bus-aligned, do the first byte write */
1494 if (ofs & (map_bankwidth(map)-1)) {
1495 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1496 int gap = ofs - bus_ofs;
1497 int n;
1498 map_word datum;
1500 n = min_t(int, len, map_bankwidth(map)-gap);
1501 datum = map_word_ff(map);
1502 datum = map_word_load_partial(map, datum, buf, gap, n);
1504 ret = do_write_oneword(map, &cfi->chips[chipnum],
1505 bus_ofs, datum, FL_WRITING);
1506 if (ret)
1507 return ret;
1509 len -= n;
1510 ofs += n;
1511 buf += n;
1512 (*retlen) += n;
1514 if (ofs >> cfi->chipshift) {
1515 chipnum ++;
1516 ofs = 0;
1517 if (chipnum == cfi->numchips)
1518 return 0;
1522 while(len >= map_bankwidth(map)) {
1523 map_word datum = map_word_load(map, buf);
1525 ret = do_write_oneword(map, &cfi->chips[chipnum],
1526 ofs, datum, FL_WRITING);
1527 if (ret)
1528 return ret;
1530 ofs += map_bankwidth(map);
1531 buf += map_bankwidth(map);
1532 (*retlen) += map_bankwidth(map);
1533 len -= map_bankwidth(map);
1535 if (ofs >> cfi->chipshift) {
1536 chipnum ++;
1537 ofs = 0;
1538 if (chipnum == cfi->numchips)
1539 return 0;
1543 if (len & (map_bankwidth(map)-1)) {
1544 map_word datum;
1546 datum = map_word_ff(map);
1547 datum = map_word_load_partial(map, datum, buf, 0, len);
1549 ret = do_write_oneword(map, &cfi->chips[chipnum],
1550 ofs, datum, FL_WRITING);
1551 if (ret)
1552 return ret;
1554 (*retlen) += len;
1557 return 0;
1561 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1562 unsigned long adr, const struct kvec **pvec,
1563 unsigned long *pvec_seek, int len)
1565 struct cfi_private *cfi = map->fldrv_priv;
1566 map_word status, write_cmd, datum;
1567 unsigned long cmd_adr;
1568 int ret, wbufsize, word_gap, words;
1569 const struct kvec *vec;
1570 unsigned long vec_seek;
1571 unsigned long initial_adr;
1572 int initial_len = len;
1574 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1575 adr += chip->start;
1576 initial_adr = adr;
1577 cmd_adr = adr & ~(wbufsize-1);
1579 /* Let's determine this according to the interleave only once */
1580 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0xe8) : CMD(0xe9);
1582 spin_lock(chip->mutex);
1583 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1584 if (ret) {
1585 spin_unlock(chip->mutex);
1586 return ret;
1589 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1590 ENABLE_VPP(map);
1591 xip_disable(map, chip, cmd_adr);
1593 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1594 [...], the device will not accept any more Write to Buffer commands".
1595 So we must check here and reset those bits if they're set. Otherwise
1596 we're just pissing in the wind */
1597 if (chip->state != FL_STATUS) {
1598 map_write(map, CMD(0x70), cmd_adr);
1599 chip->state = FL_STATUS;
1601 status = map_read(map, cmd_adr);
1602 if (map_word_bitsset(map, status, CMD(0x30))) {
1603 xip_enable(map, chip, cmd_adr);
1604 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1605 xip_disable(map, chip, cmd_adr);
1606 map_write(map, CMD(0x50), cmd_adr);
1607 map_write(map, CMD(0x70), cmd_adr);
1610 chip->state = FL_WRITING_TO_BUFFER;
1611 map_write(map, write_cmd, cmd_adr);
1612 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0);
1613 if (ret) {
1614 /* Argh. Not ready for write to buffer */
1615 map_word Xstatus = map_read(map, cmd_adr);
1616 map_write(map, CMD(0x70), cmd_adr);
1617 chip->state = FL_STATUS;
1618 status = map_read(map, cmd_adr);
1619 map_write(map, CMD(0x50), cmd_adr);
1620 map_write(map, CMD(0x70), cmd_adr);
1621 xip_enable(map, chip, cmd_adr);
1622 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1623 map->name, Xstatus.x[0], status.x[0]);
1624 goto out;
1627 /* Figure out the number of words to write */
1628 word_gap = (-adr & (map_bankwidth(map)-1));
1629 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
1630 if (!word_gap) {
1631 words--;
1632 } else {
1633 word_gap = map_bankwidth(map) - word_gap;
1634 adr -= word_gap;
1635 datum = map_word_ff(map);
1638 /* Write length of data to come */
1639 map_write(map, CMD(words), cmd_adr );
1641 /* Write data */
1642 vec = *pvec;
1643 vec_seek = *pvec_seek;
1644 do {
1645 int n = map_bankwidth(map) - word_gap;
1646 if (n > vec->iov_len - vec_seek)
1647 n = vec->iov_len - vec_seek;
1648 if (n > len)
1649 n = len;
1651 if (!word_gap && len < map_bankwidth(map))
1652 datum = map_word_ff(map);
1654 datum = map_word_load_partial(map, datum,
1655 vec->iov_base + vec_seek,
1656 word_gap, n);
1658 len -= n;
1659 word_gap += n;
1660 if (!len || word_gap == map_bankwidth(map)) {
1661 map_write(map, datum, adr);
1662 adr += map_bankwidth(map);
1663 word_gap = 0;
1666 vec_seek += n;
1667 if (vec_seek == vec->iov_len) {
1668 vec++;
1669 vec_seek = 0;
1671 } while (len);
1672 *pvec = vec;
1673 *pvec_seek = vec_seek;
1675 /* GO GO GO */
1676 map_write(map, CMD(0xd0), cmd_adr);
1677 chip->state = FL_WRITING;
1679 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1680 initial_adr, initial_len,
1681 chip->buffer_write_time);
1682 if (ret) {
1683 map_write(map, CMD(0x70), cmd_adr);
1684 chip->state = FL_STATUS;
1685 xip_enable(map, chip, cmd_adr);
1686 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1687 goto out;
1690 /* check for errors */
1691 status = map_read(map, cmd_adr);
1692 if (map_word_bitsset(map, status, CMD(0x1a))) {
1693 unsigned long chipstatus = MERGESTATUS(status);
1695 /* reset status */
1696 map_write(map, CMD(0x50), cmd_adr);
1697 map_write(map, CMD(0x70), cmd_adr);
1698 xip_enable(map, chip, cmd_adr);
1700 if (chipstatus & 0x02) {
1701 ret = -EROFS;
1702 } else if (chipstatus & 0x08) {
1703 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1704 ret = -EIO;
1705 } else {
1706 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1707 ret = -EINVAL;
1710 goto out;
1713 xip_enable(map, chip, cmd_adr);
1714 out: put_chip(map, chip, cmd_adr);
1715 spin_unlock(chip->mutex);
1716 return ret;
1719 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1720 unsigned long count, loff_t to, size_t *retlen)
1722 struct map_info *map = mtd->priv;
1723 struct cfi_private *cfi = map->fldrv_priv;
1724 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1725 int ret = 0;
1726 int chipnum;
1727 unsigned long ofs, vec_seek, i;
1728 size_t len = 0;
1730 for (i = 0; i < count; i++)
1731 len += vecs[i].iov_len;
1733 *retlen = 0;
1734 if (!len)
1735 return 0;
1737 chipnum = to >> cfi->chipshift;
1738 ofs = to - (chipnum << cfi->chipshift);
1739 vec_seek = 0;
1741 do {
1742 /* We must not cross write block boundaries */
1743 int size = wbufsize - (ofs & (wbufsize-1));
1745 if (size > len)
1746 size = len;
1747 ret = do_write_buffer(map, &cfi->chips[chipnum],
1748 ofs, &vecs, &vec_seek, size);
1749 if (ret)
1750 return ret;
1752 ofs += size;
1753 (*retlen) += size;
1754 len -= size;
1756 if (ofs >> cfi->chipshift) {
1757 chipnum ++;
1758 ofs = 0;
1759 if (chipnum == cfi->numchips)
1760 return 0;
1763 /* Be nice and reschedule with the chip in a usable state for other
1764 processes. */
1765 cond_resched();
1767 } while (len);
1769 return 0;
1772 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1773 size_t len, size_t *retlen, const u_char *buf)
1775 struct kvec vec;
1777 vec.iov_base = (void *) buf;
1778 vec.iov_len = len;
1780 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1783 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1784 unsigned long adr, int len, void *thunk)
1786 struct cfi_private *cfi = map->fldrv_priv;
1787 map_word status;
1788 int retries = 3;
1789 int ret;
1791 adr += chip->start;
1793 retry:
1794 spin_lock(chip->mutex);
1795 ret = get_chip(map, chip, adr, FL_ERASING);
1796 if (ret) {
1797 spin_unlock(chip->mutex);
1798 return ret;
1801 XIP_INVAL_CACHED_RANGE(map, adr, len);
1802 ENABLE_VPP(map);
1803 xip_disable(map, chip, adr);
1805 /* Clear the status register first */
1806 map_write(map, CMD(0x50), adr);
1808 /* Now erase */
1809 map_write(map, CMD(0x20), adr);
1810 map_write(map, CMD(0xD0), adr);
1811 chip->state = FL_ERASING;
1812 chip->erase_suspended = 0;
1814 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1815 adr, len,
1816 chip->erase_time);
1817 if (ret) {
1818 map_write(map, CMD(0x70), adr);
1819 chip->state = FL_STATUS;
1820 xip_enable(map, chip, adr);
1821 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1822 goto out;
1825 /* We've broken this before. It doesn't hurt to be safe */
1826 map_write(map, CMD(0x70), adr);
1827 chip->state = FL_STATUS;
1828 status = map_read(map, adr);
1830 /* check for errors */
1831 if (map_word_bitsset(map, status, CMD(0x3a))) {
1832 unsigned long chipstatus = MERGESTATUS(status);
1834 /* Reset the error bits */
1835 map_write(map, CMD(0x50), adr);
1836 map_write(map, CMD(0x70), adr);
1837 xip_enable(map, chip, adr);
1839 if ((chipstatus & 0x30) == 0x30) {
1840 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1841 ret = -EINVAL;
1842 } else if (chipstatus & 0x02) {
1843 /* Protection bit set */
1844 ret = -EROFS;
1845 } else if (chipstatus & 0x8) {
1846 /* Voltage */
1847 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1848 ret = -EIO;
1849 } else if (chipstatus & 0x20 && retries--) {
1850 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1851 put_chip(map, chip, adr);
1852 spin_unlock(chip->mutex);
1853 goto retry;
1854 } else {
1855 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1856 ret = -EIO;
1859 goto out;
1862 xip_enable(map, chip, adr);
1863 out: put_chip(map, chip, adr);
1864 spin_unlock(chip->mutex);
1865 return ret;
1868 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1870 unsigned long ofs, len;
1871 int ret;
1873 ofs = instr->addr;
1874 len = instr->len;
1876 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1877 if (ret)
1878 return ret;
1880 instr->state = MTD_ERASE_DONE;
1881 mtd_erase_callback(instr);
1883 return 0;
1886 static void cfi_intelext_sync (struct mtd_info *mtd)
1888 struct map_info *map = mtd->priv;
1889 struct cfi_private *cfi = map->fldrv_priv;
1890 int i;
1891 struct flchip *chip;
1892 int ret = 0;
1894 for (i=0; !ret && i<cfi->numchips; i++) {
1895 chip = &cfi->chips[i];
1897 spin_lock(chip->mutex);
1898 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1900 if (!ret) {
1901 chip->oldstate = chip->state;
1902 chip->state = FL_SYNCING;
1903 /* No need to wake_up() on this state change -
1904 * as the whole point is that nobody can do anything
1905 * with the chip now anyway.
1908 spin_unlock(chip->mutex);
1911 /* Unlock the chips again */
1913 for (i--; i >=0; i--) {
1914 chip = &cfi->chips[i];
1916 spin_lock(chip->mutex);
1918 if (chip->state == FL_SYNCING) {
1919 chip->state = chip->oldstate;
1920 chip->oldstate = FL_READY;
1921 wake_up(&chip->wq);
1923 spin_unlock(chip->mutex);
1927 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
1928 struct flchip *chip,
1929 unsigned long adr,
1930 int len, void *thunk)
1932 struct cfi_private *cfi = map->fldrv_priv;
1933 int status, ofs_factor = cfi->interleave * cfi->device_type;
1935 adr += chip->start;
1936 xip_disable(map, chip, adr+(2*ofs_factor));
1937 map_write(map, CMD(0x90), adr+(2*ofs_factor));
1938 chip->state = FL_JEDEC_QUERY;
1939 status = cfi_read_query(map, adr+(2*ofs_factor));
1940 xip_enable(map, chip, 0);
1941 return status;
1944 #ifdef DEBUG_LOCK_BITS
1945 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
1946 struct flchip *chip,
1947 unsigned long adr,
1948 int len, void *thunk)
1950 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
1951 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
1952 return 0;
1954 #endif
1956 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
1957 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
1959 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
1960 unsigned long adr, int len, void *thunk)
1962 struct cfi_private *cfi = map->fldrv_priv;
1963 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1964 int udelay;
1965 int ret;
1967 adr += chip->start;
1969 spin_lock(chip->mutex);
1970 ret = get_chip(map, chip, adr, FL_LOCKING);
1971 if (ret) {
1972 spin_unlock(chip->mutex);
1973 return ret;
1976 ENABLE_VPP(map);
1977 xip_disable(map, chip, adr);
1979 map_write(map, CMD(0x60), adr);
1980 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
1981 map_write(map, CMD(0x01), adr);
1982 chip->state = FL_LOCKING;
1983 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
1984 map_write(map, CMD(0xD0), adr);
1985 chip->state = FL_UNLOCKING;
1986 } else
1987 BUG();
1990 * If Instant Individual Block Locking supported then no need
1991 * to delay.
1993 udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
1995 ret = WAIT_TIMEOUT(map, chip, adr, udelay);
1996 if (ret) {
1997 map_write(map, CMD(0x70), adr);
1998 chip->state = FL_STATUS;
1999 xip_enable(map, chip, adr);
2000 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2001 goto out;
2004 xip_enable(map, chip, adr);
2005 out: put_chip(map, chip, adr);
2006 spin_unlock(chip->mutex);
2007 return ret;
2010 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2012 int ret;
2014 #ifdef DEBUG_LOCK_BITS
2015 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2016 __FUNCTION__, ofs, len);
2017 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2018 ofs, len, NULL);
2019 #endif
2021 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2022 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2024 #ifdef DEBUG_LOCK_BITS
2025 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2026 __FUNCTION__, ret);
2027 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2028 ofs, len, NULL);
2029 #endif
2031 return ret;
2034 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2036 int ret;
2038 #ifdef DEBUG_LOCK_BITS
2039 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2040 __FUNCTION__, ofs, len);
2041 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2042 ofs, len, NULL);
2043 #endif
2045 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2046 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2048 #ifdef DEBUG_LOCK_BITS
2049 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2050 __FUNCTION__, ret);
2051 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2052 ofs, len, NULL);
2053 #endif
2055 return ret;
2058 #ifdef CONFIG_MTD_OTP
2060 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2061 u_long data_offset, u_char *buf, u_int size,
2062 u_long prot_offset, u_int groupno, u_int groupsize);
2064 static int __xipram
2065 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2066 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2068 struct cfi_private *cfi = map->fldrv_priv;
2069 int ret;
2071 spin_lock(chip->mutex);
2072 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2073 if (ret) {
2074 spin_unlock(chip->mutex);
2075 return ret;
2078 /* let's ensure we're not reading back cached data from array mode */
2079 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2081 xip_disable(map, chip, chip->start);
2082 if (chip->state != FL_JEDEC_QUERY) {
2083 map_write(map, CMD(0x90), chip->start);
2084 chip->state = FL_JEDEC_QUERY;
2086 map_copy_from(map, buf, chip->start + offset, size);
2087 xip_enable(map, chip, chip->start);
2089 /* then ensure we don't keep OTP data in the cache */
2090 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2092 put_chip(map, chip, chip->start);
2093 spin_unlock(chip->mutex);
2094 return 0;
2097 static int
2098 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2099 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2101 int ret;
2103 while (size) {
2104 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2105 int gap = offset - bus_ofs;
2106 int n = min_t(int, size, map_bankwidth(map)-gap);
2107 map_word datum = map_word_ff(map);
2109 datum = map_word_load_partial(map, datum, buf, gap, n);
2110 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2111 if (ret)
2112 return ret;
2114 offset += n;
2115 buf += n;
2116 size -= n;
2119 return 0;
2122 static int
2123 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2124 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2126 struct cfi_private *cfi = map->fldrv_priv;
2127 map_word datum;
2129 /* make sure area matches group boundaries */
2130 if (size != grpsz)
2131 return -EXDEV;
2133 datum = map_word_ff(map);
2134 datum = map_word_clr(map, datum, CMD(1 << grpno));
2135 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2138 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2139 size_t *retlen, u_char *buf,
2140 otp_op_t action, int user_regs)
2142 struct map_info *map = mtd->priv;
2143 struct cfi_private *cfi = map->fldrv_priv;
2144 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2145 struct flchip *chip;
2146 struct cfi_intelext_otpinfo *otp;
2147 u_long devsize, reg_prot_offset, data_offset;
2148 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2149 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2150 int ret;
2152 *retlen = 0;
2154 /* Check that we actually have some OTP registers */
2155 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2156 return -ENODATA;
2158 /* we need real chips here not virtual ones */
2159 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2160 chip_step = devsize >> cfi->chipshift;
2161 chip_num = 0;
2163 /* Some chips have OTP located in the _top_ partition only.
2164 For example: Intel 28F256L18T (T means top-parameter device) */
2165 if (cfi->mfr == MANUFACTURER_INTEL) {
2166 switch (cfi->id) {
2167 case 0x880b:
2168 case 0x880c:
2169 case 0x880d:
2170 chip_num = chip_step - 1;
2174 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2175 chip = &cfi->chips[chip_num];
2176 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2178 /* first OTP region */
2179 field = 0;
2180 reg_prot_offset = extp->ProtRegAddr;
2181 reg_fact_groups = 1;
2182 reg_fact_size = 1 << extp->FactProtRegSize;
2183 reg_user_groups = 1;
2184 reg_user_size = 1 << extp->UserProtRegSize;
2186 while (len > 0) {
2187 /* flash geometry fixup */
2188 data_offset = reg_prot_offset + 1;
2189 data_offset *= cfi->interleave * cfi->device_type;
2190 reg_prot_offset *= cfi->interleave * cfi->device_type;
2191 reg_fact_size *= cfi->interleave;
2192 reg_user_size *= cfi->interleave;
2194 if (user_regs) {
2195 groups = reg_user_groups;
2196 groupsize = reg_user_size;
2197 /* skip over factory reg area */
2198 groupno = reg_fact_groups;
2199 data_offset += reg_fact_groups * reg_fact_size;
2200 } else {
2201 groups = reg_fact_groups;
2202 groupsize = reg_fact_size;
2203 groupno = 0;
2206 while (len > 0 && groups > 0) {
2207 if (!action) {
2209 * Special case: if action is NULL
2210 * we fill buf with otp_info records.
2212 struct otp_info *otpinfo;
2213 map_word lockword;
2214 len -= sizeof(struct otp_info);
2215 if (len <= 0)
2216 return -ENOSPC;
2217 ret = do_otp_read(map, chip,
2218 reg_prot_offset,
2219 (u_char *)&lockword,
2220 map_bankwidth(map),
2221 0, 0, 0);
2222 if (ret)
2223 return ret;
2224 otpinfo = (struct otp_info *)buf;
2225 otpinfo->start = from;
2226 otpinfo->length = groupsize;
2227 otpinfo->locked =
2228 !map_word_bitsset(map, lockword,
2229 CMD(1 << groupno));
2230 from += groupsize;
2231 buf += sizeof(*otpinfo);
2232 *retlen += sizeof(*otpinfo);
2233 } else if (from >= groupsize) {
2234 from -= groupsize;
2235 data_offset += groupsize;
2236 } else {
2237 int size = groupsize;
2238 data_offset += from;
2239 size -= from;
2240 from = 0;
2241 if (size > len)
2242 size = len;
2243 ret = action(map, chip, data_offset,
2244 buf, size, reg_prot_offset,
2245 groupno, groupsize);
2246 if (ret < 0)
2247 return ret;
2248 buf += size;
2249 len -= size;
2250 *retlen += size;
2251 data_offset += size;
2253 groupno++;
2254 groups--;
2257 /* next OTP region */
2258 if (++field == extp->NumProtectionFields)
2259 break;
2260 reg_prot_offset = otp->ProtRegAddr;
2261 reg_fact_groups = otp->FactGroups;
2262 reg_fact_size = 1 << otp->FactProtRegSize;
2263 reg_user_groups = otp->UserGroups;
2264 reg_user_size = 1 << otp->UserProtRegSize;
2265 otp++;
2269 return 0;
2272 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2273 size_t len, size_t *retlen,
2274 u_char *buf)
2276 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2277 buf, do_otp_read, 0);
2280 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2281 size_t len, size_t *retlen,
2282 u_char *buf)
2284 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2285 buf, do_otp_read, 1);
2288 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2289 size_t len, size_t *retlen,
2290 u_char *buf)
2292 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2293 buf, do_otp_write, 1);
2296 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2297 loff_t from, size_t len)
2299 size_t retlen;
2300 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2301 NULL, do_otp_lock, 1);
2304 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2305 struct otp_info *buf, size_t len)
2307 size_t retlen;
2308 int ret;
2310 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2311 return ret ? : retlen;
2314 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2315 struct otp_info *buf, size_t len)
2317 size_t retlen;
2318 int ret;
2320 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2321 return ret ? : retlen;
2324 #endif
2326 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2328 struct mtd_erase_region_info *region;
2329 int block, status, i;
2330 unsigned long adr;
2331 size_t len;
2333 for (i = 0; i < mtd->numeraseregions; i++) {
2334 region = &mtd->eraseregions[i];
2335 if (!region->lockmap)
2336 continue;
2338 for (block = 0; block < region->numblocks; block++){
2339 len = region->erasesize;
2340 adr = region->offset + block * len;
2342 status = cfi_varsize_frob(mtd,
2343 do_getlockstatus_oneblock, adr, len, NULL);
2344 if (status)
2345 set_bit(block, region->lockmap);
2346 else
2347 clear_bit(block, region->lockmap);
2352 static int cfi_intelext_suspend(struct mtd_info *mtd)
2354 struct map_info *map = mtd->priv;
2355 struct cfi_private *cfi = map->fldrv_priv;
2356 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2357 int i;
2358 struct flchip *chip;
2359 int ret = 0;
2361 if ((mtd->flags & MTD_POWERUP_LOCK)
2362 && extp && (extp->FeatureSupport & (1 << 5)))
2363 cfi_intelext_save_locks(mtd);
2365 for (i=0; !ret && i<cfi->numchips; i++) {
2366 chip = &cfi->chips[i];
2368 spin_lock(chip->mutex);
2370 switch (chip->state) {
2371 case FL_READY:
2372 case FL_STATUS:
2373 case FL_CFI_QUERY:
2374 case FL_JEDEC_QUERY:
2375 if (chip->oldstate == FL_READY) {
2376 /* place the chip in a known state before suspend */
2377 map_write(map, CMD(0xFF), cfi->chips[i].start);
2378 chip->oldstate = chip->state;
2379 chip->state = FL_PM_SUSPENDED;
2380 /* No need to wake_up() on this state change -
2381 * as the whole point is that nobody can do anything
2382 * with the chip now anyway.
2384 } else {
2385 /* There seems to be an operation pending. We must wait for it. */
2386 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2387 ret = -EAGAIN;
2389 break;
2390 default:
2391 /* Should we actually wait? Once upon a time these routines weren't
2392 allowed to. Or should we return -EAGAIN, because the upper layers
2393 ought to have already shut down anything which was using the device
2394 anyway? The latter for now. */
2395 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2396 ret = -EAGAIN;
2397 case FL_PM_SUSPENDED:
2398 break;
2400 spin_unlock(chip->mutex);
2403 /* Unlock the chips again */
2405 if (ret) {
2406 for (i--; i >=0; i--) {
2407 chip = &cfi->chips[i];
2409 spin_lock(chip->mutex);
2411 if (chip->state == FL_PM_SUSPENDED) {
2412 /* No need to force it into a known state here,
2413 because we're returning failure, and it didn't
2414 get power cycled */
2415 chip->state = chip->oldstate;
2416 chip->oldstate = FL_READY;
2417 wake_up(&chip->wq);
2419 spin_unlock(chip->mutex);
2423 return ret;
2426 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2428 struct mtd_erase_region_info *region;
2429 int block, i;
2430 unsigned long adr;
2431 size_t len;
2433 for (i = 0; i < mtd->numeraseregions; i++) {
2434 region = &mtd->eraseregions[i];
2435 if (!region->lockmap)
2436 continue;
2438 for (block = 0; block < region->numblocks; block++) {
2439 len = region->erasesize;
2440 adr = region->offset + block * len;
2442 if (!test_bit(block, region->lockmap))
2443 cfi_intelext_unlock(mtd, adr, len);
2448 static void cfi_intelext_resume(struct mtd_info *mtd)
2450 struct map_info *map = mtd->priv;
2451 struct cfi_private *cfi = map->fldrv_priv;
2452 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2453 int i;
2454 struct flchip *chip;
2456 for (i=0; i<cfi->numchips; i++) {
2458 chip = &cfi->chips[i];
2460 spin_lock(chip->mutex);
2462 /* Go to known state. Chip may have been power cycled */
2463 if (chip->state == FL_PM_SUSPENDED) {
2464 map_write(map, CMD(0xFF), cfi->chips[i].start);
2465 chip->oldstate = chip->state = FL_READY;
2466 wake_up(&chip->wq);
2469 spin_unlock(chip->mutex);
2472 if ((mtd->flags & MTD_POWERUP_LOCK)
2473 && extp && (extp->FeatureSupport & (1 << 5)))
2474 cfi_intelext_restore_locks(mtd);
2477 static int cfi_intelext_reset(struct mtd_info *mtd)
2479 struct map_info *map = mtd->priv;
2480 struct cfi_private *cfi = map->fldrv_priv;
2481 int i, ret;
2483 for (i=0; i < cfi->numchips; i++) {
2484 struct flchip *chip = &cfi->chips[i];
2486 /* force the completion of any ongoing operation
2487 and switch to array mode so any bootloader in
2488 flash is accessible for soft reboot. */
2489 spin_lock(chip->mutex);
2490 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2491 if (!ret) {
2492 map_write(map, CMD(0xff), chip->start);
2493 chip->state = FL_SHUTDOWN;
2495 spin_unlock(chip->mutex);
2498 return 0;
2501 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2502 void *v)
2504 struct mtd_info *mtd;
2506 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2507 cfi_intelext_reset(mtd);
2508 return NOTIFY_DONE;
2511 static void cfi_intelext_destroy(struct mtd_info *mtd)
2513 struct map_info *map = mtd->priv;
2514 struct cfi_private *cfi = map->fldrv_priv;
2515 struct mtd_erase_region_info *region;
2516 int i;
2517 cfi_intelext_reset(mtd);
2518 unregister_reboot_notifier(&mtd->reboot_notifier);
2519 kfree(cfi->cmdset_priv);
2520 kfree(cfi->cfiq);
2521 kfree(cfi->chips[0].priv);
2522 kfree(cfi);
2523 for (i = 0; i < mtd->numeraseregions; i++) {
2524 region = &mtd->eraseregions[i];
2525 if (region->lockmap)
2526 kfree(region->lockmap);
2528 kfree(mtd->eraseregions);
2531 MODULE_LICENSE("GPL");
2532 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2533 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2534 MODULE_ALIAS("cfi_cmdset_0003");
2535 MODULE_ALIAS("cfi_cmdset_0200");