[NET]: Add software TSOv4
[linux-2.6/x86.git] / include / linux / skbuff.h
bloba45bba9b8cbd402508f12324d51c857423b61797
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/poll.h>
28 #include <linux/net.h>
29 #include <linux/textsearch.h>
30 #include <net/checksum.h>
31 #include <linux/dmaengine.h>
33 #define HAVE_ALLOC_SKB /* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_HW 1
38 #define CHECKSUM_UNNECESSARY 2
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
43 sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48 /* A. Checksumming of received packets by device.
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
59 * HW: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use HW,
63 * not UNNECESSARY.
65 * B. Checksumming on output.
67 * NONE: skb is checksummed by protocol or csum is not required.
69 * HW: device is required to csum packet as seen by hard_start_xmit
70 * from skb->h.raw to the end and to record the checksum
71 * at skb->h.raw+skb->csum.
73 * Device must show its capabilities in dev->features, set
74 * at device setup time.
75 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
76 * everything.
77 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
78 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79 * TCP/UDP over IPv4. Sigh. Vendors like this
80 * way by an unknown reason. Though, see comment above
81 * about CHECKSUM_UNNECESSARY. 8)
83 * Any questions? No questions, good. --ANK
86 struct net_device;
88 #ifdef CONFIG_NETFILTER
89 struct nf_conntrack {
90 atomic_t use;
91 void (*destroy)(struct nf_conntrack *);
94 #ifdef CONFIG_BRIDGE_NETFILTER
95 struct nf_bridge_info {
96 atomic_t use;
97 struct net_device *physindev;
98 struct net_device *physoutdev;
99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 struct net_device *netoutdev;
101 #endif
102 unsigned int mask;
103 unsigned long data[32 / sizeof(unsigned long)];
105 #endif
107 #endif
109 struct sk_buff_head {
110 /* These two members must be first. */
111 struct sk_buff *next;
112 struct sk_buff *prev;
114 __u32 qlen;
115 spinlock_t lock;
118 struct sk_buff;
120 /* To allow 64K frame to be packed as single skb without frag_list */
121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123 typedef struct skb_frag_struct skb_frag_t;
125 struct skb_frag_struct {
126 struct page *page;
127 __u16 page_offset;
128 __u16 size;
131 /* This data is invariant across clones and lives at
132 * the end of the header data, ie. at skb->end.
134 struct skb_shared_info {
135 atomic_t dataref;
136 unsigned short nr_frags;
137 unsigned short gso_size;
138 /* Warning: this field is not always filled in (UFO)! */
139 unsigned short gso_segs;
140 unsigned short gso_type;
141 unsigned int ip6_frag_id;
142 struct sk_buff *frag_list;
143 skb_frag_t frags[MAX_SKB_FRAGS];
146 /* We divide dataref into two halves. The higher 16 bits hold references
147 * to the payload part of skb->data. The lower 16 bits hold references to
148 * the entire skb->data. It is up to the users of the skb to agree on
149 * where the payload starts.
151 * All users must obey the rule that the skb->data reference count must be
152 * greater than or equal to the payload reference count.
154 * Holding a reference to the payload part means that the user does not
155 * care about modifications to the header part of skb->data.
157 #define SKB_DATAREF_SHIFT 16
158 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
160 struct skb_timeval {
161 u32 off_sec;
162 u32 off_usec;
166 enum {
167 SKB_FCLONE_UNAVAILABLE,
168 SKB_FCLONE_ORIG,
169 SKB_FCLONE_CLONE,
172 enum {
173 SKB_GSO_TCPV4 = 1 << 0,
174 SKB_GSO_UDPV4 = 1 << 1,
177 /**
178 * struct sk_buff - socket buffer
179 * @next: Next buffer in list
180 * @prev: Previous buffer in list
181 * @sk: Socket we are owned by
182 * @tstamp: Time we arrived
183 * @dev: Device we arrived on/are leaving by
184 * @input_dev: Device we arrived on
185 * @h: Transport layer header
186 * @nh: Network layer header
187 * @mac: Link layer header
188 * @dst: destination entry
189 * @sp: the security path, used for xfrm
190 * @cb: Control buffer. Free for use by every layer. Put private vars here
191 * @len: Length of actual data
192 * @data_len: Data length
193 * @mac_len: Length of link layer header
194 * @csum: Checksum
195 * @local_df: allow local fragmentation
196 * @cloned: Head may be cloned (check refcnt to be sure)
197 * @nohdr: Payload reference only, must not modify header
198 * @pkt_type: Packet class
199 * @fclone: skbuff clone status
200 * @ip_summed: Driver fed us an IP checksum
201 * @priority: Packet queueing priority
202 * @users: User count - see {datagram,tcp}.c
203 * @protocol: Packet protocol from driver
204 * @truesize: Buffer size
205 * @head: Head of buffer
206 * @data: Data head pointer
207 * @tail: Tail pointer
208 * @end: End pointer
209 * @destructor: Destruct function
210 * @nfmark: Can be used for communication between hooks
211 * @nfct: Associated connection, if any
212 * @ipvs_property: skbuff is owned by ipvs
213 * @nfctinfo: Relationship of this skb to the connection
214 * @nfct_reasm: netfilter conntrack re-assembly pointer
215 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
216 * @tc_index: Traffic control index
217 * @tc_verd: traffic control verdict
218 * @secmark: security marking
221 struct sk_buff {
222 /* These two members must be first. */
223 struct sk_buff *next;
224 struct sk_buff *prev;
226 struct sock *sk;
227 struct skb_timeval tstamp;
228 struct net_device *dev;
229 struct net_device *input_dev;
231 union {
232 struct tcphdr *th;
233 struct udphdr *uh;
234 struct icmphdr *icmph;
235 struct igmphdr *igmph;
236 struct iphdr *ipiph;
237 struct ipv6hdr *ipv6h;
238 unsigned char *raw;
239 } h;
241 union {
242 struct iphdr *iph;
243 struct ipv6hdr *ipv6h;
244 struct arphdr *arph;
245 unsigned char *raw;
246 } nh;
248 union {
249 unsigned char *raw;
250 } mac;
252 struct dst_entry *dst;
253 struct sec_path *sp;
256 * This is the control buffer. It is free to use for every
257 * layer. Please put your private variables there. If you
258 * want to keep them across layers you have to do a skb_clone()
259 * first. This is owned by whoever has the skb queued ATM.
261 char cb[48];
263 unsigned int len,
264 data_len,
265 mac_len,
266 csum;
267 __u32 priority;
268 __u8 local_df:1,
269 cloned:1,
270 ip_summed:2,
271 nohdr:1,
272 nfctinfo:3;
273 __u8 pkt_type:3,
274 fclone:2,
275 ipvs_property:1;
276 __be16 protocol;
278 void (*destructor)(struct sk_buff *skb);
279 #ifdef CONFIG_NETFILTER
280 struct nf_conntrack *nfct;
281 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
282 struct sk_buff *nfct_reasm;
283 #endif
284 #ifdef CONFIG_BRIDGE_NETFILTER
285 struct nf_bridge_info *nf_bridge;
286 #endif
287 __u32 nfmark;
288 #endif /* CONFIG_NETFILTER */
289 #ifdef CONFIG_NET_SCHED
290 __u16 tc_index; /* traffic control index */
291 #ifdef CONFIG_NET_CLS_ACT
292 __u16 tc_verd; /* traffic control verdict */
293 #endif
294 #endif
295 #ifdef CONFIG_NET_DMA
296 dma_cookie_t dma_cookie;
297 #endif
298 #ifdef CONFIG_NETWORK_SECMARK
299 __u32 secmark;
300 #endif
303 /* These elements must be at the end, see alloc_skb() for details. */
304 unsigned int truesize;
305 atomic_t users;
306 unsigned char *head,
307 *data,
308 *tail,
309 *end;
312 #ifdef __KERNEL__
314 * Handling routines are only of interest to the kernel
316 #include <linux/slab.h>
318 #include <asm/system.h>
320 extern void kfree_skb(struct sk_buff *skb);
321 extern void __kfree_skb(struct sk_buff *skb);
322 extern struct sk_buff *__alloc_skb(unsigned int size,
323 gfp_t priority, int fclone);
324 static inline struct sk_buff *alloc_skb(unsigned int size,
325 gfp_t priority)
327 return __alloc_skb(size, priority, 0);
330 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
331 gfp_t priority)
333 return __alloc_skb(size, priority, 1);
336 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
337 unsigned int size,
338 gfp_t priority);
339 extern void kfree_skbmem(struct sk_buff *skb);
340 extern struct sk_buff *skb_clone(struct sk_buff *skb,
341 gfp_t priority);
342 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
343 gfp_t priority);
344 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
345 gfp_t gfp_mask);
346 extern int pskb_expand_head(struct sk_buff *skb,
347 int nhead, int ntail,
348 gfp_t gfp_mask);
349 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
350 unsigned int headroom);
351 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
352 int newheadroom, int newtailroom,
353 gfp_t priority);
354 extern int skb_pad(struct sk_buff *skb, int pad);
355 #define dev_kfree_skb(a) kfree_skb(a)
356 extern void skb_over_panic(struct sk_buff *skb, int len,
357 void *here);
358 extern void skb_under_panic(struct sk_buff *skb, int len,
359 void *here);
360 extern void skb_truesize_bug(struct sk_buff *skb);
362 static inline void skb_truesize_check(struct sk_buff *skb)
364 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
365 skb_truesize_bug(skb);
368 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
369 int getfrag(void *from, char *to, int offset,
370 int len,int odd, struct sk_buff *skb),
371 void *from, int length);
373 struct skb_seq_state
375 __u32 lower_offset;
376 __u32 upper_offset;
377 __u32 frag_idx;
378 __u32 stepped_offset;
379 struct sk_buff *root_skb;
380 struct sk_buff *cur_skb;
381 __u8 *frag_data;
384 extern void skb_prepare_seq_read(struct sk_buff *skb,
385 unsigned int from, unsigned int to,
386 struct skb_seq_state *st);
387 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
388 struct skb_seq_state *st);
389 extern void skb_abort_seq_read(struct skb_seq_state *st);
391 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
392 unsigned int to, struct ts_config *config,
393 struct ts_state *state);
395 /* Internal */
396 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
399 * skb_queue_empty - check if a queue is empty
400 * @list: queue head
402 * Returns true if the queue is empty, false otherwise.
404 static inline int skb_queue_empty(const struct sk_buff_head *list)
406 return list->next == (struct sk_buff *)list;
410 * skb_get - reference buffer
411 * @skb: buffer to reference
413 * Makes another reference to a socket buffer and returns a pointer
414 * to the buffer.
416 static inline struct sk_buff *skb_get(struct sk_buff *skb)
418 atomic_inc(&skb->users);
419 return skb;
423 * If users == 1, we are the only owner and are can avoid redundant
424 * atomic change.
428 * skb_cloned - is the buffer a clone
429 * @skb: buffer to check
431 * Returns true if the buffer was generated with skb_clone() and is
432 * one of multiple shared copies of the buffer. Cloned buffers are
433 * shared data so must not be written to under normal circumstances.
435 static inline int skb_cloned(const struct sk_buff *skb)
437 return skb->cloned &&
438 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
442 * skb_header_cloned - is the header a clone
443 * @skb: buffer to check
445 * Returns true if modifying the header part of the buffer requires
446 * the data to be copied.
448 static inline int skb_header_cloned(const struct sk_buff *skb)
450 int dataref;
452 if (!skb->cloned)
453 return 0;
455 dataref = atomic_read(&skb_shinfo(skb)->dataref);
456 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
457 return dataref != 1;
461 * skb_header_release - release reference to header
462 * @skb: buffer to operate on
464 * Drop a reference to the header part of the buffer. This is done
465 * by acquiring a payload reference. You must not read from the header
466 * part of skb->data after this.
468 static inline void skb_header_release(struct sk_buff *skb)
470 BUG_ON(skb->nohdr);
471 skb->nohdr = 1;
472 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
476 * skb_shared - is the buffer shared
477 * @skb: buffer to check
479 * Returns true if more than one person has a reference to this
480 * buffer.
482 static inline int skb_shared(const struct sk_buff *skb)
484 return atomic_read(&skb->users) != 1;
488 * skb_share_check - check if buffer is shared and if so clone it
489 * @skb: buffer to check
490 * @pri: priority for memory allocation
492 * If the buffer is shared the buffer is cloned and the old copy
493 * drops a reference. A new clone with a single reference is returned.
494 * If the buffer is not shared the original buffer is returned. When
495 * being called from interrupt status or with spinlocks held pri must
496 * be GFP_ATOMIC.
498 * NULL is returned on a memory allocation failure.
500 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
501 gfp_t pri)
503 might_sleep_if(pri & __GFP_WAIT);
504 if (skb_shared(skb)) {
505 struct sk_buff *nskb = skb_clone(skb, pri);
506 kfree_skb(skb);
507 skb = nskb;
509 return skb;
513 * Copy shared buffers into a new sk_buff. We effectively do COW on
514 * packets to handle cases where we have a local reader and forward
515 * and a couple of other messy ones. The normal one is tcpdumping
516 * a packet thats being forwarded.
520 * skb_unshare - make a copy of a shared buffer
521 * @skb: buffer to check
522 * @pri: priority for memory allocation
524 * If the socket buffer is a clone then this function creates a new
525 * copy of the data, drops a reference count on the old copy and returns
526 * the new copy with the reference count at 1. If the buffer is not a clone
527 * the original buffer is returned. When called with a spinlock held or
528 * from interrupt state @pri must be %GFP_ATOMIC
530 * %NULL is returned on a memory allocation failure.
532 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
533 gfp_t pri)
535 might_sleep_if(pri & __GFP_WAIT);
536 if (skb_cloned(skb)) {
537 struct sk_buff *nskb = skb_copy(skb, pri);
538 kfree_skb(skb); /* Free our shared copy */
539 skb = nskb;
541 return skb;
545 * skb_peek
546 * @list_: list to peek at
548 * Peek an &sk_buff. Unlike most other operations you _MUST_
549 * be careful with this one. A peek leaves the buffer on the
550 * list and someone else may run off with it. You must hold
551 * the appropriate locks or have a private queue to do this.
553 * Returns %NULL for an empty list or a pointer to the head element.
554 * The reference count is not incremented and the reference is therefore
555 * volatile. Use with caution.
557 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
559 struct sk_buff *list = ((struct sk_buff *)list_)->next;
560 if (list == (struct sk_buff *)list_)
561 list = NULL;
562 return list;
566 * skb_peek_tail
567 * @list_: list to peek at
569 * Peek an &sk_buff. Unlike most other operations you _MUST_
570 * be careful with this one. A peek leaves the buffer on the
571 * list and someone else may run off with it. You must hold
572 * the appropriate locks or have a private queue to do this.
574 * Returns %NULL for an empty list or a pointer to the tail element.
575 * The reference count is not incremented and the reference is therefore
576 * volatile. Use with caution.
578 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
580 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
581 if (list == (struct sk_buff *)list_)
582 list = NULL;
583 return list;
587 * skb_queue_len - get queue length
588 * @list_: list to measure
590 * Return the length of an &sk_buff queue.
592 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
594 return list_->qlen;
597 static inline void skb_queue_head_init(struct sk_buff_head *list)
599 spin_lock_init(&list->lock);
600 list->prev = list->next = (struct sk_buff *)list;
601 list->qlen = 0;
605 * Insert an sk_buff at the start of a list.
607 * The "__skb_xxxx()" functions are the non-atomic ones that
608 * can only be called with interrupts disabled.
612 * __skb_queue_after - queue a buffer at the list head
613 * @list: list to use
614 * @prev: place after this buffer
615 * @newsk: buffer to queue
617 * Queue a buffer int the middle of a list. This function takes no locks
618 * and you must therefore hold required locks before calling it.
620 * A buffer cannot be placed on two lists at the same time.
622 static inline void __skb_queue_after(struct sk_buff_head *list,
623 struct sk_buff *prev,
624 struct sk_buff *newsk)
626 struct sk_buff *next;
627 list->qlen++;
629 next = prev->next;
630 newsk->next = next;
631 newsk->prev = prev;
632 next->prev = prev->next = newsk;
636 * __skb_queue_head - queue a buffer at the list head
637 * @list: list to use
638 * @newsk: buffer to queue
640 * Queue a buffer at the start of a list. This function takes no locks
641 * and you must therefore hold required locks before calling it.
643 * A buffer cannot be placed on two lists at the same time.
645 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
646 static inline void __skb_queue_head(struct sk_buff_head *list,
647 struct sk_buff *newsk)
649 __skb_queue_after(list, (struct sk_buff *)list, newsk);
653 * __skb_queue_tail - queue a buffer at the list tail
654 * @list: list to use
655 * @newsk: buffer to queue
657 * Queue a buffer at the end of a list. This function takes no locks
658 * and you must therefore hold required locks before calling it.
660 * A buffer cannot be placed on two lists at the same time.
662 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
663 static inline void __skb_queue_tail(struct sk_buff_head *list,
664 struct sk_buff *newsk)
666 struct sk_buff *prev, *next;
668 list->qlen++;
669 next = (struct sk_buff *)list;
670 prev = next->prev;
671 newsk->next = next;
672 newsk->prev = prev;
673 next->prev = prev->next = newsk;
678 * __skb_dequeue - remove from the head of the queue
679 * @list: list to dequeue from
681 * Remove the head of the list. This function does not take any locks
682 * so must be used with appropriate locks held only. The head item is
683 * returned or %NULL if the list is empty.
685 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
686 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
688 struct sk_buff *next, *prev, *result;
690 prev = (struct sk_buff *) list;
691 next = prev->next;
692 result = NULL;
693 if (next != prev) {
694 result = next;
695 next = next->next;
696 list->qlen--;
697 next->prev = prev;
698 prev->next = next;
699 result->next = result->prev = NULL;
701 return result;
706 * Insert a packet on a list.
708 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
709 static inline void __skb_insert(struct sk_buff *newsk,
710 struct sk_buff *prev, struct sk_buff *next,
711 struct sk_buff_head *list)
713 newsk->next = next;
714 newsk->prev = prev;
715 next->prev = prev->next = newsk;
716 list->qlen++;
720 * Place a packet after a given packet in a list.
722 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
723 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
725 __skb_insert(newsk, old, old->next, list);
729 * remove sk_buff from list. _Must_ be called atomically, and with
730 * the list known..
732 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
733 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
735 struct sk_buff *next, *prev;
737 list->qlen--;
738 next = skb->next;
739 prev = skb->prev;
740 skb->next = skb->prev = NULL;
741 next->prev = prev;
742 prev->next = next;
746 /* XXX: more streamlined implementation */
749 * __skb_dequeue_tail - remove from the tail of the queue
750 * @list: list to dequeue from
752 * Remove the tail of the list. This function does not take any locks
753 * so must be used with appropriate locks held only. The tail item is
754 * returned or %NULL if the list is empty.
756 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
757 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
759 struct sk_buff *skb = skb_peek_tail(list);
760 if (skb)
761 __skb_unlink(skb, list);
762 return skb;
766 static inline int skb_is_nonlinear(const struct sk_buff *skb)
768 return skb->data_len;
771 static inline unsigned int skb_headlen(const struct sk_buff *skb)
773 return skb->len - skb->data_len;
776 static inline int skb_pagelen(const struct sk_buff *skb)
778 int i, len = 0;
780 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
781 len += skb_shinfo(skb)->frags[i].size;
782 return len + skb_headlen(skb);
785 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
786 struct page *page, int off, int size)
788 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
790 frag->page = page;
791 frag->page_offset = off;
792 frag->size = size;
793 skb_shinfo(skb)->nr_frags = i + 1;
796 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
797 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
798 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
801 * Add data to an sk_buff
803 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
805 unsigned char *tmp = skb->tail;
806 SKB_LINEAR_ASSERT(skb);
807 skb->tail += len;
808 skb->len += len;
809 return tmp;
813 * skb_put - add data to a buffer
814 * @skb: buffer to use
815 * @len: amount of data to add
817 * This function extends the used data area of the buffer. If this would
818 * exceed the total buffer size the kernel will panic. A pointer to the
819 * first byte of the extra data is returned.
821 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
823 unsigned char *tmp = skb->tail;
824 SKB_LINEAR_ASSERT(skb);
825 skb->tail += len;
826 skb->len += len;
827 if (unlikely(skb->tail>skb->end))
828 skb_over_panic(skb, len, current_text_addr());
829 return tmp;
832 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
834 skb->data -= len;
835 skb->len += len;
836 return skb->data;
840 * skb_push - add data to the start of a buffer
841 * @skb: buffer to use
842 * @len: amount of data to add
844 * This function extends the used data area of the buffer at the buffer
845 * start. If this would exceed the total buffer headroom the kernel will
846 * panic. A pointer to the first byte of the extra data is returned.
848 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
850 skb->data -= len;
851 skb->len += len;
852 if (unlikely(skb->data<skb->head))
853 skb_under_panic(skb, len, current_text_addr());
854 return skb->data;
857 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
859 skb->len -= len;
860 BUG_ON(skb->len < skb->data_len);
861 return skb->data += len;
865 * skb_pull - remove data from the start of a buffer
866 * @skb: buffer to use
867 * @len: amount of data to remove
869 * This function removes data from the start of a buffer, returning
870 * the memory to the headroom. A pointer to the next data in the buffer
871 * is returned. Once the data has been pulled future pushes will overwrite
872 * the old data.
874 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
876 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
879 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
881 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
883 if (len > skb_headlen(skb) &&
884 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
885 return NULL;
886 skb->len -= len;
887 return skb->data += len;
890 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
892 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
895 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
897 if (likely(len <= skb_headlen(skb)))
898 return 1;
899 if (unlikely(len > skb->len))
900 return 0;
901 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
905 * skb_headroom - bytes at buffer head
906 * @skb: buffer to check
908 * Return the number of bytes of free space at the head of an &sk_buff.
910 static inline int skb_headroom(const struct sk_buff *skb)
912 return skb->data - skb->head;
916 * skb_tailroom - bytes at buffer end
917 * @skb: buffer to check
919 * Return the number of bytes of free space at the tail of an sk_buff
921 static inline int skb_tailroom(const struct sk_buff *skb)
923 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
927 * skb_reserve - adjust headroom
928 * @skb: buffer to alter
929 * @len: bytes to move
931 * Increase the headroom of an empty &sk_buff by reducing the tail
932 * room. This is only allowed for an empty buffer.
934 static inline void skb_reserve(struct sk_buff *skb, int len)
936 skb->data += len;
937 skb->tail += len;
941 * CPUs often take a performance hit when accessing unaligned memory
942 * locations. The actual performance hit varies, it can be small if the
943 * hardware handles it or large if we have to take an exception and fix it
944 * in software.
946 * Since an ethernet header is 14 bytes network drivers often end up with
947 * the IP header at an unaligned offset. The IP header can be aligned by
948 * shifting the start of the packet by 2 bytes. Drivers should do this
949 * with:
951 * skb_reserve(NET_IP_ALIGN);
953 * The downside to this alignment of the IP header is that the DMA is now
954 * unaligned. On some architectures the cost of an unaligned DMA is high
955 * and this cost outweighs the gains made by aligning the IP header.
957 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
958 * to be overridden.
960 #ifndef NET_IP_ALIGN
961 #define NET_IP_ALIGN 2
962 #endif
965 * The networking layer reserves some headroom in skb data (via
966 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
967 * the header has to grow. In the default case, if the header has to grow
968 * 16 bytes or less we avoid the reallocation.
970 * Unfortunately this headroom changes the DMA alignment of the resulting
971 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
972 * on some architectures. An architecture can override this value,
973 * perhaps setting it to a cacheline in size (since that will maintain
974 * cacheline alignment of the DMA). It must be a power of 2.
976 * Various parts of the networking layer expect at least 16 bytes of
977 * headroom, you should not reduce this.
979 #ifndef NET_SKB_PAD
980 #define NET_SKB_PAD 16
981 #endif
983 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
985 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
987 if (unlikely(skb->data_len)) {
988 WARN_ON(1);
989 return;
991 skb->len = len;
992 skb->tail = skb->data + len;
996 * skb_trim - remove end from a buffer
997 * @skb: buffer to alter
998 * @len: new length
1000 * Cut the length of a buffer down by removing data from the tail. If
1001 * the buffer is already under the length specified it is not modified.
1002 * The skb must be linear.
1004 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1006 if (skb->len > len)
1007 __skb_trim(skb, len);
1011 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1013 if (skb->data_len)
1014 return ___pskb_trim(skb, len);
1015 __skb_trim(skb, len);
1016 return 0;
1019 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1021 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1025 * skb_orphan - orphan a buffer
1026 * @skb: buffer to orphan
1028 * If a buffer currently has an owner then we call the owner's
1029 * destructor function and make the @skb unowned. The buffer continues
1030 * to exist but is no longer charged to its former owner.
1032 static inline void skb_orphan(struct sk_buff *skb)
1034 if (skb->destructor)
1035 skb->destructor(skb);
1036 skb->destructor = NULL;
1037 skb->sk = NULL;
1041 * __skb_queue_purge - empty a list
1042 * @list: list to empty
1044 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1045 * the list and one reference dropped. This function does not take the
1046 * list lock and the caller must hold the relevant locks to use it.
1048 extern void skb_queue_purge(struct sk_buff_head *list);
1049 static inline void __skb_queue_purge(struct sk_buff_head *list)
1051 struct sk_buff *skb;
1052 while ((skb = __skb_dequeue(list)) != NULL)
1053 kfree_skb(skb);
1056 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1058 * __dev_alloc_skb - allocate an skbuff for sending
1059 * @length: length to allocate
1060 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1062 * Allocate a new &sk_buff and assign it a usage count of one. The
1063 * buffer has unspecified headroom built in. Users should allocate
1064 * the headroom they think they need without accounting for the
1065 * built in space. The built in space is used for optimisations.
1067 * %NULL is returned in there is no free memory.
1069 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1070 gfp_t gfp_mask)
1072 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1073 if (likely(skb))
1074 skb_reserve(skb, NET_SKB_PAD);
1075 return skb;
1077 #else
1078 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1079 #endif
1082 * dev_alloc_skb - allocate an skbuff for sending
1083 * @length: length to allocate
1085 * Allocate a new &sk_buff and assign it a usage count of one. The
1086 * buffer has unspecified headroom built in. Users should allocate
1087 * the headroom they think they need without accounting for the
1088 * built in space. The built in space is used for optimisations.
1090 * %NULL is returned in there is no free memory. Although this function
1091 * allocates memory it can be called from an interrupt.
1093 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1095 return __dev_alloc_skb(length, GFP_ATOMIC);
1099 * skb_cow - copy header of skb when it is required
1100 * @skb: buffer to cow
1101 * @headroom: needed headroom
1103 * If the skb passed lacks sufficient headroom or its data part
1104 * is shared, data is reallocated. If reallocation fails, an error
1105 * is returned and original skb is not changed.
1107 * The result is skb with writable area skb->head...skb->tail
1108 * and at least @headroom of space at head.
1110 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1112 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1113 skb_headroom(skb);
1115 if (delta < 0)
1116 delta = 0;
1118 if (delta || skb_cloned(skb))
1119 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1120 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1121 return 0;
1125 * skb_padto - pad an skbuff up to a minimal size
1126 * @skb: buffer to pad
1127 * @len: minimal length
1129 * Pads up a buffer to ensure the trailing bytes exist and are
1130 * blanked. If the buffer already contains sufficient data it
1131 * is untouched. Otherwise it is extended. Returns zero on
1132 * success. The skb is freed on error.
1135 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1137 unsigned int size = skb->len;
1138 if (likely(size >= len))
1139 return 0;
1140 return skb_pad(skb, len-size);
1143 static inline int skb_add_data(struct sk_buff *skb,
1144 char __user *from, int copy)
1146 const int off = skb->len;
1148 if (skb->ip_summed == CHECKSUM_NONE) {
1149 int err = 0;
1150 unsigned int csum = csum_and_copy_from_user(from,
1151 skb_put(skb, copy),
1152 copy, 0, &err);
1153 if (!err) {
1154 skb->csum = csum_block_add(skb->csum, csum, off);
1155 return 0;
1157 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1158 return 0;
1160 __skb_trim(skb, off);
1161 return -EFAULT;
1164 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1165 struct page *page, int off)
1167 if (i) {
1168 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1170 return page == frag->page &&
1171 off == frag->page_offset + frag->size;
1173 return 0;
1176 static inline int __skb_linearize(struct sk_buff *skb)
1178 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1182 * skb_linearize - convert paged skb to linear one
1183 * @skb: buffer to linarize
1185 * If there is no free memory -ENOMEM is returned, otherwise zero
1186 * is returned and the old skb data released.
1188 static inline int skb_linearize(struct sk_buff *skb)
1190 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1194 * skb_linearize_cow - make sure skb is linear and writable
1195 * @skb: buffer to process
1197 * If there is no free memory -ENOMEM is returned, otherwise zero
1198 * is returned and the old skb data released.
1200 static inline int skb_linearize_cow(struct sk_buff *skb)
1202 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1203 __skb_linearize(skb) : 0;
1207 * skb_postpull_rcsum - update checksum for received skb after pull
1208 * @skb: buffer to update
1209 * @start: start of data before pull
1210 * @len: length of data pulled
1212 * After doing a pull on a received packet, you need to call this to
1213 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1214 * so that it can be recomputed from scratch.
1217 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1218 const void *start, unsigned int len)
1220 if (skb->ip_summed == CHECKSUM_HW)
1221 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1224 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1227 * pskb_trim_rcsum - trim received skb and update checksum
1228 * @skb: buffer to trim
1229 * @len: new length
1231 * This is exactly the same as pskb_trim except that it ensures the
1232 * checksum of received packets are still valid after the operation.
1235 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1237 if (likely(len >= skb->len))
1238 return 0;
1239 if (skb->ip_summed == CHECKSUM_HW)
1240 skb->ip_summed = CHECKSUM_NONE;
1241 return __pskb_trim(skb, len);
1244 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1246 #ifdef CONFIG_HIGHMEM
1247 BUG_ON(in_irq());
1249 local_bh_disable();
1250 #endif
1251 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1254 static inline void kunmap_skb_frag(void *vaddr)
1256 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1257 #ifdef CONFIG_HIGHMEM
1258 local_bh_enable();
1259 #endif
1262 #define skb_queue_walk(queue, skb) \
1263 for (skb = (queue)->next; \
1264 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1265 skb = skb->next)
1267 #define skb_queue_reverse_walk(queue, skb) \
1268 for (skb = (queue)->prev; \
1269 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1270 skb = skb->prev)
1273 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1274 int noblock, int *err);
1275 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1276 struct poll_table_struct *wait);
1277 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1278 int offset, struct iovec *to,
1279 int size);
1280 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1281 int hlen,
1282 struct iovec *iov);
1283 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1284 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1285 unsigned int flags);
1286 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1287 int len, unsigned int csum);
1288 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1289 void *to, int len);
1290 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1291 void *from, int len);
1292 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1293 int offset, u8 *to, int len,
1294 unsigned int csum);
1295 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1296 extern void skb_split(struct sk_buff *skb,
1297 struct sk_buff *skb1, const u32 len);
1299 extern void skb_release_data(struct sk_buff *skb);
1300 extern struct sk_buff *skb_segment(struct sk_buff *skb, int sg);
1302 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1303 int len, void *buffer)
1305 int hlen = skb_headlen(skb);
1307 if (hlen - offset >= len)
1308 return skb->data + offset;
1310 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1311 return NULL;
1313 return buffer;
1316 extern void skb_init(void);
1317 extern void skb_add_mtu(int mtu);
1320 * skb_get_timestamp - get timestamp from a skb
1321 * @skb: skb to get stamp from
1322 * @stamp: pointer to struct timeval to store stamp in
1324 * Timestamps are stored in the skb as offsets to a base timestamp.
1325 * This function converts the offset back to a struct timeval and stores
1326 * it in stamp.
1328 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1330 stamp->tv_sec = skb->tstamp.off_sec;
1331 stamp->tv_usec = skb->tstamp.off_usec;
1335 * skb_set_timestamp - set timestamp of a skb
1336 * @skb: skb to set stamp of
1337 * @stamp: pointer to struct timeval to get stamp from
1339 * Timestamps are stored in the skb as offsets to a base timestamp.
1340 * This function converts a struct timeval to an offset and stores
1341 * it in the skb.
1343 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1345 skb->tstamp.off_sec = stamp->tv_sec;
1346 skb->tstamp.off_usec = stamp->tv_usec;
1349 extern void __net_timestamp(struct sk_buff *skb);
1351 extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1354 * skb_checksum_complete - Calculate checksum of an entire packet
1355 * @skb: packet to process
1357 * This function calculates the checksum over the entire packet plus
1358 * the value of skb->csum. The latter can be used to supply the
1359 * checksum of a pseudo header as used by TCP/UDP. It returns the
1360 * checksum.
1362 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1363 * this function can be used to verify that checksum on received
1364 * packets. In that case the function should return zero if the
1365 * checksum is correct. In particular, this function will return zero
1366 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1367 * hardware has already verified the correctness of the checksum.
1369 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1371 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1372 __skb_checksum_complete(skb);
1375 #ifdef CONFIG_NETFILTER
1376 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1378 if (nfct && atomic_dec_and_test(&nfct->use))
1379 nfct->destroy(nfct);
1381 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1383 if (nfct)
1384 atomic_inc(&nfct->use);
1386 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1387 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1389 if (skb)
1390 atomic_inc(&skb->users);
1392 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1394 if (skb)
1395 kfree_skb(skb);
1397 #endif
1398 #ifdef CONFIG_BRIDGE_NETFILTER
1399 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1401 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1402 kfree(nf_bridge);
1404 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1406 if (nf_bridge)
1407 atomic_inc(&nf_bridge->use);
1409 #endif /* CONFIG_BRIDGE_NETFILTER */
1410 static inline void nf_reset(struct sk_buff *skb)
1412 nf_conntrack_put(skb->nfct);
1413 skb->nfct = NULL;
1414 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1415 nf_conntrack_put_reasm(skb->nfct_reasm);
1416 skb->nfct_reasm = NULL;
1417 #endif
1418 #ifdef CONFIG_BRIDGE_NETFILTER
1419 nf_bridge_put(skb->nf_bridge);
1420 skb->nf_bridge = NULL;
1421 #endif
1424 #else /* CONFIG_NETFILTER */
1425 static inline void nf_reset(struct sk_buff *skb) {}
1426 #endif /* CONFIG_NETFILTER */
1428 #ifdef CONFIG_NETWORK_SECMARK
1429 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1431 to->secmark = from->secmark;
1434 static inline void skb_init_secmark(struct sk_buff *skb)
1436 skb->secmark = 0;
1438 #else
1439 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1442 static inline void skb_init_secmark(struct sk_buff *skb)
1444 #endif
1446 #endif /* __KERNEL__ */
1447 #endif /* _LINUX_SKBUFF_H */