SA1111: Eliminate use after free
[linux-2.6/x86.git] / net / core / dev.c
blob0ea10f849be862fff3219bc69ed4c5db0cbd9253
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
135 #include "net-sysfs.h"
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 static inline void rps_lock(struct softnet_data *sd)
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
218 static inline void rps_unlock(struct softnet_data *sd)
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
228 struct net *net = dev_net(dev);
230 ASSERT_RTNL();
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
244 static void unlist_netdevice(struct net_device *dev)
246 ASSERT_RTNL();
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
257 * Our notifier list
260 static RAW_NOTIFIER_HEAD(netdev_chain);
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
270 #ifdef CONFIG_LOCKDEP
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 int i;
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
328 int i;
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 int i;
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 #endif
354 /*******************************************************************************
356 Protocol management and registration routines
358 *******************************************************************************/
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
389 void dev_add_pack(struct packet_type *pt)
391 int hash;
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
400 spin_unlock_bh(&ptype_lock);
402 EXPORT_SYMBOL(dev_add_pack);
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
417 void __dev_remove_pack(struct packet_type *pt)
419 struct list_head *head;
420 struct packet_type *pt1;
422 spin_lock_bh(&ptype_lock);
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
440 EXPORT_SYMBOL(__dev_remove_pack);
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
454 void dev_remove_pack(struct packet_type *pt)
456 __dev_remove_pack(pt);
458 synchronize_net();
460 EXPORT_SYMBOL(dev_remove_pack);
462 /******************************************************************************
464 Device Boot-time Settings Routines
466 *******************************************************************************/
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
482 struct netdev_boot_setup *s;
483 int i;
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
507 int netdev_boot_setup_check(struct net_device *dev)
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
522 return 0;
524 EXPORT_SYMBOL(netdev_boot_setup_check);
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
537 unsigned long netdev_boot_base(const char *prefix, int unit)
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
543 sprintf(name, "%s%d", prefix, unit);
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
559 * Saves at boot time configured settings for any netdevice.
561 int __init netdev_boot_setup(char *str)
563 int ints[5];
564 struct ifmap map;
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
585 __setup("netdev=", netdev_boot_setup);
587 /*******************************************************************************
589 Device Interface Subroutines
591 *******************************************************************************/
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
615 return NULL;
617 EXPORT_SYMBOL(__dev_get_by_name);
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
641 return NULL;
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
659 struct net_device *dev;
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
668 EXPORT_SYMBOL(dev_get_by_name);
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
692 return NULL;
694 EXPORT_SYMBOL(__dev_get_by_index);
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
717 return NULL;
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
735 struct net_device *dev;
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
744 EXPORT_SYMBOL(dev_get_by_index);
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
763 struct net_device *dev;
765 ASSERT_RTNL();
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
772 return NULL;
774 EXPORT_SYMBOL(dev_getbyhwaddr);
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
778 struct net_device *dev;
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
785 return NULL;
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
791 struct net_device *dev, *ret = NULL;
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
800 rcu_read_unlock();
801 return ret;
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
820 struct net_device *dev, *ret;
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
831 rcu_read_unlock();
832 return ret;
834 EXPORT_SYMBOL(dev_get_by_flags);
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
844 int dev_valid_name(const char *name)
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
858 return 1;
860 EXPORT_SYMBOL(dev_valid_name);
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
925 return -ENFILE;
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
942 int dev_alloc_name(struct net_device *dev, const char *name)
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
955 EXPORT_SYMBOL(dev_alloc_name);
957 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
959 struct net *net;
961 BUG_ON(!dev_net(dev));
962 net = dev_net(dev);
964 if (!dev_valid_name(name))
965 return -EINVAL;
967 if (fmt && strchr(name, '%'))
968 return dev_alloc_name(dev, name);
969 else if (__dev_get_by_name(net, name))
970 return -EEXIST;
971 else if (dev->name != name)
972 strlcpy(dev->name, name, IFNAMSIZ);
974 return 0;
978 * dev_change_name - change name of a device
979 * @dev: device
980 * @newname: name (or format string) must be at least IFNAMSIZ
982 * Change name of a device, can pass format strings "eth%d".
983 * for wildcarding.
985 int dev_change_name(struct net_device *dev, const char *newname)
987 char oldname[IFNAMSIZ];
988 int err = 0;
989 int ret;
990 struct net *net;
992 ASSERT_RTNL();
993 BUG_ON(!dev_net(dev));
995 net = dev_net(dev);
996 if (dev->flags & IFF_UP)
997 return -EBUSY;
999 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1000 return 0;
1002 memcpy(oldname, dev->name, IFNAMSIZ);
1004 err = dev_get_valid_name(dev, newname, 1);
1005 if (err < 0)
1006 return err;
1008 rollback:
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1015 write_lock_bh(&dev_base_lock);
1016 hlist_del(&dev->name_hlist);
1017 write_unlock_bh(&dev_base_lock);
1019 synchronize_rcu();
1021 write_lock_bh(&dev_base_lock);
1022 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1023 write_unlock_bh(&dev_base_lock);
1025 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1026 ret = notifier_to_errno(ret);
1028 if (ret) {
1029 /* err >= 0 after dev_alloc_name() or stores the first errno */
1030 if (err >= 0) {
1031 err = ret;
1032 memcpy(dev->name, oldname, IFNAMSIZ);
1033 goto rollback;
1034 } else {
1035 printk(KERN_ERR
1036 "%s: name change rollback failed: %d.\n",
1037 dev->name, ret);
1041 return err;
1045 * dev_set_alias - change ifalias of a device
1046 * @dev: device
1047 * @alias: name up to IFALIASZ
1048 * @len: limit of bytes to copy from info
1050 * Set ifalias for a device,
1052 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1054 ASSERT_RTNL();
1056 if (len >= IFALIASZ)
1057 return -EINVAL;
1059 if (!len) {
1060 if (dev->ifalias) {
1061 kfree(dev->ifalias);
1062 dev->ifalias = NULL;
1064 return 0;
1067 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1068 if (!dev->ifalias)
1069 return -ENOMEM;
1071 strlcpy(dev->ifalias, alias, len+1);
1072 return len;
1077 * netdev_features_change - device changes features
1078 * @dev: device to cause notification
1080 * Called to indicate a device has changed features.
1082 void netdev_features_change(struct net_device *dev)
1084 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1086 EXPORT_SYMBOL(netdev_features_change);
1089 * netdev_state_change - device changes state
1090 * @dev: device to cause notification
1092 * Called to indicate a device has changed state. This function calls
1093 * the notifier chains for netdev_chain and sends a NEWLINK message
1094 * to the routing socket.
1096 void netdev_state_change(struct net_device *dev)
1098 if (dev->flags & IFF_UP) {
1099 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1100 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1103 EXPORT_SYMBOL(netdev_state_change);
1105 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1107 return call_netdevice_notifiers(event, dev);
1109 EXPORT_SYMBOL(netdev_bonding_change);
1112 * dev_load - load a network module
1113 * @net: the applicable net namespace
1114 * @name: name of interface
1116 * If a network interface is not present and the process has suitable
1117 * privileges this function loads the module. If module loading is not
1118 * available in this kernel then it becomes a nop.
1121 void dev_load(struct net *net, const char *name)
1123 struct net_device *dev;
1125 rcu_read_lock();
1126 dev = dev_get_by_name_rcu(net, name);
1127 rcu_read_unlock();
1129 if (!dev && capable(CAP_NET_ADMIN))
1130 request_module("%s", name);
1132 EXPORT_SYMBOL(dev_load);
1134 static int __dev_open(struct net_device *dev)
1136 const struct net_device_ops *ops = dev->netdev_ops;
1137 int ret;
1139 ASSERT_RTNL();
1142 * Is it even present?
1144 if (!netif_device_present(dev))
1145 return -ENODEV;
1147 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1148 ret = notifier_to_errno(ret);
1149 if (ret)
1150 return ret;
1153 * Call device private open method
1155 set_bit(__LINK_STATE_START, &dev->state);
1157 if (ops->ndo_validate_addr)
1158 ret = ops->ndo_validate_addr(dev);
1160 if (!ret && ops->ndo_open)
1161 ret = ops->ndo_open(dev);
1164 * If it went open OK then:
1167 if (ret)
1168 clear_bit(__LINK_STATE_START, &dev->state);
1169 else {
1171 * Set the flags.
1173 dev->flags |= IFF_UP;
1176 * Enable NET_DMA
1178 net_dmaengine_get();
1181 * Initialize multicasting status
1183 dev_set_rx_mode(dev);
1186 * Wakeup transmit queue engine
1188 dev_activate(dev);
1191 return ret;
1195 * dev_open - prepare an interface for use.
1196 * @dev: device to open
1198 * Takes a device from down to up state. The device's private open
1199 * function is invoked and then the multicast lists are loaded. Finally
1200 * the device is moved into the up state and a %NETDEV_UP message is
1201 * sent to the netdev notifier chain.
1203 * Calling this function on an active interface is a nop. On a failure
1204 * a negative errno code is returned.
1206 int dev_open(struct net_device *dev)
1208 int ret;
1211 * Is it already up?
1213 if (dev->flags & IFF_UP)
1214 return 0;
1217 * Open device
1219 ret = __dev_open(dev);
1220 if (ret < 0)
1221 return ret;
1224 * ... and announce new interface.
1226 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1227 call_netdevice_notifiers(NETDEV_UP, dev);
1229 return ret;
1231 EXPORT_SYMBOL(dev_open);
1233 static int __dev_close(struct net_device *dev)
1235 const struct net_device_ops *ops = dev->netdev_ops;
1237 ASSERT_RTNL();
1238 might_sleep();
1241 * Tell people we are going down, so that they can
1242 * prepare to death, when device is still operating.
1244 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1246 clear_bit(__LINK_STATE_START, &dev->state);
1248 /* Synchronize to scheduled poll. We cannot touch poll list,
1249 * it can be even on different cpu. So just clear netif_running().
1251 * dev->stop() will invoke napi_disable() on all of it's
1252 * napi_struct instances on this device.
1254 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1256 dev_deactivate(dev);
1259 * Call the device specific close. This cannot fail.
1260 * Only if device is UP
1262 * We allow it to be called even after a DETACH hot-plug
1263 * event.
1265 if (ops->ndo_stop)
1266 ops->ndo_stop(dev);
1269 * Device is now down.
1272 dev->flags &= ~IFF_UP;
1275 * Shutdown NET_DMA
1277 net_dmaengine_put();
1279 return 0;
1283 * dev_close - shutdown an interface.
1284 * @dev: device to shutdown
1286 * This function moves an active device into down state. A
1287 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1288 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1289 * chain.
1291 int dev_close(struct net_device *dev)
1293 if (!(dev->flags & IFF_UP))
1294 return 0;
1296 __dev_close(dev);
1299 * Tell people we are down
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1302 call_netdevice_notifiers(NETDEV_DOWN, dev);
1304 return 0;
1306 EXPORT_SYMBOL(dev_close);
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1317 void dev_disable_lro(struct net_device *dev)
1319 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1320 dev->ethtool_ops->set_flags) {
1321 u32 flags = dev->ethtool_ops->get_flags(dev);
1322 if (flags & ETH_FLAG_LRO) {
1323 flags &= ~ETH_FLAG_LRO;
1324 dev->ethtool_ops->set_flags(dev, flags);
1327 WARN_ON(dev->features & NETIF_F_LRO);
1329 EXPORT_SYMBOL(dev_disable_lro);
1332 static int dev_boot_phase = 1;
1335 * Device change register/unregister. These are not inline or static
1336 * as we export them to the world.
1340 * register_netdevice_notifier - register a network notifier block
1341 * @nb: notifier
1343 * Register a notifier to be called when network device events occur.
1344 * The notifier passed is linked into the kernel structures and must
1345 * not be reused until it has been unregistered. A negative errno code
1346 * is returned on a failure.
1348 * When registered all registration and up events are replayed
1349 * to the new notifier to allow device to have a race free
1350 * view of the network device list.
1353 int register_netdevice_notifier(struct notifier_block *nb)
1355 struct net_device *dev;
1356 struct net_device *last;
1357 struct net *net;
1358 int err;
1360 rtnl_lock();
1361 err = raw_notifier_chain_register(&netdev_chain, nb);
1362 if (err)
1363 goto unlock;
1364 if (dev_boot_phase)
1365 goto unlock;
1366 for_each_net(net) {
1367 for_each_netdev(net, dev) {
1368 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1369 err = notifier_to_errno(err);
1370 if (err)
1371 goto rollback;
1373 if (!(dev->flags & IFF_UP))
1374 continue;
1376 nb->notifier_call(nb, NETDEV_UP, dev);
1380 unlock:
1381 rtnl_unlock();
1382 return err;
1384 rollback:
1385 last = dev;
1386 for_each_net(net) {
1387 for_each_netdev(net, dev) {
1388 if (dev == last)
1389 break;
1391 if (dev->flags & IFF_UP) {
1392 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1393 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1396 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1400 raw_notifier_chain_unregister(&netdev_chain, nb);
1401 goto unlock;
1403 EXPORT_SYMBOL(register_netdevice_notifier);
1406 * unregister_netdevice_notifier - unregister a network notifier block
1407 * @nb: notifier
1409 * Unregister a notifier previously registered by
1410 * register_netdevice_notifier(). The notifier is unlinked into the
1411 * kernel structures and may then be reused. A negative errno code
1412 * is returned on a failure.
1415 int unregister_netdevice_notifier(struct notifier_block *nb)
1417 int err;
1419 rtnl_lock();
1420 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1421 rtnl_unlock();
1422 return err;
1424 EXPORT_SYMBOL(unregister_netdevice_notifier);
1427 * call_netdevice_notifiers - call all network notifier blocks
1428 * @val: value passed unmodified to notifier function
1429 * @dev: net_device pointer passed unmodified to notifier function
1431 * Call all network notifier blocks. Parameters and return value
1432 * are as for raw_notifier_call_chain().
1435 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1437 ASSERT_RTNL();
1438 return raw_notifier_call_chain(&netdev_chain, val, dev);
1441 /* When > 0 there are consumers of rx skb time stamps */
1442 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1444 void net_enable_timestamp(void)
1446 atomic_inc(&netstamp_needed);
1448 EXPORT_SYMBOL(net_enable_timestamp);
1450 void net_disable_timestamp(void)
1452 atomic_dec(&netstamp_needed);
1454 EXPORT_SYMBOL(net_disable_timestamp);
1456 static inline void net_timestamp_set(struct sk_buff *skb)
1458 if (atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 else
1461 skb->tstamp.tv64 = 0;
1464 static inline void net_timestamp_check(struct sk_buff *skb)
1466 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1467 __net_timestamp(skb);
1471 * dev_forward_skb - loopback an skb to another netif
1473 * @dev: destination network device
1474 * @skb: buffer to forward
1476 * return values:
1477 * NET_RX_SUCCESS (no congestion)
1478 * NET_RX_DROP (packet was dropped, but freed)
1480 * dev_forward_skb can be used for injecting an skb from the
1481 * start_xmit function of one device into the receive queue
1482 * of another device.
1484 * The receiving device may be in another namespace, so
1485 * we have to clear all information in the skb that could
1486 * impact namespace isolation.
1488 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1490 skb_orphan(skb);
1492 if (!(dev->flags & IFF_UP) ||
1493 (skb->len > (dev->mtu + dev->hard_header_len))) {
1494 kfree_skb(skb);
1495 return NET_RX_DROP;
1497 skb_set_dev(skb, dev);
1498 skb->tstamp.tv64 = 0;
1499 skb->pkt_type = PACKET_HOST;
1500 skb->protocol = eth_type_trans(skb, dev);
1501 return netif_rx(skb);
1503 EXPORT_SYMBOL_GPL(dev_forward_skb);
1506 * Support routine. Sends outgoing frames to any network
1507 * taps currently in use.
1510 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1512 struct packet_type *ptype;
1514 #ifdef CONFIG_NET_CLS_ACT
1515 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1516 net_timestamp_set(skb);
1517 #else
1518 net_timestamp_set(skb);
1519 #endif
1521 rcu_read_lock();
1522 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1523 /* Never send packets back to the socket
1524 * they originated from - MvS (miquels@drinkel.ow.org)
1526 if ((ptype->dev == dev || !ptype->dev) &&
1527 (ptype->af_packet_priv == NULL ||
1528 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1529 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1530 if (!skb2)
1531 break;
1533 /* skb->nh should be correctly
1534 set by sender, so that the second statement is
1535 just protection against buggy protocols.
1537 skb_reset_mac_header(skb2);
1539 if (skb_network_header(skb2) < skb2->data ||
1540 skb2->network_header > skb2->tail) {
1541 if (net_ratelimit())
1542 printk(KERN_CRIT "protocol %04x is "
1543 "buggy, dev %s\n",
1544 skb2->protocol, dev->name);
1545 skb_reset_network_header(skb2);
1548 skb2->transport_header = skb2->network_header;
1549 skb2->pkt_type = PACKET_OUTGOING;
1550 ptype->func(skb2, skb->dev, ptype, skb->dev);
1553 rcu_read_unlock();
1557 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1558 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1560 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1562 unsigned int real_num = dev->real_num_tx_queues;
1564 if (unlikely(txq > dev->num_tx_queues))
1566 else if (txq > real_num)
1567 dev->real_num_tx_queues = txq;
1568 else if (txq < real_num) {
1569 dev->real_num_tx_queues = txq;
1570 qdisc_reset_all_tx_gt(dev, txq);
1573 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1575 static inline void __netif_reschedule(struct Qdisc *q)
1577 struct softnet_data *sd;
1578 unsigned long flags;
1580 local_irq_save(flags);
1581 sd = &__get_cpu_var(softnet_data);
1582 q->next_sched = NULL;
1583 *sd->output_queue_tailp = q;
1584 sd->output_queue_tailp = &q->next_sched;
1585 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1586 local_irq_restore(flags);
1589 void __netif_schedule(struct Qdisc *q)
1591 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1592 __netif_reschedule(q);
1594 EXPORT_SYMBOL(__netif_schedule);
1596 void dev_kfree_skb_irq(struct sk_buff *skb)
1598 if (atomic_dec_and_test(&skb->users)) {
1599 struct softnet_data *sd;
1600 unsigned long flags;
1602 local_irq_save(flags);
1603 sd = &__get_cpu_var(softnet_data);
1604 skb->next = sd->completion_queue;
1605 sd->completion_queue = skb;
1606 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1607 local_irq_restore(flags);
1610 EXPORT_SYMBOL(dev_kfree_skb_irq);
1612 void dev_kfree_skb_any(struct sk_buff *skb)
1614 if (in_irq() || irqs_disabled())
1615 dev_kfree_skb_irq(skb);
1616 else
1617 dev_kfree_skb(skb);
1619 EXPORT_SYMBOL(dev_kfree_skb_any);
1623 * netif_device_detach - mark device as removed
1624 * @dev: network device
1626 * Mark device as removed from system and therefore no longer available.
1628 void netif_device_detach(struct net_device *dev)
1630 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1631 netif_running(dev)) {
1632 netif_tx_stop_all_queues(dev);
1635 EXPORT_SYMBOL(netif_device_detach);
1638 * netif_device_attach - mark device as attached
1639 * @dev: network device
1641 * Mark device as attached from system and restart if needed.
1643 void netif_device_attach(struct net_device *dev)
1645 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1646 netif_running(dev)) {
1647 netif_tx_wake_all_queues(dev);
1648 __netdev_watchdog_up(dev);
1651 EXPORT_SYMBOL(netif_device_attach);
1653 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1655 return ((features & NETIF_F_GEN_CSUM) ||
1656 ((features & NETIF_F_IP_CSUM) &&
1657 protocol == htons(ETH_P_IP)) ||
1658 ((features & NETIF_F_IPV6_CSUM) &&
1659 protocol == htons(ETH_P_IPV6)) ||
1660 ((features & NETIF_F_FCOE_CRC) &&
1661 protocol == htons(ETH_P_FCOE)));
1664 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1666 if (can_checksum_protocol(dev->features, skb->protocol))
1667 return true;
1669 if (skb->protocol == htons(ETH_P_8021Q)) {
1670 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1671 if (can_checksum_protocol(dev->features & dev->vlan_features,
1672 veh->h_vlan_encapsulated_proto))
1673 return true;
1676 return false;
1680 * skb_dev_set -- assign a new device to a buffer
1681 * @skb: buffer for the new device
1682 * @dev: network device
1684 * If an skb is owned by a device already, we have to reset
1685 * all data private to the namespace a device belongs to
1686 * before assigning it a new device.
1688 #ifdef CONFIG_NET_NS
1689 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1691 skb_dst_drop(skb);
1692 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1693 secpath_reset(skb);
1694 nf_reset(skb);
1695 skb_init_secmark(skb);
1696 skb->mark = 0;
1697 skb->priority = 0;
1698 skb->nf_trace = 0;
1699 skb->ipvs_property = 0;
1700 #ifdef CONFIG_NET_SCHED
1701 skb->tc_index = 0;
1702 #endif
1704 skb->dev = dev;
1706 EXPORT_SYMBOL(skb_set_dev);
1707 #endif /* CONFIG_NET_NS */
1710 * Invalidate hardware checksum when packet is to be mangled, and
1711 * complete checksum manually on outgoing path.
1713 int skb_checksum_help(struct sk_buff *skb)
1715 __wsum csum;
1716 int ret = 0, offset;
1718 if (skb->ip_summed == CHECKSUM_COMPLETE)
1719 goto out_set_summed;
1721 if (unlikely(skb_shinfo(skb)->gso_size)) {
1722 /* Let GSO fix up the checksum. */
1723 goto out_set_summed;
1726 offset = skb->csum_start - skb_headroom(skb);
1727 BUG_ON(offset >= skb_headlen(skb));
1728 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1730 offset += skb->csum_offset;
1731 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1733 if (skb_cloned(skb) &&
1734 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1735 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1736 if (ret)
1737 goto out;
1740 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1741 out_set_summed:
1742 skb->ip_summed = CHECKSUM_NONE;
1743 out:
1744 return ret;
1746 EXPORT_SYMBOL(skb_checksum_help);
1749 * skb_gso_segment - Perform segmentation on skb.
1750 * @skb: buffer to segment
1751 * @features: features for the output path (see dev->features)
1753 * This function segments the given skb and returns a list of segments.
1755 * It may return NULL if the skb requires no segmentation. This is
1756 * only possible when GSO is used for verifying header integrity.
1758 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1760 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1761 struct packet_type *ptype;
1762 __be16 type = skb->protocol;
1763 int err;
1765 skb_reset_mac_header(skb);
1766 skb->mac_len = skb->network_header - skb->mac_header;
1767 __skb_pull(skb, skb->mac_len);
1769 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1770 struct net_device *dev = skb->dev;
1771 struct ethtool_drvinfo info = {};
1773 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1774 dev->ethtool_ops->get_drvinfo(dev, &info);
1776 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1777 "ip_summed=%d",
1778 info.driver, dev ? dev->features : 0L,
1779 skb->sk ? skb->sk->sk_route_caps : 0L,
1780 skb->len, skb->data_len, skb->ip_summed);
1782 if (skb_header_cloned(skb) &&
1783 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1784 return ERR_PTR(err);
1787 rcu_read_lock();
1788 list_for_each_entry_rcu(ptype,
1789 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1790 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1791 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1792 err = ptype->gso_send_check(skb);
1793 segs = ERR_PTR(err);
1794 if (err || skb_gso_ok(skb, features))
1795 break;
1796 __skb_push(skb, (skb->data -
1797 skb_network_header(skb)));
1799 segs = ptype->gso_segment(skb, features);
1800 break;
1803 rcu_read_unlock();
1805 __skb_push(skb, skb->data - skb_mac_header(skb));
1807 return segs;
1809 EXPORT_SYMBOL(skb_gso_segment);
1811 /* Take action when hardware reception checksum errors are detected. */
1812 #ifdef CONFIG_BUG
1813 void netdev_rx_csum_fault(struct net_device *dev)
1815 if (net_ratelimit()) {
1816 printk(KERN_ERR "%s: hw csum failure.\n",
1817 dev ? dev->name : "<unknown>");
1818 dump_stack();
1821 EXPORT_SYMBOL(netdev_rx_csum_fault);
1822 #endif
1824 /* Actually, we should eliminate this check as soon as we know, that:
1825 * 1. IOMMU is present and allows to map all the memory.
1826 * 2. No high memory really exists on this machine.
1829 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1831 #ifdef CONFIG_HIGHMEM
1832 int i;
1833 if (!(dev->features & NETIF_F_HIGHDMA)) {
1834 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1835 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1836 return 1;
1839 if (PCI_DMA_BUS_IS_PHYS) {
1840 struct device *pdev = dev->dev.parent;
1842 if (!pdev)
1843 return 0;
1844 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1845 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1846 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1847 return 1;
1850 #endif
1851 return 0;
1854 struct dev_gso_cb {
1855 void (*destructor)(struct sk_buff *skb);
1858 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1860 static void dev_gso_skb_destructor(struct sk_buff *skb)
1862 struct dev_gso_cb *cb;
1864 do {
1865 struct sk_buff *nskb = skb->next;
1867 skb->next = nskb->next;
1868 nskb->next = NULL;
1869 kfree_skb(nskb);
1870 } while (skb->next);
1872 cb = DEV_GSO_CB(skb);
1873 if (cb->destructor)
1874 cb->destructor(skb);
1878 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1879 * @skb: buffer to segment
1881 * This function segments the given skb and stores the list of segments
1882 * in skb->next.
1884 static int dev_gso_segment(struct sk_buff *skb)
1886 struct net_device *dev = skb->dev;
1887 struct sk_buff *segs;
1888 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1889 NETIF_F_SG : 0);
1891 segs = skb_gso_segment(skb, features);
1893 /* Verifying header integrity only. */
1894 if (!segs)
1895 return 0;
1897 if (IS_ERR(segs))
1898 return PTR_ERR(segs);
1900 skb->next = segs;
1901 DEV_GSO_CB(skb)->destructor = skb->destructor;
1902 skb->destructor = dev_gso_skb_destructor;
1904 return 0;
1908 * Try to orphan skb early, right before transmission by the device.
1909 * We cannot orphan skb if tx timestamp is requested, since
1910 * drivers need to call skb_tstamp_tx() to send the timestamp.
1912 static inline void skb_orphan_try(struct sk_buff *skb)
1914 struct sock *sk = skb->sk;
1916 if (sk && !skb_tx(skb)->flags) {
1917 /* skb_tx_hash() wont be able to get sk.
1918 * We copy sk_hash into skb->rxhash
1920 if (!skb->rxhash)
1921 skb->rxhash = sk->sk_hash;
1922 skb_orphan(skb);
1926 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1927 struct netdev_queue *txq)
1929 const struct net_device_ops *ops = dev->netdev_ops;
1930 int rc = NETDEV_TX_OK;
1932 if (likely(!skb->next)) {
1933 if (!list_empty(&ptype_all))
1934 dev_queue_xmit_nit(skb, dev);
1937 * If device doesnt need skb->dst, release it right now while
1938 * its hot in this cpu cache
1940 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1941 skb_dst_drop(skb);
1943 skb_orphan_try(skb);
1945 if (netif_needs_gso(dev, skb)) {
1946 if (unlikely(dev_gso_segment(skb)))
1947 goto out_kfree_skb;
1948 if (skb->next)
1949 goto gso;
1952 rc = ops->ndo_start_xmit(skb, dev);
1953 if (rc == NETDEV_TX_OK)
1954 txq_trans_update(txq);
1955 return rc;
1958 gso:
1959 do {
1960 struct sk_buff *nskb = skb->next;
1962 skb->next = nskb->next;
1963 nskb->next = NULL;
1966 * If device doesnt need nskb->dst, release it right now while
1967 * its hot in this cpu cache
1969 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1970 skb_dst_drop(nskb);
1972 rc = ops->ndo_start_xmit(nskb, dev);
1973 if (unlikely(rc != NETDEV_TX_OK)) {
1974 if (rc & ~NETDEV_TX_MASK)
1975 goto out_kfree_gso_skb;
1976 nskb->next = skb->next;
1977 skb->next = nskb;
1978 return rc;
1980 txq_trans_update(txq);
1981 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1982 return NETDEV_TX_BUSY;
1983 } while (skb->next);
1985 out_kfree_gso_skb:
1986 if (likely(skb->next == NULL))
1987 skb->destructor = DEV_GSO_CB(skb)->destructor;
1988 out_kfree_skb:
1989 kfree_skb(skb);
1990 return rc;
1993 static u32 hashrnd __read_mostly;
1995 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1997 u32 hash;
1999 if (skb_rx_queue_recorded(skb)) {
2000 hash = skb_get_rx_queue(skb);
2001 while (unlikely(hash >= dev->real_num_tx_queues))
2002 hash -= dev->real_num_tx_queues;
2003 return hash;
2006 if (skb->sk && skb->sk->sk_hash)
2007 hash = skb->sk->sk_hash;
2008 else
2009 hash = (__force u16) skb->protocol ^ skb->rxhash;
2010 hash = jhash_1word(hash, hashrnd);
2012 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2014 EXPORT_SYMBOL(skb_tx_hash);
2016 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2018 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2019 if (net_ratelimit()) {
2020 pr_warning("%s selects TX queue %d, but "
2021 "real number of TX queues is %d\n",
2022 dev->name, queue_index, dev->real_num_tx_queues);
2024 return 0;
2026 return queue_index;
2029 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2030 struct sk_buff *skb)
2032 int queue_index;
2033 struct sock *sk = skb->sk;
2035 queue_index = sk_tx_queue_get(sk);
2036 if (queue_index < 0) {
2037 const struct net_device_ops *ops = dev->netdev_ops;
2039 if (ops->ndo_select_queue) {
2040 queue_index = ops->ndo_select_queue(dev, skb);
2041 queue_index = dev_cap_txqueue(dev, queue_index);
2042 } else {
2043 queue_index = 0;
2044 if (dev->real_num_tx_queues > 1)
2045 queue_index = skb_tx_hash(dev, skb);
2047 if (sk) {
2048 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2050 if (dst && skb_dst(skb) == dst)
2051 sk_tx_queue_set(sk, queue_index);
2056 skb_set_queue_mapping(skb, queue_index);
2057 return netdev_get_tx_queue(dev, queue_index);
2060 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2061 struct net_device *dev,
2062 struct netdev_queue *txq)
2064 spinlock_t *root_lock = qdisc_lock(q);
2065 int rc;
2067 spin_lock(root_lock);
2068 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2069 kfree_skb(skb);
2070 rc = NET_XMIT_DROP;
2071 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2072 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2074 * This is a work-conserving queue; there are no old skbs
2075 * waiting to be sent out; and the qdisc is not running -
2076 * xmit the skb directly.
2078 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2079 skb_dst_force(skb);
2080 __qdisc_update_bstats(q, skb->len);
2081 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2082 __qdisc_run(q);
2083 else
2084 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2086 rc = NET_XMIT_SUCCESS;
2087 } else {
2088 skb_dst_force(skb);
2089 rc = qdisc_enqueue_root(skb, q);
2090 qdisc_run(q);
2092 spin_unlock(root_lock);
2094 return rc;
2098 * Returns true if either:
2099 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2100 * 2. skb is fragmented and the device does not support SG, or if
2101 * at least one of fragments is in highmem and device does not
2102 * support DMA from it.
2104 static inline int skb_needs_linearize(struct sk_buff *skb,
2105 struct net_device *dev)
2107 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2108 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2109 illegal_highdma(dev, skb)));
2113 * dev_queue_xmit - transmit a buffer
2114 * @skb: buffer to transmit
2116 * Queue a buffer for transmission to a network device. The caller must
2117 * have set the device and priority and built the buffer before calling
2118 * this function. The function can be called from an interrupt.
2120 * A negative errno code is returned on a failure. A success does not
2121 * guarantee the frame will be transmitted as it may be dropped due
2122 * to congestion or traffic shaping.
2124 * -----------------------------------------------------------------------------------
2125 * I notice this method can also return errors from the queue disciplines,
2126 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2127 * be positive.
2129 * Regardless of the return value, the skb is consumed, so it is currently
2130 * difficult to retry a send to this method. (You can bump the ref count
2131 * before sending to hold a reference for retry if you are careful.)
2133 * When calling this method, interrupts MUST be enabled. This is because
2134 * the BH enable code must have IRQs enabled so that it will not deadlock.
2135 * --BLG
2137 int dev_queue_xmit(struct sk_buff *skb)
2139 struct net_device *dev = skb->dev;
2140 struct netdev_queue *txq;
2141 struct Qdisc *q;
2142 int rc = -ENOMEM;
2144 /* GSO will handle the following emulations directly. */
2145 if (netif_needs_gso(dev, skb))
2146 goto gso;
2148 /* Convert a paged skb to linear, if required */
2149 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2150 goto out_kfree_skb;
2152 /* If packet is not checksummed and device does not support
2153 * checksumming for this protocol, complete checksumming here.
2155 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2156 skb_set_transport_header(skb, skb->csum_start -
2157 skb_headroom(skb));
2158 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2159 goto out_kfree_skb;
2162 gso:
2163 /* Disable soft irqs for various locks below. Also
2164 * stops preemption for RCU.
2166 rcu_read_lock_bh();
2168 txq = dev_pick_tx(dev, skb);
2169 q = rcu_dereference_bh(txq->qdisc);
2171 #ifdef CONFIG_NET_CLS_ACT
2172 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2173 #endif
2174 if (q->enqueue) {
2175 rc = __dev_xmit_skb(skb, q, dev, txq);
2176 goto out;
2179 /* The device has no queue. Common case for software devices:
2180 loopback, all the sorts of tunnels...
2182 Really, it is unlikely that netif_tx_lock protection is necessary
2183 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2184 counters.)
2185 However, it is possible, that they rely on protection
2186 made by us here.
2188 Check this and shot the lock. It is not prone from deadlocks.
2189 Either shot noqueue qdisc, it is even simpler 8)
2191 if (dev->flags & IFF_UP) {
2192 int cpu = smp_processor_id(); /* ok because BHs are off */
2194 if (txq->xmit_lock_owner != cpu) {
2196 HARD_TX_LOCK(dev, txq, cpu);
2198 if (!netif_tx_queue_stopped(txq)) {
2199 rc = dev_hard_start_xmit(skb, dev, txq);
2200 if (dev_xmit_complete(rc)) {
2201 HARD_TX_UNLOCK(dev, txq);
2202 goto out;
2205 HARD_TX_UNLOCK(dev, txq);
2206 if (net_ratelimit())
2207 printk(KERN_CRIT "Virtual device %s asks to "
2208 "queue packet!\n", dev->name);
2209 } else {
2210 /* Recursion is detected! It is possible,
2211 * unfortunately */
2212 if (net_ratelimit())
2213 printk(KERN_CRIT "Dead loop on virtual device "
2214 "%s, fix it urgently!\n", dev->name);
2218 rc = -ENETDOWN;
2219 rcu_read_unlock_bh();
2221 out_kfree_skb:
2222 kfree_skb(skb);
2223 return rc;
2224 out:
2225 rcu_read_unlock_bh();
2226 return rc;
2228 EXPORT_SYMBOL(dev_queue_xmit);
2231 /*=======================================================================
2232 Receiver routines
2233 =======================================================================*/
2235 int netdev_max_backlog __read_mostly = 1000;
2236 int netdev_tstamp_prequeue __read_mostly = 1;
2237 int netdev_budget __read_mostly = 300;
2238 int weight_p __read_mostly = 64; /* old backlog weight */
2240 /* Called with irq disabled */
2241 static inline void ____napi_schedule(struct softnet_data *sd,
2242 struct napi_struct *napi)
2244 list_add_tail(&napi->poll_list, &sd->poll_list);
2245 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2248 #ifdef CONFIG_RPS
2250 /* One global table that all flow-based protocols share. */
2251 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2252 EXPORT_SYMBOL(rps_sock_flow_table);
2255 * get_rps_cpu is called from netif_receive_skb and returns the target
2256 * CPU from the RPS map of the receiving queue for a given skb.
2257 * rcu_read_lock must be held on entry.
2259 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2260 struct rps_dev_flow **rflowp)
2262 struct ipv6hdr *ip6;
2263 struct iphdr *ip;
2264 struct netdev_rx_queue *rxqueue;
2265 struct rps_map *map;
2266 struct rps_dev_flow_table *flow_table;
2267 struct rps_sock_flow_table *sock_flow_table;
2268 int cpu = -1;
2269 u8 ip_proto;
2270 u16 tcpu;
2271 u32 addr1, addr2, ihl;
2272 union {
2273 u32 v32;
2274 u16 v16[2];
2275 } ports;
2277 if (skb_rx_queue_recorded(skb)) {
2278 u16 index = skb_get_rx_queue(skb);
2279 if (unlikely(index >= dev->num_rx_queues)) {
2280 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2281 "on queue %u, but number of RX queues is %u\n",
2282 dev->name, index, dev->num_rx_queues);
2283 goto done;
2285 rxqueue = dev->_rx + index;
2286 } else
2287 rxqueue = dev->_rx;
2289 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2290 goto done;
2292 if (skb->rxhash)
2293 goto got_hash; /* Skip hash computation on packet header */
2295 switch (skb->protocol) {
2296 case __constant_htons(ETH_P_IP):
2297 if (!pskb_may_pull(skb, sizeof(*ip)))
2298 goto done;
2300 ip = (struct iphdr *) skb->data;
2301 ip_proto = ip->protocol;
2302 addr1 = (__force u32) ip->saddr;
2303 addr2 = (__force u32) ip->daddr;
2304 ihl = ip->ihl;
2305 break;
2306 case __constant_htons(ETH_P_IPV6):
2307 if (!pskb_may_pull(skb, sizeof(*ip6)))
2308 goto done;
2310 ip6 = (struct ipv6hdr *) skb->data;
2311 ip_proto = ip6->nexthdr;
2312 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2313 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2314 ihl = (40 >> 2);
2315 break;
2316 default:
2317 goto done;
2319 switch (ip_proto) {
2320 case IPPROTO_TCP:
2321 case IPPROTO_UDP:
2322 case IPPROTO_DCCP:
2323 case IPPROTO_ESP:
2324 case IPPROTO_AH:
2325 case IPPROTO_SCTP:
2326 case IPPROTO_UDPLITE:
2327 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2328 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2329 if (ports.v16[1] < ports.v16[0])
2330 swap(ports.v16[0], ports.v16[1]);
2331 break;
2333 default:
2334 ports.v32 = 0;
2335 break;
2338 /* get a consistent hash (same value on both flow directions) */
2339 if (addr2 < addr1)
2340 swap(addr1, addr2);
2341 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2342 if (!skb->rxhash)
2343 skb->rxhash = 1;
2345 got_hash:
2346 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2347 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2348 if (flow_table && sock_flow_table) {
2349 u16 next_cpu;
2350 struct rps_dev_flow *rflow;
2352 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2353 tcpu = rflow->cpu;
2355 next_cpu = sock_flow_table->ents[skb->rxhash &
2356 sock_flow_table->mask];
2359 * If the desired CPU (where last recvmsg was done) is
2360 * different from current CPU (one in the rx-queue flow
2361 * table entry), switch if one of the following holds:
2362 * - Current CPU is unset (equal to RPS_NO_CPU).
2363 * - Current CPU is offline.
2364 * - The current CPU's queue tail has advanced beyond the
2365 * last packet that was enqueued using this table entry.
2366 * This guarantees that all previous packets for the flow
2367 * have been dequeued, thus preserving in order delivery.
2369 if (unlikely(tcpu != next_cpu) &&
2370 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2371 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2372 rflow->last_qtail)) >= 0)) {
2373 tcpu = rflow->cpu = next_cpu;
2374 if (tcpu != RPS_NO_CPU)
2375 rflow->last_qtail = per_cpu(softnet_data,
2376 tcpu).input_queue_head;
2378 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2379 *rflowp = rflow;
2380 cpu = tcpu;
2381 goto done;
2385 map = rcu_dereference(rxqueue->rps_map);
2386 if (map) {
2387 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2389 if (cpu_online(tcpu)) {
2390 cpu = tcpu;
2391 goto done;
2395 done:
2396 return cpu;
2399 /* Called from hardirq (IPI) context */
2400 static void rps_trigger_softirq(void *data)
2402 struct softnet_data *sd = data;
2404 ____napi_schedule(sd, &sd->backlog);
2405 sd->received_rps++;
2408 #endif /* CONFIG_RPS */
2411 * Check if this softnet_data structure is another cpu one
2412 * If yes, queue it to our IPI list and return 1
2413 * If no, return 0
2415 static int rps_ipi_queued(struct softnet_data *sd)
2417 #ifdef CONFIG_RPS
2418 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2420 if (sd != mysd) {
2421 sd->rps_ipi_next = mysd->rps_ipi_list;
2422 mysd->rps_ipi_list = sd;
2424 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2425 return 1;
2427 #endif /* CONFIG_RPS */
2428 return 0;
2432 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2433 * queue (may be a remote CPU queue).
2435 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2436 unsigned int *qtail)
2438 struct softnet_data *sd;
2439 unsigned long flags;
2441 sd = &per_cpu(softnet_data, cpu);
2443 local_irq_save(flags);
2445 rps_lock(sd);
2446 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2447 if (skb_queue_len(&sd->input_pkt_queue)) {
2448 enqueue:
2449 __skb_queue_tail(&sd->input_pkt_queue, skb);
2450 input_queue_tail_incr_save(sd, qtail);
2451 rps_unlock(sd);
2452 local_irq_restore(flags);
2453 return NET_RX_SUCCESS;
2456 /* Schedule NAPI for backlog device
2457 * We can use non atomic operation since we own the queue lock
2459 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2460 if (!rps_ipi_queued(sd))
2461 ____napi_schedule(sd, &sd->backlog);
2463 goto enqueue;
2466 sd->dropped++;
2467 rps_unlock(sd);
2469 local_irq_restore(flags);
2471 kfree_skb(skb);
2472 return NET_RX_DROP;
2476 * netif_rx - post buffer to the network code
2477 * @skb: buffer to post
2479 * This function receives a packet from a device driver and queues it for
2480 * the upper (protocol) levels to process. It always succeeds. The buffer
2481 * may be dropped during processing for congestion control or by the
2482 * protocol layers.
2484 * return values:
2485 * NET_RX_SUCCESS (no congestion)
2486 * NET_RX_DROP (packet was dropped)
2490 int netif_rx(struct sk_buff *skb)
2492 int ret;
2494 /* if netpoll wants it, pretend we never saw it */
2495 if (netpoll_rx(skb))
2496 return NET_RX_DROP;
2498 if (netdev_tstamp_prequeue)
2499 net_timestamp_check(skb);
2501 #ifdef CONFIG_RPS
2503 struct rps_dev_flow voidflow, *rflow = &voidflow;
2504 int cpu;
2506 rcu_read_lock();
2508 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2509 if (cpu < 0)
2510 cpu = smp_processor_id();
2512 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2514 rcu_read_unlock();
2516 #else
2518 unsigned int qtail;
2519 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2520 put_cpu();
2522 #endif
2523 return ret;
2525 EXPORT_SYMBOL(netif_rx);
2527 int netif_rx_ni(struct sk_buff *skb)
2529 int err;
2531 preempt_disable();
2532 err = netif_rx(skb);
2533 if (local_softirq_pending())
2534 do_softirq();
2535 preempt_enable();
2537 return err;
2539 EXPORT_SYMBOL(netif_rx_ni);
2541 static void net_tx_action(struct softirq_action *h)
2543 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2545 if (sd->completion_queue) {
2546 struct sk_buff *clist;
2548 local_irq_disable();
2549 clist = sd->completion_queue;
2550 sd->completion_queue = NULL;
2551 local_irq_enable();
2553 while (clist) {
2554 struct sk_buff *skb = clist;
2555 clist = clist->next;
2557 WARN_ON(atomic_read(&skb->users));
2558 __kfree_skb(skb);
2562 if (sd->output_queue) {
2563 struct Qdisc *head;
2565 local_irq_disable();
2566 head = sd->output_queue;
2567 sd->output_queue = NULL;
2568 sd->output_queue_tailp = &sd->output_queue;
2569 local_irq_enable();
2571 while (head) {
2572 struct Qdisc *q = head;
2573 spinlock_t *root_lock;
2575 head = head->next_sched;
2577 root_lock = qdisc_lock(q);
2578 if (spin_trylock(root_lock)) {
2579 smp_mb__before_clear_bit();
2580 clear_bit(__QDISC_STATE_SCHED,
2581 &q->state);
2582 qdisc_run(q);
2583 spin_unlock(root_lock);
2584 } else {
2585 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2586 &q->state)) {
2587 __netif_reschedule(q);
2588 } else {
2589 smp_mb__before_clear_bit();
2590 clear_bit(__QDISC_STATE_SCHED,
2591 &q->state);
2598 static inline int deliver_skb(struct sk_buff *skb,
2599 struct packet_type *pt_prev,
2600 struct net_device *orig_dev)
2602 atomic_inc(&skb->users);
2603 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2606 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2608 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2609 /* This hook is defined here for ATM LANE */
2610 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2611 unsigned char *addr) __read_mostly;
2612 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2613 #endif
2616 * If bridge module is loaded call bridging hook.
2617 * returns NULL if packet was consumed.
2619 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2620 struct sk_buff *skb) __read_mostly;
2621 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2623 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2624 struct packet_type **pt_prev, int *ret,
2625 struct net_device *orig_dev)
2627 struct net_bridge_port *port;
2629 if (skb->pkt_type == PACKET_LOOPBACK ||
2630 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2631 return skb;
2633 if (*pt_prev) {
2634 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2635 *pt_prev = NULL;
2638 return br_handle_frame_hook(port, skb);
2640 #else
2641 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2642 #endif
2644 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2645 struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p,
2646 struct sk_buff *skb) __read_mostly;
2647 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2649 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2650 struct packet_type **pt_prev,
2651 int *ret,
2652 struct net_device *orig_dev)
2654 struct macvlan_port *port;
2656 port = rcu_dereference(skb->dev->macvlan_port);
2657 if (!port)
2658 return skb;
2660 if (*pt_prev) {
2661 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2662 *pt_prev = NULL;
2664 return macvlan_handle_frame_hook(port, skb);
2666 #else
2667 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2668 #endif
2670 #ifdef CONFIG_NET_CLS_ACT
2671 /* TODO: Maybe we should just force sch_ingress to be compiled in
2672 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2673 * a compare and 2 stores extra right now if we dont have it on
2674 * but have CONFIG_NET_CLS_ACT
2675 * NOTE: This doesnt stop any functionality; if you dont have
2676 * the ingress scheduler, you just cant add policies on ingress.
2679 static int ing_filter(struct sk_buff *skb)
2681 struct net_device *dev = skb->dev;
2682 u32 ttl = G_TC_RTTL(skb->tc_verd);
2683 struct netdev_queue *rxq;
2684 int result = TC_ACT_OK;
2685 struct Qdisc *q;
2687 if (MAX_RED_LOOP < ttl++) {
2688 printk(KERN_WARNING
2689 "Redir loop detected Dropping packet (%d->%d)\n",
2690 skb->skb_iif, dev->ifindex);
2691 return TC_ACT_SHOT;
2694 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2695 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2697 rxq = &dev->rx_queue;
2699 q = rxq->qdisc;
2700 if (q != &noop_qdisc) {
2701 spin_lock(qdisc_lock(q));
2702 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2703 result = qdisc_enqueue_root(skb, q);
2704 spin_unlock(qdisc_lock(q));
2707 return result;
2710 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2711 struct packet_type **pt_prev,
2712 int *ret, struct net_device *orig_dev)
2714 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2715 goto out;
2717 if (*pt_prev) {
2718 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2719 *pt_prev = NULL;
2720 } else {
2721 /* Huh? Why does turning on AF_PACKET affect this? */
2722 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2725 switch (ing_filter(skb)) {
2726 case TC_ACT_SHOT:
2727 case TC_ACT_STOLEN:
2728 kfree_skb(skb);
2729 return NULL;
2732 out:
2733 skb->tc_verd = 0;
2734 return skb;
2736 #endif
2739 * netif_nit_deliver - deliver received packets to network taps
2740 * @skb: buffer
2742 * This function is used to deliver incoming packets to network
2743 * taps. It should be used when the normal netif_receive_skb path
2744 * is bypassed, for example because of VLAN acceleration.
2746 void netif_nit_deliver(struct sk_buff *skb)
2748 struct packet_type *ptype;
2750 if (list_empty(&ptype_all))
2751 return;
2753 skb_reset_network_header(skb);
2754 skb_reset_transport_header(skb);
2755 skb->mac_len = skb->network_header - skb->mac_header;
2757 rcu_read_lock();
2758 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2759 if (!ptype->dev || ptype->dev == skb->dev)
2760 deliver_skb(skb, ptype, skb->dev);
2762 rcu_read_unlock();
2765 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2766 struct net_device *master)
2768 if (skb->pkt_type == PACKET_HOST) {
2769 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2771 memcpy(dest, master->dev_addr, ETH_ALEN);
2775 /* On bonding slaves other than the currently active slave, suppress
2776 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2777 * ARP on active-backup slaves with arp_validate enabled.
2779 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2781 struct net_device *dev = skb->dev;
2783 if (master->priv_flags & IFF_MASTER_ARPMON)
2784 dev->last_rx = jiffies;
2786 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2787 /* Do address unmangle. The local destination address
2788 * will be always the one master has. Provides the right
2789 * functionality in a bridge.
2791 skb_bond_set_mac_by_master(skb, master);
2794 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2795 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2796 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2797 return 0;
2799 if (master->priv_flags & IFF_MASTER_ALB) {
2800 if (skb->pkt_type != PACKET_BROADCAST &&
2801 skb->pkt_type != PACKET_MULTICAST)
2802 return 0;
2804 if (master->priv_flags & IFF_MASTER_8023AD &&
2805 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2806 return 0;
2808 return 1;
2810 return 0;
2812 EXPORT_SYMBOL(__skb_bond_should_drop);
2814 static int __netif_receive_skb(struct sk_buff *skb)
2816 struct packet_type *ptype, *pt_prev;
2817 struct net_device *orig_dev;
2818 struct net_device *master;
2819 struct net_device *null_or_orig;
2820 struct net_device *orig_or_bond;
2821 int ret = NET_RX_DROP;
2822 __be16 type;
2824 if (!netdev_tstamp_prequeue)
2825 net_timestamp_check(skb);
2827 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2828 return NET_RX_SUCCESS;
2830 /* if we've gotten here through NAPI, check netpoll */
2831 if (netpoll_receive_skb(skb))
2832 return NET_RX_DROP;
2834 if (!skb->skb_iif)
2835 skb->skb_iif = skb->dev->ifindex;
2838 * bonding note: skbs received on inactive slaves should only
2839 * be delivered to pkt handlers that are exact matches. Also
2840 * the deliver_no_wcard flag will be set. If packet handlers
2841 * are sensitive to duplicate packets these skbs will need to
2842 * be dropped at the handler. The vlan accel path may have
2843 * already set the deliver_no_wcard flag.
2845 null_or_orig = NULL;
2846 orig_dev = skb->dev;
2847 master = ACCESS_ONCE(orig_dev->master);
2848 if (skb->deliver_no_wcard)
2849 null_or_orig = orig_dev;
2850 else if (master) {
2851 if (skb_bond_should_drop(skb, master)) {
2852 skb->deliver_no_wcard = 1;
2853 null_or_orig = orig_dev; /* deliver only exact match */
2854 } else
2855 skb->dev = master;
2858 __get_cpu_var(softnet_data).processed++;
2860 skb_reset_network_header(skb);
2861 skb_reset_transport_header(skb);
2862 skb->mac_len = skb->network_header - skb->mac_header;
2864 pt_prev = NULL;
2866 rcu_read_lock();
2868 #ifdef CONFIG_NET_CLS_ACT
2869 if (skb->tc_verd & TC_NCLS) {
2870 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2871 goto ncls;
2873 #endif
2875 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2876 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2877 ptype->dev == orig_dev) {
2878 if (pt_prev)
2879 ret = deliver_skb(skb, pt_prev, orig_dev);
2880 pt_prev = ptype;
2884 #ifdef CONFIG_NET_CLS_ACT
2885 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2886 if (!skb)
2887 goto out;
2888 ncls:
2889 #endif
2891 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2892 if (!skb)
2893 goto out;
2894 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2895 if (!skb)
2896 goto out;
2899 * Make sure frames received on VLAN interfaces stacked on
2900 * bonding interfaces still make their way to any base bonding
2901 * device that may have registered for a specific ptype. The
2902 * handler may have to adjust skb->dev and orig_dev.
2904 orig_or_bond = orig_dev;
2905 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2906 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2907 orig_or_bond = vlan_dev_real_dev(skb->dev);
2910 type = skb->protocol;
2911 list_for_each_entry_rcu(ptype,
2912 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2913 if (ptype->type == type && (ptype->dev == null_or_orig ||
2914 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2915 ptype->dev == orig_or_bond)) {
2916 if (pt_prev)
2917 ret = deliver_skb(skb, pt_prev, orig_dev);
2918 pt_prev = ptype;
2922 if (pt_prev) {
2923 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2924 } else {
2925 kfree_skb(skb);
2926 /* Jamal, now you will not able to escape explaining
2927 * me how you were going to use this. :-)
2929 ret = NET_RX_DROP;
2932 out:
2933 rcu_read_unlock();
2934 return ret;
2938 * netif_receive_skb - process receive buffer from network
2939 * @skb: buffer to process
2941 * netif_receive_skb() is the main receive data processing function.
2942 * It always succeeds. The buffer may be dropped during processing
2943 * for congestion control or by the protocol layers.
2945 * This function may only be called from softirq context and interrupts
2946 * should be enabled.
2948 * Return values (usually ignored):
2949 * NET_RX_SUCCESS: no congestion
2950 * NET_RX_DROP: packet was dropped
2952 int netif_receive_skb(struct sk_buff *skb)
2954 if (netdev_tstamp_prequeue)
2955 net_timestamp_check(skb);
2957 #ifdef CONFIG_RPS
2959 struct rps_dev_flow voidflow, *rflow = &voidflow;
2960 int cpu, ret;
2962 rcu_read_lock();
2964 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2966 if (cpu >= 0) {
2967 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2968 rcu_read_unlock();
2969 } else {
2970 rcu_read_unlock();
2971 ret = __netif_receive_skb(skb);
2974 return ret;
2976 #else
2977 return __netif_receive_skb(skb);
2978 #endif
2980 EXPORT_SYMBOL(netif_receive_skb);
2982 /* Network device is going away, flush any packets still pending
2983 * Called with irqs disabled.
2985 static void flush_backlog(void *arg)
2987 struct net_device *dev = arg;
2988 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2989 struct sk_buff *skb, *tmp;
2991 rps_lock(sd);
2992 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2993 if (skb->dev == dev) {
2994 __skb_unlink(skb, &sd->input_pkt_queue);
2995 kfree_skb(skb);
2996 input_queue_head_incr(sd);
2999 rps_unlock(sd);
3001 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3002 if (skb->dev == dev) {
3003 __skb_unlink(skb, &sd->process_queue);
3004 kfree_skb(skb);
3005 input_queue_head_incr(sd);
3010 static int napi_gro_complete(struct sk_buff *skb)
3012 struct packet_type *ptype;
3013 __be16 type = skb->protocol;
3014 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3015 int err = -ENOENT;
3017 if (NAPI_GRO_CB(skb)->count == 1) {
3018 skb_shinfo(skb)->gso_size = 0;
3019 goto out;
3022 rcu_read_lock();
3023 list_for_each_entry_rcu(ptype, head, list) {
3024 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3025 continue;
3027 err = ptype->gro_complete(skb);
3028 break;
3030 rcu_read_unlock();
3032 if (err) {
3033 WARN_ON(&ptype->list == head);
3034 kfree_skb(skb);
3035 return NET_RX_SUCCESS;
3038 out:
3039 return netif_receive_skb(skb);
3042 static void napi_gro_flush(struct napi_struct *napi)
3044 struct sk_buff *skb, *next;
3046 for (skb = napi->gro_list; skb; skb = next) {
3047 next = skb->next;
3048 skb->next = NULL;
3049 napi_gro_complete(skb);
3052 napi->gro_count = 0;
3053 napi->gro_list = NULL;
3056 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3058 struct sk_buff **pp = NULL;
3059 struct packet_type *ptype;
3060 __be16 type = skb->protocol;
3061 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3062 int same_flow;
3063 int mac_len;
3064 enum gro_result ret;
3066 if (!(skb->dev->features & NETIF_F_GRO))
3067 goto normal;
3069 if (skb_is_gso(skb) || skb_has_frags(skb))
3070 goto normal;
3072 rcu_read_lock();
3073 list_for_each_entry_rcu(ptype, head, list) {
3074 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3075 continue;
3077 skb_set_network_header(skb, skb_gro_offset(skb));
3078 mac_len = skb->network_header - skb->mac_header;
3079 skb->mac_len = mac_len;
3080 NAPI_GRO_CB(skb)->same_flow = 0;
3081 NAPI_GRO_CB(skb)->flush = 0;
3082 NAPI_GRO_CB(skb)->free = 0;
3084 pp = ptype->gro_receive(&napi->gro_list, skb);
3085 break;
3087 rcu_read_unlock();
3089 if (&ptype->list == head)
3090 goto normal;
3092 same_flow = NAPI_GRO_CB(skb)->same_flow;
3093 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3095 if (pp) {
3096 struct sk_buff *nskb = *pp;
3098 *pp = nskb->next;
3099 nskb->next = NULL;
3100 napi_gro_complete(nskb);
3101 napi->gro_count--;
3104 if (same_flow)
3105 goto ok;
3107 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3108 goto normal;
3110 napi->gro_count++;
3111 NAPI_GRO_CB(skb)->count = 1;
3112 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3113 skb->next = napi->gro_list;
3114 napi->gro_list = skb;
3115 ret = GRO_HELD;
3117 pull:
3118 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3119 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3121 BUG_ON(skb->end - skb->tail < grow);
3123 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3125 skb->tail += grow;
3126 skb->data_len -= grow;
3128 skb_shinfo(skb)->frags[0].page_offset += grow;
3129 skb_shinfo(skb)->frags[0].size -= grow;
3131 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3132 put_page(skb_shinfo(skb)->frags[0].page);
3133 memmove(skb_shinfo(skb)->frags,
3134 skb_shinfo(skb)->frags + 1,
3135 --skb_shinfo(skb)->nr_frags);
3140 return ret;
3142 normal:
3143 ret = GRO_NORMAL;
3144 goto pull;
3146 EXPORT_SYMBOL(dev_gro_receive);
3148 static gro_result_t
3149 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3151 struct sk_buff *p;
3153 if (netpoll_rx_on(skb))
3154 return GRO_NORMAL;
3156 for (p = napi->gro_list; p; p = p->next) {
3157 NAPI_GRO_CB(p)->same_flow =
3158 (p->dev == skb->dev) &&
3159 !compare_ether_header(skb_mac_header(p),
3160 skb_gro_mac_header(skb));
3161 NAPI_GRO_CB(p)->flush = 0;
3164 return dev_gro_receive(napi, skb);
3167 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3169 switch (ret) {
3170 case GRO_NORMAL:
3171 if (netif_receive_skb(skb))
3172 ret = GRO_DROP;
3173 break;
3175 case GRO_DROP:
3176 case GRO_MERGED_FREE:
3177 kfree_skb(skb);
3178 break;
3180 case GRO_HELD:
3181 case GRO_MERGED:
3182 break;
3185 return ret;
3187 EXPORT_SYMBOL(napi_skb_finish);
3189 void skb_gro_reset_offset(struct sk_buff *skb)
3191 NAPI_GRO_CB(skb)->data_offset = 0;
3192 NAPI_GRO_CB(skb)->frag0 = NULL;
3193 NAPI_GRO_CB(skb)->frag0_len = 0;
3195 if (skb->mac_header == skb->tail &&
3196 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3197 NAPI_GRO_CB(skb)->frag0 =
3198 page_address(skb_shinfo(skb)->frags[0].page) +
3199 skb_shinfo(skb)->frags[0].page_offset;
3200 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3203 EXPORT_SYMBOL(skb_gro_reset_offset);
3205 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3207 skb_gro_reset_offset(skb);
3209 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3211 EXPORT_SYMBOL(napi_gro_receive);
3213 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3215 __skb_pull(skb, skb_headlen(skb));
3216 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3218 napi->skb = skb;
3220 EXPORT_SYMBOL(napi_reuse_skb);
3222 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3224 struct sk_buff *skb = napi->skb;
3226 if (!skb) {
3227 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3228 if (skb)
3229 napi->skb = skb;
3231 return skb;
3233 EXPORT_SYMBOL(napi_get_frags);
3235 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3236 gro_result_t ret)
3238 switch (ret) {
3239 case GRO_NORMAL:
3240 case GRO_HELD:
3241 skb->protocol = eth_type_trans(skb, skb->dev);
3243 if (ret == GRO_HELD)
3244 skb_gro_pull(skb, -ETH_HLEN);
3245 else if (netif_receive_skb(skb))
3246 ret = GRO_DROP;
3247 break;
3249 case GRO_DROP:
3250 case GRO_MERGED_FREE:
3251 napi_reuse_skb(napi, skb);
3252 break;
3254 case GRO_MERGED:
3255 break;
3258 return ret;
3260 EXPORT_SYMBOL(napi_frags_finish);
3262 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3264 struct sk_buff *skb = napi->skb;
3265 struct ethhdr *eth;
3266 unsigned int hlen;
3267 unsigned int off;
3269 napi->skb = NULL;
3271 skb_reset_mac_header(skb);
3272 skb_gro_reset_offset(skb);
3274 off = skb_gro_offset(skb);
3275 hlen = off + sizeof(*eth);
3276 eth = skb_gro_header_fast(skb, off);
3277 if (skb_gro_header_hard(skb, hlen)) {
3278 eth = skb_gro_header_slow(skb, hlen, off);
3279 if (unlikely(!eth)) {
3280 napi_reuse_skb(napi, skb);
3281 skb = NULL;
3282 goto out;
3286 skb_gro_pull(skb, sizeof(*eth));
3289 * This works because the only protocols we care about don't require
3290 * special handling. We'll fix it up properly at the end.
3292 skb->protocol = eth->h_proto;
3294 out:
3295 return skb;
3297 EXPORT_SYMBOL(napi_frags_skb);
3299 gro_result_t napi_gro_frags(struct napi_struct *napi)
3301 struct sk_buff *skb = napi_frags_skb(napi);
3303 if (!skb)
3304 return GRO_DROP;
3306 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3308 EXPORT_SYMBOL(napi_gro_frags);
3311 * net_rps_action sends any pending IPI's for rps.
3312 * Note: called with local irq disabled, but exits with local irq enabled.
3314 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3316 #ifdef CONFIG_RPS
3317 struct softnet_data *remsd = sd->rps_ipi_list;
3319 if (remsd) {
3320 sd->rps_ipi_list = NULL;
3322 local_irq_enable();
3324 /* Send pending IPI's to kick RPS processing on remote cpus. */
3325 while (remsd) {
3326 struct softnet_data *next = remsd->rps_ipi_next;
3328 if (cpu_online(remsd->cpu))
3329 __smp_call_function_single(remsd->cpu,
3330 &remsd->csd, 0);
3331 remsd = next;
3333 } else
3334 #endif
3335 local_irq_enable();
3338 static int process_backlog(struct napi_struct *napi, int quota)
3340 int work = 0;
3341 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3343 #ifdef CONFIG_RPS
3344 /* Check if we have pending ipi, its better to send them now,
3345 * not waiting net_rx_action() end.
3347 if (sd->rps_ipi_list) {
3348 local_irq_disable();
3349 net_rps_action_and_irq_enable(sd);
3351 #endif
3352 napi->weight = weight_p;
3353 local_irq_disable();
3354 while (work < quota) {
3355 struct sk_buff *skb;
3356 unsigned int qlen;
3358 while ((skb = __skb_dequeue(&sd->process_queue))) {
3359 local_irq_enable();
3360 __netif_receive_skb(skb);
3361 local_irq_disable();
3362 input_queue_head_incr(sd);
3363 if (++work >= quota) {
3364 local_irq_enable();
3365 return work;
3369 rps_lock(sd);
3370 qlen = skb_queue_len(&sd->input_pkt_queue);
3371 if (qlen)
3372 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3373 &sd->process_queue);
3375 if (qlen < quota - work) {
3377 * Inline a custom version of __napi_complete().
3378 * only current cpu owns and manipulates this napi,
3379 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3380 * we can use a plain write instead of clear_bit(),
3381 * and we dont need an smp_mb() memory barrier.
3383 list_del(&napi->poll_list);
3384 napi->state = 0;
3386 quota = work + qlen;
3388 rps_unlock(sd);
3390 local_irq_enable();
3392 return work;
3396 * __napi_schedule - schedule for receive
3397 * @n: entry to schedule
3399 * The entry's receive function will be scheduled to run
3401 void __napi_schedule(struct napi_struct *n)
3403 unsigned long flags;
3405 local_irq_save(flags);
3406 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3407 local_irq_restore(flags);
3409 EXPORT_SYMBOL(__napi_schedule);
3411 void __napi_complete(struct napi_struct *n)
3413 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3414 BUG_ON(n->gro_list);
3416 list_del(&n->poll_list);
3417 smp_mb__before_clear_bit();
3418 clear_bit(NAPI_STATE_SCHED, &n->state);
3420 EXPORT_SYMBOL(__napi_complete);
3422 void napi_complete(struct napi_struct *n)
3424 unsigned long flags;
3427 * don't let napi dequeue from the cpu poll list
3428 * just in case its running on a different cpu
3430 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3431 return;
3433 napi_gro_flush(n);
3434 local_irq_save(flags);
3435 __napi_complete(n);
3436 local_irq_restore(flags);
3438 EXPORT_SYMBOL(napi_complete);
3440 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3441 int (*poll)(struct napi_struct *, int), int weight)
3443 INIT_LIST_HEAD(&napi->poll_list);
3444 napi->gro_count = 0;
3445 napi->gro_list = NULL;
3446 napi->skb = NULL;
3447 napi->poll = poll;
3448 napi->weight = weight;
3449 list_add(&napi->dev_list, &dev->napi_list);
3450 napi->dev = dev;
3451 #ifdef CONFIG_NETPOLL
3452 spin_lock_init(&napi->poll_lock);
3453 napi->poll_owner = -1;
3454 #endif
3455 set_bit(NAPI_STATE_SCHED, &napi->state);
3457 EXPORT_SYMBOL(netif_napi_add);
3459 void netif_napi_del(struct napi_struct *napi)
3461 struct sk_buff *skb, *next;
3463 list_del_init(&napi->dev_list);
3464 napi_free_frags(napi);
3466 for (skb = napi->gro_list; skb; skb = next) {
3467 next = skb->next;
3468 skb->next = NULL;
3469 kfree_skb(skb);
3472 napi->gro_list = NULL;
3473 napi->gro_count = 0;
3475 EXPORT_SYMBOL(netif_napi_del);
3477 static void net_rx_action(struct softirq_action *h)
3479 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3480 unsigned long time_limit = jiffies + 2;
3481 int budget = netdev_budget;
3482 void *have;
3484 local_irq_disable();
3486 while (!list_empty(&sd->poll_list)) {
3487 struct napi_struct *n;
3488 int work, weight;
3490 /* If softirq window is exhuasted then punt.
3491 * Allow this to run for 2 jiffies since which will allow
3492 * an average latency of 1.5/HZ.
3494 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3495 goto softnet_break;
3497 local_irq_enable();
3499 /* Even though interrupts have been re-enabled, this
3500 * access is safe because interrupts can only add new
3501 * entries to the tail of this list, and only ->poll()
3502 * calls can remove this head entry from the list.
3504 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3506 have = netpoll_poll_lock(n);
3508 weight = n->weight;
3510 /* This NAPI_STATE_SCHED test is for avoiding a race
3511 * with netpoll's poll_napi(). Only the entity which
3512 * obtains the lock and sees NAPI_STATE_SCHED set will
3513 * actually make the ->poll() call. Therefore we avoid
3514 * accidently calling ->poll() when NAPI is not scheduled.
3516 work = 0;
3517 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3518 work = n->poll(n, weight);
3519 trace_napi_poll(n);
3522 WARN_ON_ONCE(work > weight);
3524 budget -= work;
3526 local_irq_disable();
3528 /* Drivers must not modify the NAPI state if they
3529 * consume the entire weight. In such cases this code
3530 * still "owns" the NAPI instance and therefore can
3531 * move the instance around on the list at-will.
3533 if (unlikely(work == weight)) {
3534 if (unlikely(napi_disable_pending(n))) {
3535 local_irq_enable();
3536 napi_complete(n);
3537 local_irq_disable();
3538 } else
3539 list_move_tail(&n->poll_list, &sd->poll_list);
3542 netpoll_poll_unlock(have);
3544 out:
3545 net_rps_action_and_irq_enable(sd);
3547 #ifdef CONFIG_NET_DMA
3549 * There may not be any more sk_buffs coming right now, so push
3550 * any pending DMA copies to hardware
3552 dma_issue_pending_all();
3553 #endif
3555 return;
3557 softnet_break:
3558 sd->time_squeeze++;
3559 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3560 goto out;
3563 static gifconf_func_t *gifconf_list[NPROTO];
3566 * register_gifconf - register a SIOCGIF handler
3567 * @family: Address family
3568 * @gifconf: Function handler
3570 * Register protocol dependent address dumping routines. The handler
3571 * that is passed must not be freed or reused until it has been replaced
3572 * by another handler.
3574 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3576 if (family >= NPROTO)
3577 return -EINVAL;
3578 gifconf_list[family] = gifconf;
3579 return 0;
3581 EXPORT_SYMBOL(register_gifconf);
3585 * Map an interface index to its name (SIOCGIFNAME)
3589 * We need this ioctl for efficient implementation of the
3590 * if_indextoname() function required by the IPv6 API. Without
3591 * it, we would have to search all the interfaces to find a
3592 * match. --pb
3595 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3597 struct net_device *dev;
3598 struct ifreq ifr;
3601 * Fetch the caller's info block.
3604 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3605 return -EFAULT;
3607 rcu_read_lock();
3608 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3609 if (!dev) {
3610 rcu_read_unlock();
3611 return -ENODEV;
3614 strcpy(ifr.ifr_name, dev->name);
3615 rcu_read_unlock();
3617 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3618 return -EFAULT;
3619 return 0;
3623 * Perform a SIOCGIFCONF call. This structure will change
3624 * size eventually, and there is nothing I can do about it.
3625 * Thus we will need a 'compatibility mode'.
3628 static int dev_ifconf(struct net *net, char __user *arg)
3630 struct ifconf ifc;
3631 struct net_device *dev;
3632 char __user *pos;
3633 int len;
3634 int total;
3635 int i;
3638 * Fetch the caller's info block.
3641 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3642 return -EFAULT;
3644 pos = ifc.ifc_buf;
3645 len = ifc.ifc_len;
3648 * Loop over the interfaces, and write an info block for each.
3651 total = 0;
3652 for_each_netdev(net, dev) {
3653 for (i = 0; i < NPROTO; i++) {
3654 if (gifconf_list[i]) {
3655 int done;
3656 if (!pos)
3657 done = gifconf_list[i](dev, NULL, 0);
3658 else
3659 done = gifconf_list[i](dev, pos + total,
3660 len - total);
3661 if (done < 0)
3662 return -EFAULT;
3663 total += done;
3669 * All done. Write the updated control block back to the caller.
3671 ifc.ifc_len = total;
3674 * Both BSD and Solaris return 0 here, so we do too.
3676 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3679 #ifdef CONFIG_PROC_FS
3681 * This is invoked by the /proc filesystem handler to display a device
3682 * in detail.
3684 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3685 __acquires(RCU)
3687 struct net *net = seq_file_net(seq);
3688 loff_t off;
3689 struct net_device *dev;
3691 rcu_read_lock();
3692 if (!*pos)
3693 return SEQ_START_TOKEN;
3695 off = 1;
3696 for_each_netdev_rcu(net, dev)
3697 if (off++ == *pos)
3698 return dev;
3700 return NULL;
3703 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3705 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3706 first_net_device(seq_file_net(seq)) :
3707 next_net_device((struct net_device *)v);
3709 ++*pos;
3710 return rcu_dereference(dev);
3713 void dev_seq_stop(struct seq_file *seq, void *v)
3714 __releases(RCU)
3716 rcu_read_unlock();
3719 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3721 const struct net_device_stats *stats = dev_get_stats(dev);
3723 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3724 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3725 dev->name, stats->rx_bytes, stats->rx_packets,
3726 stats->rx_errors,
3727 stats->rx_dropped + stats->rx_missed_errors,
3728 stats->rx_fifo_errors,
3729 stats->rx_length_errors + stats->rx_over_errors +
3730 stats->rx_crc_errors + stats->rx_frame_errors,
3731 stats->rx_compressed, stats->multicast,
3732 stats->tx_bytes, stats->tx_packets,
3733 stats->tx_errors, stats->tx_dropped,
3734 stats->tx_fifo_errors, stats->collisions,
3735 stats->tx_carrier_errors +
3736 stats->tx_aborted_errors +
3737 stats->tx_window_errors +
3738 stats->tx_heartbeat_errors,
3739 stats->tx_compressed);
3743 * Called from the PROCfs module. This now uses the new arbitrary sized
3744 * /proc/net interface to create /proc/net/dev
3746 static int dev_seq_show(struct seq_file *seq, void *v)
3748 if (v == SEQ_START_TOKEN)
3749 seq_puts(seq, "Inter-| Receive "
3750 " | Transmit\n"
3751 " face |bytes packets errs drop fifo frame "
3752 "compressed multicast|bytes packets errs "
3753 "drop fifo colls carrier compressed\n");
3754 else
3755 dev_seq_printf_stats(seq, v);
3756 return 0;
3759 static struct softnet_data *softnet_get_online(loff_t *pos)
3761 struct softnet_data *sd = NULL;
3763 while (*pos < nr_cpu_ids)
3764 if (cpu_online(*pos)) {
3765 sd = &per_cpu(softnet_data, *pos);
3766 break;
3767 } else
3768 ++*pos;
3769 return sd;
3772 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3774 return softnet_get_online(pos);
3777 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3779 ++*pos;
3780 return softnet_get_online(pos);
3783 static void softnet_seq_stop(struct seq_file *seq, void *v)
3787 static int softnet_seq_show(struct seq_file *seq, void *v)
3789 struct softnet_data *sd = v;
3791 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3792 sd->processed, sd->dropped, sd->time_squeeze, 0,
3793 0, 0, 0, 0, /* was fastroute */
3794 sd->cpu_collision, sd->received_rps);
3795 return 0;
3798 static const struct seq_operations dev_seq_ops = {
3799 .start = dev_seq_start,
3800 .next = dev_seq_next,
3801 .stop = dev_seq_stop,
3802 .show = dev_seq_show,
3805 static int dev_seq_open(struct inode *inode, struct file *file)
3807 return seq_open_net(inode, file, &dev_seq_ops,
3808 sizeof(struct seq_net_private));
3811 static const struct file_operations dev_seq_fops = {
3812 .owner = THIS_MODULE,
3813 .open = dev_seq_open,
3814 .read = seq_read,
3815 .llseek = seq_lseek,
3816 .release = seq_release_net,
3819 static const struct seq_operations softnet_seq_ops = {
3820 .start = softnet_seq_start,
3821 .next = softnet_seq_next,
3822 .stop = softnet_seq_stop,
3823 .show = softnet_seq_show,
3826 static int softnet_seq_open(struct inode *inode, struct file *file)
3828 return seq_open(file, &softnet_seq_ops);
3831 static const struct file_operations softnet_seq_fops = {
3832 .owner = THIS_MODULE,
3833 .open = softnet_seq_open,
3834 .read = seq_read,
3835 .llseek = seq_lseek,
3836 .release = seq_release,
3839 static void *ptype_get_idx(loff_t pos)
3841 struct packet_type *pt = NULL;
3842 loff_t i = 0;
3843 int t;
3845 list_for_each_entry_rcu(pt, &ptype_all, list) {
3846 if (i == pos)
3847 return pt;
3848 ++i;
3851 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3852 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3853 if (i == pos)
3854 return pt;
3855 ++i;
3858 return NULL;
3861 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3862 __acquires(RCU)
3864 rcu_read_lock();
3865 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3868 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3870 struct packet_type *pt;
3871 struct list_head *nxt;
3872 int hash;
3874 ++*pos;
3875 if (v == SEQ_START_TOKEN)
3876 return ptype_get_idx(0);
3878 pt = v;
3879 nxt = pt->list.next;
3880 if (pt->type == htons(ETH_P_ALL)) {
3881 if (nxt != &ptype_all)
3882 goto found;
3883 hash = 0;
3884 nxt = ptype_base[0].next;
3885 } else
3886 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3888 while (nxt == &ptype_base[hash]) {
3889 if (++hash >= PTYPE_HASH_SIZE)
3890 return NULL;
3891 nxt = ptype_base[hash].next;
3893 found:
3894 return list_entry(nxt, struct packet_type, list);
3897 static void ptype_seq_stop(struct seq_file *seq, void *v)
3898 __releases(RCU)
3900 rcu_read_unlock();
3903 static int ptype_seq_show(struct seq_file *seq, void *v)
3905 struct packet_type *pt = v;
3907 if (v == SEQ_START_TOKEN)
3908 seq_puts(seq, "Type Device Function\n");
3909 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3910 if (pt->type == htons(ETH_P_ALL))
3911 seq_puts(seq, "ALL ");
3912 else
3913 seq_printf(seq, "%04x", ntohs(pt->type));
3915 seq_printf(seq, " %-8s %pF\n",
3916 pt->dev ? pt->dev->name : "", pt->func);
3919 return 0;
3922 static const struct seq_operations ptype_seq_ops = {
3923 .start = ptype_seq_start,
3924 .next = ptype_seq_next,
3925 .stop = ptype_seq_stop,
3926 .show = ptype_seq_show,
3929 static int ptype_seq_open(struct inode *inode, struct file *file)
3931 return seq_open_net(inode, file, &ptype_seq_ops,
3932 sizeof(struct seq_net_private));
3935 static const struct file_operations ptype_seq_fops = {
3936 .owner = THIS_MODULE,
3937 .open = ptype_seq_open,
3938 .read = seq_read,
3939 .llseek = seq_lseek,
3940 .release = seq_release_net,
3944 static int __net_init dev_proc_net_init(struct net *net)
3946 int rc = -ENOMEM;
3948 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3949 goto out;
3950 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3951 goto out_dev;
3952 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3953 goto out_softnet;
3955 if (wext_proc_init(net))
3956 goto out_ptype;
3957 rc = 0;
3958 out:
3959 return rc;
3960 out_ptype:
3961 proc_net_remove(net, "ptype");
3962 out_softnet:
3963 proc_net_remove(net, "softnet_stat");
3964 out_dev:
3965 proc_net_remove(net, "dev");
3966 goto out;
3969 static void __net_exit dev_proc_net_exit(struct net *net)
3971 wext_proc_exit(net);
3973 proc_net_remove(net, "ptype");
3974 proc_net_remove(net, "softnet_stat");
3975 proc_net_remove(net, "dev");
3978 static struct pernet_operations __net_initdata dev_proc_ops = {
3979 .init = dev_proc_net_init,
3980 .exit = dev_proc_net_exit,
3983 static int __init dev_proc_init(void)
3985 return register_pernet_subsys(&dev_proc_ops);
3987 #else
3988 #define dev_proc_init() 0
3989 #endif /* CONFIG_PROC_FS */
3993 * netdev_set_master - set up master/slave pair
3994 * @slave: slave device
3995 * @master: new master device
3997 * Changes the master device of the slave. Pass %NULL to break the
3998 * bonding. The caller must hold the RTNL semaphore. On a failure
3999 * a negative errno code is returned. On success the reference counts
4000 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4001 * function returns zero.
4003 int netdev_set_master(struct net_device *slave, struct net_device *master)
4005 struct net_device *old = slave->master;
4007 ASSERT_RTNL();
4009 if (master) {
4010 if (old)
4011 return -EBUSY;
4012 dev_hold(master);
4015 slave->master = master;
4017 if (old) {
4018 synchronize_net();
4019 dev_put(old);
4021 if (master)
4022 slave->flags |= IFF_SLAVE;
4023 else
4024 slave->flags &= ~IFF_SLAVE;
4026 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4027 return 0;
4029 EXPORT_SYMBOL(netdev_set_master);
4031 static void dev_change_rx_flags(struct net_device *dev, int flags)
4033 const struct net_device_ops *ops = dev->netdev_ops;
4035 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4036 ops->ndo_change_rx_flags(dev, flags);
4039 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4041 unsigned short old_flags = dev->flags;
4042 uid_t uid;
4043 gid_t gid;
4045 ASSERT_RTNL();
4047 dev->flags |= IFF_PROMISC;
4048 dev->promiscuity += inc;
4049 if (dev->promiscuity == 0) {
4051 * Avoid overflow.
4052 * If inc causes overflow, untouch promisc and return error.
4054 if (inc < 0)
4055 dev->flags &= ~IFF_PROMISC;
4056 else {
4057 dev->promiscuity -= inc;
4058 printk(KERN_WARNING "%s: promiscuity touches roof, "
4059 "set promiscuity failed, promiscuity feature "
4060 "of device might be broken.\n", dev->name);
4061 return -EOVERFLOW;
4064 if (dev->flags != old_flags) {
4065 printk(KERN_INFO "device %s %s promiscuous mode\n",
4066 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4067 "left");
4068 if (audit_enabled) {
4069 current_uid_gid(&uid, &gid);
4070 audit_log(current->audit_context, GFP_ATOMIC,
4071 AUDIT_ANOM_PROMISCUOUS,
4072 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4073 dev->name, (dev->flags & IFF_PROMISC),
4074 (old_flags & IFF_PROMISC),
4075 audit_get_loginuid(current),
4076 uid, gid,
4077 audit_get_sessionid(current));
4080 dev_change_rx_flags(dev, IFF_PROMISC);
4082 return 0;
4086 * dev_set_promiscuity - update promiscuity count on a device
4087 * @dev: device
4088 * @inc: modifier
4090 * Add or remove promiscuity from a device. While the count in the device
4091 * remains above zero the interface remains promiscuous. Once it hits zero
4092 * the device reverts back to normal filtering operation. A negative inc
4093 * value is used to drop promiscuity on the device.
4094 * Return 0 if successful or a negative errno code on error.
4096 int dev_set_promiscuity(struct net_device *dev, int inc)
4098 unsigned short old_flags = dev->flags;
4099 int err;
4101 err = __dev_set_promiscuity(dev, inc);
4102 if (err < 0)
4103 return err;
4104 if (dev->flags != old_flags)
4105 dev_set_rx_mode(dev);
4106 return err;
4108 EXPORT_SYMBOL(dev_set_promiscuity);
4111 * dev_set_allmulti - update allmulti count on a device
4112 * @dev: device
4113 * @inc: modifier
4115 * Add or remove reception of all multicast frames to a device. While the
4116 * count in the device remains above zero the interface remains listening
4117 * to all interfaces. Once it hits zero the device reverts back to normal
4118 * filtering operation. A negative @inc value is used to drop the counter
4119 * when releasing a resource needing all multicasts.
4120 * Return 0 if successful or a negative errno code on error.
4123 int dev_set_allmulti(struct net_device *dev, int inc)
4125 unsigned short old_flags = dev->flags;
4127 ASSERT_RTNL();
4129 dev->flags |= IFF_ALLMULTI;
4130 dev->allmulti += inc;
4131 if (dev->allmulti == 0) {
4133 * Avoid overflow.
4134 * If inc causes overflow, untouch allmulti and return error.
4136 if (inc < 0)
4137 dev->flags &= ~IFF_ALLMULTI;
4138 else {
4139 dev->allmulti -= inc;
4140 printk(KERN_WARNING "%s: allmulti touches roof, "
4141 "set allmulti failed, allmulti feature of "
4142 "device might be broken.\n", dev->name);
4143 return -EOVERFLOW;
4146 if (dev->flags ^ old_flags) {
4147 dev_change_rx_flags(dev, IFF_ALLMULTI);
4148 dev_set_rx_mode(dev);
4150 return 0;
4152 EXPORT_SYMBOL(dev_set_allmulti);
4155 * Upload unicast and multicast address lists to device and
4156 * configure RX filtering. When the device doesn't support unicast
4157 * filtering it is put in promiscuous mode while unicast addresses
4158 * are present.
4160 void __dev_set_rx_mode(struct net_device *dev)
4162 const struct net_device_ops *ops = dev->netdev_ops;
4164 /* dev_open will call this function so the list will stay sane. */
4165 if (!(dev->flags&IFF_UP))
4166 return;
4168 if (!netif_device_present(dev))
4169 return;
4171 if (ops->ndo_set_rx_mode)
4172 ops->ndo_set_rx_mode(dev);
4173 else {
4174 /* Unicast addresses changes may only happen under the rtnl,
4175 * therefore calling __dev_set_promiscuity here is safe.
4177 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4178 __dev_set_promiscuity(dev, 1);
4179 dev->uc_promisc = 1;
4180 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4181 __dev_set_promiscuity(dev, -1);
4182 dev->uc_promisc = 0;
4185 if (ops->ndo_set_multicast_list)
4186 ops->ndo_set_multicast_list(dev);
4190 void dev_set_rx_mode(struct net_device *dev)
4192 netif_addr_lock_bh(dev);
4193 __dev_set_rx_mode(dev);
4194 netif_addr_unlock_bh(dev);
4198 * dev_get_flags - get flags reported to userspace
4199 * @dev: device
4201 * Get the combination of flag bits exported through APIs to userspace.
4203 unsigned dev_get_flags(const struct net_device *dev)
4205 unsigned flags;
4207 flags = (dev->flags & ~(IFF_PROMISC |
4208 IFF_ALLMULTI |
4209 IFF_RUNNING |
4210 IFF_LOWER_UP |
4211 IFF_DORMANT)) |
4212 (dev->gflags & (IFF_PROMISC |
4213 IFF_ALLMULTI));
4215 if (netif_running(dev)) {
4216 if (netif_oper_up(dev))
4217 flags |= IFF_RUNNING;
4218 if (netif_carrier_ok(dev))
4219 flags |= IFF_LOWER_UP;
4220 if (netif_dormant(dev))
4221 flags |= IFF_DORMANT;
4224 return flags;
4226 EXPORT_SYMBOL(dev_get_flags);
4228 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4230 int old_flags = dev->flags;
4231 int ret;
4233 ASSERT_RTNL();
4236 * Set the flags on our device.
4239 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4240 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4241 IFF_AUTOMEDIA)) |
4242 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4243 IFF_ALLMULTI));
4246 * Load in the correct multicast list now the flags have changed.
4249 if ((old_flags ^ flags) & IFF_MULTICAST)
4250 dev_change_rx_flags(dev, IFF_MULTICAST);
4252 dev_set_rx_mode(dev);
4255 * Have we downed the interface. We handle IFF_UP ourselves
4256 * according to user attempts to set it, rather than blindly
4257 * setting it.
4260 ret = 0;
4261 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4262 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4264 if (!ret)
4265 dev_set_rx_mode(dev);
4268 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4269 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4271 dev->gflags ^= IFF_PROMISC;
4272 dev_set_promiscuity(dev, inc);
4275 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4276 is important. Some (broken) drivers set IFF_PROMISC, when
4277 IFF_ALLMULTI is requested not asking us and not reporting.
4279 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4280 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4282 dev->gflags ^= IFF_ALLMULTI;
4283 dev_set_allmulti(dev, inc);
4286 return ret;
4289 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4291 unsigned int changes = dev->flags ^ old_flags;
4293 if (changes & IFF_UP) {
4294 if (dev->flags & IFF_UP)
4295 call_netdevice_notifiers(NETDEV_UP, dev);
4296 else
4297 call_netdevice_notifiers(NETDEV_DOWN, dev);
4300 if (dev->flags & IFF_UP &&
4301 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4302 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4306 * dev_change_flags - change device settings
4307 * @dev: device
4308 * @flags: device state flags
4310 * Change settings on device based state flags. The flags are
4311 * in the userspace exported format.
4313 int dev_change_flags(struct net_device *dev, unsigned flags)
4315 int ret, changes;
4316 int old_flags = dev->flags;
4318 ret = __dev_change_flags(dev, flags);
4319 if (ret < 0)
4320 return ret;
4322 changes = old_flags ^ dev->flags;
4323 if (changes)
4324 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4326 __dev_notify_flags(dev, old_flags);
4327 return ret;
4329 EXPORT_SYMBOL(dev_change_flags);
4332 * dev_set_mtu - Change maximum transfer unit
4333 * @dev: device
4334 * @new_mtu: new transfer unit
4336 * Change the maximum transfer size of the network device.
4338 int dev_set_mtu(struct net_device *dev, int new_mtu)
4340 const struct net_device_ops *ops = dev->netdev_ops;
4341 int err;
4343 if (new_mtu == dev->mtu)
4344 return 0;
4346 /* MTU must be positive. */
4347 if (new_mtu < 0)
4348 return -EINVAL;
4350 if (!netif_device_present(dev))
4351 return -ENODEV;
4353 err = 0;
4354 if (ops->ndo_change_mtu)
4355 err = ops->ndo_change_mtu(dev, new_mtu);
4356 else
4357 dev->mtu = new_mtu;
4359 if (!err && dev->flags & IFF_UP)
4360 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4361 return err;
4363 EXPORT_SYMBOL(dev_set_mtu);
4366 * dev_set_mac_address - Change Media Access Control Address
4367 * @dev: device
4368 * @sa: new address
4370 * Change the hardware (MAC) address of the device
4372 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4374 const struct net_device_ops *ops = dev->netdev_ops;
4375 int err;
4377 if (!ops->ndo_set_mac_address)
4378 return -EOPNOTSUPP;
4379 if (sa->sa_family != dev->type)
4380 return -EINVAL;
4381 if (!netif_device_present(dev))
4382 return -ENODEV;
4383 err = ops->ndo_set_mac_address(dev, sa);
4384 if (!err)
4385 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4386 return err;
4388 EXPORT_SYMBOL(dev_set_mac_address);
4391 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4393 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4395 int err;
4396 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4398 if (!dev)
4399 return -ENODEV;
4401 switch (cmd) {
4402 case SIOCGIFFLAGS: /* Get interface flags */
4403 ifr->ifr_flags = (short) dev_get_flags(dev);
4404 return 0;
4406 case SIOCGIFMETRIC: /* Get the metric on the interface
4407 (currently unused) */
4408 ifr->ifr_metric = 0;
4409 return 0;
4411 case SIOCGIFMTU: /* Get the MTU of a device */
4412 ifr->ifr_mtu = dev->mtu;
4413 return 0;
4415 case SIOCGIFHWADDR:
4416 if (!dev->addr_len)
4417 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4418 else
4419 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4420 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4421 ifr->ifr_hwaddr.sa_family = dev->type;
4422 return 0;
4424 case SIOCGIFSLAVE:
4425 err = -EINVAL;
4426 break;
4428 case SIOCGIFMAP:
4429 ifr->ifr_map.mem_start = dev->mem_start;
4430 ifr->ifr_map.mem_end = dev->mem_end;
4431 ifr->ifr_map.base_addr = dev->base_addr;
4432 ifr->ifr_map.irq = dev->irq;
4433 ifr->ifr_map.dma = dev->dma;
4434 ifr->ifr_map.port = dev->if_port;
4435 return 0;
4437 case SIOCGIFINDEX:
4438 ifr->ifr_ifindex = dev->ifindex;
4439 return 0;
4441 case SIOCGIFTXQLEN:
4442 ifr->ifr_qlen = dev->tx_queue_len;
4443 return 0;
4445 default:
4446 /* dev_ioctl() should ensure this case
4447 * is never reached
4449 WARN_ON(1);
4450 err = -EINVAL;
4451 break;
4454 return err;
4458 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4460 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4462 int err;
4463 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4464 const struct net_device_ops *ops;
4466 if (!dev)
4467 return -ENODEV;
4469 ops = dev->netdev_ops;
4471 switch (cmd) {
4472 case SIOCSIFFLAGS: /* Set interface flags */
4473 return dev_change_flags(dev, ifr->ifr_flags);
4475 case SIOCSIFMETRIC: /* Set the metric on the interface
4476 (currently unused) */
4477 return -EOPNOTSUPP;
4479 case SIOCSIFMTU: /* Set the MTU of a device */
4480 return dev_set_mtu(dev, ifr->ifr_mtu);
4482 case SIOCSIFHWADDR:
4483 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4485 case SIOCSIFHWBROADCAST:
4486 if (ifr->ifr_hwaddr.sa_family != dev->type)
4487 return -EINVAL;
4488 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4489 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4490 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4491 return 0;
4493 case SIOCSIFMAP:
4494 if (ops->ndo_set_config) {
4495 if (!netif_device_present(dev))
4496 return -ENODEV;
4497 return ops->ndo_set_config(dev, &ifr->ifr_map);
4499 return -EOPNOTSUPP;
4501 case SIOCADDMULTI:
4502 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4503 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4504 return -EINVAL;
4505 if (!netif_device_present(dev))
4506 return -ENODEV;
4507 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4509 case SIOCDELMULTI:
4510 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4511 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4512 return -EINVAL;
4513 if (!netif_device_present(dev))
4514 return -ENODEV;
4515 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4517 case SIOCSIFTXQLEN:
4518 if (ifr->ifr_qlen < 0)
4519 return -EINVAL;
4520 dev->tx_queue_len = ifr->ifr_qlen;
4521 return 0;
4523 case SIOCSIFNAME:
4524 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4525 return dev_change_name(dev, ifr->ifr_newname);
4528 * Unknown or private ioctl
4530 default:
4531 if ((cmd >= SIOCDEVPRIVATE &&
4532 cmd <= SIOCDEVPRIVATE + 15) ||
4533 cmd == SIOCBONDENSLAVE ||
4534 cmd == SIOCBONDRELEASE ||
4535 cmd == SIOCBONDSETHWADDR ||
4536 cmd == SIOCBONDSLAVEINFOQUERY ||
4537 cmd == SIOCBONDINFOQUERY ||
4538 cmd == SIOCBONDCHANGEACTIVE ||
4539 cmd == SIOCGMIIPHY ||
4540 cmd == SIOCGMIIREG ||
4541 cmd == SIOCSMIIREG ||
4542 cmd == SIOCBRADDIF ||
4543 cmd == SIOCBRDELIF ||
4544 cmd == SIOCSHWTSTAMP ||
4545 cmd == SIOCWANDEV) {
4546 err = -EOPNOTSUPP;
4547 if (ops->ndo_do_ioctl) {
4548 if (netif_device_present(dev))
4549 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4550 else
4551 err = -ENODEV;
4553 } else
4554 err = -EINVAL;
4557 return err;
4561 * This function handles all "interface"-type I/O control requests. The actual
4562 * 'doing' part of this is dev_ifsioc above.
4566 * dev_ioctl - network device ioctl
4567 * @net: the applicable net namespace
4568 * @cmd: command to issue
4569 * @arg: pointer to a struct ifreq in user space
4571 * Issue ioctl functions to devices. This is normally called by the
4572 * user space syscall interfaces but can sometimes be useful for
4573 * other purposes. The return value is the return from the syscall if
4574 * positive or a negative errno code on error.
4577 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4579 struct ifreq ifr;
4580 int ret;
4581 char *colon;
4583 /* One special case: SIOCGIFCONF takes ifconf argument
4584 and requires shared lock, because it sleeps writing
4585 to user space.
4588 if (cmd == SIOCGIFCONF) {
4589 rtnl_lock();
4590 ret = dev_ifconf(net, (char __user *) arg);
4591 rtnl_unlock();
4592 return ret;
4594 if (cmd == SIOCGIFNAME)
4595 return dev_ifname(net, (struct ifreq __user *)arg);
4597 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4598 return -EFAULT;
4600 ifr.ifr_name[IFNAMSIZ-1] = 0;
4602 colon = strchr(ifr.ifr_name, ':');
4603 if (colon)
4604 *colon = 0;
4607 * See which interface the caller is talking about.
4610 switch (cmd) {
4612 * These ioctl calls:
4613 * - can be done by all.
4614 * - atomic and do not require locking.
4615 * - return a value
4617 case SIOCGIFFLAGS:
4618 case SIOCGIFMETRIC:
4619 case SIOCGIFMTU:
4620 case SIOCGIFHWADDR:
4621 case SIOCGIFSLAVE:
4622 case SIOCGIFMAP:
4623 case SIOCGIFINDEX:
4624 case SIOCGIFTXQLEN:
4625 dev_load(net, ifr.ifr_name);
4626 rcu_read_lock();
4627 ret = dev_ifsioc_locked(net, &ifr, cmd);
4628 rcu_read_unlock();
4629 if (!ret) {
4630 if (colon)
4631 *colon = ':';
4632 if (copy_to_user(arg, &ifr,
4633 sizeof(struct ifreq)))
4634 ret = -EFAULT;
4636 return ret;
4638 case SIOCETHTOOL:
4639 dev_load(net, ifr.ifr_name);
4640 rtnl_lock();
4641 ret = dev_ethtool(net, &ifr);
4642 rtnl_unlock();
4643 if (!ret) {
4644 if (colon)
4645 *colon = ':';
4646 if (copy_to_user(arg, &ifr,
4647 sizeof(struct ifreq)))
4648 ret = -EFAULT;
4650 return ret;
4653 * These ioctl calls:
4654 * - require superuser power.
4655 * - require strict serialization.
4656 * - return a value
4658 case SIOCGMIIPHY:
4659 case SIOCGMIIREG:
4660 case SIOCSIFNAME:
4661 if (!capable(CAP_NET_ADMIN))
4662 return -EPERM;
4663 dev_load(net, ifr.ifr_name);
4664 rtnl_lock();
4665 ret = dev_ifsioc(net, &ifr, cmd);
4666 rtnl_unlock();
4667 if (!ret) {
4668 if (colon)
4669 *colon = ':';
4670 if (copy_to_user(arg, &ifr,
4671 sizeof(struct ifreq)))
4672 ret = -EFAULT;
4674 return ret;
4677 * These ioctl calls:
4678 * - require superuser power.
4679 * - require strict serialization.
4680 * - do not return a value
4682 case SIOCSIFFLAGS:
4683 case SIOCSIFMETRIC:
4684 case SIOCSIFMTU:
4685 case SIOCSIFMAP:
4686 case SIOCSIFHWADDR:
4687 case SIOCSIFSLAVE:
4688 case SIOCADDMULTI:
4689 case SIOCDELMULTI:
4690 case SIOCSIFHWBROADCAST:
4691 case SIOCSIFTXQLEN:
4692 case SIOCSMIIREG:
4693 case SIOCBONDENSLAVE:
4694 case SIOCBONDRELEASE:
4695 case SIOCBONDSETHWADDR:
4696 case SIOCBONDCHANGEACTIVE:
4697 case SIOCBRADDIF:
4698 case SIOCBRDELIF:
4699 case SIOCSHWTSTAMP:
4700 if (!capable(CAP_NET_ADMIN))
4701 return -EPERM;
4702 /* fall through */
4703 case SIOCBONDSLAVEINFOQUERY:
4704 case SIOCBONDINFOQUERY:
4705 dev_load(net, ifr.ifr_name);
4706 rtnl_lock();
4707 ret = dev_ifsioc(net, &ifr, cmd);
4708 rtnl_unlock();
4709 return ret;
4711 case SIOCGIFMEM:
4712 /* Get the per device memory space. We can add this but
4713 * currently do not support it */
4714 case SIOCSIFMEM:
4715 /* Set the per device memory buffer space.
4716 * Not applicable in our case */
4717 case SIOCSIFLINK:
4718 return -EINVAL;
4721 * Unknown or private ioctl.
4723 default:
4724 if (cmd == SIOCWANDEV ||
4725 (cmd >= SIOCDEVPRIVATE &&
4726 cmd <= SIOCDEVPRIVATE + 15)) {
4727 dev_load(net, ifr.ifr_name);
4728 rtnl_lock();
4729 ret = dev_ifsioc(net, &ifr, cmd);
4730 rtnl_unlock();
4731 if (!ret && copy_to_user(arg, &ifr,
4732 sizeof(struct ifreq)))
4733 ret = -EFAULT;
4734 return ret;
4736 /* Take care of Wireless Extensions */
4737 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4738 return wext_handle_ioctl(net, &ifr, cmd, arg);
4739 return -EINVAL;
4745 * dev_new_index - allocate an ifindex
4746 * @net: the applicable net namespace
4748 * Returns a suitable unique value for a new device interface
4749 * number. The caller must hold the rtnl semaphore or the
4750 * dev_base_lock to be sure it remains unique.
4752 static int dev_new_index(struct net *net)
4754 static int ifindex;
4755 for (;;) {
4756 if (++ifindex <= 0)
4757 ifindex = 1;
4758 if (!__dev_get_by_index(net, ifindex))
4759 return ifindex;
4763 /* Delayed registration/unregisteration */
4764 static LIST_HEAD(net_todo_list);
4766 static void net_set_todo(struct net_device *dev)
4768 list_add_tail(&dev->todo_list, &net_todo_list);
4771 static void rollback_registered_many(struct list_head *head)
4773 struct net_device *dev, *tmp;
4775 BUG_ON(dev_boot_phase);
4776 ASSERT_RTNL();
4778 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4779 /* Some devices call without registering
4780 * for initialization unwind. Remove those
4781 * devices and proceed with the remaining.
4783 if (dev->reg_state == NETREG_UNINITIALIZED) {
4784 pr_debug("unregister_netdevice: device %s/%p never "
4785 "was registered\n", dev->name, dev);
4787 WARN_ON(1);
4788 list_del(&dev->unreg_list);
4789 continue;
4792 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4794 /* If device is running, close it first. */
4795 dev_close(dev);
4797 /* And unlink it from device chain. */
4798 unlist_netdevice(dev);
4800 dev->reg_state = NETREG_UNREGISTERING;
4803 synchronize_net();
4805 list_for_each_entry(dev, head, unreg_list) {
4806 /* Shutdown queueing discipline. */
4807 dev_shutdown(dev);
4810 /* Notify protocols, that we are about to destroy
4811 this device. They should clean all the things.
4813 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4815 if (!dev->rtnl_link_ops ||
4816 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4817 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4820 * Flush the unicast and multicast chains
4822 dev_uc_flush(dev);
4823 dev_mc_flush(dev);
4825 if (dev->netdev_ops->ndo_uninit)
4826 dev->netdev_ops->ndo_uninit(dev);
4828 /* Notifier chain MUST detach us from master device. */
4829 WARN_ON(dev->master);
4831 /* Remove entries from kobject tree */
4832 netdev_unregister_kobject(dev);
4835 /* Process any work delayed until the end of the batch */
4836 dev = list_first_entry(head, struct net_device, unreg_list);
4837 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4839 synchronize_net();
4841 list_for_each_entry(dev, head, unreg_list)
4842 dev_put(dev);
4845 static void rollback_registered(struct net_device *dev)
4847 LIST_HEAD(single);
4849 list_add(&dev->unreg_list, &single);
4850 rollback_registered_many(&single);
4853 static void __netdev_init_queue_locks_one(struct net_device *dev,
4854 struct netdev_queue *dev_queue,
4855 void *_unused)
4857 spin_lock_init(&dev_queue->_xmit_lock);
4858 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4859 dev_queue->xmit_lock_owner = -1;
4862 static void netdev_init_queue_locks(struct net_device *dev)
4864 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4865 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4868 unsigned long netdev_fix_features(unsigned long features, const char *name)
4870 /* Fix illegal SG+CSUM combinations. */
4871 if ((features & NETIF_F_SG) &&
4872 !(features & NETIF_F_ALL_CSUM)) {
4873 if (name)
4874 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4875 "checksum feature.\n", name);
4876 features &= ~NETIF_F_SG;
4879 /* TSO requires that SG is present as well. */
4880 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4881 if (name)
4882 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4883 "SG feature.\n", name);
4884 features &= ~NETIF_F_TSO;
4887 if (features & NETIF_F_UFO) {
4888 if (!(features & NETIF_F_GEN_CSUM)) {
4889 if (name)
4890 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4891 "since no NETIF_F_HW_CSUM feature.\n",
4892 name);
4893 features &= ~NETIF_F_UFO;
4896 if (!(features & NETIF_F_SG)) {
4897 if (name)
4898 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4899 "since no NETIF_F_SG feature.\n", name);
4900 features &= ~NETIF_F_UFO;
4904 return features;
4906 EXPORT_SYMBOL(netdev_fix_features);
4909 * netif_stacked_transfer_operstate - transfer operstate
4910 * @rootdev: the root or lower level device to transfer state from
4911 * @dev: the device to transfer operstate to
4913 * Transfer operational state from root to device. This is normally
4914 * called when a stacking relationship exists between the root
4915 * device and the device(a leaf device).
4917 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4918 struct net_device *dev)
4920 if (rootdev->operstate == IF_OPER_DORMANT)
4921 netif_dormant_on(dev);
4922 else
4923 netif_dormant_off(dev);
4925 if (netif_carrier_ok(rootdev)) {
4926 if (!netif_carrier_ok(dev))
4927 netif_carrier_on(dev);
4928 } else {
4929 if (netif_carrier_ok(dev))
4930 netif_carrier_off(dev);
4933 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4936 * register_netdevice - register a network device
4937 * @dev: device to register
4939 * Take a completed network device structure and add it to the kernel
4940 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4941 * chain. 0 is returned on success. A negative errno code is returned
4942 * on a failure to set up the device, or if the name is a duplicate.
4944 * Callers must hold the rtnl semaphore. You may want
4945 * register_netdev() instead of this.
4947 * BUGS:
4948 * The locking appears insufficient to guarantee two parallel registers
4949 * will not get the same name.
4952 int register_netdevice(struct net_device *dev)
4954 int ret;
4955 struct net *net = dev_net(dev);
4957 BUG_ON(dev_boot_phase);
4958 ASSERT_RTNL();
4960 might_sleep();
4962 /* When net_device's are persistent, this will be fatal. */
4963 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4964 BUG_ON(!net);
4966 spin_lock_init(&dev->addr_list_lock);
4967 netdev_set_addr_lockdep_class(dev);
4968 netdev_init_queue_locks(dev);
4970 dev->iflink = -1;
4972 #ifdef CONFIG_RPS
4973 if (!dev->num_rx_queues) {
4975 * Allocate a single RX queue if driver never called
4976 * alloc_netdev_mq
4979 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4980 if (!dev->_rx) {
4981 ret = -ENOMEM;
4982 goto out;
4985 dev->_rx->first = dev->_rx;
4986 atomic_set(&dev->_rx->count, 1);
4987 dev->num_rx_queues = 1;
4989 #endif
4990 /* Init, if this function is available */
4991 if (dev->netdev_ops->ndo_init) {
4992 ret = dev->netdev_ops->ndo_init(dev);
4993 if (ret) {
4994 if (ret > 0)
4995 ret = -EIO;
4996 goto out;
5000 ret = dev_get_valid_name(dev, dev->name, 0);
5001 if (ret)
5002 goto err_uninit;
5004 dev->ifindex = dev_new_index(net);
5005 if (dev->iflink == -1)
5006 dev->iflink = dev->ifindex;
5008 /* Fix illegal checksum combinations */
5009 if ((dev->features & NETIF_F_HW_CSUM) &&
5010 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5011 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5012 dev->name);
5013 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5016 if ((dev->features & NETIF_F_NO_CSUM) &&
5017 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5018 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5019 dev->name);
5020 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5023 dev->features = netdev_fix_features(dev->features, dev->name);
5025 /* Enable software GSO if SG is supported. */
5026 if (dev->features & NETIF_F_SG)
5027 dev->features |= NETIF_F_GSO;
5029 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5030 ret = notifier_to_errno(ret);
5031 if (ret)
5032 goto err_uninit;
5034 ret = netdev_register_kobject(dev);
5035 if (ret)
5036 goto err_uninit;
5037 dev->reg_state = NETREG_REGISTERED;
5040 * Default initial state at registry is that the
5041 * device is present.
5044 set_bit(__LINK_STATE_PRESENT, &dev->state);
5046 dev_init_scheduler(dev);
5047 dev_hold(dev);
5048 list_netdevice(dev);
5050 /* Notify protocols, that a new device appeared. */
5051 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5052 ret = notifier_to_errno(ret);
5053 if (ret) {
5054 rollback_registered(dev);
5055 dev->reg_state = NETREG_UNREGISTERED;
5058 * Prevent userspace races by waiting until the network
5059 * device is fully setup before sending notifications.
5061 if (!dev->rtnl_link_ops ||
5062 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5063 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5065 out:
5066 return ret;
5068 err_uninit:
5069 if (dev->netdev_ops->ndo_uninit)
5070 dev->netdev_ops->ndo_uninit(dev);
5071 goto out;
5073 EXPORT_SYMBOL(register_netdevice);
5076 * init_dummy_netdev - init a dummy network device for NAPI
5077 * @dev: device to init
5079 * This takes a network device structure and initialize the minimum
5080 * amount of fields so it can be used to schedule NAPI polls without
5081 * registering a full blown interface. This is to be used by drivers
5082 * that need to tie several hardware interfaces to a single NAPI
5083 * poll scheduler due to HW limitations.
5085 int init_dummy_netdev(struct net_device *dev)
5087 /* Clear everything. Note we don't initialize spinlocks
5088 * are they aren't supposed to be taken by any of the
5089 * NAPI code and this dummy netdev is supposed to be
5090 * only ever used for NAPI polls
5092 memset(dev, 0, sizeof(struct net_device));
5094 /* make sure we BUG if trying to hit standard
5095 * register/unregister code path
5097 dev->reg_state = NETREG_DUMMY;
5099 /* initialize the ref count */
5100 atomic_set(&dev->refcnt, 1);
5102 /* NAPI wants this */
5103 INIT_LIST_HEAD(&dev->napi_list);
5105 /* a dummy interface is started by default */
5106 set_bit(__LINK_STATE_PRESENT, &dev->state);
5107 set_bit(__LINK_STATE_START, &dev->state);
5109 return 0;
5111 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5115 * register_netdev - register a network device
5116 * @dev: device to register
5118 * Take a completed network device structure and add it to the kernel
5119 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5120 * chain. 0 is returned on success. A negative errno code is returned
5121 * on a failure to set up the device, or if the name is a duplicate.
5123 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5124 * and expands the device name if you passed a format string to
5125 * alloc_netdev.
5127 int register_netdev(struct net_device *dev)
5129 int err;
5131 rtnl_lock();
5134 * If the name is a format string the caller wants us to do a
5135 * name allocation.
5137 if (strchr(dev->name, '%')) {
5138 err = dev_alloc_name(dev, dev->name);
5139 if (err < 0)
5140 goto out;
5143 err = register_netdevice(dev);
5144 out:
5145 rtnl_unlock();
5146 return err;
5148 EXPORT_SYMBOL(register_netdev);
5151 * netdev_wait_allrefs - wait until all references are gone.
5153 * This is called when unregistering network devices.
5155 * Any protocol or device that holds a reference should register
5156 * for netdevice notification, and cleanup and put back the
5157 * reference if they receive an UNREGISTER event.
5158 * We can get stuck here if buggy protocols don't correctly
5159 * call dev_put.
5161 static void netdev_wait_allrefs(struct net_device *dev)
5163 unsigned long rebroadcast_time, warning_time;
5165 linkwatch_forget_dev(dev);
5167 rebroadcast_time = warning_time = jiffies;
5168 while (atomic_read(&dev->refcnt) != 0) {
5169 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5170 rtnl_lock();
5172 /* Rebroadcast unregister notification */
5173 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5174 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5175 * should have already handle it the first time */
5177 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5178 &dev->state)) {
5179 /* We must not have linkwatch events
5180 * pending on unregister. If this
5181 * happens, we simply run the queue
5182 * unscheduled, resulting in a noop
5183 * for this device.
5185 linkwatch_run_queue();
5188 __rtnl_unlock();
5190 rebroadcast_time = jiffies;
5193 msleep(250);
5195 if (time_after(jiffies, warning_time + 10 * HZ)) {
5196 printk(KERN_EMERG "unregister_netdevice: "
5197 "waiting for %s to become free. Usage "
5198 "count = %d\n",
5199 dev->name, atomic_read(&dev->refcnt));
5200 warning_time = jiffies;
5205 /* The sequence is:
5207 * rtnl_lock();
5208 * ...
5209 * register_netdevice(x1);
5210 * register_netdevice(x2);
5211 * ...
5212 * unregister_netdevice(y1);
5213 * unregister_netdevice(y2);
5214 * ...
5215 * rtnl_unlock();
5216 * free_netdev(y1);
5217 * free_netdev(y2);
5219 * We are invoked by rtnl_unlock().
5220 * This allows us to deal with problems:
5221 * 1) We can delete sysfs objects which invoke hotplug
5222 * without deadlocking with linkwatch via keventd.
5223 * 2) Since we run with the RTNL semaphore not held, we can sleep
5224 * safely in order to wait for the netdev refcnt to drop to zero.
5226 * We must not return until all unregister events added during
5227 * the interval the lock was held have been completed.
5229 void netdev_run_todo(void)
5231 struct list_head list;
5233 /* Snapshot list, allow later requests */
5234 list_replace_init(&net_todo_list, &list);
5236 __rtnl_unlock();
5238 while (!list_empty(&list)) {
5239 struct net_device *dev
5240 = list_first_entry(&list, struct net_device, todo_list);
5241 list_del(&dev->todo_list);
5243 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5244 printk(KERN_ERR "network todo '%s' but state %d\n",
5245 dev->name, dev->reg_state);
5246 dump_stack();
5247 continue;
5250 dev->reg_state = NETREG_UNREGISTERED;
5252 on_each_cpu(flush_backlog, dev, 1);
5254 netdev_wait_allrefs(dev);
5256 /* paranoia */
5257 BUG_ON(atomic_read(&dev->refcnt));
5258 WARN_ON(dev->ip_ptr);
5259 WARN_ON(dev->ip6_ptr);
5260 WARN_ON(dev->dn_ptr);
5262 if (dev->destructor)
5263 dev->destructor(dev);
5265 /* Free network device */
5266 kobject_put(&dev->dev.kobj);
5271 * dev_txq_stats_fold - fold tx_queues stats
5272 * @dev: device to get statistics from
5273 * @stats: struct net_device_stats to hold results
5275 void dev_txq_stats_fold(const struct net_device *dev,
5276 struct net_device_stats *stats)
5278 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5279 unsigned int i;
5280 struct netdev_queue *txq;
5282 for (i = 0; i < dev->num_tx_queues; i++) {
5283 txq = netdev_get_tx_queue(dev, i);
5284 tx_bytes += txq->tx_bytes;
5285 tx_packets += txq->tx_packets;
5286 tx_dropped += txq->tx_dropped;
5288 if (tx_bytes || tx_packets || tx_dropped) {
5289 stats->tx_bytes = tx_bytes;
5290 stats->tx_packets = tx_packets;
5291 stats->tx_dropped = tx_dropped;
5294 EXPORT_SYMBOL(dev_txq_stats_fold);
5297 * dev_get_stats - get network device statistics
5298 * @dev: device to get statistics from
5300 * Get network statistics from device. The device driver may provide
5301 * its own method by setting dev->netdev_ops->get_stats; otherwise
5302 * the internal statistics structure is used.
5304 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5306 const struct net_device_ops *ops = dev->netdev_ops;
5308 if (ops->ndo_get_stats)
5309 return ops->ndo_get_stats(dev);
5311 dev_txq_stats_fold(dev, &dev->stats);
5312 return &dev->stats;
5314 EXPORT_SYMBOL(dev_get_stats);
5316 static void netdev_init_one_queue(struct net_device *dev,
5317 struct netdev_queue *queue,
5318 void *_unused)
5320 queue->dev = dev;
5323 static void netdev_init_queues(struct net_device *dev)
5325 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5326 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5327 spin_lock_init(&dev->tx_global_lock);
5331 * alloc_netdev_mq - allocate network device
5332 * @sizeof_priv: size of private data to allocate space for
5333 * @name: device name format string
5334 * @setup: callback to initialize device
5335 * @queue_count: the number of subqueues to allocate
5337 * Allocates a struct net_device with private data area for driver use
5338 * and performs basic initialization. Also allocates subquue structs
5339 * for each queue on the device at the end of the netdevice.
5341 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5342 void (*setup)(struct net_device *), unsigned int queue_count)
5344 struct netdev_queue *tx;
5345 struct net_device *dev;
5346 size_t alloc_size;
5347 struct net_device *p;
5348 #ifdef CONFIG_RPS
5349 struct netdev_rx_queue *rx;
5350 int i;
5351 #endif
5353 BUG_ON(strlen(name) >= sizeof(dev->name));
5355 alloc_size = sizeof(struct net_device);
5356 if (sizeof_priv) {
5357 /* ensure 32-byte alignment of private area */
5358 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5359 alloc_size += sizeof_priv;
5361 /* ensure 32-byte alignment of whole construct */
5362 alloc_size += NETDEV_ALIGN - 1;
5364 p = kzalloc(alloc_size, GFP_KERNEL);
5365 if (!p) {
5366 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5367 return NULL;
5370 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5371 if (!tx) {
5372 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5373 "tx qdiscs.\n");
5374 goto free_p;
5377 #ifdef CONFIG_RPS
5378 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5379 if (!rx) {
5380 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5381 "rx queues.\n");
5382 goto free_tx;
5385 atomic_set(&rx->count, queue_count);
5388 * Set a pointer to first element in the array which holds the
5389 * reference count.
5391 for (i = 0; i < queue_count; i++)
5392 rx[i].first = rx;
5393 #endif
5395 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5396 dev->padded = (char *)dev - (char *)p;
5398 if (dev_addr_init(dev))
5399 goto free_rx;
5401 dev_mc_init(dev);
5402 dev_uc_init(dev);
5404 dev_net_set(dev, &init_net);
5406 dev->_tx = tx;
5407 dev->num_tx_queues = queue_count;
5408 dev->real_num_tx_queues = queue_count;
5410 #ifdef CONFIG_RPS
5411 dev->_rx = rx;
5412 dev->num_rx_queues = queue_count;
5413 #endif
5415 dev->gso_max_size = GSO_MAX_SIZE;
5417 netdev_init_queues(dev);
5419 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5420 dev->ethtool_ntuple_list.count = 0;
5421 INIT_LIST_HEAD(&dev->napi_list);
5422 INIT_LIST_HEAD(&dev->unreg_list);
5423 INIT_LIST_HEAD(&dev->link_watch_list);
5424 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5425 setup(dev);
5426 strcpy(dev->name, name);
5427 return dev;
5429 free_rx:
5430 #ifdef CONFIG_RPS
5431 kfree(rx);
5432 free_tx:
5433 #endif
5434 kfree(tx);
5435 free_p:
5436 kfree(p);
5437 return NULL;
5439 EXPORT_SYMBOL(alloc_netdev_mq);
5442 * free_netdev - free network device
5443 * @dev: device
5445 * This function does the last stage of destroying an allocated device
5446 * interface. The reference to the device object is released.
5447 * If this is the last reference then it will be freed.
5449 void free_netdev(struct net_device *dev)
5451 struct napi_struct *p, *n;
5453 release_net(dev_net(dev));
5455 kfree(dev->_tx);
5457 /* Flush device addresses */
5458 dev_addr_flush(dev);
5460 /* Clear ethtool n-tuple list */
5461 ethtool_ntuple_flush(dev);
5463 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5464 netif_napi_del(p);
5466 /* Compatibility with error handling in drivers */
5467 if (dev->reg_state == NETREG_UNINITIALIZED) {
5468 kfree((char *)dev - dev->padded);
5469 return;
5472 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5473 dev->reg_state = NETREG_RELEASED;
5475 /* will free via device release */
5476 put_device(&dev->dev);
5478 EXPORT_SYMBOL(free_netdev);
5481 * synchronize_net - Synchronize with packet receive processing
5483 * Wait for packets currently being received to be done.
5484 * Does not block later packets from starting.
5486 void synchronize_net(void)
5488 might_sleep();
5489 synchronize_rcu();
5491 EXPORT_SYMBOL(synchronize_net);
5494 * unregister_netdevice_queue - remove device from the kernel
5495 * @dev: device
5496 * @head: list
5498 * This function shuts down a device interface and removes it
5499 * from the kernel tables.
5500 * If head not NULL, device is queued to be unregistered later.
5502 * Callers must hold the rtnl semaphore. You may want
5503 * unregister_netdev() instead of this.
5506 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5508 ASSERT_RTNL();
5510 if (head) {
5511 list_move_tail(&dev->unreg_list, head);
5512 } else {
5513 rollback_registered(dev);
5514 /* Finish processing unregister after unlock */
5515 net_set_todo(dev);
5518 EXPORT_SYMBOL(unregister_netdevice_queue);
5521 * unregister_netdevice_many - unregister many devices
5522 * @head: list of devices
5524 void unregister_netdevice_many(struct list_head *head)
5526 struct net_device *dev;
5528 if (!list_empty(head)) {
5529 rollback_registered_many(head);
5530 list_for_each_entry(dev, head, unreg_list)
5531 net_set_todo(dev);
5534 EXPORT_SYMBOL(unregister_netdevice_many);
5537 * unregister_netdev - remove device from the kernel
5538 * @dev: device
5540 * This function shuts down a device interface and removes it
5541 * from the kernel tables.
5543 * This is just a wrapper for unregister_netdevice that takes
5544 * the rtnl semaphore. In general you want to use this and not
5545 * unregister_netdevice.
5547 void unregister_netdev(struct net_device *dev)
5549 rtnl_lock();
5550 unregister_netdevice(dev);
5551 rtnl_unlock();
5553 EXPORT_SYMBOL(unregister_netdev);
5556 * dev_change_net_namespace - move device to different nethost namespace
5557 * @dev: device
5558 * @net: network namespace
5559 * @pat: If not NULL name pattern to try if the current device name
5560 * is already taken in the destination network namespace.
5562 * This function shuts down a device interface and moves it
5563 * to a new network namespace. On success 0 is returned, on
5564 * a failure a netagive errno code is returned.
5566 * Callers must hold the rtnl semaphore.
5569 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5571 int err;
5573 ASSERT_RTNL();
5575 /* Don't allow namespace local devices to be moved. */
5576 err = -EINVAL;
5577 if (dev->features & NETIF_F_NETNS_LOCAL)
5578 goto out;
5580 /* Ensure the device has been registrered */
5581 err = -EINVAL;
5582 if (dev->reg_state != NETREG_REGISTERED)
5583 goto out;
5585 /* Get out if there is nothing todo */
5586 err = 0;
5587 if (net_eq(dev_net(dev), net))
5588 goto out;
5590 /* Pick the destination device name, and ensure
5591 * we can use it in the destination network namespace.
5593 err = -EEXIST;
5594 if (__dev_get_by_name(net, dev->name)) {
5595 /* We get here if we can't use the current device name */
5596 if (!pat)
5597 goto out;
5598 if (dev_get_valid_name(dev, pat, 1))
5599 goto out;
5603 * And now a mini version of register_netdevice unregister_netdevice.
5606 /* If device is running close it first. */
5607 dev_close(dev);
5609 /* And unlink it from device chain */
5610 err = -ENODEV;
5611 unlist_netdevice(dev);
5613 synchronize_net();
5615 /* Shutdown queueing discipline. */
5616 dev_shutdown(dev);
5618 /* Notify protocols, that we are about to destroy
5619 this device. They should clean all the things.
5621 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5622 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5625 * Flush the unicast and multicast chains
5627 dev_uc_flush(dev);
5628 dev_mc_flush(dev);
5630 /* Actually switch the network namespace */
5631 dev_net_set(dev, net);
5633 /* If there is an ifindex conflict assign a new one */
5634 if (__dev_get_by_index(net, dev->ifindex)) {
5635 int iflink = (dev->iflink == dev->ifindex);
5636 dev->ifindex = dev_new_index(net);
5637 if (iflink)
5638 dev->iflink = dev->ifindex;
5641 /* Fixup kobjects */
5642 err = device_rename(&dev->dev, dev->name);
5643 WARN_ON(err);
5645 /* Add the device back in the hashes */
5646 list_netdevice(dev);
5648 /* Notify protocols, that a new device appeared. */
5649 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5652 * Prevent userspace races by waiting until the network
5653 * device is fully setup before sending notifications.
5655 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5657 synchronize_net();
5658 err = 0;
5659 out:
5660 return err;
5662 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5664 static int dev_cpu_callback(struct notifier_block *nfb,
5665 unsigned long action,
5666 void *ocpu)
5668 struct sk_buff **list_skb;
5669 struct sk_buff *skb;
5670 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5671 struct softnet_data *sd, *oldsd;
5673 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5674 return NOTIFY_OK;
5676 local_irq_disable();
5677 cpu = smp_processor_id();
5678 sd = &per_cpu(softnet_data, cpu);
5679 oldsd = &per_cpu(softnet_data, oldcpu);
5681 /* Find end of our completion_queue. */
5682 list_skb = &sd->completion_queue;
5683 while (*list_skb)
5684 list_skb = &(*list_skb)->next;
5685 /* Append completion queue from offline CPU. */
5686 *list_skb = oldsd->completion_queue;
5687 oldsd->completion_queue = NULL;
5689 /* Append output queue from offline CPU. */
5690 if (oldsd->output_queue) {
5691 *sd->output_queue_tailp = oldsd->output_queue;
5692 sd->output_queue_tailp = oldsd->output_queue_tailp;
5693 oldsd->output_queue = NULL;
5694 oldsd->output_queue_tailp = &oldsd->output_queue;
5697 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5698 local_irq_enable();
5700 /* Process offline CPU's input_pkt_queue */
5701 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5702 netif_rx(skb);
5703 input_queue_head_incr(oldsd);
5705 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5706 netif_rx(skb);
5707 input_queue_head_incr(oldsd);
5710 return NOTIFY_OK;
5715 * netdev_increment_features - increment feature set by one
5716 * @all: current feature set
5717 * @one: new feature set
5718 * @mask: mask feature set
5720 * Computes a new feature set after adding a device with feature set
5721 * @one to the master device with current feature set @all. Will not
5722 * enable anything that is off in @mask. Returns the new feature set.
5724 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5725 unsigned long mask)
5727 /* If device needs checksumming, downgrade to it. */
5728 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5729 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5730 else if (mask & NETIF_F_ALL_CSUM) {
5731 /* If one device supports v4/v6 checksumming, set for all. */
5732 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5733 !(all & NETIF_F_GEN_CSUM)) {
5734 all &= ~NETIF_F_ALL_CSUM;
5735 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5738 /* If one device supports hw checksumming, set for all. */
5739 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5740 all &= ~NETIF_F_ALL_CSUM;
5741 all |= NETIF_F_HW_CSUM;
5745 one |= NETIF_F_ALL_CSUM;
5747 one |= all & NETIF_F_ONE_FOR_ALL;
5748 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5749 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5751 return all;
5753 EXPORT_SYMBOL(netdev_increment_features);
5755 static struct hlist_head *netdev_create_hash(void)
5757 int i;
5758 struct hlist_head *hash;
5760 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5761 if (hash != NULL)
5762 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5763 INIT_HLIST_HEAD(&hash[i]);
5765 return hash;
5768 /* Initialize per network namespace state */
5769 static int __net_init netdev_init(struct net *net)
5771 INIT_LIST_HEAD(&net->dev_base_head);
5773 net->dev_name_head = netdev_create_hash();
5774 if (net->dev_name_head == NULL)
5775 goto err_name;
5777 net->dev_index_head = netdev_create_hash();
5778 if (net->dev_index_head == NULL)
5779 goto err_idx;
5781 return 0;
5783 err_idx:
5784 kfree(net->dev_name_head);
5785 err_name:
5786 return -ENOMEM;
5790 * netdev_drivername - network driver for the device
5791 * @dev: network device
5792 * @buffer: buffer for resulting name
5793 * @len: size of buffer
5795 * Determine network driver for device.
5797 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5799 const struct device_driver *driver;
5800 const struct device *parent;
5802 if (len <= 0 || !buffer)
5803 return buffer;
5804 buffer[0] = 0;
5806 parent = dev->dev.parent;
5808 if (!parent)
5809 return buffer;
5811 driver = parent->driver;
5812 if (driver && driver->name)
5813 strlcpy(buffer, driver->name, len);
5814 return buffer;
5817 static void __net_exit netdev_exit(struct net *net)
5819 kfree(net->dev_name_head);
5820 kfree(net->dev_index_head);
5823 static struct pernet_operations __net_initdata netdev_net_ops = {
5824 .init = netdev_init,
5825 .exit = netdev_exit,
5828 static void __net_exit default_device_exit(struct net *net)
5830 struct net_device *dev, *aux;
5832 * Push all migratable network devices back to the
5833 * initial network namespace
5835 rtnl_lock();
5836 for_each_netdev_safe(net, dev, aux) {
5837 int err;
5838 char fb_name[IFNAMSIZ];
5840 /* Ignore unmoveable devices (i.e. loopback) */
5841 if (dev->features & NETIF_F_NETNS_LOCAL)
5842 continue;
5844 /* Leave virtual devices for the generic cleanup */
5845 if (dev->rtnl_link_ops)
5846 continue;
5848 /* Push remaing network devices to init_net */
5849 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5850 err = dev_change_net_namespace(dev, &init_net, fb_name);
5851 if (err) {
5852 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5853 __func__, dev->name, err);
5854 BUG();
5857 rtnl_unlock();
5860 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5862 /* At exit all network devices most be removed from a network
5863 * namespace. Do this in the reverse order of registeration.
5864 * Do this across as many network namespaces as possible to
5865 * improve batching efficiency.
5867 struct net_device *dev;
5868 struct net *net;
5869 LIST_HEAD(dev_kill_list);
5871 rtnl_lock();
5872 list_for_each_entry(net, net_list, exit_list) {
5873 for_each_netdev_reverse(net, dev) {
5874 if (dev->rtnl_link_ops)
5875 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5876 else
5877 unregister_netdevice_queue(dev, &dev_kill_list);
5880 unregister_netdevice_many(&dev_kill_list);
5881 rtnl_unlock();
5884 static struct pernet_operations __net_initdata default_device_ops = {
5885 .exit = default_device_exit,
5886 .exit_batch = default_device_exit_batch,
5890 * Initialize the DEV module. At boot time this walks the device list and
5891 * unhooks any devices that fail to initialise (normally hardware not
5892 * present) and leaves us with a valid list of present and active devices.
5897 * This is called single threaded during boot, so no need
5898 * to take the rtnl semaphore.
5900 static int __init net_dev_init(void)
5902 int i, rc = -ENOMEM;
5904 BUG_ON(!dev_boot_phase);
5906 if (dev_proc_init())
5907 goto out;
5909 if (netdev_kobject_init())
5910 goto out;
5912 INIT_LIST_HEAD(&ptype_all);
5913 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5914 INIT_LIST_HEAD(&ptype_base[i]);
5916 if (register_pernet_subsys(&netdev_net_ops))
5917 goto out;
5920 * Initialise the packet receive queues.
5923 for_each_possible_cpu(i) {
5924 struct softnet_data *sd = &per_cpu(softnet_data, i);
5926 memset(sd, 0, sizeof(*sd));
5927 skb_queue_head_init(&sd->input_pkt_queue);
5928 skb_queue_head_init(&sd->process_queue);
5929 sd->completion_queue = NULL;
5930 INIT_LIST_HEAD(&sd->poll_list);
5931 sd->output_queue = NULL;
5932 sd->output_queue_tailp = &sd->output_queue;
5933 #ifdef CONFIG_RPS
5934 sd->csd.func = rps_trigger_softirq;
5935 sd->csd.info = sd;
5936 sd->csd.flags = 0;
5937 sd->cpu = i;
5938 #endif
5940 sd->backlog.poll = process_backlog;
5941 sd->backlog.weight = weight_p;
5942 sd->backlog.gro_list = NULL;
5943 sd->backlog.gro_count = 0;
5946 dev_boot_phase = 0;
5948 /* The loopback device is special if any other network devices
5949 * is present in a network namespace the loopback device must
5950 * be present. Since we now dynamically allocate and free the
5951 * loopback device ensure this invariant is maintained by
5952 * keeping the loopback device as the first device on the
5953 * list of network devices. Ensuring the loopback devices
5954 * is the first device that appears and the last network device
5955 * that disappears.
5957 if (register_pernet_device(&loopback_net_ops))
5958 goto out;
5960 if (register_pernet_device(&default_device_ops))
5961 goto out;
5963 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5964 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5966 hotcpu_notifier(dev_cpu_callback, 0);
5967 dst_init();
5968 dev_mcast_init();
5969 rc = 0;
5970 out:
5971 return rc;
5974 subsys_initcall(net_dev_init);
5976 static int __init initialize_hashrnd(void)
5978 get_random_bytes(&hashrnd, sizeof(hashrnd));
5979 return 0;
5982 late_initcall_sync(initialize_hashrnd);