tracing/function-return-tracer: store return stack into task_struct and allocate...
[linux-2.6/x86.git] / arch / x86 / kernel / ftrace.c
blobbb137f7297ed6f955f81b047e9d1539010fb67e1
1 /*
2 * Code for replacing ftrace calls with jumps.
4 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6 * Thanks goes to Ingo Molnar, for suggesting the idea.
7 * Mathieu Desnoyers, for suggesting postponing the modifications.
8 * Arjan van de Ven, for keeping me straight, and explaining to me
9 * the dangers of modifying code on the run.
12 #include <linux/spinlock.h>
13 #include <linux/hardirq.h>
14 #include <linux/uaccess.h>
15 #include <linux/ftrace.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/list.h>
21 #include <asm/ftrace.h>
22 #include <linux/ftrace.h>
23 #include <asm/nops.h>
24 #include <asm/nmi.h>
27 #ifdef CONFIG_DYNAMIC_FTRACE
29 union ftrace_code_union {
30 char code[MCOUNT_INSN_SIZE];
31 struct {
32 char e8;
33 int offset;
34 } __attribute__((packed));
37 static int ftrace_calc_offset(long ip, long addr)
39 return (int)(addr - ip);
42 static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
44 static union ftrace_code_union calc;
46 calc.e8 = 0xe8;
47 calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
50 * No locking needed, this must be called via kstop_machine
51 * which in essence is like running on a uniprocessor machine.
53 return calc.code;
57 * Modifying code must take extra care. On an SMP machine, if
58 * the code being modified is also being executed on another CPU
59 * that CPU will have undefined results and possibly take a GPF.
60 * We use kstop_machine to stop other CPUS from exectuing code.
61 * But this does not stop NMIs from happening. We still need
62 * to protect against that. We separate out the modification of
63 * the code to take care of this.
65 * Two buffers are added: An IP buffer and a "code" buffer.
67 * 1) Put the instruction pointer into the IP buffer
68 * and the new code into the "code" buffer.
69 * 2) Set a flag that says we are modifying code
70 * 3) Wait for any running NMIs to finish.
71 * 4) Write the code
72 * 5) clear the flag.
73 * 6) Wait for any running NMIs to finish.
75 * If an NMI is executed, the first thing it does is to call
76 * "ftrace_nmi_enter". This will check if the flag is set to write
77 * and if it is, it will write what is in the IP and "code" buffers.
79 * The trick is, it does not matter if everyone is writing the same
80 * content to the code location. Also, if a CPU is executing code
81 * it is OK to write to that code location if the contents being written
82 * are the same as what exists.
85 static atomic_t in_nmi = ATOMIC_INIT(0);
86 static int mod_code_status; /* holds return value of text write */
87 static int mod_code_write; /* set when NMI should do the write */
88 static void *mod_code_ip; /* holds the IP to write to */
89 static void *mod_code_newcode; /* holds the text to write to the IP */
91 static unsigned nmi_wait_count;
92 static atomic_t nmi_update_count = ATOMIC_INIT(0);
94 int ftrace_arch_read_dyn_info(char *buf, int size)
96 int r;
98 r = snprintf(buf, size, "%u %u",
99 nmi_wait_count,
100 atomic_read(&nmi_update_count));
101 return r;
104 static void ftrace_mod_code(void)
107 * Yes, more than one CPU process can be writing to mod_code_status.
108 * (and the code itself)
109 * But if one were to fail, then they all should, and if one were
110 * to succeed, then they all should.
112 mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
113 MCOUNT_INSN_SIZE);
117 void ftrace_nmi_enter(void)
119 atomic_inc(&in_nmi);
120 /* Must have in_nmi seen before reading write flag */
121 smp_mb();
122 if (mod_code_write) {
123 ftrace_mod_code();
124 atomic_inc(&nmi_update_count);
128 void ftrace_nmi_exit(void)
130 /* Finish all executions before clearing in_nmi */
131 smp_wmb();
132 atomic_dec(&in_nmi);
135 static void wait_for_nmi(void)
137 int waited = 0;
139 while (atomic_read(&in_nmi)) {
140 waited = 1;
141 cpu_relax();
144 if (waited)
145 nmi_wait_count++;
148 static int
149 do_ftrace_mod_code(unsigned long ip, void *new_code)
151 mod_code_ip = (void *)ip;
152 mod_code_newcode = new_code;
154 /* The buffers need to be visible before we let NMIs write them */
155 smp_wmb();
157 mod_code_write = 1;
159 /* Make sure write bit is visible before we wait on NMIs */
160 smp_mb();
162 wait_for_nmi();
164 /* Make sure all running NMIs have finished before we write the code */
165 smp_mb();
167 ftrace_mod_code();
169 /* Make sure the write happens before clearing the bit */
170 smp_wmb();
172 mod_code_write = 0;
174 /* make sure NMIs see the cleared bit */
175 smp_mb();
177 wait_for_nmi();
179 return mod_code_status;
185 static unsigned char ftrace_nop[MCOUNT_INSN_SIZE];
187 static unsigned char *ftrace_nop_replace(void)
189 return ftrace_nop;
192 static int
193 ftrace_modify_code(unsigned long ip, unsigned char *old_code,
194 unsigned char *new_code)
196 unsigned char replaced[MCOUNT_INSN_SIZE];
199 * Note: Due to modules and __init, code can
200 * disappear and change, we need to protect against faulting
201 * as well as code changing. We do this by using the
202 * probe_kernel_* functions.
204 * No real locking needed, this code is run through
205 * kstop_machine, or before SMP starts.
208 /* read the text we want to modify */
209 if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
210 return -EFAULT;
212 /* Make sure it is what we expect it to be */
213 if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
214 return -EINVAL;
216 /* replace the text with the new text */
217 if (do_ftrace_mod_code(ip, new_code))
218 return -EPERM;
220 sync_core();
222 return 0;
225 int ftrace_make_nop(struct module *mod,
226 struct dyn_ftrace *rec, unsigned long addr)
228 unsigned char *new, *old;
229 unsigned long ip = rec->ip;
231 old = ftrace_call_replace(ip, addr);
232 new = ftrace_nop_replace();
234 return ftrace_modify_code(rec->ip, old, new);
237 int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
239 unsigned char *new, *old;
240 unsigned long ip = rec->ip;
242 old = ftrace_nop_replace();
243 new = ftrace_call_replace(ip, addr);
245 return ftrace_modify_code(rec->ip, old, new);
248 int ftrace_update_ftrace_func(ftrace_func_t func)
250 unsigned long ip = (unsigned long)(&ftrace_call);
251 unsigned char old[MCOUNT_INSN_SIZE], *new;
252 int ret;
254 memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE);
255 new = ftrace_call_replace(ip, (unsigned long)func);
256 ret = ftrace_modify_code(ip, old, new);
258 return ret;
261 int __init ftrace_dyn_arch_init(void *data)
263 extern const unsigned char ftrace_test_p6nop[];
264 extern const unsigned char ftrace_test_nop5[];
265 extern const unsigned char ftrace_test_jmp[];
266 int faulted = 0;
269 * There is no good nop for all x86 archs.
270 * We will default to using the P6_NOP5, but first we
271 * will test to make sure that the nop will actually
272 * work on this CPU. If it faults, we will then
273 * go to a lesser efficient 5 byte nop. If that fails
274 * we then just use a jmp as our nop. This isn't the most
275 * efficient nop, but we can not use a multi part nop
276 * since we would then risk being preempted in the middle
277 * of that nop, and if we enabled tracing then, it might
278 * cause a system crash.
280 * TODO: check the cpuid to determine the best nop.
282 asm volatile (
283 "ftrace_test_jmp:"
284 "jmp ftrace_test_p6nop\n"
285 "nop\n"
286 "nop\n"
287 "nop\n" /* 2 byte jmp + 3 bytes */
288 "ftrace_test_p6nop:"
289 P6_NOP5
290 "jmp 1f\n"
291 "ftrace_test_nop5:"
292 ".byte 0x66,0x66,0x66,0x66,0x90\n"
293 "1:"
294 ".section .fixup, \"ax\"\n"
295 "2: movl $1, %0\n"
296 " jmp ftrace_test_nop5\n"
297 "3: movl $2, %0\n"
298 " jmp 1b\n"
299 ".previous\n"
300 _ASM_EXTABLE(ftrace_test_p6nop, 2b)
301 _ASM_EXTABLE(ftrace_test_nop5, 3b)
302 : "=r"(faulted) : "0" (faulted));
304 switch (faulted) {
305 case 0:
306 pr_info("ftrace: converting mcount calls to 0f 1f 44 00 00\n");
307 memcpy(ftrace_nop, ftrace_test_p6nop, MCOUNT_INSN_SIZE);
308 break;
309 case 1:
310 pr_info("ftrace: converting mcount calls to 66 66 66 66 90\n");
311 memcpy(ftrace_nop, ftrace_test_nop5, MCOUNT_INSN_SIZE);
312 break;
313 case 2:
314 pr_info("ftrace: converting mcount calls to jmp . + 5\n");
315 memcpy(ftrace_nop, ftrace_test_jmp, MCOUNT_INSN_SIZE);
316 break;
319 /* The return code is retured via data */
320 *(unsigned long *)data = 0;
322 return 0;
324 #endif
326 #ifdef CONFIG_FUNCTION_RET_TRACER
328 #ifndef CONFIG_DYNAMIC_FTRACE
331 * These functions are picked from those used on
332 * this page for dynamic ftrace. They have been
333 * simplified to ignore all traces in NMI context.
335 static atomic_t in_nmi;
337 void ftrace_nmi_enter(void)
339 atomic_inc(&in_nmi);
342 void ftrace_nmi_exit(void)
344 atomic_dec(&in_nmi);
346 #endif /* !CONFIG_DYNAMIC_FTRACE */
348 /* Add a function return address to the trace stack on thread info.*/
349 static int push_return_trace(unsigned long ret, unsigned long long time,
350 unsigned long func)
352 int index;
354 if (!current->ret_stack)
355 return -EBUSY;
357 /* The return trace stack is full */
358 if (current->curr_ret_stack == FTRACE_RETFUNC_DEPTH - 1) {
359 atomic_inc(&current->trace_overrun);
360 return -EBUSY;
363 index = ++current->curr_ret_stack;
364 barrier();
365 current->ret_stack[index].ret = ret;
366 current->ret_stack[index].func = func;
367 current->ret_stack[index].calltime = time;
369 return 0;
372 /* Retrieve a function return address to the trace stack on thread info.*/
373 static void pop_return_trace(unsigned long *ret, unsigned long long *time,
374 unsigned long *func, unsigned long *overrun)
376 int index;
378 index = current->curr_ret_stack;
379 *ret = current->ret_stack[index].ret;
380 *func = current->ret_stack[index].func;
381 *time = current->ret_stack[index].calltime;
382 *overrun = atomic_read(&current->trace_overrun);
383 current->curr_ret_stack--;
387 * Send the trace to the ring-buffer.
388 * @return the original return address.
390 unsigned long ftrace_return_to_handler(void)
392 struct ftrace_retfunc trace;
393 pop_return_trace(&trace.ret, &trace.calltime, &trace.func,
394 &trace.overrun);
395 trace.rettime = cpu_clock(raw_smp_processor_id());
396 ftrace_function_return(&trace);
398 return trace.ret;
402 * Hook the return address and push it in the stack of return addrs
403 * in current thread info.
405 void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr)
407 unsigned long old;
408 unsigned long long calltime;
409 int faulted;
410 unsigned long return_hooker = (unsigned long)
411 &return_to_handler;
413 /* Nmi's are currently unsupported */
414 if (atomic_read(&in_nmi))
415 return;
418 * Protect against fault, even if it shouldn't
419 * happen. This tool is too much intrusive to
420 * ignore such a protection.
422 asm volatile(
423 "1: movl (%[parent_old]), %[old]\n"
424 "2: movl %[return_hooker], (%[parent_replaced])\n"
425 " movl $0, %[faulted]\n"
427 ".section .fixup, \"ax\"\n"
428 "3: movl $1, %[faulted]\n"
429 ".previous\n"
431 ".section __ex_table, \"a\"\n"
432 " .long 1b, 3b\n"
433 " .long 2b, 3b\n"
434 ".previous\n"
436 : [parent_replaced] "=r" (parent), [old] "=r" (old),
437 [faulted] "=r" (faulted)
438 : [parent_old] "0" (parent), [return_hooker] "r" (return_hooker)
439 : "memory"
442 if (WARN_ON(faulted)) {
443 unregister_ftrace_return();
444 return;
447 if (WARN_ON(!__kernel_text_address(old))) {
448 unregister_ftrace_return();
449 *parent = old;
450 return;
453 calltime = cpu_clock(raw_smp_processor_id());
455 if (push_return_trace(old, calltime, self_addr) == -EBUSY)
456 *parent = old;
459 #endif /* CONFIG_FUNCTION_RET_TRACER */