[PATCH] Mark some key VFS functions as __always_inline
[linux-2.6/x86.git] / drivers / md / raid10.c
blob9130d051b474d64c4816644be4bc89d3b397f37a
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
28 * chunk_size
29 * raid_disks
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
33 * The data to be stored is divided into chunks using chunksize.
34 * Each device is divided into far_copies sections.
35 * In each section, chunks are laid out in a style similar to raid0, but
36 * near_copies copies of each chunk is stored (each on a different drive).
37 * The starting device for each section is offset near_copies from the starting
38 * device of the previous section.
39 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
40 * drive.
41 * near_copies and far_copies must be at least one, and their product is at most
42 * raid_disks.
46 * Number of guaranteed r10bios in case of extreme VM load:
48 #define NR_RAID10_BIOS 256
50 static void unplug_slaves(mddev_t *mddev);
52 static void allow_barrier(conf_t *conf);
53 static void lower_barrier(conf_t *conf);
55 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
57 conf_t *conf = data;
58 r10bio_t *r10_bio;
59 int size = offsetof(struct r10bio_s, devs[conf->copies]);
61 /* allocate a r10bio with room for raid_disks entries in the bios array */
62 r10_bio = kzalloc(size, gfp_flags);
63 if (!r10_bio)
64 unplug_slaves(conf->mddev);
66 return r10_bio;
69 static void r10bio_pool_free(void *r10_bio, void *data)
71 kfree(r10_bio);
74 #define RESYNC_BLOCK_SIZE (64*1024)
75 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
76 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
77 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
78 #define RESYNC_WINDOW (2048*1024)
81 * When performing a resync, we need to read and compare, so
82 * we need as many pages are there are copies.
83 * When performing a recovery, we need 2 bios, one for read,
84 * one for write (we recover only one drive per r10buf)
87 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
89 conf_t *conf = data;
90 struct page *page;
91 r10bio_t *r10_bio;
92 struct bio *bio;
93 int i, j;
94 int nalloc;
96 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
97 if (!r10_bio) {
98 unplug_slaves(conf->mddev);
99 return NULL;
102 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
103 nalloc = conf->copies; /* resync */
104 else
105 nalloc = 2; /* recovery */
108 * Allocate bios.
110 for (j = nalloc ; j-- ; ) {
111 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
112 if (!bio)
113 goto out_free_bio;
114 r10_bio->devs[j].bio = bio;
117 * Allocate RESYNC_PAGES data pages and attach them
118 * where needed.
120 for (j = 0 ; j < nalloc; j++) {
121 bio = r10_bio->devs[j].bio;
122 for (i = 0; i < RESYNC_PAGES; i++) {
123 page = alloc_page(gfp_flags);
124 if (unlikely(!page))
125 goto out_free_pages;
127 bio->bi_io_vec[i].bv_page = page;
131 return r10_bio;
133 out_free_pages:
134 for ( ; i > 0 ; i--)
135 safe_put_page(bio->bi_io_vec[i-1].bv_page);
136 while (j--)
137 for (i = 0; i < RESYNC_PAGES ; i++)
138 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
139 j = -1;
140 out_free_bio:
141 while ( ++j < nalloc )
142 bio_put(r10_bio->devs[j].bio);
143 r10bio_pool_free(r10_bio, conf);
144 return NULL;
147 static void r10buf_pool_free(void *__r10_bio, void *data)
149 int i;
150 conf_t *conf = data;
151 r10bio_t *r10bio = __r10_bio;
152 int j;
154 for (j=0; j < conf->copies; j++) {
155 struct bio *bio = r10bio->devs[j].bio;
156 if (bio) {
157 for (i = 0; i < RESYNC_PAGES; i++) {
158 safe_put_page(bio->bi_io_vec[i].bv_page);
159 bio->bi_io_vec[i].bv_page = NULL;
161 bio_put(bio);
164 r10bio_pool_free(r10bio, conf);
167 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
169 int i;
171 for (i = 0; i < conf->copies; i++) {
172 struct bio **bio = & r10_bio->devs[i].bio;
173 if (*bio && *bio != IO_BLOCKED)
174 bio_put(*bio);
175 *bio = NULL;
179 static void free_r10bio(r10bio_t *r10_bio)
181 conf_t *conf = mddev_to_conf(r10_bio->mddev);
184 * Wake up any possible resync thread that waits for the device
185 * to go idle.
187 allow_barrier(conf);
189 put_all_bios(conf, r10_bio);
190 mempool_free(r10_bio, conf->r10bio_pool);
193 static void put_buf(r10bio_t *r10_bio)
195 conf_t *conf = mddev_to_conf(r10_bio->mddev);
197 mempool_free(r10_bio, conf->r10buf_pool);
199 lower_barrier(conf);
202 static void reschedule_retry(r10bio_t *r10_bio)
204 unsigned long flags;
205 mddev_t *mddev = r10_bio->mddev;
206 conf_t *conf = mddev_to_conf(mddev);
208 spin_lock_irqsave(&conf->device_lock, flags);
209 list_add(&r10_bio->retry_list, &conf->retry_list);
210 conf->nr_queued ++;
211 spin_unlock_irqrestore(&conf->device_lock, flags);
213 md_wakeup_thread(mddev->thread);
217 * raid_end_bio_io() is called when we have finished servicing a mirrored
218 * operation and are ready to return a success/failure code to the buffer
219 * cache layer.
221 static void raid_end_bio_io(r10bio_t *r10_bio)
223 struct bio *bio = r10_bio->master_bio;
225 bio_endio(bio, bio->bi_size,
226 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
227 free_r10bio(r10_bio);
231 * Update disk head position estimator based on IRQ completion info.
233 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
235 conf_t *conf = mddev_to_conf(r10_bio->mddev);
237 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
238 r10_bio->devs[slot].addr + (r10_bio->sectors);
241 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
243 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
244 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
245 int slot, dev;
246 conf_t *conf = mddev_to_conf(r10_bio->mddev);
248 if (bio->bi_size)
249 return 1;
251 slot = r10_bio->read_slot;
252 dev = r10_bio->devs[slot].devnum;
254 * this branch is our 'one mirror IO has finished' event handler:
256 update_head_pos(slot, r10_bio);
258 if (uptodate) {
260 * Set R10BIO_Uptodate in our master bio, so that
261 * we will return a good error code to the higher
262 * levels even if IO on some other mirrored buffer fails.
264 * The 'master' represents the composite IO operation to
265 * user-side. So if something waits for IO, then it will
266 * wait for the 'master' bio.
268 set_bit(R10BIO_Uptodate, &r10_bio->state);
269 raid_end_bio_io(r10_bio);
270 } else {
272 * oops, read error:
274 char b[BDEVNAME_SIZE];
275 if (printk_ratelimit())
276 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
277 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
278 reschedule_retry(r10_bio);
281 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
282 return 0;
285 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
287 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
288 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
289 int slot, dev;
290 conf_t *conf = mddev_to_conf(r10_bio->mddev);
292 if (bio->bi_size)
293 return 1;
295 for (slot = 0; slot < conf->copies; slot++)
296 if (r10_bio->devs[slot].bio == bio)
297 break;
298 dev = r10_bio->devs[slot].devnum;
301 * this branch is our 'one mirror IO has finished' event handler:
303 if (!uptodate) {
304 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
305 /* an I/O failed, we can't clear the bitmap */
306 set_bit(R10BIO_Degraded, &r10_bio->state);
307 } else
309 * Set R10BIO_Uptodate in our master bio, so that
310 * we will return a good error code for to the higher
311 * levels even if IO on some other mirrored buffer fails.
313 * The 'master' represents the composite IO operation to
314 * user-side. So if something waits for IO, then it will
315 * wait for the 'master' bio.
317 set_bit(R10BIO_Uptodate, &r10_bio->state);
319 update_head_pos(slot, r10_bio);
323 * Let's see if all mirrored write operations have finished
324 * already.
326 if (atomic_dec_and_test(&r10_bio->remaining)) {
327 /* clear the bitmap if all writes complete successfully */
328 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
329 r10_bio->sectors,
330 !test_bit(R10BIO_Degraded, &r10_bio->state),
332 md_write_end(r10_bio->mddev);
333 raid_end_bio_io(r10_bio);
336 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
337 return 0;
342 * RAID10 layout manager
343 * Aswell as the chunksize and raid_disks count, there are two
344 * parameters: near_copies and far_copies.
345 * near_copies * far_copies must be <= raid_disks.
346 * Normally one of these will be 1.
347 * If both are 1, we get raid0.
348 * If near_copies == raid_disks, we get raid1.
350 * Chunks are layed out in raid0 style with near_copies copies of the
351 * first chunk, followed by near_copies copies of the next chunk and
352 * so on.
353 * If far_copies > 1, then after 1/far_copies of the array has been assigned
354 * as described above, we start again with a device offset of near_copies.
355 * So we effectively have another copy of the whole array further down all
356 * the drives, but with blocks on different drives.
357 * With this layout, and block is never stored twice on the one device.
359 * raid10_find_phys finds the sector offset of a given virtual sector
360 * on each device that it is on. If a block isn't on a device,
361 * that entry in the array is set to MaxSector.
363 * raid10_find_virt does the reverse mapping, from a device and a
364 * sector offset to a virtual address
367 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
369 int n,f;
370 sector_t sector;
371 sector_t chunk;
372 sector_t stripe;
373 int dev;
375 int slot = 0;
377 /* now calculate first sector/dev */
378 chunk = r10bio->sector >> conf->chunk_shift;
379 sector = r10bio->sector & conf->chunk_mask;
381 chunk *= conf->near_copies;
382 stripe = chunk;
383 dev = sector_div(stripe, conf->raid_disks);
385 sector += stripe << conf->chunk_shift;
387 /* and calculate all the others */
388 for (n=0; n < conf->near_copies; n++) {
389 int d = dev;
390 sector_t s = sector;
391 r10bio->devs[slot].addr = sector;
392 r10bio->devs[slot].devnum = d;
393 slot++;
395 for (f = 1; f < conf->far_copies; f++) {
396 d += conf->near_copies;
397 if (d >= conf->raid_disks)
398 d -= conf->raid_disks;
399 s += conf->stride;
400 r10bio->devs[slot].devnum = d;
401 r10bio->devs[slot].addr = s;
402 slot++;
404 dev++;
405 if (dev >= conf->raid_disks) {
406 dev = 0;
407 sector += (conf->chunk_mask + 1);
410 BUG_ON(slot != conf->copies);
413 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
415 sector_t offset, chunk, vchunk;
417 while (sector > conf->stride) {
418 sector -= conf->stride;
419 if (dev < conf->near_copies)
420 dev += conf->raid_disks - conf->near_copies;
421 else
422 dev -= conf->near_copies;
425 offset = sector & conf->chunk_mask;
426 chunk = sector >> conf->chunk_shift;
427 vchunk = chunk * conf->raid_disks + dev;
428 sector_div(vchunk, conf->near_copies);
429 return (vchunk << conf->chunk_shift) + offset;
433 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
434 * @q: request queue
435 * @bio: the buffer head that's been built up so far
436 * @biovec: the request that could be merged to it.
438 * Return amount of bytes we can accept at this offset
439 * If near_copies == raid_disk, there are no striping issues,
440 * but in that case, the function isn't called at all.
442 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
443 struct bio_vec *bio_vec)
445 mddev_t *mddev = q->queuedata;
446 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
447 int max;
448 unsigned int chunk_sectors = mddev->chunk_size >> 9;
449 unsigned int bio_sectors = bio->bi_size >> 9;
451 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
452 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
453 if (max <= bio_vec->bv_len && bio_sectors == 0)
454 return bio_vec->bv_len;
455 else
456 return max;
460 * This routine returns the disk from which the requested read should
461 * be done. There is a per-array 'next expected sequential IO' sector
462 * number - if this matches on the next IO then we use the last disk.
463 * There is also a per-disk 'last know head position' sector that is
464 * maintained from IRQ contexts, both the normal and the resync IO
465 * completion handlers update this position correctly. If there is no
466 * perfect sequential match then we pick the disk whose head is closest.
468 * If there are 2 mirrors in the same 2 devices, performance degrades
469 * because position is mirror, not device based.
471 * The rdev for the device selected will have nr_pending incremented.
475 * FIXME: possibly should rethink readbalancing and do it differently
476 * depending on near_copies / far_copies geometry.
478 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
480 const unsigned long this_sector = r10_bio->sector;
481 int disk, slot, nslot;
482 const int sectors = r10_bio->sectors;
483 sector_t new_distance, current_distance;
484 mdk_rdev_t *rdev;
486 raid10_find_phys(conf, r10_bio);
487 rcu_read_lock();
489 * Check if we can balance. We can balance on the whole
490 * device if no resync is going on (recovery is ok), or below
491 * the resync window. We take the first readable disk when
492 * above the resync window.
494 if (conf->mddev->recovery_cp < MaxSector
495 && (this_sector + sectors >= conf->next_resync)) {
496 /* make sure that disk is operational */
497 slot = 0;
498 disk = r10_bio->devs[slot].devnum;
500 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
501 r10_bio->devs[slot].bio == IO_BLOCKED ||
502 !test_bit(In_sync, &rdev->flags)) {
503 slot++;
504 if (slot == conf->copies) {
505 slot = 0;
506 disk = -1;
507 break;
509 disk = r10_bio->devs[slot].devnum;
511 goto rb_out;
515 /* make sure the disk is operational */
516 slot = 0;
517 disk = r10_bio->devs[slot].devnum;
518 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
519 r10_bio->devs[slot].bio == IO_BLOCKED ||
520 !test_bit(In_sync, &rdev->flags)) {
521 slot ++;
522 if (slot == conf->copies) {
523 disk = -1;
524 goto rb_out;
526 disk = r10_bio->devs[slot].devnum;
530 current_distance = abs(r10_bio->devs[slot].addr -
531 conf->mirrors[disk].head_position);
533 /* Find the disk whose head is closest */
535 for (nslot = slot; nslot < conf->copies; nslot++) {
536 int ndisk = r10_bio->devs[nslot].devnum;
539 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
540 r10_bio->devs[nslot].bio == IO_BLOCKED ||
541 !test_bit(In_sync, &rdev->flags))
542 continue;
544 /* This optimisation is debatable, and completely destroys
545 * sequential read speed for 'far copies' arrays. So only
546 * keep it for 'near' arrays, and review those later.
548 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
549 disk = ndisk;
550 slot = nslot;
551 break;
553 new_distance = abs(r10_bio->devs[nslot].addr -
554 conf->mirrors[ndisk].head_position);
555 if (new_distance < current_distance) {
556 current_distance = new_distance;
557 disk = ndisk;
558 slot = nslot;
562 rb_out:
563 r10_bio->read_slot = slot;
564 /* conf->next_seq_sect = this_sector + sectors;*/
566 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
567 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
568 rcu_read_unlock();
570 return disk;
573 static void unplug_slaves(mddev_t *mddev)
575 conf_t *conf = mddev_to_conf(mddev);
576 int i;
578 rcu_read_lock();
579 for (i=0; i<mddev->raid_disks; i++) {
580 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
581 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
582 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
584 atomic_inc(&rdev->nr_pending);
585 rcu_read_unlock();
587 if (r_queue->unplug_fn)
588 r_queue->unplug_fn(r_queue);
590 rdev_dec_pending(rdev, mddev);
591 rcu_read_lock();
594 rcu_read_unlock();
597 static void raid10_unplug(request_queue_t *q)
599 mddev_t *mddev = q->queuedata;
601 unplug_slaves(q->queuedata);
602 md_wakeup_thread(mddev->thread);
605 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
606 sector_t *error_sector)
608 mddev_t *mddev = q->queuedata;
609 conf_t *conf = mddev_to_conf(mddev);
610 int i, ret = 0;
612 rcu_read_lock();
613 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
614 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
615 if (rdev && !test_bit(Faulty, &rdev->flags)) {
616 struct block_device *bdev = rdev->bdev;
617 request_queue_t *r_queue = bdev_get_queue(bdev);
619 if (!r_queue->issue_flush_fn)
620 ret = -EOPNOTSUPP;
621 else {
622 atomic_inc(&rdev->nr_pending);
623 rcu_read_unlock();
624 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
625 error_sector);
626 rdev_dec_pending(rdev, mddev);
627 rcu_read_lock();
631 rcu_read_unlock();
632 return ret;
635 /* Barriers....
636 * Sometimes we need to suspend IO while we do something else,
637 * either some resync/recovery, or reconfigure the array.
638 * To do this we raise a 'barrier'.
639 * The 'barrier' is a counter that can be raised multiple times
640 * to count how many activities are happening which preclude
641 * normal IO.
642 * We can only raise the barrier if there is no pending IO.
643 * i.e. if nr_pending == 0.
644 * We choose only to raise the barrier if no-one is waiting for the
645 * barrier to go down. This means that as soon as an IO request
646 * is ready, no other operations which require a barrier will start
647 * until the IO request has had a chance.
649 * So: regular IO calls 'wait_barrier'. When that returns there
650 * is no backgroup IO happening, It must arrange to call
651 * allow_barrier when it has finished its IO.
652 * backgroup IO calls must call raise_barrier. Once that returns
653 * there is no normal IO happeing. It must arrange to call
654 * lower_barrier when the particular background IO completes.
656 #define RESYNC_DEPTH 32
658 static void raise_barrier(conf_t *conf, int force)
660 BUG_ON(force && !conf->barrier);
661 spin_lock_irq(&conf->resync_lock);
663 /* Wait until no block IO is waiting (unless 'force') */
664 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
665 conf->resync_lock,
666 raid10_unplug(conf->mddev->queue));
668 /* block any new IO from starting */
669 conf->barrier++;
671 /* No wait for all pending IO to complete */
672 wait_event_lock_irq(conf->wait_barrier,
673 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
674 conf->resync_lock,
675 raid10_unplug(conf->mddev->queue));
677 spin_unlock_irq(&conf->resync_lock);
680 static void lower_barrier(conf_t *conf)
682 unsigned long flags;
683 spin_lock_irqsave(&conf->resync_lock, flags);
684 conf->barrier--;
685 spin_unlock_irqrestore(&conf->resync_lock, flags);
686 wake_up(&conf->wait_barrier);
689 static void wait_barrier(conf_t *conf)
691 spin_lock_irq(&conf->resync_lock);
692 if (conf->barrier) {
693 conf->nr_waiting++;
694 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
695 conf->resync_lock,
696 raid10_unplug(conf->mddev->queue));
697 conf->nr_waiting--;
699 conf->nr_pending++;
700 spin_unlock_irq(&conf->resync_lock);
703 static void allow_barrier(conf_t *conf)
705 unsigned long flags;
706 spin_lock_irqsave(&conf->resync_lock, flags);
707 conf->nr_pending--;
708 spin_unlock_irqrestore(&conf->resync_lock, flags);
709 wake_up(&conf->wait_barrier);
712 static void freeze_array(conf_t *conf)
714 /* stop syncio and normal IO and wait for everything to
715 * go quiet.
716 * We increment barrier and nr_waiting, and then
717 * wait until barrier+nr_pending match nr_queued+2
719 spin_lock_irq(&conf->resync_lock);
720 conf->barrier++;
721 conf->nr_waiting++;
722 wait_event_lock_irq(conf->wait_barrier,
723 conf->barrier+conf->nr_pending == conf->nr_queued+2,
724 conf->resync_lock,
725 raid10_unplug(conf->mddev->queue));
726 spin_unlock_irq(&conf->resync_lock);
729 static void unfreeze_array(conf_t *conf)
731 /* reverse the effect of the freeze */
732 spin_lock_irq(&conf->resync_lock);
733 conf->barrier--;
734 conf->nr_waiting--;
735 wake_up(&conf->wait_barrier);
736 spin_unlock_irq(&conf->resync_lock);
739 static int make_request(request_queue_t *q, struct bio * bio)
741 mddev_t *mddev = q->queuedata;
742 conf_t *conf = mddev_to_conf(mddev);
743 mirror_info_t *mirror;
744 r10bio_t *r10_bio;
745 struct bio *read_bio;
746 int i;
747 int chunk_sects = conf->chunk_mask + 1;
748 const int rw = bio_data_dir(bio);
749 struct bio_list bl;
750 unsigned long flags;
752 if (unlikely(bio_barrier(bio))) {
753 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
754 return 0;
757 /* If this request crosses a chunk boundary, we need to
758 * split it. This will only happen for 1 PAGE (or less) requests.
760 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
761 > chunk_sects &&
762 conf->near_copies < conf->raid_disks)) {
763 struct bio_pair *bp;
764 /* Sanity check -- queue functions should prevent this happening */
765 if (bio->bi_vcnt != 1 ||
766 bio->bi_idx != 0)
767 goto bad_map;
768 /* This is a one page bio that upper layers
769 * refuse to split for us, so we need to split it.
771 bp = bio_split(bio, bio_split_pool,
772 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
773 if (make_request(q, &bp->bio1))
774 generic_make_request(&bp->bio1);
775 if (make_request(q, &bp->bio2))
776 generic_make_request(&bp->bio2);
778 bio_pair_release(bp);
779 return 0;
780 bad_map:
781 printk("raid10_make_request bug: can't convert block across chunks"
782 " or bigger than %dk %llu %d\n", chunk_sects/2,
783 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
785 bio_io_error(bio, bio->bi_size);
786 return 0;
789 md_write_start(mddev, bio);
792 * Register the new request and wait if the reconstruction
793 * thread has put up a bar for new requests.
794 * Continue immediately if no resync is active currently.
796 wait_barrier(conf);
798 disk_stat_inc(mddev->gendisk, ios[rw]);
799 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
801 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
803 r10_bio->master_bio = bio;
804 r10_bio->sectors = bio->bi_size >> 9;
806 r10_bio->mddev = mddev;
807 r10_bio->sector = bio->bi_sector;
808 r10_bio->state = 0;
810 if (rw == READ) {
812 * read balancing logic:
814 int disk = read_balance(conf, r10_bio);
815 int slot = r10_bio->read_slot;
816 if (disk < 0) {
817 raid_end_bio_io(r10_bio);
818 return 0;
820 mirror = conf->mirrors + disk;
822 read_bio = bio_clone(bio, GFP_NOIO);
824 r10_bio->devs[slot].bio = read_bio;
826 read_bio->bi_sector = r10_bio->devs[slot].addr +
827 mirror->rdev->data_offset;
828 read_bio->bi_bdev = mirror->rdev->bdev;
829 read_bio->bi_end_io = raid10_end_read_request;
830 read_bio->bi_rw = READ;
831 read_bio->bi_private = r10_bio;
833 generic_make_request(read_bio);
834 return 0;
838 * WRITE:
840 /* first select target devices under spinlock and
841 * inc refcount on their rdev. Record them by setting
842 * bios[x] to bio
844 raid10_find_phys(conf, r10_bio);
845 rcu_read_lock();
846 for (i = 0; i < conf->copies; i++) {
847 int d = r10_bio->devs[i].devnum;
848 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
849 if (rdev &&
850 !test_bit(Faulty, &rdev->flags)) {
851 atomic_inc(&rdev->nr_pending);
852 r10_bio->devs[i].bio = bio;
853 } else {
854 r10_bio->devs[i].bio = NULL;
855 set_bit(R10BIO_Degraded, &r10_bio->state);
858 rcu_read_unlock();
860 atomic_set(&r10_bio->remaining, 0);
862 bio_list_init(&bl);
863 for (i = 0; i < conf->copies; i++) {
864 struct bio *mbio;
865 int d = r10_bio->devs[i].devnum;
866 if (!r10_bio->devs[i].bio)
867 continue;
869 mbio = bio_clone(bio, GFP_NOIO);
870 r10_bio->devs[i].bio = mbio;
872 mbio->bi_sector = r10_bio->devs[i].addr+
873 conf->mirrors[d].rdev->data_offset;
874 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
875 mbio->bi_end_io = raid10_end_write_request;
876 mbio->bi_rw = WRITE;
877 mbio->bi_private = r10_bio;
879 atomic_inc(&r10_bio->remaining);
880 bio_list_add(&bl, mbio);
883 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
884 spin_lock_irqsave(&conf->device_lock, flags);
885 bio_list_merge(&conf->pending_bio_list, &bl);
886 blk_plug_device(mddev->queue);
887 spin_unlock_irqrestore(&conf->device_lock, flags);
889 return 0;
892 static void status(struct seq_file *seq, mddev_t *mddev)
894 conf_t *conf = mddev_to_conf(mddev);
895 int i;
897 if (conf->near_copies < conf->raid_disks)
898 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
899 if (conf->near_copies > 1)
900 seq_printf(seq, " %d near-copies", conf->near_copies);
901 if (conf->far_copies > 1)
902 seq_printf(seq, " %d far-copies", conf->far_copies);
904 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
905 conf->working_disks);
906 for (i = 0; i < conf->raid_disks; i++)
907 seq_printf(seq, "%s",
908 conf->mirrors[i].rdev &&
909 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
910 seq_printf(seq, "]");
913 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
915 char b[BDEVNAME_SIZE];
916 conf_t *conf = mddev_to_conf(mddev);
919 * If it is not operational, then we have already marked it as dead
920 * else if it is the last working disks, ignore the error, let the
921 * next level up know.
922 * else mark the drive as failed
924 if (test_bit(In_sync, &rdev->flags)
925 && conf->working_disks == 1)
927 * Don't fail the drive, just return an IO error.
928 * The test should really be more sophisticated than
929 * "working_disks == 1", but it isn't critical, and
930 * can wait until we do more sophisticated "is the drive
931 * really dead" tests...
933 return;
934 if (test_bit(In_sync, &rdev->flags)) {
935 mddev->degraded++;
936 conf->working_disks--;
938 * if recovery is running, make sure it aborts.
940 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
942 clear_bit(In_sync, &rdev->flags);
943 set_bit(Faulty, &rdev->flags);
944 mddev->sb_dirty = 1;
945 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
946 " Operation continuing on %d devices\n",
947 bdevname(rdev->bdev,b), conf->working_disks);
950 static void print_conf(conf_t *conf)
952 int i;
953 mirror_info_t *tmp;
955 printk("RAID10 conf printout:\n");
956 if (!conf) {
957 printk("(!conf)\n");
958 return;
960 printk(" --- wd:%d rd:%d\n", conf->working_disks,
961 conf->raid_disks);
963 for (i = 0; i < conf->raid_disks; i++) {
964 char b[BDEVNAME_SIZE];
965 tmp = conf->mirrors + i;
966 if (tmp->rdev)
967 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
968 i, !test_bit(In_sync, &tmp->rdev->flags),
969 !test_bit(Faulty, &tmp->rdev->flags),
970 bdevname(tmp->rdev->bdev,b));
974 static void close_sync(conf_t *conf)
976 wait_barrier(conf);
977 allow_barrier(conf);
979 mempool_destroy(conf->r10buf_pool);
980 conf->r10buf_pool = NULL;
983 /* check if there are enough drives for
984 * every block to appear on atleast one
986 static int enough(conf_t *conf)
988 int first = 0;
990 do {
991 int n = conf->copies;
992 int cnt = 0;
993 while (n--) {
994 if (conf->mirrors[first].rdev)
995 cnt++;
996 first = (first+1) % conf->raid_disks;
998 if (cnt == 0)
999 return 0;
1000 } while (first != 0);
1001 return 1;
1004 static int raid10_spare_active(mddev_t *mddev)
1006 int i;
1007 conf_t *conf = mddev->private;
1008 mirror_info_t *tmp;
1011 * Find all non-in_sync disks within the RAID10 configuration
1012 * and mark them in_sync
1014 for (i = 0; i < conf->raid_disks; i++) {
1015 tmp = conf->mirrors + i;
1016 if (tmp->rdev
1017 && !test_bit(Faulty, &tmp->rdev->flags)
1018 && !test_bit(In_sync, &tmp->rdev->flags)) {
1019 conf->working_disks++;
1020 mddev->degraded--;
1021 set_bit(In_sync, &tmp->rdev->flags);
1025 print_conf(conf);
1026 return 0;
1030 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1032 conf_t *conf = mddev->private;
1033 int found = 0;
1034 int mirror;
1035 mirror_info_t *p;
1037 if (mddev->recovery_cp < MaxSector)
1038 /* only hot-add to in-sync arrays, as recovery is
1039 * very different from resync
1041 return 0;
1042 if (!enough(conf))
1043 return 0;
1045 if (rdev->saved_raid_disk >= 0 &&
1046 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1047 mirror = rdev->saved_raid_disk;
1048 else
1049 mirror = 0;
1050 for ( ; mirror < mddev->raid_disks; mirror++)
1051 if ( !(p=conf->mirrors+mirror)->rdev) {
1053 blk_queue_stack_limits(mddev->queue,
1054 rdev->bdev->bd_disk->queue);
1055 /* as we don't honour merge_bvec_fn, we must never risk
1056 * violating it, so limit ->max_sector to one PAGE, as
1057 * a one page request is never in violation.
1059 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1060 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1061 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1063 p->head_position = 0;
1064 rdev->raid_disk = mirror;
1065 found = 1;
1066 if (rdev->saved_raid_disk != mirror)
1067 conf->fullsync = 1;
1068 rcu_assign_pointer(p->rdev, rdev);
1069 break;
1072 print_conf(conf);
1073 return found;
1076 static int raid10_remove_disk(mddev_t *mddev, int number)
1078 conf_t *conf = mddev->private;
1079 int err = 0;
1080 mdk_rdev_t *rdev;
1081 mirror_info_t *p = conf->mirrors+ number;
1083 print_conf(conf);
1084 rdev = p->rdev;
1085 if (rdev) {
1086 if (test_bit(In_sync, &rdev->flags) ||
1087 atomic_read(&rdev->nr_pending)) {
1088 err = -EBUSY;
1089 goto abort;
1091 p->rdev = NULL;
1092 synchronize_rcu();
1093 if (atomic_read(&rdev->nr_pending)) {
1094 /* lost the race, try later */
1095 err = -EBUSY;
1096 p->rdev = rdev;
1099 abort:
1101 print_conf(conf);
1102 return err;
1106 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1108 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1109 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1110 int i,d;
1112 if (bio->bi_size)
1113 return 1;
1115 for (i=0; i<conf->copies; i++)
1116 if (r10_bio->devs[i].bio == bio)
1117 break;
1118 if (i == conf->copies)
1119 BUG();
1120 update_head_pos(i, r10_bio);
1121 d = r10_bio->devs[i].devnum;
1123 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1124 set_bit(R10BIO_Uptodate, &r10_bio->state);
1125 else {
1126 atomic_add(r10_bio->sectors,
1127 &conf->mirrors[d].rdev->corrected_errors);
1128 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1129 md_error(r10_bio->mddev,
1130 conf->mirrors[d].rdev);
1133 /* for reconstruct, we always reschedule after a read.
1134 * for resync, only after all reads
1136 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1137 atomic_dec_and_test(&r10_bio->remaining)) {
1138 /* we have read all the blocks,
1139 * do the comparison in process context in raid10d
1141 reschedule_retry(r10_bio);
1143 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1144 return 0;
1147 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1149 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1150 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1151 mddev_t *mddev = r10_bio->mddev;
1152 conf_t *conf = mddev_to_conf(mddev);
1153 int i,d;
1155 if (bio->bi_size)
1156 return 1;
1158 for (i = 0; i < conf->copies; i++)
1159 if (r10_bio->devs[i].bio == bio)
1160 break;
1161 d = r10_bio->devs[i].devnum;
1163 if (!uptodate)
1164 md_error(mddev, conf->mirrors[d].rdev);
1165 update_head_pos(i, r10_bio);
1167 while (atomic_dec_and_test(&r10_bio->remaining)) {
1168 if (r10_bio->master_bio == NULL) {
1169 /* the primary of several recovery bios */
1170 md_done_sync(mddev, r10_bio->sectors, 1);
1171 put_buf(r10_bio);
1172 break;
1173 } else {
1174 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1175 put_buf(r10_bio);
1176 r10_bio = r10_bio2;
1179 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1180 return 0;
1184 * Note: sync and recover and handled very differently for raid10
1185 * This code is for resync.
1186 * For resync, we read through virtual addresses and read all blocks.
1187 * If there is any error, we schedule a write. The lowest numbered
1188 * drive is authoritative.
1189 * However requests come for physical address, so we need to map.
1190 * For every physical address there are raid_disks/copies virtual addresses,
1191 * which is always are least one, but is not necessarly an integer.
1192 * This means that a physical address can span multiple chunks, so we may
1193 * have to submit multiple io requests for a single sync request.
1196 * We check if all blocks are in-sync and only write to blocks that
1197 * aren't in sync
1199 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1201 conf_t *conf = mddev_to_conf(mddev);
1202 int i, first;
1203 struct bio *tbio, *fbio;
1205 atomic_set(&r10_bio->remaining, 1);
1207 /* find the first device with a block */
1208 for (i=0; i<conf->copies; i++)
1209 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1210 break;
1212 if (i == conf->copies)
1213 goto done;
1215 first = i;
1216 fbio = r10_bio->devs[i].bio;
1218 /* now find blocks with errors */
1219 for (i=0 ; i < conf->copies ; i++) {
1220 int j, d;
1221 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1223 tbio = r10_bio->devs[i].bio;
1225 if (tbio->bi_end_io != end_sync_read)
1226 continue;
1227 if (i == first)
1228 continue;
1229 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1230 /* We know that the bi_io_vec layout is the same for
1231 * both 'first' and 'i', so we just compare them.
1232 * All vec entries are PAGE_SIZE;
1234 for (j = 0; j < vcnt; j++)
1235 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1236 page_address(tbio->bi_io_vec[j].bv_page),
1237 PAGE_SIZE))
1238 break;
1239 if (j == vcnt)
1240 continue;
1241 mddev->resync_mismatches += r10_bio->sectors;
1243 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1244 /* Don't fix anything. */
1245 continue;
1246 /* Ok, we need to write this bio
1247 * First we need to fixup bv_offset, bv_len and
1248 * bi_vecs, as the read request might have corrupted these
1250 tbio->bi_vcnt = vcnt;
1251 tbio->bi_size = r10_bio->sectors << 9;
1252 tbio->bi_idx = 0;
1253 tbio->bi_phys_segments = 0;
1254 tbio->bi_hw_segments = 0;
1255 tbio->bi_hw_front_size = 0;
1256 tbio->bi_hw_back_size = 0;
1257 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1258 tbio->bi_flags |= 1 << BIO_UPTODATE;
1259 tbio->bi_next = NULL;
1260 tbio->bi_rw = WRITE;
1261 tbio->bi_private = r10_bio;
1262 tbio->bi_sector = r10_bio->devs[i].addr;
1264 for (j=0; j < vcnt ; j++) {
1265 tbio->bi_io_vec[j].bv_offset = 0;
1266 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1268 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1269 page_address(fbio->bi_io_vec[j].bv_page),
1270 PAGE_SIZE);
1272 tbio->bi_end_io = end_sync_write;
1274 d = r10_bio->devs[i].devnum;
1275 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1276 atomic_inc(&r10_bio->remaining);
1277 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1279 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1280 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1281 generic_make_request(tbio);
1284 done:
1285 if (atomic_dec_and_test(&r10_bio->remaining)) {
1286 md_done_sync(mddev, r10_bio->sectors, 1);
1287 put_buf(r10_bio);
1292 * Now for the recovery code.
1293 * Recovery happens across physical sectors.
1294 * We recover all non-is_sync drives by finding the virtual address of
1295 * each, and then choose a working drive that also has that virt address.
1296 * There is a separate r10_bio for each non-in_sync drive.
1297 * Only the first two slots are in use. The first for reading,
1298 * The second for writing.
1302 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1304 conf_t *conf = mddev_to_conf(mddev);
1305 int i, d;
1306 struct bio *bio, *wbio;
1309 /* move the pages across to the second bio
1310 * and submit the write request
1312 bio = r10_bio->devs[0].bio;
1313 wbio = r10_bio->devs[1].bio;
1314 for (i=0; i < wbio->bi_vcnt; i++) {
1315 struct page *p = bio->bi_io_vec[i].bv_page;
1316 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1317 wbio->bi_io_vec[i].bv_page = p;
1319 d = r10_bio->devs[1].devnum;
1321 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1322 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1323 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1324 generic_make_request(wbio);
1325 else
1326 bio_endio(wbio, wbio->bi_size, -EIO);
1331 * This is a kernel thread which:
1333 * 1. Retries failed read operations on working mirrors.
1334 * 2. Updates the raid superblock when problems encounter.
1335 * 3. Performs writes following reads for array syncronising.
1338 static void raid10d(mddev_t *mddev)
1340 r10bio_t *r10_bio;
1341 struct bio *bio;
1342 unsigned long flags;
1343 conf_t *conf = mddev_to_conf(mddev);
1344 struct list_head *head = &conf->retry_list;
1345 int unplug=0;
1346 mdk_rdev_t *rdev;
1348 md_check_recovery(mddev);
1350 for (;;) {
1351 char b[BDEVNAME_SIZE];
1352 spin_lock_irqsave(&conf->device_lock, flags);
1354 if (conf->pending_bio_list.head) {
1355 bio = bio_list_get(&conf->pending_bio_list);
1356 blk_remove_plug(mddev->queue);
1357 spin_unlock_irqrestore(&conf->device_lock, flags);
1358 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1359 if (bitmap_unplug(mddev->bitmap) != 0)
1360 printk("%s: bitmap file write failed!\n", mdname(mddev));
1362 while (bio) { /* submit pending writes */
1363 struct bio *next = bio->bi_next;
1364 bio->bi_next = NULL;
1365 generic_make_request(bio);
1366 bio = next;
1368 unplug = 1;
1370 continue;
1373 if (list_empty(head))
1374 break;
1375 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1376 list_del(head->prev);
1377 conf->nr_queued--;
1378 spin_unlock_irqrestore(&conf->device_lock, flags);
1380 mddev = r10_bio->mddev;
1381 conf = mddev_to_conf(mddev);
1382 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1383 sync_request_write(mddev, r10_bio);
1384 unplug = 1;
1385 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1386 recovery_request_write(mddev, r10_bio);
1387 unplug = 1;
1388 } else {
1389 int mirror;
1390 /* we got a read error. Maybe the drive is bad. Maybe just
1391 * the block and we can fix it.
1392 * We freeze all other IO, and try reading the block from
1393 * other devices. When we find one, we re-write
1394 * and check it that fixes the read error.
1395 * This is all done synchronously while the array is
1396 * frozen.
1398 int sect = 0; /* Offset from r10_bio->sector */
1399 int sectors = r10_bio->sectors;
1400 freeze_array(conf);
1401 if (mddev->ro == 0) while(sectors) {
1402 int s = sectors;
1403 int sl = r10_bio->read_slot;
1404 int success = 0;
1406 if (s > (PAGE_SIZE>>9))
1407 s = PAGE_SIZE >> 9;
1409 do {
1410 int d = r10_bio->devs[sl].devnum;
1411 rdev = conf->mirrors[d].rdev;
1412 if (rdev &&
1413 test_bit(In_sync, &rdev->flags) &&
1414 sync_page_io(rdev->bdev,
1415 r10_bio->devs[sl].addr +
1416 sect + rdev->data_offset,
1417 s<<9,
1418 conf->tmppage, READ))
1419 success = 1;
1420 else {
1421 sl++;
1422 if (sl == conf->copies)
1423 sl = 0;
1425 } while (!success && sl != r10_bio->read_slot);
1427 if (success) {
1428 int start = sl;
1429 /* write it back and re-read */
1430 while (sl != r10_bio->read_slot) {
1431 int d;
1432 if (sl==0)
1433 sl = conf->copies;
1434 sl--;
1435 d = r10_bio->devs[sl].devnum;
1436 rdev = conf->mirrors[d].rdev;
1437 atomic_add(s, &rdev->corrected_errors);
1438 if (rdev &&
1439 test_bit(In_sync, &rdev->flags)) {
1440 if (sync_page_io(rdev->bdev,
1441 r10_bio->devs[sl].addr +
1442 sect + rdev->data_offset,
1443 s<<9, conf->tmppage, WRITE) == 0)
1444 /* Well, this device is dead */
1445 md_error(mddev, rdev);
1448 sl = start;
1449 while (sl != r10_bio->read_slot) {
1450 int d;
1451 if (sl==0)
1452 sl = conf->copies;
1453 sl--;
1454 d = r10_bio->devs[sl].devnum;
1455 rdev = conf->mirrors[d].rdev;
1456 if (rdev &&
1457 test_bit(In_sync, &rdev->flags)) {
1458 if (sync_page_io(rdev->bdev,
1459 r10_bio->devs[sl].addr +
1460 sect + rdev->data_offset,
1461 s<<9, conf->tmppage, READ) == 0)
1462 /* Well, this device is dead */
1463 md_error(mddev, rdev);
1466 } else {
1467 /* Cannot read from anywhere -- bye bye array */
1468 md_error(mddev, conf->mirrors[r10_bio->devs[r10_bio->read_slot].devnum].rdev);
1469 break;
1471 sectors -= s;
1472 sect += s;
1475 unfreeze_array(conf);
1477 bio = r10_bio->devs[r10_bio->read_slot].bio;
1478 r10_bio->devs[r10_bio->read_slot].bio =
1479 mddev->ro ? IO_BLOCKED : NULL;
1480 bio_put(bio);
1481 mirror = read_balance(conf, r10_bio);
1482 if (mirror == -1) {
1483 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1484 " read error for block %llu\n",
1485 bdevname(bio->bi_bdev,b),
1486 (unsigned long long)r10_bio->sector);
1487 raid_end_bio_io(r10_bio);
1488 } else {
1489 rdev = conf->mirrors[mirror].rdev;
1490 if (printk_ratelimit())
1491 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1492 " another mirror\n",
1493 bdevname(rdev->bdev,b),
1494 (unsigned long long)r10_bio->sector);
1495 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1496 r10_bio->devs[r10_bio->read_slot].bio = bio;
1497 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1498 + rdev->data_offset;
1499 bio->bi_bdev = rdev->bdev;
1500 bio->bi_rw = READ;
1501 bio->bi_private = r10_bio;
1502 bio->bi_end_io = raid10_end_read_request;
1503 unplug = 1;
1504 generic_make_request(bio);
1508 spin_unlock_irqrestore(&conf->device_lock, flags);
1509 if (unplug)
1510 unplug_slaves(mddev);
1514 static int init_resync(conf_t *conf)
1516 int buffs;
1518 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1519 if (conf->r10buf_pool)
1520 BUG();
1521 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1522 if (!conf->r10buf_pool)
1523 return -ENOMEM;
1524 conf->next_resync = 0;
1525 return 0;
1529 * perform a "sync" on one "block"
1531 * We need to make sure that no normal I/O request - particularly write
1532 * requests - conflict with active sync requests.
1534 * This is achieved by tracking pending requests and a 'barrier' concept
1535 * that can be installed to exclude normal IO requests.
1537 * Resync and recovery are handled very differently.
1538 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1540 * For resync, we iterate over virtual addresses, read all copies,
1541 * and update if there are differences. If only one copy is live,
1542 * skip it.
1543 * For recovery, we iterate over physical addresses, read a good
1544 * value for each non-in_sync drive, and over-write.
1546 * So, for recovery we may have several outstanding complex requests for a
1547 * given address, one for each out-of-sync device. We model this by allocating
1548 * a number of r10_bio structures, one for each out-of-sync device.
1549 * As we setup these structures, we collect all bio's together into a list
1550 * which we then process collectively to add pages, and then process again
1551 * to pass to generic_make_request.
1553 * The r10_bio structures are linked using a borrowed master_bio pointer.
1554 * This link is counted in ->remaining. When the r10_bio that points to NULL
1555 * has its remaining count decremented to 0, the whole complex operation
1556 * is complete.
1560 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1562 conf_t *conf = mddev_to_conf(mddev);
1563 r10bio_t *r10_bio;
1564 struct bio *biolist = NULL, *bio;
1565 sector_t max_sector, nr_sectors;
1566 int disk;
1567 int i;
1568 int max_sync;
1569 int sync_blocks;
1571 sector_t sectors_skipped = 0;
1572 int chunks_skipped = 0;
1574 if (!conf->r10buf_pool)
1575 if (init_resync(conf))
1576 return 0;
1578 skipped:
1579 max_sector = mddev->size << 1;
1580 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1581 max_sector = mddev->resync_max_sectors;
1582 if (sector_nr >= max_sector) {
1583 /* If we aborted, we need to abort the
1584 * sync on the 'current' bitmap chucks (there can
1585 * be several when recovering multiple devices).
1586 * as we may have started syncing it but not finished.
1587 * We can find the current address in
1588 * mddev->curr_resync, but for recovery,
1589 * we need to convert that to several
1590 * virtual addresses.
1592 if (mddev->curr_resync < max_sector) { /* aborted */
1593 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1594 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1595 &sync_blocks, 1);
1596 else for (i=0; i<conf->raid_disks; i++) {
1597 sector_t sect =
1598 raid10_find_virt(conf, mddev->curr_resync, i);
1599 bitmap_end_sync(mddev->bitmap, sect,
1600 &sync_blocks, 1);
1602 } else /* completed sync */
1603 conf->fullsync = 0;
1605 bitmap_close_sync(mddev->bitmap);
1606 close_sync(conf);
1607 *skipped = 1;
1608 return sectors_skipped;
1610 if (chunks_skipped >= conf->raid_disks) {
1611 /* if there has been nothing to do on any drive,
1612 * then there is nothing to do at all..
1614 *skipped = 1;
1615 return (max_sector - sector_nr) + sectors_skipped;
1618 /* make sure whole request will fit in a chunk - if chunks
1619 * are meaningful
1621 if (conf->near_copies < conf->raid_disks &&
1622 max_sector > (sector_nr | conf->chunk_mask))
1623 max_sector = (sector_nr | conf->chunk_mask) + 1;
1625 * If there is non-resync activity waiting for us then
1626 * put in a delay to throttle resync.
1628 if (!go_faster && conf->nr_waiting)
1629 msleep_interruptible(1000);
1631 /* Again, very different code for resync and recovery.
1632 * Both must result in an r10bio with a list of bios that
1633 * have bi_end_io, bi_sector, bi_bdev set,
1634 * and bi_private set to the r10bio.
1635 * For recovery, we may actually create several r10bios
1636 * with 2 bios in each, that correspond to the bios in the main one.
1637 * In this case, the subordinate r10bios link back through a
1638 * borrowed master_bio pointer, and the counter in the master
1639 * includes a ref from each subordinate.
1641 /* First, we decide what to do and set ->bi_end_io
1642 * To end_sync_read if we want to read, and
1643 * end_sync_write if we will want to write.
1646 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1647 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1648 /* recovery... the complicated one */
1649 int i, j, k;
1650 r10_bio = NULL;
1652 for (i=0 ; i<conf->raid_disks; i++)
1653 if (conf->mirrors[i].rdev &&
1654 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1655 int still_degraded = 0;
1656 /* want to reconstruct this device */
1657 r10bio_t *rb2 = r10_bio;
1658 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1659 int must_sync;
1660 /* Unless we are doing a full sync, we only need
1661 * to recover the block if it is set in the bitmap
1663 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1664 &sync_blocks, 1);
1665 if (sync_blocks < max_sync)
1666 max_sync = sync_blocks;
1667 if (!must_sync &&
1668 !conf->fullsync) {
1669 /* yep, skip the sync_blocks here, but don't assume
1670 * that there will never be anything to do here
1672 chunks_skipped = -1;
1673 continue;
1676 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1677 raise_barrier(conf, rb2 != NULL);
1678 atomic_set(&r10_bio->remaining, 0);
1680 r10_bio->master_bio = (struct bio*)rb2;
1681 if (rb2)
1682 atomic_inc(&rb2->remaining);
1683 r10_bio->mddev = mddev;
1684 set_bit(R10BIO_IsRecover, &r10_bio->state);
1685 r10_bio->sector = sect;
1687 raid10_find_phys(conf, r10_bio);
1688 /* Need to check if this section will still be
1689 * degraded
1691 for (j=0; j<conf->copies;j++) {
1692 int d = r10_bio->devs[j].devnum;
1693 if (conf->mirrors[d].rdev == NULL ||
1694 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1695 still_degraded = 1;
1696 break;
1699 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1700 &sync_blocks, still_degraded);
1702 for (j=0; j<conf->copies;j++) {
1703 int d = r10_bio->devs[j].devnum;
1704 if (conf->mirrors[d].rdev &&
1705 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1706 /* This is where we read from */
1707 bio = r10_bio->devs[0].bio;
1708 bio->bi_next = biolist;
1709 biolist = bio;
1710 bio->bi_private = r10_bio;
1711 bio->bi_end_io = end_sync_read;
1712 bio->bi_rw = 0;
1713 bio->bi_sector = r10_bio->devs[j].addr +
1714 conf->mirrors[d].rdev->data_offset;
1715 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1716 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1717 atomic_inc(&r10_bio->remaining);
1718 /* and we write to 'i' */
1720 for (k=0; k<conf->copies; k++)
1721 if (r10_bio->devs[k].devnum == i)
1722 break;
1723 bio = r10_bio->devs[1].bio;
1724 bio->bi_next = biolist;
1725 biolist = bio;
1726 bio->bi_private = r10_bio;
1727 bio->bi_end_io = end_sync_write;
1728 bio->bi_rw = 1;
1729 bio->bi_sector = r10_bio->devs[k].addr +
1730 conf->mirrors[i].rdev->data_offset;
1731 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1733 r10_bio->devs[0].devnum = d;
1734 r10_bio->devs[1].devnum = i;
1736 break;
1739 if (j == conf->copies) {
1740 /* Cannot recover, so abort the recovery */
1741 put_buf(r10_bio);
1742 r10_bio = rb2;
1743 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1744 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1745 mdname(mddev));
1746 break;
1749 if (biolist == NULL) {
1750 while (r10_bio) {
1751 r10bio_t *rb2 = r10_bio;
1752 r10_bio = (r10bio_t*) rb2->master_bio;
1753 rb2->master_bio = NULL;
1754 put_buf(rb2);
1756 goto giveup;
1758 } else {
1759 /* resync. Schedule a read for every block at this virt offset */
1760 int count = 0;
1762 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1763 &sync_blocks, mddev->degraded) &&
1764 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1765 /* We can skip this block */
1766 *skipped = 1;
1767 return sync_blocks + sectors_skipped;
1769 if (sync_blocks < max_sync)
1770 max_sync = sync_blocks;
1771 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1773 r10_bio->mddev = mddev;
1774 atomic_set(&r10_bio->remaining, 0);
1775 raise_barrier(conf, 0);
1776 conf->next_resync = sector_nr;
1778 r10_bio->master_bio = NULL;
1779 r10_bio->sector = sector_nr;
1780 set_bit(R10BIO_IsSync, &r10_bio->state);
1781 raid10_find_phys(conf, r10_bio);
1782 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1784 for (i=0; i<conf->copies; i++) {
1785 int d = r10_bio->devs[i].devnum;
1786 bio = r10_bio->devs[i].bio;
1787 bio->bi_end_io = NULL;
1788 if (conf->mirrors[d].rdev == NULL ||
1789 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1790 continue;
1791 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1792 atomic_inc(&r10_bio->remaining);
1793 bio->bi_next = biolist;
1794 biolist = bio;
1795 bio->bi_private = r10_bio;
1796 bio->bi_end_io = end_sync_read;
1797 bio->bi_rw = 0;
1798 bio->bi_sector = r10_bio->devs[i].addr +
1799 conf->mirrors[d].rdev->data_offset;
1800 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1801 count++;
1804 if (count < 2) {
1805 for (i=0; i<conf->copies; i++) {
1806 int d = r10_bio->devs[i].devnum;
1807 if (r10_bio->devs[i].bio->bi_end_io)
1808 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1810 put_buf(r10_bio);
1811 biolist = NULL;
1812 goto giveup;
1816 for (bio = biolist; bio ; bio=bio->bi_next) {
1818 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1819 if (bio->bi_end_io)
1820 bio->bi_flags |= 1 << BIO_UPTODATE;
1821 bio->bi_vcnt = 0;
1822 bio->bi_idx = 0;
1823 bio->bi_phys_segments = 0;
1824 bio->bi_hw_segments = 0;
1825 bio->bi_size = 0;
1828 nr_sectors = 0;
1829 if (sector_nr + max_sync < max_sector)
1830 max_sector = sector_nr + max_sync;
1831 do {
1832 struct page *page;
1833 int len = PAGE_SIZE;
1834 disk = 0;
1835 if (sector_nr + (len>>9) > max_sector)
1836 len = (max_sector - sector_nr) << 9;
1837 if (len == 0)
1838 break;
1839 for (bio= biolist ; bio ; bio=bio->bi_next) {
1840 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1841 if (bio_add_page(bio, page, len, 0) == 0) {
1842 /* stop here */
1843 struct bio *bio2;
1844 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1845 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1846 /* remove last page from this bio */
1847 bio2->bi_vcnt--;
1848 bio2->bi_size -= len;
1849 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1851 goto bio_full;
1853 disk = i;
1855 nr_sectors += len>>9;
1856 sector_nr += len>>9;
1857 } while (biolist->bi_vcnt < RESYNC_PAGES);
1858 bio_full:
1859 r10_bio->sectors = nr_sectors;
1861 while (biolist) {
1862 bio = biolist;
1863 biolist = biolist->bi_next;
1865 bio->bi_next = NULL;
1866 r10_bio = bio->bi_private;
1867 r10_bio->sectors = nr_sectors;
1869 if (bio->bi_end_io == end_sync_read) {
1870 md_sync_acct(bio->bi_bdev, nr_sectors);
1871 generic_make_request(bio);
1875 if (sectors_skipped)
1876 /* pretend they weren't skipped, it makes
1877 * no important difference in this case
1879 md_done_sync(mddev, sectors_skipped, 1);
1881 return sectors_skipped + nr_sectors;
1882 giveup:
1883 /* There is nowhere to write, so all non-sync
1884 * drives must be failed, so try the next chunk...
1887 sector_t sec = max_sector - sector_nr;
1888 sectors_skipped += sec;
1889 chunks_skipped ++;
1890 sector_nr = max_sector;
1891 goto skipped;
1895 static int run(mddev_t *mddev)
1897 conf_t *conf;
1898 int i, disk_idx;
1899 mirror_info_t *disk;
1900 mdk_rdev_t *rdev;
1901 struct list_head *tmp;
1902 int nc, fc;
1903 sector_t stride, size;
1905 if (mddev->chunk_size == 0) {
1906 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
1907 return -EINVAL;
1910 nc = mddev->layout & 255;
1911 fc = (mddev->layout >> 8) & 255;
1912 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1913 (mddev->layout >> 16)) {
1914 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1915 mdname(mddev), mddev->layout);
1916 goto out;
1919 * copy the already verified devices into our private RAID10
1920 * bookkeeping area. [whatever we allocate in run(),
1921 * should be freed in stop()]
1923 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1924 mddev->private = conf;
1925 if (!conf) {
1926 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1927 mdname(mddev));
1928 goto out;
1930 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1931 GFP_KERNEL);
1932 if (!conf->mirrors) {
1933 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1934 mdname(mddev));
1935 goto out_free_conf;
1938 conf->tmppage = alloc_page(GFP_KERNEL);
1939 if (!conf->tmppage)
1940 goto out_free_conf;
1942 conf->near_copies = nc;
1943 conf->far_copies = fc;
1944 conf->copies = nc*fc;
1945 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1946 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1947 stride = mddev->size >> (conf->chunk_shift-1);
1948 sector_div(stride, fc);
1949 conf->stride = stride << conf->chunk_shift;
1951 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1952 r10bio_pool_free, conf);
1953 if (!conf->r10bio_pool) {
1954 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1955 mdname(mddev));
1956 goto out_free_conf;
1959 ITERATE_RDEV(mddev, rdev, tmp) {
1960 disk_idx = rdev->raid_disk;
1961 if (disk_idx >= mddev->raid_disks
1962 || disk_idx < 0)
1963 continue;
1964 disk = conf->mirrors + disk_idx;
1966 disk->rdev = rdev;
1968 blk_queue_stack_limits(mddev->queue,
1969 rdev->bdev->bd_disk->queue);
1970 /* as we don't honour merge_bvec_fn, we must never risk
1971 * violating it, so limit ->max_sector to one PAGE, as
1972 * a one page request is never in violation.
1974 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1975 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1976 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1978 disk->head_position = 0;
1979 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1980 conf->working_disks++;
1982 conf->raid_disks = mddev->raid_disks;
1983 conf->mddev = mddev;
1984 spin_lock_init(&conf->device_lock);
1985 INIT_LIST_HEAD(&conf->retry_list);
1987 spin_lock_init(&conf->resync_lock);
1988 init_waitqueue_head(&conf->wait_barrier);
1990 /* need to check that every block has at least one working mirror */
1991 if (!enough(conf)) {
1992 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
1993 mdname(mddev));
1994 goto out_free_conf;
1997 mddev->degraded = 0;
1998 for (i = 0; i < conf->raid_disks; i++) {
2000 disk = conf->mirrors + i;
2002 if (!disk->rdev) {
2003 disk->head_position = 0;
2004 mddev->degraded++;
2009 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2010 if (!mddev->thread) {
2011 printk(KERN_ERR
2012 "raid10: couldn't allocate thread for %s\n",
2013 mdname(mddev));
2014 goto out_free_conf;
2017 printk(KERN_INFO
2018 "raid10: raid set %s active with %d out of %d devices\n",
2019 mdname(mddev), mddev->raid_disks - mddev->degraded,
2020 mddev->raid_disks);
2022 * Ok, everything is just fine now
2024 size = conf->stride * conf->raid_disks;
2025 sector_div(size, conf->near_copies);
2026 mddev->array_size = size/2;
2027 mddev->resync_max_sectors = size;
2029 mddev->queue->unplug_fn = raid10_unplug;
2030 mddev->queue->issue_flush_fn = raid10_issue_flush;
2032 /* Calculate max read-ahead size.
2033 * We need to readahead at least twice a whole stripe....
2034 * maybe...
2037 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_SIZE;
2038 stripe /= conf->near_copies;
2039 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2040 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2043 if (conf->near_copies < mddev->raid_disks)
2044 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2045 return 0;
2047 out_free_conf:
2048 if (conf->r10bio_pool)
2049 mempool_destroy(conf->r10bio_pool);
2050 safe_put_page(conf->tmppage);
2051 kfree(conf->mirrors);
2052 kfree(conf);
2053 mddev->private = NULL;
2054 out:
2055 return -EIO;
2058 static int stop(mddev_t *mddev)
2060 conf_t *conf = mddev_to_conf(mddev);
2062 md_unregister_thread(mddev->thread);
2063 mddev->thread = NULL;
2064 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2065 if (conf->r10bio_pool)
2066 mempool_destroy(conf->r10bio_pool);
2067 kfree(conf->mirrors);
2068 kfree(conf);
2069 mddev->private = NULL;
2070 return 0;
2073 static void raid10_quiesce(mddev_t *mddev, int state)
2075 conf_t *conf = mddev_to_conf(mddev);
2077 switch(state) {
2078 case 1:
2079 raise_barrier(conf, 0);
2080 break;
2081 case 0:
2082 lower_barrier(conf);
2083 break;
2085 if (mddev->thread) {
2086 if (mddev->bitmap)
2087 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2088 else
2089 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2090 md_wakeup_thread(mddev->thread);
2094 static struct mdk_personality raid10_personality =
2096 .name = "raid10",
2097 .level = 10,
2098 .owner = THIS_MODULE,
2099 .make_request = make_request,
2100 .run = run,
2101 .stop = stop,
2102 .status = status,
2103 .error_handler = error,
2104 .hot_add_disk = raid10_add_disk,
2105 .hot_remove_disk= raid10_remove_disk,
2106 .spare_active = raid10_spare_active,
2107 .sync_request = sync_request,
2108 .quiesce = raid10_quiesce,
2111 static int __init raid_init(void)
2113 return register_md_personality(&raid10_personality);
2116 static void raid_exit(void)
2118 unregister_md_personality(&raid10_personality);
2121 module_init(raid_init);
2122 module_exit(raid_exit);
2123 MODULE_LICENSE("GPL");
2124 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2125 MODULE_ALIAS("md-raid10");
2126 MODULE_ALIAS("md-level-10");