SLUB: killed the unused "end" variable
[linux-2.6/x86.git] / drivers / md / raid5.c
blob1cfc984cc7b7158c5c49b11f209ec4c606f1508e
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
58 * Stripe cache
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
76 * be valid.
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
101 static inline int raid6_next_disk(int disk, int raid_disks)
103 disk++;
104 return (disk < raid_disks) ? disk : 0;
107 static void return_io(struct bio *return_bi)
109 struct bio *bi = return_bi;
110 while (bi) {
112 return_bi = bi->bi_next;
113 bi->bi_next = NULL;
114 bi->bi_size = 0;
115 bi->bi_end_io(bi,
116 test_bit(BIO_UPTODATE, &bi->bi_flags)
117 ? 0 : -EIO);
118 bi = return_bi;
122 static void print_raid5_conf (raid5_conf_t *conf);
124 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 if (atomic_dec_and_test(&sh->count)) {
127 BUG_ON(!list_empty(&sh->lru));
128 BUG_ON(atomic_read(&conf->active_stripes)==0);
129 if (test_bit(STRIPE_HANDLE, &sh->state)) {
130 if (test_bit(STRIPE_DELAYED, &sh->state)) {
131 list_add_tail(&sh->lru, &conf->delayed_list);
132 blk_plug_device(conf->mddev->queue);
133 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
134 sh->bm_seq - conf->seq_write > 0) {
135 list_add_tail(&sh->lru, &conf->bitmap_list);
136 blk_plug_device(conf->mddev->queue);
137 } else {
138 clear_bit(STRIPE_BIT_DELAY, &sh->state);
139 list_add_tail(&sh->lru, &conf->handle_list);
141 md_wakeup_thread(conf->mddev->thread);
142 } else {
143 BUG_ON(sh->ops.pending);
144 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
145 atomic_dec(&conf->preread_active_stripes);
146 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
147 md_wakeup_thread(conf->mddev->thread);
149 atomic_dec(&conf->active_stripes);
150 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
151 list_add_tail(&sh->lru, &conf->inactive_list);
152 wake_up(&conf->wait_for_stripe);
153 if (conf->retry_read_aligned)
154 md_wakeup_thread(conf->mddev->thread);
159 static void release_stripe(struct stripe_head *sh)
161 raid5_conf_t *conf = sh->raid_conf;
162 unsigned long flags;
164 spin_lock_irqsave(&conf->device_lock, flags);
165 __release_stripe(conf, sh);
166 spin_unlock_irqrestore(&conf->device_lock, flags);
169 static inline void remove_hash(struct stripe_head *sh)
171 pr_debug("remove_hash(), stripe %llu\n",
172 (unsigned long long)sh->sector);
174 hlist_del_init(&sh->hash);
177 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 struct hlist_head *hp = stripe_hash(conf, sh->sector);
181 pr_debug("insert_hash(), stripe %llu\n",
182 (unsigned long long)sh->sector);
184 CHECK_DEVLOCK();
185 hlist_add_head(&sh->hash, hp);
189 /* find an idle stripe, make sure it is unhashed, and return it. */
190 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 struct stripe_head *sh = NULL;
193 struct list_head *first;
195 CHECK_DEVLOCK();
196 if (list_empty(&conf->inactive_list))
197 goto out;
198 first = conf->inactive_list.next;
199 sh = list_entry(first, struct stripe_head, lru);
200 list_del_init(first);
201 remove_hash(sh);
202 atomic_inc(&conf->active_stripes);
203 out:
204 return sh;
207 static void shrink_buffers(struct stripe_head *sh, int num)
209 struct page *p;
210 int i;
212 for (i=0; i<num ; i++) {
213 p = sh->dev[i].page;
214 if (!p)
215 continue;
216 sh->dev[i].page = NULL;
217 put_page(p);
221 static int grow_buffers(struct stripe_head *sh, int num)
223 int i;
225 for (i=0; i<num; i++) {
226 struct page *page;
228 if (!(page = alloc_page(GFP_KERNEL))) {
229 return 1;
231 sh->dev[i].page = page;
233 return 0;
236 static void raid5_build_block (struct stripe_head *sh, int i);
238 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 raid5_conf_t *conf = sh->raid_conf;
241 int i;
243 BUG_ON(atomic_read(&sh->count) != 0);
244 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
245 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247 CHECK_DEVLOCK();
248 pr_debug("init_stripe called, stripe %llu\n",
249 (unsigned long long)sh->sector);
251 remove_hash(sh);
253 sh->sector = sector;
254 sh->pd_idx = pd_idx;
255 sh->state = 0;
257 sh->disks = disks;
259 for (i = sh->disks; i--; ) {
260 struct r5dev *dev = &sh->dev[i];
262 if (dev->toread || dev->read || dev->towrite || dev->written ||
263 test_bit(R5_LOCKED, &dev->flags)) {
264 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
265 (unsigned long long)sh->sector, i, dev->toread,
266 dev->read, dev->towrite, dev->written,
267 test_bit(R5_LOCKED, &dev->flags));
268 BUG();
270 dev->flags = 0;
271 raid5_build_block(sh, i);
273 insert_hash(conf, sh);
276 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 struct stripe_head *sh;
279 struct hlist_node *hn;
281 CHECK_DEVLOCK();
282 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
283 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
284 if (sh->sector == sector && sh->disks == disks)
285 return sh;
286 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
287 return NULL;
290 static void unplug_slaves(mddev_t *mddev);
291 static void raid5_unplug_device(struct request_queue *q);
293 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
294 int pd_idx, int noblock)
296 struct stripe_head *sh;
298 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300 spin_lock_irq(&conf->device_lock);
302 do {
303 wait_event_lock_irq(conf->wait_for_stripe,
304 conf->quiesce == 0,
305 conf->device_lock, /* nothing */);
306 sh = __find_stripe(conf, sector, disks);
307 if (!sh) {
308 if (!conf->inactive_blocked)
309 sh = get_free_stripe(conf);
310 if (noblock && sh == NULL)
311 break;
312 if (!sh) {
313 conf->inactive_blocked = 1;
314 wait_event_lock_irq(conf->wait_for_stripe,
315 !list_empty(&conf->inactive_list) &&
316 (atomic_read(&conf->active_stripes)
317 < (conf->max_nr_stripes *3/4)
318 || !conf->inactive_blocked),
319 conf->device_lock,
320 raid5_unplug_device(conf->mddev->queue)
322 conf->inactive_blocked = 0;
323 } else
324 init_stripe(sh, sector, pd_idx, disks);
325 } else {
326 if (atomic_read(&sh->count)) {
327 BUG_ON(!list_empty(&sh->lru));
328 } else {
329 if (!test_bit(STRIPE_HANDLE, &sh->state))
330 atomic_inc(&conf->active_stripes);
331 if (list_empty(&sh->lru) &&
332 !test_bit(STRIPE_EXPANDING, &sh->state))
333 BUG();
334 list_del_init(&sh->lru);
337 } while (sh == NULL);
339 if (sh)
340 atomic_inc(&sh->count);
342 spin_unlock_irq(&conf->device_lock);
343 return sh;
346 /* test_and_ack_op() ensures that we only dequeue an operation once */
347 #define test_and_ack_op(op, pend) \
348 do { \
349 if (test_bit(op, &sh->ops.pending) && \
350 !test_bit(op, &sh->ops.complete)) { \
351 if (test_and_set_bit(op, &sh->ops.ack)) \
352 clear_bit(op, &pend); \
353 else \
354 ack++; \
355 } else \
356 clear_bit(op, &pend); \
357 } while (0)
359 /* find new work to run, do not resubmit work that is already
360 * in flight
362 static unsigned long get_stripe_work(struct stripe_head *sh)
364 unsigned long pending;
365 int ack = 0;
367 pending = sh->ops.pending;
369 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
370 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
371 test_and_ack_op(STRIPE_OP_PREXOR, pending);
372 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
373 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
374 test_and_ack_op(STRIPE_OP_CHECK, pending);
375 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
376 ack++;
378 sh->ops.count -= ack;
379 if (unlikely(sh->ops.count < 0)) {
380 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
381 "ops.complete: %#lx\n", pending, sh->ops.pending,
382 sh->ops.ack, sh->ops.complete);
383 BUG();
386 return pending;
389 static void
390 raid5_end_read_request(struct bio *bi, int error);
391 static void
392 raid5_end_write_request(struct bio *bi, int error);
394 static void ops_run_io(struct stripe_head *sh)
396 raid5_conf_t *conf = sh->raid_conf;
397 int i, disks = sh->disks;
399 might_sleep();
401 for (i = disks; i--; ) {
402 int rw;
403 struct bio *bi;
404 mdk_rdev_t *rdev;
405 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
406 rw = WRITE;
407 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
408 rw = READ;
409 else
410 continue;
412 bi = &sh->dev[i].req;
414 bi->bi_rw = rw;
415 if (rw == WRITE)
416 bi->bi_end_io = raid5_end_write_request;
417 else
418 bi->bi_end_io = raid5_end_read_request;
420 rcu_read_lock();
421 rdev = rcu_dereference(conf->disks[i].rdev);
422 if (rdev && test_bit(Faulty, &rdev->flags))
423 rdev = NULL;
424 if (rdev)
425 atomic_inc(&rdev->nr_pending);
426 rcu_read_unlock();
428 if (rdev) {
429 if (test_bit(STRIPE_SYNCING, &sh->state) ||
430 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
431 test_bit(STRIPE_EXPAND_READY, &sh->state))
432 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
434 bi->bi_bdev = rdev->bdev;
435 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
436 __FUNCTION__, (unsigned long long)sh->sector,
437 bi->bi_rw, i);
438 atomic_inc(&sh->count);
439 bi->bi_sector = sh->sector + rdev->data_offset;
440 bi->bi_flags = 1 << BIO_UPTODATE;
441 bi->bi_vcnt = 1;
442 bi->bi_max_vecs = 1;
443 bi->bi_idx = 0;
444 bi->bi_io_vec = &sh->dev[i].vec;
445 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
446 bi->bi_io_vec[0].bv_offset = 0;
447 bi->bi_size = STRIPE_SIZE;
448 bi->bi_next = NULL;
449 if (rw == WRITE &&
450 test_bit(R5_ReWrite, &sh->dev[i].flags))
451 atomic_add(STRIPE_SECTORS,
452 &rdev->corrected_errors);
453 generic_make_request(bi);
454 } else {
455 if (rw == WRITE)
456 set_bit(STRIPE_DEGRADED, &sh->state);
457 pr_debug("skip op %ld on disc %d for sector %llu\n",
458 bi->bi_rw, i, (unsigned long long)sh->sector);
459 clear_bit(R5_LOCKED, &sh->dev[i].flags);
460 set_bit(STRIPE_HANDLE, &sh->state);
465 static struct dma_async_tx_descriptor *
466 async_copy_data(int frombio, struct bio *bio, struct page *page,
467 sector_t sector, struct dma_async_tx_descriptor *tx)
469 struct bio_vec *bvl;
470 struct page *bio_page;
471 int i;
472 int page_offset;
474 if (bio->bi_sector >= sector)
475 page_offset = (signed)(bio->bi_sector - sector) * 512;
476 else
477 page_offset = (signed)(sector - bio->bi_sector) * -512;
478 bio_for_each_segment(bvl, bio, i) {
479 int len = bio_iovec_idx(bio, i)->bv_len;
480 int clen;
481 int b_offset = 0;
483 if (page_offset < 0) {
484 b_offset = -page_offset;
485 page_offset += b_offset;
486 len -= b_offset;
489 if (len > 0 && page_offset + len > STRIPE_SIZE)
490 clen = STRIPE_SIZE - page_offset;
491 else
492 clen = len;
494 if (clen > 0) {
495 b_offset += bio_iovec_idx(bio, i)->bv_offset;
496 bio_page = bio_iovec_idx(bio, i)->bv_page;
497 if (frombio)
498 tx = async_memcpy(page, bio_page, page_offset,
499 b_offset, clen,
500 ASYNC_TX_DEP_ACK,
501 tx, NULL, NULL);
502 else
503 tx = async_memcpy(bio_page, page, b_offset,
504 page_offset, clen,
505 ASYNC_TX_DEP_ACK,
506 tx, NULL, NULL);
508 if (clen < len) /* hit end of page */
509 break;
510 page_offset += len;
513 return tx;
516 static void ops_complete_biofill(void *stripe_head_ref)
518 struct stripe_head *sh = stripe_head_ref;
519 struct bio *return_bi = NULL;
520 raid5_conf_t *conf = sh->raid_conf;
521 int i;
523 pr_debug("%s: stripe %llu\n", __FUNCTION__,
524 (unsigned long long)sh->sector);
526 /* clear completed biofills */
527 for (i = sh->disks; i--; ) {
528 struct r5dev *dev = &sh->dev[i];
530 /* acknowledge completion of a biofill operation */
531 /* and check if we need to reply to a read request,
532 * new R5_Wantfill requests are held off until
533 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
535 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
536 struct bio *rbi, *rbi2;
538 /* The access to dev->read is outside of the
539 * spin_lock_irq(&conf->device_lock), but is protected
540 * by the STRIPE_OP_BIOFILL pending bit
542 BUG_ON(!dev->read);
543 rbi = dev->read;
544 dev->read = NULL;
545 while (rbi && rbi->bi_sector <
546 dev->sector + STRIPE_SECTORS) {
547 rbi2 = r5_next_bio(rbi, dev->sector);
548 spin_lock_irq(&conf->device_lock);
549 if (--rbi->bi_phys_segments == 0) {
550 rbi->bi_next = return_bi;
551 return_bi = rbi;
553 spin_unlock_irq(&conf->device_lock);
554 rbi = rbi2;
558 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
560 return_io(return_bi);
562 set_bit(STRIPE_HANDLE, &sh->state);
563 release_stripe(sh);
566 static void ops_run_biofill(struct stripe_head *sh)
568 struct dma_async_tx_descriptor *tx = NULL;
569 raid5_conf_t *conf = sh->raid_conf;
570 int i;
572 pr_debug("%s: stripe %llu\n", __FUNCTION__,
573 (unsigned long long)sh->sector);
575 for (i = sh->disks; i--; ) {
576 struct r5dev *dev = &sh->dev[i];
577 if (test_bit(R5_Wantfill, &dev->flags)) {
578 struct bio *rbi;
579 spin_lock_irq(&conf->device_lock);
580 dev->read = rbi = dev->toread;
581 dev->toread = NULL;
582 spin_unlock_irq(&conf->device_lock);
583 while (rbi && rbi->bi_sector <
584 dev->sector + STRIPE_SECTORS) {
585 tx = async_copy_data(0, rbi, dev->page,
586 dev->sector, tx);
587 rbi = r5_next_bio(rbi, dev->sector);
592 atomic_inc(&sh->count);
593 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
594 ops_complete_biofill, sh);
597 static void ops_complete_compute5(void *stripe_head_ref)
599 struct stripe_head *sh = stripe_head_ref;
600 int target = sh->ops.target;
601 struct r5dev *tgt = &sh->dev[target];
603 pr_debug("%s: stripe %llu\n", __FUNCTION__,
604 (unsigned long long)sh->sector);
606 set_bit(R5_UPTODATE, &tgt->flags);
607 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
608 clear_bit(R5_Wantcompute, &tgt->flags);
609 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
610 set_bit(STRIPE_HANDLE, &sh->state);
611 release_stripe(sh);
614 static struct dma_async_tx_descriptor *
615 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
617 /* kernel stack size limits the total number of disks */
618 int disks = sh->disks;
619 struct page *xor_srcs[disks];
620 int target = sh->ops.target;
621 struct r5dev *tgt = &sh->dev[target];
622 struct page *xor_dest = tgt->page;
623 int count = 0;
624 struct dma_async_tx_descriptor *tx;
625 int i;
627 pr_debug("%s: stripe %llu block: %d\n",
628 __FUNCTION__, (unsigned long long)sh->sector, target);
629 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
631 for (i = disks; i--; )
632 if (i != target)
633 xor_srcs[count++] = sh->dev[i].page;
635 atomic_inc(&sh->count);
637 if (unlikely(count == 1))
638 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
639 0, NULL, ops_complete_compute5, sh);
640 else
641 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
642 ASYNC_TX_XOR_ZERO_DST, NULL,
643 ops_complete_compute5, sh);
645 /* ack now if postxor is not set to be run */
646 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
647 async_tx_ack(tx);
649 return tx;
652 static void ops_complete_prexor(void *stripe_head_ref)
654 struct stripe_head *sh = stripe_head_ref;
656 pr_debug("%s: stripe %llu\n", __FUNCTION__,
657 (unsigned long long)sh->sector);
659 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
662 static struct dma_async_tx_descriptor *
663 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
665 /* kernel stack size limits the total number of disks */
666 int disks = sh->disks;
667 struct page *xor_srcs[disks];
668 int count = 0, pd_idx = sh->pd_idx, i;
670 /* existing parity data subtracted */
671 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
673 pr_debug("%s: stripe %llu\n", __FUNCTION__,
674 (unsigned long long)sh->sector);
676 for (i = disks; i--; ) {
677 struct r5dev *dev = &sh->dev[i];
678 /* Only process blocks that are known to be uptodate */
679 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
680 xor_srcs[count++] = dev->page;
683 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
684 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
685 ops_complete_prexor, sh);
687 return tx;
690 static struct dma_async_tx_descriptor *
691 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
693 int disks = sh->disks;
694 int pd_idx = sh->pd_idx, i;
696 /* check if prexor is active which means only process blocks
697 * that are part of a read-modify-write (Wantprexor)
699 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
701 pr_debug("%s: stripe %llu\n", __FUNCTION__,
702 (unsigned long long)sh->sector);
704 for (i = disks; i--; ) {
705 struct r5dev *dev = &sh->dev[i];
706 struct bio *chosen;
707 int towrite;
709 towrite = 0;
710 if (prexor) { /* rmw */
711 if (dev->towrite &&
712 test_bit(R5_Wantprexor, &dev->flags))
713 towrite = 1;
714 } else { /* rcw */
715 if (i != pd_idx && dev->towrite &&
716 test_bit(R5_LOCKED, &dev->flags))
717 towrite = 1;
720 if (towrite) {
721 struct bio *wbi;
723 spin_lock(&sh->lock);
724 chosen = dev->towrite;
725 dev->towrite = NULL;
726 BUG_ON(dev->written);
727 wbi = dev->written = chosen;
728 spin_unlock(&sh->lock);
730 while (wbi && wbi->bi_sector <
731 dev->sector + STRIPE_SECTORS) {
732 tx = async_copy_data(1, wbi, dev->page,
733 dev->sector, tx);
734 wbi = r5_next_bio(wbi, dev->sector);
739 return tx;
742 static void ops_complete_postxor(void *stripe_head_ref)
744 struct stripe_head *sh = stripe_head_ref;
746 pr_debug("%s: stripe %llu\n", __FUNCTION__,
747 (unsigned long long)sh->sector);
749 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750 set_bit(STRIPE_HANDLE, &sh->state);
751 release_stripe(sh);
754 static void ops_complete_write(void *stripe_head_ref)
756 struct stripe_head *sh = stripe_head_ref;
757 int disks = sh->disks, i, pd_idx = sh->pd_idx;
759 pr_debug("%s: stripe %llu\n", __FUNCTION__,
760 (unsigned long long)sh->sector);
762 for (i = disks; i--; ) {
763 struct r5dev *dev = &sh->dev[i];
764 if (dev->written || i == pd_idx)
765 set_bit(R5_UPTODATE, &dev->flags);
768 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
771 set_bit(STRIPE_HANDLE, &sh->state);
772 release_stripe(sh);
775 static void
776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
778 /* kernel stack size limits the total number of disks */
779 int disks = sh->disks;
780 struct page *xor_srcs[disks];
782 int count = 0, pd_idx = sh->pd_idx, i;
783 struct page *xor_dest;
784 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
785 unsigned long flags;
786 dma_async_tx_callback callback;
788 pr_debug("%s: stripe %llu\n", __FUNCTION__,
789 (unsigned long long)sh->sector);
791 /* check if prexor is active which means only process blocks
792 * that are part of a read-modify-write (written)
794 if (prexor) {
795 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
796 for (i = disks; i--; ) {
797 struct r5dev *dev = &sh->dev[i];
798 if (dev->written)
799 xor_srcs[count++] = dev->page;
801 } else {
802 xor_dest = sh->dev[pd_idx].page;
803 for (i = disks; i--; ) {
804 struct r5dev *dev = &sh->dev[i];
805 if (i != pd_idx)
806 xor_srcs[count++] = dev->page;
810 /* check whether this postxor is part of a write */
811 callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
812 ops_complete_write : ops_complete_postxor;
814 /* 1/ if we prexor'd then the dest is reused as a source
815 * 2/ if we did not prexor then we are redoing the parity
816 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
817 * for the synchronous xor case
819 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
820 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
822 atomic_inc(&sh->count);
824 if (unlikely(count == 1)) {
825 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
826 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
827 flags, tx, callback, sh);
828 } else
829 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
830 flags, tx, callback, sh);
833 static void ops_complete_check(void *stripe_head_ref)
835 struct stripe_head *sh = stripe_head_ref;
836 int pd_idx = sh->pd_idx;
838 pr_debug("%s: stripe %llu\n", __FUNCTION__,
839 (unsigned long long)sh->sector);
841 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
842 sh->ops.zero_sum_result == 0)
843 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
845 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
846 set_bit(STRIPE_HANDLE, &sh->state);
847 release_stripe(sh);
850 static void ops_run_check(struct stripe_head *sh)
852 /* kernel stack size limits the total number of disks */
853 int disks = sh->disks;
854 struct page *xor_srcs[disks];
855 struct dma_async_tx_descriptor *tx;
857 int count = 0, pd_idx = sh->pd_idx, i;
858 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
860 pr_debug("%s: stripe %llu\n", __FUNCTION__,
861 (unsigned long long)sh->sector);
863 for (i = disks; i--; ) {
864 struct r5dev *dev = &sh->dev[i];
865 if (i != pd_idx)
866 xor_srcs[count++] = dev->page;
869 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
870 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
872 if (tx)
873 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
874 else
875 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
877 atomic_inc(&sh->count);
878 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
879 ops_complete_check, sh);
882 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
884 int overlap_clear = 0, i, disks = sh->disks;
885 struct dma_async_tx_descriptor *tx = NULL;
887 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
888 ops_run_biofill(sh);
889 overlap_clear++;
892 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
893 tx = ops_run_compute5(sh, pending);
895 if (test_bit(STRIPE_OP_PREXOR, &pending))
896 tx = ops_run_prexor(sh, tx);
898 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
899 tx = ops_run_biodrain(sh, tx);
900 overlap_clear++;
903 if (test_bit(STRIPE_OP_POSTXOR, &pending))
904 ops_run_postxor(sh, tx);
906 if (test_bit(STRIPE_OP_CHECK, &pending))
907 ops_run_check(sh);
909 if (test_bit(STRIPE_OP_IO, &pending))
910 ops_run_io(sh);
912 if (overlap_clear)
913 for (i = disks; i--; ) {
914 struct r5dev *dev = &sh->dev[i];
915 if (test_and_clear_bit(R5_Overlap, &dev->flags))
916 wake_up(&sh->raid_conf->wait_for_overlap);
920 static int grow_one_stripe(raid5_conf_t *conf)
922 struct stripe_head *sh;
923 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
924 if (!sh)
925 return 0;
926 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
927 sh->raid_conf = conf;
928 spin_lock_init(&sh->lock);
930 if (grow_buffers(sh, conf->raid_disks)) {
931 shrink_buffers(sh, conf->raid_disks);
932 kmem_cache_free(conf->slab_cache, sh);
933 return 0;
935 sh->disks = conf->raid_disks;
936 /* we just created an active stripe so... */
937 atomic_set(&sh->count, 1);
938 atomic_inc(&conf->active_stripes);
939 INIT_LIST_HEAD(&sh->lru);
940 release_stripe(sh);
941 return 1;
944 static int grow_stripes(raid5_conf_t *conf, int num)
946 struct kmem_cache *sc;
947 int devs = conf->raid_disks;
949 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
950 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
951 conf->active_name = 0;
952 sc = kmem_cache_create(conf->cache_name[conf->active_name],
953 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
954 0, 0, NULL);
955 if (!sc)
956 return 1;
957 conf->slab_cache = sc;
958 conf->pool_size = devs;
959 while (num--)
960 if (!grow_one_stripe(conf))
961 return 1;
962 return 0;
965 #ifdef CONFIG_MD_RAID5_RESHAPE
966 static int resize_stripes(raid5_conf_t *conf, int newsize)
968 /* Make all the stripes able to hold 'newsize' devices.
969 * New slots in each stripe get 'page' set to a new page.
971 * This happens in stages:
972 * 1/ create a new kmem_cache and allocate the required number of
973 * stripe_heads.
974 * 2/ gather all the old stripe_heads and tranfer the pages across
975 * to the new stripe_heads. This will have the side effect of
976 * freezing the array as once all stripe_heads have been collected,
977 * no IO will be possible. Old stripe heads are freed once their
978 * pages have been transferred over, and the old kmem_cache is
979 * freed when all stripes are done.
980 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
981 * we simple return a failre status - no need to clean anything up.
982 * 4/ allocate new pages for the new slots in the new stripe_heads.
983 * If this fails, we don't bother trying the shrink the
984 * stripe_heads down again, we just leave them as they are.
985 * As each stripe_head is processed the new one is released into
986 * active service.
988 * Once step2 is started, we cannot afford to wait for a write,
989 * so we use GFP_NOIO allocations.
991 struct stripe_head *osh, *nsh;
992 LIST_HEAD(newstripes);
993 struct disk_info *ndisks;
994 int err = 0;
995 struct kmem_cache *sc;
996 int i;
998 if (newsize <= conf->pool_size)
999 return 0; /* never bother to shrink */
1001 md_allow_write(conf->mddev);
1003 /* Step 1 */
1004 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1005 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1006 0, 0, NULL);
1007 if (!sc)
1008 return -ENOMEM;
1010 for (i = conf->max_nr_stripes; i; i--) {
1011 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1012 if (!nsh)
1013 break;
1015 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1017 nsh->raid_conf = conf;
1018 spin_lock_init(&nsh->lock);
1020 list_add(&nsh->lru, &newstripes);
1022 if (i) {
1023 /* didn't get enough, give up */
1024 while (!list_empty(&newstripes)) {
1025 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1026 list_del(&nsh->lru);
1027 kmem_cache_free(sc, nsh);
1029 kmem_cache_destroy(sc);
1030 return -ENOMEM;
1032 /* Step 2 - Must use GFP_NOIO now.
1033 * OK, we have enough stripes, start collecting inactive
1034 * stripes and copying them over
1036 list_for_each_entry(nsh, &newstripes, lru) {
1037 spin_lock_irq(&conf->device_lock);
1038 wait_event_lock_irq(conf->wait_for_stripe,
1039 !list_empty(&conf->inactive_list),
1040 conf->device_lock,
1041 unplug_slaves(conf->mddev)
1043 osh = get_free_stripe(conf);
1044 spin_unlock_irq(&conf->device_lock);
1045 atomic_set(&nsh->count, 1);
1046 for(i=0; i<conf->pool_size; i++)
1047 nsh->dev[i].page = osh->dev[i].page;
1048 for( ; i<newsize; i++)
1049 nsh->dev[i].page = NULL;
1050 kmem_cache_free(conf->slab_cache, osh);
1052 kmem_cache_destroy(conf->slab_cache);
1054 /* Step 3.
1055 * At this point, we are holding all the stripes so the array
1056 * is completely stalled, so now is a good time to resize
1057 * conf->disks.
1059 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1060 if (ndisks) {
1061 for (i=0; i<conf->raid_disks; i++)
1062 ndisks[i] = conf->disks[i];
1063 kfree(conf->disks);
1064 conf->disks = ndisks;
1065 } else
1066 err = -ENOMEM;
1068 /* Step 4, return new stripes to service */
1069 while(!list_empty(&newstripes)) {
1070 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1071 list_del_init(&nsh->lru);
1072 for (i=conf->raid_disks; i < newsize; i++)
1073 if (nsh->dev[i].page == NULL) {
1074 struct page *p = alloc_page(GFP_NOIO);
1075 nsh->dev[i].page = p;
1076 if (!p)
1077 err = -ENOMEM;
1079 release_stripe(nsh);
1081 /* critical section pass, GFP_NOIO no longer needed */
1083 conf->slab_cache = sc;
1084 conf->active_name = 1-conf->active_name;
1085 conf->pool_size = newsize;
1086 return err;
1088 #endif
1090 static int drop_one_stripe(raid5_conf_t *conf)
1092 struct stripe_head *sh;
1094 spin_lock_irq(&conf->device_lock);
1095 sh = get_free_stripe(conf);
1096 spin_unlock_irq(&conf->device_lock);
1097 if (!sh)
1098 return 0;
1099 BUG_ON(atomic_read(&sh->count));
1100 shrink_buffers(sh, conf->pool_size);
1101 kmem_cache_free(conf->slab_cache, sh);
1102 atomic_dec(&conf->active_stripes);
1103 return 1;
1106 static void shrink_stripes(raid5_conf_t *conf)
1108 while (drop_one_stripe(conf))
1111 if (conf->slab_cache)
1112 kmem_cache_destroy(conf->slab_cache);
1113 conf->slab_cache = NULL;
1116 static void raid5_end_read_request(struct bio * bi, int error)
1118 struct stripe_head *sh = bi->bi_private;
1119 raid5_conf_t *conf = sh->raid_conf;
1120 int disks = sh->disks, i;
1121 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1122 char b[BDEVNAME_SIZE];
1123 mdk_rdev_t *rdev;
1126 for (i=0 ; i<disks; i++)
1127 if (bi == &sh->dev[i].req)
1128 break;
1130 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1131 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1132 uptodate);
1133 if (i == disks) {
1134 BUG();
1135 return;
1138 if (uptodate) {
1139 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1140 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1141 rdev = conf->disks[i].rdev;
1142 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1143 mdname(conf->mddev), STRIPE_SECTORS,
1144 (unsigned long long)sh->sector + rdev->data_offset,
1145 bdevname(rdev->bdev, b));
1146 clear_bit(R5_ReadError, &sh->dev[i].flags);
1147 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1149 if (atomic_read(&conf->disks[i].rdev->read_errors))
1150 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1151 } else {
1152 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1153 int retry = 0;
1154 rdev = conf->disks[i].rdev;
1156 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1157 atomic_inc(&rdev->read_errors);
1158 if (conf->mddev->degraded)
1159 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1160 mdname(conf->mddev),
1161 (unsigned long long)sh->sector + rdev->data_offset,
1162 bdn);
1163 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1164 /* Oh, no!!! */
1165 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1166 mdname(conf->mddev),
1167 (unsigned long long)sh->sector + rdev->data_offset,
1168 bdn);
1169 else if (atomic_read(&rdev->read_errors)
1170 > conf->max_nr_stripes)
1171 printk(KERN_WARNING
1172 "raid5:%s: Too many read errors, failing device %s.\n",
1173 mdname(conf->mddev), bdn);
1174 else
1175 retry = 1;
1176 if (retry)
1177 set_bit(R5_ReadError, &sh->dev[i].flags);
1178 else {
1179 clear_bit(R5_ReadError, &sh->dev[i].flags);
1180 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1181 md_error(conf->mddev, rdev);
1184 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1185 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1186 set_bit(STRIPE_HANDLE, &sh->state);
1187 release_stripe(sh);
1190 static void raid5_end_write_request (struct bio *bi, int error)
1192 struct stripe_head *sh = bi->bi_private;
1193 raid5_conf_t *conf = sh->raid_conf;
1194 int disks = sh->disks, i;
1195 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1197 for (i=0 ; i<disks; i++)
1198 if (bi == &sh->dev[i].req)
1199 break;
1201 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1202 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1203 uptodate);
1204 if (i == disks) {
1205 BUG();
1206 return;
1209 if (!uptodate)
1210 md_error(conf->mddev, conf->disks[i].rdev);
1212 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1214 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1215 set_bit(STRIPE_HANDLE, &sh->state);
1216 release_stripe(sh);
1220 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1222 static void raid5_build_block (struct stripe_head *sh, int i)
1224 struct r5dev *dev = &sh->dev[i];
1226 bio_init(&dev->req);
1227 dev->req.bi_io_vec = &dev->vec;
1228 dev->req.bi_vcnt++;
1229 dev->req.bi_max_vecs++;
1230 dev->vec.bv_page = dev->page;
1231 dev->vec.bv_len = STRIPE_SIZE;
1232 dev->vec.bv_offset = 0;
1234 dev->req.bi_sector = sh->sector;
1235 dev->req.bi_private = sh;
1237 dev->flags = 0;
1238 dev->sector = compute_blocknr(sh, i);
1241 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1243 char b[BDEVNAME_SIZE];
1244 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1245 pr_debug("raid5: error called\n");
1247 if (!test_bit(Faulty, &rdev->flags)) {
1248 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1249 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1250 unsigned long flags;
1251 spin_lock_irqsave(&conf->device_lock, flags);
1252 mddev->degraded++;
1253 spin_unlock_irqrestore(&conf->device_lock, flags);
1255 * if recovery was running, make sure it aborts.
1257 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1259 set_bit(Faulty, &rdev->flags);
1260 printk (KERN_ALERT
1261 "raid5: Disk failure on %s, disabling device."
1262 " Operation continuing on %d devices\n",
1263 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1268 * Input: a 'big' sector number,
1269 * Output: index of the data and parity disk, and the sector # in them.
1271 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1272 unsigned int data_disks, unsigned int * dd_idx,
1273 unsigned int * pd_idx, raid5_conf_t *conf)
1275 long stripe;
1276 unsigned long chunk_number;
1277 unsigned int chunk_offset;
1278 sector_t new_sector;
1279 int sectors_per_chunk = conf->chunk_size >> 9;
1281 /* First compute the information on this sector */
1284 * Compute the chunk number and the sector offset inside the chunk
1286 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1287 chunk_number = r_sector;
1288 BUG_ON(r_sector != chunk_number);
1291 * Compute the stripe number
1293 stripe = chunk_number / data_disks;
1296 * Compute the data disk and parity disk indexes inside the stripe
1298 *dd_idx = chunk_number % data_disks;
1301 * Select the parity disk based on the user selected algorithm.
1303 switch(conf->level) {
1304 case 4:
1305 *pd_idx = data_disks;
1306 break;
1307 case 5:
1308 switch (conf->algorithm) {
1309 case ALGORITHM_LEFT_ASYMMETRIC:
1310 *pd_idx = data_disks - stripe % raid_disks;
1311 if (*dd_idx >= *pd_idx)
1312 (*dd_idx)++;
1313 break;
1314 case ALGORITHM_RIGHT_ASYMMETRIC:
1315 *pd_idx = stripe % raid_disks;
1316 if (*dd_idx >= *pd_idx)
1317 (*dd_idx)++;
1318 break;
1319 case ALGORITHM_LEFT_SYMMETRIC:
1320 *pd_idx = data_disks - stripe % raid_disks;
1321 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1322 break;
1323 case ALGORITHM_RIGHT_SYMMETRIC:
1324 *pd_idx = stripe % raid_disks;
1325 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1326 break;
1327 default:
1328 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1329 conf->algorithm);
1331 break;
1332 case 6:
1334 /**** FIX THIS ****/
1335 switch (conf->algorithm) {
1336 case ALGORITHM_LEFT_ASYMMETRIC:
1337 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1338 if (*pd_idx == raid_disks-1)
1339 (*dd_idx)++; /* Q D D D P */
1340 else if (*dd_idx >= *pd_idx)
1341 (*dd_idx) += 2; /* D D P Q D */
1342 break;
1343 case ALGORITHM_RIGHT_ASYMMETRIC:
1344 *pd_idx = stripe % raid_disks;
1345 if (*pd_idx == raid_disks-1)
1346 (*dd_idx)++; /* Q D D D P */
1347 else if (*dd_idx >= *pd_idx)
1348 (*dd_idx) += 2; /* D D P Q D */
1349 break;
1350 case ALGORITHM_LEFT_SYMMETRIC:
1351 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1352 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1353 break;
1354 case ALGORITHM_RIGHT_SYMMETRIC:
1355 *pd_idx = stripe % raid_disks;
1356 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1357 break;
1358 default:
1359 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1360 conf->algorithm);
1362 break;
1366 * Finally, compute the new sector number
1368 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1369 return new_sector;
1373 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1375 raid5_conf_t *conf = sh->raid_conf;
1376 int raid_disks = sh->disks;
1377 int data_disks = raid_disks - conf->max_degraded;
1378 sector_t new_sector = sh->sector, check;
1379 int sectors_per_chunk = conf->chunk_size >> 9;
1380 sector_t stripe;
1381 int chunk_offset;
1382 int chunk_number, dummy1, dummy2, dd_idx = i;
1383 sector_t r_sector;
1386 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1387 stripe = new_sector;
1388 BUG_ON(new_sector != stripe);
1390 if (i == sh->pd_idx)
1391 return 0;
1392 switch(conf->level) {
1393 case 4: break;
1394 case 5:
1395 switch (conf->algorithm) {
1396 case ALGORITHM_LEFT_ASYMMETRIC:
1397 case ALGORITHM_RIGHT_ASYMMETRIC:
1398 if (i > sh->pd_idx)
1399 i--;
1400 break;
1401 case ALGORITHM_LEFT_SYMMETRIC:
1402 case ALGORITHM_RIGHT_SYMMETRIC:
1403 if (i < sh->pd_idx)
1404 i += raid_disks;
1405 i -= (sh->pd_idx + 1);
1406 break;
1407 default:
1408 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1409 conf->algorithm);
1411 break;
1412 case 6:
1413 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1414 return 0; /* It is the Q disk */
1415 switch (conf->algorithm) {
1416 case ALGORITHM_LEFT_ASYMMETRIC:
1417 case ALGORITHM_RIGHT_ASYMMETRIC:
1418 if (sh->pd_idx == raid_disks-1)
1419 i--; /* Q D D D P */
1420 else if (i > sh->pd_idx)
1421 i -= 2; /* D D P Q D */
1422 break;
1423 case ALGORITHM_LEFT_SYMMETRIC:
1424 case ALGORITHM_RIGHT_SYMMETRIC:
1425 if (sh->pd_idx == raid_disks-1)
1426 i--; /* Q D D D P */
1427 else {
1428 /* D D P Q D */
1429 if (i < sh->pd_idx)
1430 i += raid_disks;
1431 i -= (sh->pd_idx + 2);
1433 break;
1434 default:
1435 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1436 conf->algorithm);
1438 break;
1441 chunk_number = stripe * data_disks + i;
1442 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1444 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1445 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1446 printk(KERN_ERR "compute_blocknr: map not correct\n");
1447 return 0;
1449 return r_sector;
1455 * Copy data between a page in the stripe cache, and one or more bion
1456 * The page could align with the middle of the bio, or there could be
1457 * several bion, each with several bio_vecs, which cover part of the page
1458 * Multiple bion are linked together on bi_next. There may be extras
1459 * at the end of this list. We ignore them.
1461 static void copy_data(int frombio, struct bio *bio,
1462 struct page *page,
1463 sector_t sector)
1465 char *pa = page_address(page);
1466 struct bio_vec *bvl;
1467 int i;
1468 int page_offset;
1470 if (bio->bi_sector >= sector)
1471 page_offset = (signed)(bio->bi_sector - sector) * 512;
1472 else
1473 page_offset = (signed)(sector - bio->bi_sector) * -512;
1474 bio_for_each_segment(bvl, bio, i) {
1475 int len = bio_iovec_idx(bio,i)->bv_len;
1476 int clen;
1477 int b_offset = 0;
1479 if (page_offset < 0) {
1480 b_offset = -page_offset;
1481 page_offset += b_offset;
1482 len -= b_offset;
1485 if (len > 0 && page_offset + len > STRIPE_SIZE)
1486 clen = STRIPE_SIZE - page_offset;
1487 else clen = len;
1489 if (clen > 0) {
1490 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1491 if (frombio)
1492 memcpy(pa+page_offset, ba+b_offset, clen);
1493 else
1494 memcpy(ba+b_offset, pa+page_offset, clen);
1495 __bio_kunmap_atomic(ba, KM_USER0);
1497 if (clen < len) /* hit end of page */
1498 break;
1499 page_offset += len;
1503 #define check_xor() do { \
1504 if (count == MAX_XOR_BLOCKS) { \
1505 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1506 count = 0; \
1508 } while(0)
1510 static void compute_parity6(struct stripe_head *sh, int method)
1512 raid6_conf_t *conf = sh->raid_conf;
1513 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1514 struct bio *chosen;
1515 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1516 void *ptrs[disks];
1518 qd_idx = raid6_next_disk(pd_idx, disks);
1519 d0_idx = raid6_next_disk(qd_idx, disks);
1521 pr_debug("compute_parity, stripe %llu, method %d\n",
1522 (unsigned long long)sh->sector, method);
1524 switch(method) {
1525 case READ_MODIFY_WRITE:
1526 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1527 case RECONSTRUCT_WRITE:
1528 for (i= disks; i-- ;)
1529 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1530 chosen = sh->dev[i].towrite;
1531 sh->dev[i].towrite = NULL;
1533 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1534 wake_up(&conf->wait_for_overlap);
1536 BUG_ON(sh->dev[i].written);
1537 sh->dev[i].written = chosen;
1539 break;
1540 case CHECK_PARITY:
1541 BUG(); /* Not implemented yet */
1544 for (i = disks; i--;)
1545 if (sh->dev[i].written) {
1546 sector_t sector = sh->dev[i].sector;
1547 struct bio *wbi = sh->dev[i].written;
1548 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1549 copy_data(1, wbi, sh->dev[i].page, sector);
1550 wbi = r5_next_bio(wbi, sector);
1553 set_bit(R5_LOCKED, &sh->dev[i].flags);
1554 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1557 // switch(method) {
1558 // case RECONSTRUCT_WRITE:
1559 // case CHECK_PARITY:
1560 // case UPDATE_PARITY:
1561 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1562 /* FIX: Is this ordering of drives even remotely optimal? */
1563 count = 0;
1564 i = d0_idx;
1565 do {
1566 ptrs[count++] = page_address(sh->dev[i].page);
1567 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1568 printk("block %d/%d not uptodate on parity calc\n", i,count);
1569 i = raid6_next_disk(i, disks);
1570 } while ( i != d0_idx );
1571 // break;
1572 // }
1574 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1576 switch(method) {
1577 case RECONSTRUCT_WRITE:
1578 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1579 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1580 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1581 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1582 break;
1583 case UPDATE_PARITY:
1584 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1585 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1586 break;
1591 /* Compute one missing block */
1592 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1594 int i, count, disks = sh->disks;
1595 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1596 int pd_idx = sh->pd_idx;
1597 int qd_idx = raid6_next_disk(pd_idx, disks);
1599 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1600 (unsigned long long)sh->sector, dd_idx);
1602 if ( dd_idx == qd_idx ) {
1603 /* We're actually computing the Q drive */
1604 compute_parity6(sh, UPDATE_PARITY);
1605 } else {
1606 dest = page_address(sh->dev[dd_idx].page);
1607 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1608 count = 0;
1609 for (i = disks ; i--; ) {
1610 if (i == dd_idx || i == qd_idx)
1611 continue;
1612 p = page_address(sh->dev[i].page);
1613 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1614 ptr[count++] = p;
1615 else
1616 printk("compute_block() %d, stripe %llu, %d"
1617 " not present\n", dd_idx,
1618 (unsigned long long)sh->sector, i);
1620 check_xor();
1622 if (count)
1623 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1624 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1625 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1629 /* Compute two missing blocks */
1630 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1632 int i, count, disks = sh->disks;
1633 int pd_idx = sh->pd_idx;
1634 int qd_idx = raid6_next_disk(pd_idx, disks);
1635 int d0_idx = raid6_next_disk(qd_idx, disks);
1636 int faila, failb;
1638 /* faila and failb are disk numbers relative to d0_idx */
1639 /* pd_idx become disks-2 and qd_idx become disks-1 */
1640 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1641 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1643 BUG_ON(faila == failb);
1644 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1646 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1647 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1649 if ( failb == disks-1 ) {
1650 /* Q disk is one of the missing disks */
1651 if ( faila == disks-2 ) {
1652 /* Missing P+Q, just recompute */
1653 compute_parity6(sh, UPDATE_PARITY);
1654 return;
1655 } else {
1656 /* We're missing D+Q; recompute D from P */
1657 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1658 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1659 return;
1663 /* We're missing D+P or D+D; build pointer table */
1665 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1666 void *ptrs[disks];
1668 count = 0;
1669 i = d0_idx;
1670 do {
1671 ptrs[count++] = page_address(sh->dev[i].page);
1672 i = raid6_next_disk(i, disks);
1673 if (i != dd_idx1 && i != dd_idx2 &&
1674 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1675 printk("compute_2 with missing block %d/%d\n", count, i);
1676 } while ( i != d0_idx );
1678 if ( failb == disks-2 ) {
1679 /* We're missing D+P. */
1680 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1681 } else {
1682 /* We're missing D+D. */
1683 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1686 /* Both the above update both missing blocks */
1687 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1688 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1692 static int
1693 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1695 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1696 int locked = 0;
1698 if (rcw) {
1699 /* if we are not expanding this is a proper write request, and
1700 * there will be bios with new data to be drained into the
1701 * stripe cache
1703 if (!expand) {
1704 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1705 sh->ops.count++;
1708 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1709 sh->ops.count++;
1711 for (i = disks; i--; ) {
1712 struct r5dev *dev = &sh->dev[i];
1714 if (dev->towrite) {
1715 set_bit(R5_LOCKED, &dev->flags);
1716 if (!expand)
1717 clear_bit(R5_UPTODATE, &dev->flags);
1718 locked++;
1721 } else {
1722 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1723 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1725 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1726 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1727 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1729 sh->ops.count += 3;
1731 for (i = disks; i--; ) {
1732 struct r5dev *dev = &sh->dev[i];
1733 if (i == pd_idx)
1734 continue;
1736 /* For a read-modify write there may be blocks that are
1737 * locked for reading while others are ready to be
1738 * written so we distinguish these blocks by the
1739 * R5_Wantprexor bit
1741 if (dev->towrite &&
1742 (test_bit(R5_UPTODATE, &dev->flags) ||
1743 test_bit(R5_Wantcompute, &dev->flags))) {
1744 set_bit(R5_Wantprexor, &dev->flags);
1745 set_bit(R5_LOCKED, &dev->flags);
1746 clear_bit(R5_UPTODATE, &dev->flags);
1747 locked++;
1752 /* keep the parity disk locked while asynchronous operations
1753 * are in flight
1755 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1756 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1757 locked++;
1759 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1760 __FUNCTION__, (unsigned long long)sh->sector,
1761 locked, sh->ops.pending);
1763 return locked;
1767 * Each stripe/dev can have one or more bion attached.
1768 * toread/towrite point to the first in a chain.
1769 * The bi_next chain must be in order.
1771 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1773 struct bio **bip;
1774 raid5_conf_t *conf = sh->raid_conf;
1775 int firstwrite=0;
1777 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1778 (unsigned long long)bi->bi_sector,
1779 (unsigned long long)sh->sector);
1782 spin_lock(&sh->lock);
1783 spin_lock_irq(&conf->device_lock);
1784 if (forwrite) {
1785 bip = &sh->dev[dd_idx].towrite;
1786 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1787 firstwrite = 1;
1788 } else
1789 bip = &sh->dev[dd_idx].toread;
1790 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1791 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1792 goto overlap;
1793 bip = & (*bip)->bi_next;
1795 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1796 goto overlap;
1798 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1799 if (*bip)
1800 bi->bi_next = *bip;
1801 *bip = bi;
1802 bi->bi_phys_segments ++;
1803 spin_unlock_irq(&conf->device_lock);
1804 spin_unlock(&sh->lock);
1806 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1807 (unsigned long long)bi->bi_sector,
1808 (unsigned long long)sh->sector, dd_idx);
1810 if (conf->mddev->bitmap && firstwrite) {
1811 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1812 STRIPE_SECTORS, 0);
1813 sh->bm_seq = conf->seq_flush+1;
1814 set_bit(STRIPE_BIT_DELAY, &sh->state);
1817 if (forwrite) {
1818 /* check if page is covered */
1819 sector_t sector = sh->dev[dd_idx].sector;
1820 for (bi=sh->dev[dd_idx].towrite;
1821 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1822 bi && bi->bi_sector <= sector;
1823 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1824 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1825 sector = bi->bi_sector + (bi->bi_size>>9);
1827 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1828 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1830 return 1;
1832 overlap:
1833 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1834 spin_unlock_irq(&conf->device_lock);
1835 spin_unlock(&sh->lock);
1836 return 0;
1839 static void end_reshape(raid5_conf_t *conf);
1841 static int page_is_zero(struct page *p)
1843 char *a = page_address(p);
1844 return ((*(u32*)a) == 0 &&
1845 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1848 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1850 int sectors_per_chunk = conf->chunk_size >> 9;
1851 int pd_idx, dd_idx;
1852 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1854 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1855 *sectors_per_chunk + chunk_offset,
1856 disks, disks - conf->max_degraded,
1857 &dd_idx, &pd_idx, conf);
1858 return pd_idx;
1861 static void
1862 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1863 struct stripe_head_state *s, int disks,
1864 struct bio **return_bi)
1866 int i;
1867 for (i = disks; i--; ) {
1868 struct bio *bi;
1869 int bitmap_end = 0;
1871 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1872 mdk_rdev_t *rdev;
1873 rcu_read_lock();
1874 rdev = rcu_dereference(conf->disks[i].rdev);
1875 if (rdev && test_bit(In_sync, &rdev->flags))
1876 /* multiple read failures in one stripe */
1877 md_error(conf->mddev, rdev);
1878 rcu_read_unlock();
1880 spin_lock_irq(&conf->device_lock);
1881 /* fail all writes first */
1882 bi = sh->dev[i].towrite;
1883 sh->dev[i].towrite = NULL;
1884 if (bi) {
1885 s->to_write--;
1886 bitmap_end = 1;
1889 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1890 wake_up(&conf->wait_for_overlap);
1892 while (bi && bi->bi_sector <
1893 sh->dev[i].sector + STRIPE_SECTORS) {
1894 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1895 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1896 if (--bi->bi_phys_segments == 0) {
1897 md_write_end(conf->mddev);
1898 bi->bi_next = *return_bi;
1899 *return_bi = bi;
1901 bi = nextbi;
1903 /* and fail all 'written' */
1904 bi = sh->dev[i].written;
1905 sh->dev[i].written = NULL;
1906 if (bi) bitmap_end = 1;
1907 while (bi && bi->bi_sector <
1908 sh->dev[i].sector + STRIPE_SECTORS) {
1909 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1910 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1911 if (--bi->bi_phys_segments == 0) {
1912 md_write_end(conf->mddev);
1913 bi->bi_next = *return_bi;
1914 *return_bi = bi;
1916 bi = bi2;
1919 /* fail any reads if this device is non-operational and
1920 * the data has not reached the cache yet.
1922 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1923 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1924 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1925 bi = sh->dev[i].toread;
1926 sh->dev[i].toread = NULL;
1927 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1928 wake_up(&conf->wait_for_overlap);
1929 if (bi) s->to_read--;
1930 while (bi && bi->bi_sector <
1931 sh->dev[i].sector + STRIPE_SECTORS) {
1932 struct bio *nextbi =
1933 r5_next_bio(bi, sh->dev[i].sector);
1934 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1935 if (--bi->bi_phys_segments == 0) {
1936 bi->bi_next = *return_bi;
1937 *return_bi = bi;
1939 bi = nextbi;
1942 spin_unlock_irq(&conf->device_lock);
1943 if (bitmap_end)
1944 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1945 STRIPE_SECTORS, 0, 0);
1950 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1951 * to process
1953 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1954 struct stripe_head_state *s, int disk_idx, int disks)
1956 struct r5dev *dev = &sh->dev[disk_idx];
1957 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1959 /* don't schedule compute operations or reads on the parity block while
1960 * a check is in flight
1962 if ((disk_idx == sh->pd_idx) &&
1963 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1964 return ~0;
1966 /* is the data in this block needed, and can we get it? */
1967 if (!test_bit(R5_LOCKED, &dev->flags) &&
1968 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1969 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1970 s->syncing || s->expanding || (s->failed &&
1971 (failed_dev->toread || (failed_dev->towrite &&
1972 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1973 ))))) {
1974 /* 1/ We would like to get this block, possibly by computing it,
1975 * but we might not be able to.
1977 * 2/ Since parity check operations potentially make the parity
1978 * block !uptodate it will need to be refreshed before any
1979 * compute operations on data disks are scheduled.
1981 * 3/ We hold off parity block re-reads until check operations
1982 * have quiesced.
1984 if ((s->uptodate == disks - 1) &&
1985 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1986 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1987 set_bit(R5_Wantcompute, &dev->flags);
1988 sh->ops.target = disk_idx;
1989 s->req_compute = 1;
1990 sh->ops.count++;
1991 /* Careful: from this point on 'uptodate' is in the eye
1992 * of raid5_run_ops which services 'compute' operations
1993 * before writes. R5_Wantcompute flags a block that will
1994 * be R5_UPTODATE by the time it is needed for a
1995 * subsequent operation.
1997 s->uptodate++;
1998 return 0; /* uptodate + compute == disks */
1999 } else if ((s->uptodate < disks - 1) &&
2000 test_bit(R5_Insync, &dev->flags)) {
2001 /* Note: we hold off compute operations while checks are
2002 * in flight, but we still prefer 'compute' over 'read'
2003 * hence we only read if (uptodate < * disks-1)
2005 set_bit(R5_LOCKED, &dev->flags);
2006 set_bit(R5_Wantread, &dev->flags);
2007 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2008 sh->ops.count++;
2009 s->locked++;
2010 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2011 s->syncing);
2015 return ~0;
2018 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2019 struct stripe_head_state *s, int disks)
2021 int i;
2023 /* Clear completed compute operations. Parity recovery
2024 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2025 * later on in this routine
2027 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2028 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2029 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2030 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2031 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2034 /* look for blocks to read/compute, skip this if a compute
2035 * is already in flight, or if the stripe contents are in the
2036 * midst of changing due to a write
2038 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2039 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2040 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2041 for (i = disks; i--; )
2042 if (__handle_issuing_new_read_requests5(
2043 sh, s, i, disks) == 0)
2044 break;
2046 set_bit(STRIPE_HANDLE, &sh->state);
2049 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2050 struct stripe_head_state *s, struct r6_state *r6s,
2051 int disks)
2053 int i;
2054 for (i = disks; i--; ) {
2055 struct r5dev *dev = &sh->dev[i];
2056 if (!test_bit(R5_LOCKED, &dev->flags) &&
2057 !test_bit(R5_UPTODATE, &dev->flags) &&
2058 (dev->toread || (dev->towrite &&
2059 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2060 s->syncing || s->expanding ||
2061 (s->failed >= 1 &&
2062 (sh->dev[r6s->failed_num[0]].toread ||
2063 s->to_write)) ||
2064 (s->failed >= 2 &&
2065 (sh->dev[r6s->failed_num[1]].toread ||
2066 s->to_write)))) {
2067 /* we would like to get this block, possibly
2068 * by computing it, but we might not be able to
2070 if (s->uptodate == disks-1) {
2071 pr_debug("Computing stripe %llu block %d\n",
2072 (unsigned long long)sh->sector, i);
2073 compute_block_1(sh, i, 0);
2074 s->uptodate++;
2075 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2076 /* Computing 2-failure is *very* expensive; only
2077 * do it if failed >= 2
2079 int other;
2080 for (other = disks; other--; ) {
2081 if (other == i)
2082 continue;
2083 if (!test_bit(R5_UPTODATE,
2084 &sh->dev[other].flags))
2085 break;
2087 BUG_ON(other < 0);
2088 pr_debug("Computing stripe %llu blocks %d,%d\n",
2089 (unsigned long long)sh->sector,
2090 i, other);
2091 compute_block_2(sh, i, other);
2092 s->uptodate += 2;
2093 } else if (test_bit(R5_Insync, &dev->flags)) {
2094 set_bit(R5_LOCKED, &dev->flags);
2095 set_bit(R5_Wantread, &dev->flags);
2096 s->locked++;
2097 pr_debug("Reading block %d (sync=%d)\n",
2098 i, s->syncing);
2102 set_bit(STRIPE_HANDLE, &sh->state);
2106 /* handle_completed_write_requests
2107 * any written block on an uptodate or failed drive can be returned.
2108 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2109 * never LOCKED, so we don't need to test 'failed' directly.
2111 static void handle_completed_write_requests(raid5_conf_t *conf,
2112 struct stripe_head *sh, int disks, struct bio **return_bi)
2114 int i;
2115 struct r5dev *dev;
2117 for (i = disks; i--; )
2118 if (sh->dev[i].written) {
2119 dev = &sh->dev[i];
2120 if (!test_bit(R5_LOCKED, &dev->flags) &&
2121 test_bit(R5_UPTODATE, &dev->flags)) {
2122 /* We can return any write requests */
2123 struct bio *wbi, *wbi2;
2124 int bitmap_end = 0;
2125 pr_debug("Return write for disc %d\n", i);
2126 spin_lock_irq(&conf->device_lock);
2127 wbi = dev->written;
2128 dev->written = NULL;
2129 while (wbi && wbi->bi_sector <
2130 dev->sector + STRIPE_SECTORS) {
2131 wbi2 = r5_next_bio(wbi, dev->sector);
2132 if (--wbi->bi_phys_segments == 0) {
2133 md_write_end(conf->mddev);
2134 wbi->bi_next = *return_bi;
2135 *return_bi = wbi;
2137 wbi = wbi2;
2139 if (dev->towrite == NULL)
2140 bitmap_end = 1;
2141 spin_unlock_irq(&conf->device_lock);
2142 if (bitmap_end)
2143 bitmap_endwrite(conf->mddev->bitmap,
2144 sh->sector,
2145 STRIPE_SECTORS,
2146 !test_bit(STRIPE_DEGRADED, &sh->state),
2152 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2153 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2155 int rmw = 0, rcw = 0, i;
2156 for (i = disks; i--; ) {
2157 /* would I have to read this buffer for read_modify_write */
2158 struct r5dev *dev = &sh->dev[i];
2159 if ((dev->towrite || i == sh->pd_idx) &&
2160 !test_bit(R5_LOCKED, &dev->flags) &&
2161 !(test_bit(R5_UPTODATE, &dev->flags) ||
2162 test_bit(R5_Wantcompute, &dev->flags))) {
2163 if (test_bit(R5_Insync, &dev->flags))
2164 rmw++;
2165 else
2166 rmw += 2*disks; /* cannot read it */
2168 /* Would I have to read this buffer for reconstruct_write */
2169 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2170 !test_bit(R5_LOCKED, &dev->flags) &&
2171 !(test_bit(R5_UPTODATE, &dev->flags) ||
2172 test_bit(R5_Wantcompute, &dev->flags))) {
2173 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2174 else
2175 rcw += 2*disks;
2178 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2179 (unsigned long long)sh->sector, rmw, rcw);
2180 set_bit(STRIPE_HANDLE, &sh->state);
2181 if (rmw < rcw && rmw > 0)
2182 /* prefer read-modify-write, but need to get some data */
2183 for (i = disks; i--; ) {
2184 struct r5dev *dev = &sh->dev[i];
2185 if ((dev->towrite || i == sh->pd_idx) &&
2186 !test_bit(R5_LOCKED, &dev->flags) &&
2187 !(test_bit(R5_UPTODATE, &dev->flags) ||
2188 test_bit(R5_Wantcompute, &dev->flags)) &&
2189 test_bit(R5_Insync, &dev->flags)) {
2190 if (
2191 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2192 pr_debug("Read_old block "
2193 "%d for r-m-w\n", i);
2194 set_bit(R5_LOCKED, &dev->flags);
2195 set_bit(R5_Wantread, &dev->flags);
2196 if (!test_and_set_bit(
2197 STRIPE_OP_IO, &sh->ops.pending))
2198 sh->ops.count++;
2199 s->locked++;
2200 } else {
2201 set_bit(STRIPE_DELAYED, &sh->state);
2202 set_bit(STRIPE_HANDLE, &sh->state);
2206 if (rcw <= rmw && rcw > 0)
2207 /* want reconstruct write, but need to get some data */
2208 for (i = disks; i--; ) {
2209 struct r5dev *dev = &sh->dev[i];
2210 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2211 i != sh->pd_idx &&
2212 !test_bit(R5_LOCKED, &dev->flags) &&
2213 !(test_bit(R5_UPTODATE, &dev->flags) ||
2214 test_bit(R5_Wantcompute, &dev->flags)) &&
2215 test_bit(R5_Insync, &dev->flags)) {
2216 if (
2217 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2218 pr_debug("Read_old block "
2219 "%d for Reconstruct\n", i);
2220 set_bit(R5_LOCKED, &dev->flags);
2221 set_bit(R5_Wantread, &dev->flags);
2222 if (!test_and_set_bit(
2223 STRIPE_OP_IO, &sh->ops.pending))
2224 sh->ops.count++;
2225 s->locked++;
2226 } else {
2227 set_bit(STRIPE_DELAYED, &sh->state);
2228 set_bit(STRIPE_HANDLE, &sh->state);
2232 /* now if nothing is locked, and if we have enough data,
2233 * we can start a write request
2235 /* since handle_stripe can be called at any time we need to handle the
2236 * case where a compute block operation has been submitted and then a
2237 * subsequent call wants to start a write request. raid5_run_ops only
2238 * handles the case where compute block and postxor are requested
2239 * simultaneously. If this is not the case then new writes need to be
2240 * held off until the compute completes.
2242 if ((s->req_compute ||
2243 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2244 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2245 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2246 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2249 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2250 struct stripe_head *sh, struct stripe_head_state *s,
2251 struct r6_state *r6s, int disks)
2253 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2254 int qd_idx = r6s->qd_idx;
2255 for (i = disks; i--; ) {
2256 struct r5dev *dev = &sh->dev[i];
2257 /* Would I have to read this buffer for reconstruct_write */
2258 if (!test_bit(R5_OVERWRITE, &dev->flags)
2259 && i != pd_idx && i != qd_idx
2260 && (!test_bit(R5_LOCKED, &dev->flags)
2261 ) &&
2262 !test_bit(R5_UPTODATE, &dev->flags)) {
2263 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2264 else {
2265 pr_debug("raid6: must_compute: "
2266 "disk %d flags=%#lx\n", i, dev->flags);
2267 must_compute++;
2271 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2272 (unsigned long long)sh->sector, rcw, must_compute);
2273 set_bit(STRIPE_HANDLE, &sh->state);
2275 if (rcw > 0)
2276 /* want reconstruct write, but need to get some data */
2277 for (i = disks; i--; ) {
2278 struct r5dev *dev = &sh->dev[i];
2279 if (!test_bit(R5_OVERWRITE, &dev->flags)
2280 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2281 && !test_bit(R5_LOCKED, &dev->flags) &&
2282 !test_bit(R5_UPTODATE, &dev->flags) &&
2283 test_bit(R5_Insync, &dev->flags)) {
2284 if (
2285 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2286 pr_debug("Read_old stripe %llu "
2287 "block %d for Reconstruct\n",
2288 (unsigned long long)sh->sector, i);
2289 set_bit(R5_LOCKED, &dev->flags);
2290 set_bit(R5_Wantread, &dev->flags);
2291 s->locked++;
2292 } else {
2293 pr_debug("Request delayed stripe %llu "
2294 "block %d for Reconstruct\n",
2295 (unsigned long long)sh->sector, i);
2296 set_bit(STRIPE_DELAYED, &sh->state);
2297 set_bit(STRIPE_HANDLE, &sh->state);
2301 /* now if nothing is locked, and if we have enough data, we can start a
2302 * write request
2304 if (s->locked == 0 && rcw == 0 &&
2305 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2306 if (must_compute > 0) {
2307 /* We have failed blocks and need to compute them */
2308 switch (s->failed) {
2309 case 0:
2310 BUG();
2311 case 1:
2312 compute_block_1(sh, r6s->failed_num[0], 0);
2313 break;
2314 case 2:
2315 compute_block_2(sh, r6s->failed_num[0],
2316 r6s->failed_num[1]);
2317 break;
2318 default: /* This request should have been failed? */
2319 BUG();
2323 pr_debug("Computing parity for stripe %llu\n",
2324 (unsigned long long)sh->sector);
2325 compute_parity6(sh, RECONSTRUCT_WRITE);
2326 /* now every locked buffer is ready to be written */
2327 for (i = disks; i--; )
2328 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2329 pr_debug("Writing stripe %llu block %d\n",
2330 (unsigned long long)sh->sector, i);
2331 s->locked++;
2332 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2334 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2335 set_bit(STRIPE_INSYNC, &sh->state);
2337 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2338 atomic_dec(&conf->preread_active_stripes);
2339 if (atomic_read(&conf->preread_active_stripes) <
2340 IO_THRESHOLD)
2341 md_wakeup_thread(conf->mddev->thread);
2346 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2347 struct stripe_head_state *s, int disks)
2349 set_bit(STRIPE_HANDLE, &sh->state);
2350 /* Take one of the following actions:
2351 * 1/ start a check parity operation if (uptodate == disks)
2352 * 2/ finish a check parity operation and act on the result
2353 * 3/ skip to the writeback section if we previously
2354 * initiated a recovery operation
2356 if (s->failed == 0 &&
2357 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2358 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2359 BUG_ON(s->uptodate != disks);
2360 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2361 sh->ops.count++;
2362 s->uptodate--;
2363 } else if (
2364 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2365 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2366 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2368 if (sh->ops.zero_sum_result == 0)
2369 /* parity is correct (on disc,
2370 * not in buffer any more)
2372 set_bit(STRIPE_INSYNC, &sh->state);
2373 else {
2374 conf->mddev->resync_mismatches +=
2375 STRIPE_SECTORS;
2376 if (test_bit(
2377 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2378 /* don't try to repair!! */
2379 set_bit(STRIPE_INSYNC, &sh->state);
2380 else {
2381 set_bit(STRIPE_OP_COMPUTE_BLK,
2382 &sh->ops.pending);
2383 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2384 &sh->ops.pending);
2385 set_bit(R5_Wantcompute,
2386 &sh->dev[sh->pd_idx].flags);
2387 sh->ops.target = sh->pd_idx;
2388 sh->ops.count++;
2389 s->uptodate++;
2395 /* check if we can clear a parity disk reconstruct */
2396 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2397 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2399 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2400 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2401 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2402 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2405 /* Wait for check parity and compute block operations to complete
2406 * before write-back
2408 if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2409 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2410 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2411 struct r5dev *dev;
2412 /* either failed parity check, or recovery is happening */
2413 if (s->failed == 0)
2414 s->failed_num = sh->pd_idx;
2415 dev = &sh->dev[s->failed_num];
2416 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2417 BUG_ON(s->uptodate != disks);
2419 set_bit(R5_LOCKED, &dev->flags);
2420 set_bit(R5_Wantwrite, &dev->flags);
2421 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2422 sh->ops.count++;
2424 clear_bit(STRIPE_DEGRADED, &sh->state);
2425 s->locked++;
2426 set_bit(STRIPE_INSYNC, &sh->state);
2431 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2432 struct stripe_head_state *s,
2433 struct r6_state *r6s, struct page *tmp_page,
2434 int disks)
2436 int update_p = 0, update_q = 0;
2437 struct r5dev *dev;
2438 int pd_idx = sh->pd_idx;
2439 int qd_idx = r6s->qd_idx;
2441 set_bit(STRIPE_HANDLE, &sh->state);
2443 BUG_ON(s->failed > 2);
2444 BUG_ON(s->uptodate < disks);
2445 /* Want to check and possibly repair P and Q.
2446 * However there could be one 'failed' device, in which
2447 * case we can only check one of them, possibly using the
2448 * other to generate missing data
2451 /* If !tmp_page, we cannot do the calculations,
2452 * but as we have set STRIPE_HANDLE, we will soon be called
2453 * by stripe_handle with a tmp_page - just wait until then.
2455 if (tmp_page) {
2456 if (s->failed == r6s->q_failed) {
2457 /* The only possible failed device holds 'Q', so it
2458 * makes sense to check P (If anything else were failed,
2459 * we would have used P to recreate it).
2461 compute_block_1(sh, pd_idx, 1);
2462 if (!page_is_zero(sh->dev[pd_idx].page)) {
2463 compute_block_1(sh, pd_idx, 0);
2464 update_p = 1;
2467 if (!r6s->q_failed && s->failed < 2) {
2468 /* q is not failed, and we didn't use it to generate
2469 * anything, so it makes sense to check it
2471 memcpy(page_address(tmp_page),
2472 page_address(sh->dev[qd_idx].page),
2473 STRIPE_SIZE);
2474 compute_parity6(sh, UPDATE_PARITY);
2475 if (memcmp(page_address(tmp_page),
2476 page_address(sh->dev[qd_idx].page),
2477 STRIPE_SIZE) != 0) {
2478 clear_bit(STRIPE_INSYNC, &sh->state);
2479 update_q = 1;
2482 if (update_p || update_q) {
2483 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2484 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2485 /* don't try to repair!! */
2486 update_p = update_q = 0;
2489 /* now write out any block on a failed drive,
2490 * or P or Q if they need it
2493 if (s->failed == 2) {
2494 dev = &sh->dev[r6s->failed_num[1]];
2495 s->locked++;
2496 set_bit(R5_LOCKED, &dev->flags);
2497 set_bit(R5_Wantwrite, &dev->flags);
2499 if (s->failed >= 1) {
2500 dev = &sh->dev[r6s->failed_num[0]];
2501 s->locked++;
2502 set_bit(R5_LOCKED, &dev->flags);
2503 set_bit(R5_Wantwrite, &dev->flags);
2506 if (update_p) {
2507 dev = &sh->dev[pd_idx];
2508 s->locked++;
2509 set_bit(R5_LOCKED, &dev->flags);
2510 set_bit(R5_Wantwrite, &dev->flags);
2512 if (update_q) {
2513 dev = &sh->dev[qd_idx];
2514 s->locked++;
2515 set_bit(R5_LOCKED, &dev->flags);
2516 set_bit(R5_Wantwrite, &dev->flags);
2518 clear_bit(STRIPE_DEGRADED, &sh->state);
2520 set_bit(STRIPE_INSYNC, &sh->state);
2524 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2525 struct r6_state *r6s)
2527 int i;
2529 /* We have read all the blocks in this stripe and now we need to
2530 * copy some of them into a target stripe for expand.
2532 struct dma_async_tx_descriptor *tx = NULL;
2533 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2534 for (i = 0; i < sh->disks; i++)
2535 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2536 int dd_idx, pd_idx, j;
2537 struct stripe_head *sh2;
2539 sector_t bn = compute_blocknr(sh, i);
2540 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2541 conf->raid_disks -
2542 conf->max_degraded, &dd_idx,
2543 &pd_idx, conf);
2544 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2545 pd_idx, 1);
2546 if (sh2 == NULL)
2547 /* so far only the early blocks of this stripe
2548 * have been requested. When later blocks
2549 * get requested, we will try again
2551 continue;
2552 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2553 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2554 /* must have already done this block */
2555 release_stripe(sh2);
2556 continue;
2559 /* place all the copies on one channel */
2560 tx = async_memcpy(sh2->dev[dd_idx].page,
2561 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2562 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2564 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2565 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2566 for (j = 0; j < conf->raid_disks; j++)
2567 if (j != sh2->pd_idx &&
2568 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2569 sh2->disks)) &&
2570 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2571 break;
2572 if (j == conf->raid_disks) {
2573 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2574 set_bit(STRIPE_HANDLE, &sh2->state);
2576 release_stripe(sh2);
2579 /* done submitting copies, wait for them to complete */
2580 if (tx) {
2581 async_tx_ack(tx);
2582 dma_wait_for_async_tx(tx);
2587 * handle_stripe - do things to a stripe.
2589 * We lock the stripe and then examine the state of various bits
2590 * to see what needs to be done.
2591 * Possible results:
2592 * return some read request which now have data
2593 * return some write requests which are safely on disc
2594 * schedule a read on some buffers
2595 * schedule a write of some buffers
2596 * return confirmation of parity correctness
2598 * buffers are taken off read_list or write_list, and bh_cache buffers
2599 * get BH_Lock set before the stripe lock is released.
2603 static void handle_stripe5(struct stripe_head *sh)
2605 raid5_conf_t *conf = sh->raid_conf;
2606 int disks = sh->disks, i;
2607 struct bio *return_bi = NULL;
2608 struct stripe_head_state s;
2609 struct r5dev *dev;
2610 unsigned long pending = 0;
2612 memset(&s, 0, sizeof(s));
2613 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2614 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2615 atomic_read(&sh->count), sh->pd_idx,
2616 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2618 spin_lock(&sh->lock);
2619 clear_bit(STRIPE_HANDLE, &sh->state);
2620 clear_bit(STRIPE_DELAYED, &sh->state);
2622 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2623 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2624 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2625 /* Now to look around and see what can be done */
2627 /* clean-up completed biofill operations */
2628 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2629 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2630 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2631 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2634 rcu_read_lock();
2635 for (i=disks; i--; ) {
2636 mdk_rdev_t *rdev;
2637 struct r5dev *dev = &sh->dev[i];
2638 clear_bit(R5_Insync, &dev->flags);
2640 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2641 "written %p\n", i, dev->flags, dev->toread, dev->read,
2642 dev->towrite, dev->written);
2644 /* maybe we can request a biofill operation
2646 * new wantfill requests are only permitted while
2647 * STRIPE_OP_BIOFILL is clear
2649 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2650 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2651 set_bit(R5_Wantfill, &dev->flags);
2653 /* now count some things */
2654 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2655 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2656 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2658 if (test_bit(R5_Wantfill, &dev->flags))
2659 s.to_fill++;
2660 else if (dev->toread)
2661 s.to_read++;
2662 if (dev->towrite) {
2663 s.to_write++;
2664 if (!test_bit(R5_OVERWRITE, &dev->flags))
2665 s.non_overwrite++;
2667 if (dev->written)
2668 s.written++;
2669 rdev = rcu_dereference(conf->disks[i].rdev);
2670 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2671 /* The ReadError flag will just be confusing now */
2672 clear_bit(R5_ReadError, &dev->flags);
2673 clear_bit(R5_ReWrite, &dev->flags);
2675 if (!rdev || !test_bit(In_sync, &rdev->flags)
2676 || test_bit(R5_ReadError, &dev->flags)) {
2677 s.failed++;
2678 s.failed_num = i;
2679 } else
2680 set_bit(R5_Insync, &dev->flags);
2682 rcu_read_unlock();
2684 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2685 sh->ops.count++;
2687 pr_debug("locked=%d uptodate=%d to_read=%d"
2688 " to_write=%d failed=%d failed_num=%d\n",
2689 s.locked, s.uptodate, s.to_read, s.to_write,
2690 s.failed, s.failed_num);
2691 /* check if the array has lost two devices and, if so, some requests might
2692 * need to be failed
2694 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2695 handle_requests_to_failed_array(conf, sh, &s, disks,
2696 &return_bi);
2697 if (s.failed > 1 && s.syncing) {
2698 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2699 clear_bit(STRIPE_SYNCING, &sh->state);
2700 s.syncing = 0;
2703 /* might be able to return some write requests if the parity block
2704 * is safe, or on a failed drive
2706 dev = &sh->dev[sh->pd_idx];
2707 if ( s.written &&
2708 ((test_bit(R5_Insync, &dev->flags) &&
2709 !test_bit(R5_LOCKED, &dev->flags) &&
2710 test_bit(R5_UPTODATE, &dev->flags)) ||
2711 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2712 handle_completed_write_requests(conf, sh, disks, &return_bi);
2714 /* Now we might consider reading some blocks, either to check/generate
2715 * parity, or to satisfy requests
2716 * or to load a block that is being partially written.
2718 if (s.to_read || s.non_overwrite ||
2719 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2720 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2721 handle_issuing_new_read_requests5(sh, &s, disks);
2723 /* Now we check to see if any write operations have recently
2724 * completed
2727 /* leave prexor set until postxor is done, allows us to distinguish
2728 * a rmw from a rcw during biodrain
2730 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2731 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2733 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2734 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2735 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2737 for (i = disks; i--; )
2738 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2741 /* if only POSTXOR is set then this is an 'expand' postxor */
2742 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2743 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2745 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2746 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2747 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2749 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2750 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2751 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2753 /* All the 'written' buffers and the parity block are ready to
2754 * be written back to disk
2756 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2757 for (i = disks; i--; ) {
2758 dev = &sh->dev[i];
2759 if (test_bit(R5_LOCKED, &dev->flags) &&
2760 (i == sh->pd_idx || dev->written)) {
2761 pr_debug("Writing block %d\n", i);
2762 set_bit(R5_Wantwrite, &dev->flags);
2763 if (!test_and_set_bit(
2764 STRIPE_OP_IO, &sh->ops.pending))
2765 sh->ops.count++;
2766 if (!test_bit(R5_Insync, &dev->flags) ||
2767 (i == sh->pd_idx && s.failed == 0))
2768 set_bit(STRIPE_INSYNC, &sh->state);
2771 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2772 atomic_dec(&conf->preread_active_stripes);
2773 if (atomic_read(&conf->preread_active_stripes) <
2774 IO_THRESHOLD)
2775 md_wakeup_thread(conf->mddev->thread);
2779 /* Now to consider new write requests and what else, if anything
2780 * should be read. We do not handle new writes when:
2781 * 1/ A 'write' operation (copy+xor) is already in flight.
2782 * 2/ A 'check' operation is in flight, as it may clobber the parity
2783 * block.
2785 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2786 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2787 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2789 /* maybe we need to check and possibly fix the parity for this stripe
2790 * Any reads will already have been scheduled, so we just see if enough
2791 * data is available. The parity check is held off while parity
2792 * dependent operations are in flight.
2794 if ((s.syncing && s.locked == 0 &&
2795 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2796 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2797 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2798 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2799 handle_parity_checks5(conf, sh, &s, disks);
2801 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2802 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2803 clear_bit(STRIPE_SYNCING, &sh->state);
2806 /* If the failed drive is just a ReadError, then we might need to progress
2807 * the repair/check process
2809 if (s.failed == 1 && !conf->mddev->ro &&
2810 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2811 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2812 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2814 dev = &sh->dev[s.failed_num];
2815 if (!test_bit(R5_ReWrite, &dev->flags)) {
2816 set_bit(R5_Wantwrite, &dev->flags);
2817 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2818 sh->ops.count++;
2819 set_bit(R5_ReWrite, &dev->flags);
2820 set_bit(R5_LOCKED, &dev->flags);
2821 s.locked++;
2822 } else {
2823 /* let's read it back */
2824 set_bit(R5_Wantread, &dev->flags);
2825 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2826 sh->ops.count++;
2827 set_bit(R5_LOCKED, &dev->flags);
2828 s.locked++;
2832 /* Finish postxor operations initiated by the expansion
2833 * process
2835 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2836 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2838 clear_bit(STRIPE_EXPANDING, &sh->state);
2840 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2841 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2842 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2844 for (i = conf->raid_disks; i--; ) {
2845 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2846 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2847 sh->ops.count++;
2851 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2852 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2853 /* Need to write out all blocks after computing parity */
2854 sh->disks = conf->raid_disks;
2855 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2856 conf->raid_disks);
2857 s.locked += handle_write_operations5(sh, 1, 1);
2858 } else if (s.expanded &&
2859 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2860 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2861 atomic_dec(&conf->reshape_stripes);
2862 wake_up(&conf->wait_for_overlap);
2863 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2866 if (s.expanding && s.locked == 0)
2867 handle_stripe_expansion(conf, sh, NULL);
2869 if (sh->ops.count)
2870 pending = get_stripe_work(sh);
2872 spin_unlock(&sh->lock);
2874 if (pending)
2875 raid5_run_ops(sh, pending);
2877 return_io(return_bi);
2881 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2883 raid6_conf_t *conf = sh->raid_conf;
2884 int disks = sh->disks;
2885 struct bio *return_bi = NULL;
2886 int i, pd_idx = sh->pd_idx;
2887 struct stripe_head_state s;
2888 struct r6_state r6s;
2889 struct r5dev *dev, *pdev, *qdev;
2891 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2892 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2893 "pd_idx=%d, qd_idx=%d\n",
2894 (unsigned long long)sh->sector, sh->state,
2895 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2896 memset(&s, 0, sizeof(s));
2898 spin_lock(&sh->lock);
2899 clear_bit(STRIPE_HANDLE, &sh->state);
2900 clear_bit(STRIPE_DELAYED, &sh->state);
2902 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2903 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2904 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2905 /* Now to look around and see what can be done */
2907 rcu_read_lock();
2908 for (i=disks; i--; ) {
2909 mdk_rdev_t *rdev;
2910 dev = &sh->dev[i];
2911 clear_bit(R5_Insync, &dev->flags);
2913 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2914 i, dev->flags, dev->toread, dev->towrite, dev->written);
2915 /* maybe we can reply to a read */
2916 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2917 struct bio *rbi, *rbi2;
2918 pr_debug("Return read for disc %d\n", i);
2919 spin_lock_irq(&conf->device_lock);
2920 rbi = dev->toread;
2921 dev->toread = NULL;
2922 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2923 wake_up(&conf->wait_for_overlap);
2924 spin_unlock_irq(&conf->device_lock);
2925 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2926 copy_data(0, rbi, dev->page, dev->sector);
2927 rbi2 = r5_next_bio(rbi, dev->sector);
2928 spin_lock_irq(&conf->device_lock);
2929 if (--rbi->bi_phys_segments == 0) {
2930 rbi->bi_next = return_bi;
2931 return_bi = rbi;
2933 spin_unlock_irq(&conf->device_lock);
2934 rbi = rbi2;
2938 /* now count some things */
2939 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2940 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2943 if (dev->toread)
2944 s.to_read++;
2945 if (dev->towrite) {
2946 s.to_write++;
2947 if (!test_bit(R5_OVERWRITE, &dev->flags))
2948 s.non_overwrite++;
2950 if (dev->written)
2951 s.written++;
2952 rdev = rcu_dereference(conf->disks[i].rdev);
2953 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2954 /* The ReadError flag will just be confusing now */
2955 clear_bit(R5_ReadError, &dev->flags);
2956 clear_bit(R5_ReWrite, &dev->flags);
2958 if (!rdev || !test_bit(In_sync, &rdev->flags)
2959 || test_bit(R5_ReadError, &dev->flags)) {
2960 if (s.failed < 2)
2961 r6s.failed_num[s.failed] = i;
2962 s.failed++;
2963 } else
2964 set_bit(R5_Insync, &dev->flags);
2966 rcu_read_unlock();
2967 pr_debug("locked=%d uptodate=%d to_read=%d"
2968 " to_write=%d failed=%d failed_num=%d,%d\n",
2969 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2970 r6s.failed_num[0], r6s.failed_num[1]);
2971 /* check if the array has lost >2 devices and, if so, some requests
2972 * might need to be failed
2974 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2975 handle_requests_to_failed_array(conf, sh, &s, disks,
2976 &return_bi);
2977 if (s.failed > 2 && s.syncing) {
2978 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2979 clear_bit(STRIPE_SYNCING, &sh->state);
2980 s.syncing = 0;
2984 * might be able to return some write requests if the parity blocks
2985 * are safe, or on a failed drive
2987 pdev = &sh->dev[pd_idx];
2988 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2989 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2990 qdev = &sh->dev[r6s.qd_idx];
2991 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2992 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2994 if ( s.written &&
2995 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2996 && !test_bit(R5_LOCKED, &pdev->flags)
2997 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2998 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2999 && !test_bit(R5_LOCKED, &qdev->flags)
3000 && test_bit(R5_UPTODATE, &qdev->flags)))))
3001 handle_completed_write_requests(conf, sh, disks, &return_bi);
3003 /* Now we might consider reading some blocks, either to check/generate
3004 * parity, or to satisfy requests
3005 * or to load a block that is being partially written.
3007 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3008 (s.syncing && (s.uptodate < disks)) || s.expanding)
3009 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3011 /* now to consider writing and what else, if anything should be read */
3012 if (s.to_write)
3013 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3015 /* maybe we need to check and possibly fix the parity for this stripe
3016 * Any reads will already have been scheduled, so we just see if enough
3017 * data is available
3019 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3020 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3022 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3023 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3024 clear_bit(STRIPE_SYNCING, &sh->state);
3027 /* If the failed drives are just a ReadError, then we might need
3028 * to progress the repair/check process
3030 if (s.failed <= 2 && !conf->mddev->ro)
3031 for (i = 0; i < s.failed; i++) {
3032 dev = &sh->dev[r6s.failed_num[i]];
3033 if (test_bit(R5_ReadError, &dev->flags)
3034 && !test_bit(R5_LOCKED, &dev->flags)
3035 && test_bit(R5_UPTODATE, &dev->flags)
3037 if (!test_bit(R5_ReWrite, &dev->flags)) {
3038 set_bit(R5_Wantwrite, &dev->flags);
3039 set_bit(R5_ReWrite, &dev->flags);
3040 set_bit(R5_LOCKED, &dev->flags);
3041 } else {
3042 /* let's read it back */
3043 set_bit(R5_Wantread, &dev->flags);
3044 set_bit(R5_LOCKED, &dev->flags);
3049 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3050 /* Need to write out all blocks after computing P&Q */
3051 sh->disks = conf->raid_disks;
3052 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3053 conf->raid_disks);
3054 compute_parity6(sh, RECONSTRUCT_WRITE);
3055 for (i = conf->raid_disks ; i-- ; ) {
3056 set_bit(R5_LOCKED, &sh->dev[i].flags);
3057 s.locked++;
3058 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3060 clear_bit(STRIPE_EXPANDING, &sh->state);
3061 } else if (s.expanded) {
3062 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3063 atomic_dec(&conf->reshape_stripes);
3064 wake_up(&conf->wait_for_overlap);
3065 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3068 if (s.expanding && s.locked == 0)
3069 handle_stripe_expansion(conf, sh, &r6s);
3071 spin_unlock(&sh->lock);
3073 return_io(return_bi);
3075 for (i=disks; i-- ;) {
3076 int rw;
3077 struct bio *bi;
3078 mdk_rdev_t *rdev;
3079 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3080 rw = WRITE;
3081 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3082 rw = READ;
3083 else
3084 continue;
3086 bi = &sh->dev[i].req;
3088 bi->bi_rw = rw;
3089 if (rw == WRITE)
3090 bi->bi_end_io = raid5_end_write_request;
3091 else
3092 bi->bi_end_io = raid5_end_read_request;
3094 rcu_read_lock();
3095 rdev = rcu_dereference(conf->disks[i].rdev);
3096 if (rdev && test_bit(Faulty, &rdev->flags))
3097 rdev = NULL;
3098 if (rdev)
3099 atomic_inc(&rdev->nr_pending);
3100 rcu_read_unlock();
3102 if (rdev) {
3103 if (s.syncing || s.expanding || s.expanded)
3104 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3106 bi->bi_bdev = rdev->bdev;
3107 pr_debug("for %llu schedule op %ld on disc %d\n",
3108 (unsigned long long)sh->sector, bi->bi_rw, i);
3109 atomic_inc(&sh->count);
3110 bi->bi_sector = sh->sector + rdev->data_offset;
3111 bi->bi_flags = 1 << BIO_UPTODATE;
3112 bi->bi_vcnt = 1;
3113 bi->bi_max_vecs = 1;
3114 bi->bi_idx = 0;
3115 bi->bi_io_vec = &sh->dev[i].vec;
3116 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3117 bi->bi_io_vec[0].bv_offset = 0;
3118 bi->bi_size = STRIPE_SIZE;
3119 bi->bi_next = NULL;
3120 if (rw == WRITE &&
3121 test_bit(R5_ReWrite, &sh->dev[i].flags))
3122 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3123 generic_make_request(bi);
3124 } else {
3125 if (rw == WRITE)
3126 set_bit(STRIPE_DEGRADED, &sh->state);
3127 pr_debug("skip op %ld on disc %d for sector %llu\n",
3128 bi->bi_rw, i, (unsigned long long)sh->sector);
3129 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3130 set_bit(STRIPE_HANDLE, &sh->state);
3135 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3137 if (sh->raid_conf->level == 6)
3138 handle_stripe6(sh, tmp_page);
3139 else
3140 handle_stripe5(sh);
3145 static void raid5_activate_delayed(raid5_conf_t *conf)
3147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3148 while (!list_empty(&conf->delayed_list)) {
3149 struct list_head *l = conf->delayed_list.next;
3150 struct stripe_head *sh;
3151 sh = list_entry(l, struct stripe_head, lru);
3152 list_del_init(l);
3153 clear_bit(STRIPE_DELAYED, &sh->state);
3154 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3155 atomic_inc(&conf->preread_active_stripes);
3156 list_add_tail(&sh->lru, &conf->handle_list);
3161 static void activate_bit_delay(raid5_conf_t *conf)
3163 /* device_lock is held */
3164 struct list_head head;
3165 list_add(&head, &conf->bitmap_list);
3166 list_del_init(&conf->bitmap_list);
3167 while (!list_empty(&head)) {
3168 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3169 list_del_init(&sh->lru);
3170 atomic_inc(&sh->count);
3171 __release_stripe(conf, sh);
3175 static void unplug_slaves(mddev_t *mddev)
3177 raid5_conf_t *conf = mddev_to_conf(mddev);
3178 int i;
3180 rcu_read_lock();
3181 for (i=0; i<mddev->raid_disks; i++) {
3182 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3183 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3184 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3186 atomic_inc(&rdev->nr_pending);
3187 rcu_read_unlock();
3189 blk_unplug(r_queue);
3191 rdev_dec_pending(rdev, mddev);
3192 rcu_read_lock();
3195 rcu_read_unlock();
3198 static void raid5_unplug_device(struct request_queue *q)
3200 mddev_t *mddev = q->queuedata;
3201 raid5_conf_t *conf = mddev_to_conf(mddev);
3202 unsigned long flags;
3204 spin_lock_irqsave(&conf->device_lock, flags);
3206 if (blk_remove_plug(q)) {
3207 conf->seq_flush++;
3208 raid5_activate_delayed(conf);
3210 md_wakeup_thread(mddev->thread);
3212 spin_unlock_irqrestore(&conf->device_lock, flags);
3214 unplug_slaves(mddev);
3217 static int raid5_congested(void *data, int bits)
3219 mddev_t *mddev = data;
3220 raid5_conf_t *conf = mddev_to_conf(mddev);
3222 /* No difference between reads and writes. Just check
3223 * how busy the stripe_cache is
3225 if (conf->inactive_blocked)
3226 return 1;
3227 if (conf->quiesce)
3228 return 1;
3229 if (list_empty_careful(&conf->inactive_list))
3230 return 1;
3232 return 0;
3235 /* We want read requests to align with chunks where possible,
3236 * but write requests don't need to.
3238 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3240 mddev_t *mddev = q->queuedata;
3241 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3242 int max;
3243 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3244 unsigned int bio_sectors = bio->bi_size >> 9;
3246 if (bio_data_dir(bio) == WRITE)
3247 return biovec->bv_len; /* always allow writes to be mergeable */
3249 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3250 if (max < 0) max = 0;
3251 if (max <= biovec->bv_len && bio_sectors == 0)
3252 return biovec->bv_len;
3253 else
3254 return max;
3258 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3260 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3261 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3262 unsigned int bio_sectors = bio->bi_size >> 9;
3264 return chunk_sectors >=
3265 ((sector & (chunk_sectors - 1)) + bio_sectors);
3269 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3270 * later sampled by raid5d.
3272 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3274 unsigned long flags;
3276 spin_lock_irqsave(&conf->device_lock, flags);
3278 bi->bi_next = conf->retry_read_aligned_list;
3279 conf->retry_read_aligned_list = bi;
3281 spin_unlock_irqrestore(&conf->device_lock, flags);
3282 md_wakeup_thread(conf->mddev->thread);
3286 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3288 struct bio *bi;
3290 bi = conf->retry_read_aligned;
3291 if (bi) {
3292 conf->retry_read_aligned = NULL;
3293 return bi;
3295 bi = conf->retry_read_aligned_list;
3296 if(bi) {
3297 conf->retry_read_aligned_list = bi->bi_next;
3298 bi->bi_next = NULL;
3299 bi->bi_phys_segments = 1; /* biased count of active stripes */
3300 bi->bi_hw_segments = 0; /* count of processed stripes */
3303 return bi;
3308 * The "raid5_align_endio" should check if the read succeeded and if it
3309 * did, call bio_endio on the original bio (having bio_put the new bio
3310 * first).
3311 * If the read failed..
3313 static void raid5_align_endio(struct bio *bi, int error)
3315 struct bio* raid_bi = bi->bi_private;
3316 mddev_t *mddev;
3317 raid5_conf_t *conf;
3318 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3319 mdk_rdev_t *rdev;
3321 bio_put(bi);
3323 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3324 conf = mddev_to_conf(mddev);
3325 rdev = (void*)raid_bi->bi_next;
3326 raid_bi->bi_next = NULL;
3328 rdev_dec_pending(rdev, conf->mddev);
3330 if (!error && uptodate) {
3331 bio_endio(raid_bi, 0);
3332 if (atomic_dec_and_test(&conf->active_aligned_reads))
3333 wake_up(&conf->wait_for_stripe);
3334 return;
3338 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3340 add_bio_to_retry(raid_bi, conf);
3343 static int bio_fits_rdev(struct bio *bi)
3345 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3347 if ((bi->bi_size>>9) > q->max_sectors)
3348 return 0;
3349 blk_recount_segments(q, bi);
3350 if (bi->bi_phys_segments > q->max_phys_segments ||
3351 bi->bi_hw_segments > q->max_hw_segments)
3352 return 0;
3354 if (q->merge_bvec_fn)
3355 /* it's too hard to apply the merge_bvec_fn at this stage,
3356 * just just give up
3358 return 0;
3360 return 1;
3364 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3366 mddev_t *mddev = q->queuedata;
3367 raid5_conf_t *conf = mddev_to_conf(mddev);
3368 const unsigned int raid_disks = conf->raid_disks;
3369 const unsigned int data_disks = raid_disks - conf->max_degraded;
3370 unsigned int dd_idx, pd_idx;
3371 struct bio* align_bi;
3372 mdk_rdev_t *rdev;
3374 if (!in_chunk_boundary(mddev, raid_bio)) {
3375 pr_debug("chunk_aligned_read : non aligned\n");
3376 return 0;
3379 * use bio_clone to make a copy of the bio
3381 align_bi = bio_clone(raid_bio, GFP_NOIO);
3382 if (!align_bi)
3383 return 0;
3385 * set bi_end_io to a new function, and set bi_private to the
3386 * original bio.
3388 align_bi->bi_end_io = raid5_align_endio;
3389 align_bi->bi_private = raid_bio;
3391 * compute position
3393 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3394 raid_disks,
3395 data_disks,
3396 &dd_idx,
3397 &pd_idx,
3398 conf);
3400 rcu_read_lock();
3401 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3402 if (rdev && test_bit(In_sync, &rdev->flags)) {
3403 atomic_inc(&rdev->nr_pending);
3404 rcu_read_unlock();
3405 raid_bio->bi_next = (void*)rdev;
3406 align_bi->bi_bdev = rdev->bdev;
3407 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3408 align_bi->bi_sector += rdev->data_offset;
3410 if (!bio_fits_rdev(align_bi)) {
3411 /* too big in some way */
3412 bio_put(align_bi);
3413 rdev_dec_pending(rdev, mddev);
3414 return 0;
3417 spin_lock_irq(&conf->device_lock);
3418 wait_event_lock_irq(conf->wait_for_stripe,
3419 conf->quiesce == 0,
3420 conf->device_lock, /* nothing */);
3421 atomic_inc(&conf->active_aligned_reads);
3422 spin_unlock_irq(&conf->device_lock);
3424 generic_make_request(align_bi);
3425 return 1;
3426 } else {
3427 rcu_read_unlock();
3428 bio_put(align_bi);
3429 return 0;
3434 static int make_request(struct request_queue *q, struct bio * bi)
3436 mddev_t *mddev = q->queuedata;
3437 raid5_conf_t *conf = mddev_to_conf(mddev);
3438 unsigned int dd_idx, pd_idx;
3439 sector_t new_sector;
3440 sector_t logical_sector, last_sector;
3441 struct stripe_head *sh;
3442 const int rw = bio_data_dir(bi);
3443 int remaining;
3445 if (unlikely(bio_barrier(bi))) {
3446 bio_endio(bi, -EOPNOTSUPP);
3447 return 0;
3450 md_write_start(mddev, bi);
3452 disk_stat_inc(mddev->gendisk, ios[rw]);
3453 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3455 if (rw == READ &&
3456 mddev->reshape_position == MaxSector &&
3457 chunk_aligned_read(q,bi))
3458 return 0;
3460 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3461 last_sector = bi->bi_sector + (bi->bi_size>>9);
3462 bi->bi_next = NULL;
3463 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3465 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3466 DEFINE_WAIT(w);
3467 int disks, data_disks;
3469 retry:
3470 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3471 if (likely(conf->expand_progress == MaxSector))
3472 disks = conf->raid_disks;
3473 else {
3474 /* spinlock is needed as expand_progress may be
3475 * 64bit on a 32bit platform, and so it might be
3476 * possible to see a half-updated value
3477 * Ofcourse expand_progress could change after
3478 * the lock is dropped, so once we get a reference
3479 * to the stripe that we think it is, we will have
3480 * to check again.
3482 spin_lock_irq(&conf->device_lock);
3483 disks = conf->raid_disks;
3484 if (logical_sector >= conf->expand_progress)
3485 disks = conf->previous_raid_disks;
3486 else {
3487 if (logical_sector >= conf->expand_lo) {
3488 spin_unlock_irq(&conf->device_lock);
3489 schedule();
3490 goto retry;
3493 spin_unlock_irq(&conf->device_lock);
3495 data_disks = disks - conf->max_degraded;
3497 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3498 &dd_idx, &pd_idx, conf);
3499 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3500 (unsigned long long)new_sector,
3501 (unsigned long long)logical_sector);
3503 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3504 if (sh) {
3505 if (unlikely(conf->expand_progress != MaxSector)) {
3506 /* expansion might have moved on while waiting for a
3507 * stripe, so we must do the range check again.
3508 * Expansion could still move past after this
3509 * test, but as we are holding a reference to
3510 * 'sh', we know that if that happens,
3511 * STRIPE_EXPANDING will get set and the expansion
3512 * won't proceed until we finish with the stripe.
3514 int must_retry = 0;
3515 spin_lock_irq(&conf->device_lock);
3516 if (logical_sector < conf->expand_progress &&
3517 disks == conf->previous_raid_disks)
3518 /* mismatch, need to try again */
3519 must_retry = 1;
3520 spin_unlock_irq(&conf->device_lock);
3521 if (must_retry) {
3522 release_stripe(sh);
3523 goto retry;
3526 /* FIXME what if we get a false positive because these
3527 * are being updated.
3529 if (logical_sector >= mddev->suspend_lo &&
3530 logical_sector < mddev->suspend_hi) {
3531 release_stripe(sh);
3532 schedule();
3533 goto retry;
3536 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3537 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3538 /* Stripe is busy expanding or
3539 * add failed due to overlap. Flush everything
3540 * and wait a while
3542 raid5_unplug_device(mddev->queue);
3543 release_stripe(sh);
3544 schedule();
3545 goto retry;
3547 finish_wait(&conf->wait_for_overlap, &w);
3548 handle_stripe(sh, NULL);
3549 release_stripe(sh);
3550 } else {
3551 /* cannot get stripe for read-ahead, just give-up */
3552 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3553 finish_wait(&conf->wait_for_overlap, &w);
3554 break;
3558 spin_lock_irq(&conf->device_lock);
3559 remaining = --bi->bi_phys_segments;
3560 spin_unlock_irq(&conf->device_lock);
3561 if (remaining == 0) {
3563 if ( rw == WRITE )
3564 md_write_end(mddev);
3566 bi->bi_end_io(bi,
3567 test_bit(BIO_UPTODATE, &bi->bi_flags)
3568 ? 0 : -EIO);
3570 return 0;
3573 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3575 /* reshaping is quite different to recovery/resync so it is
3576 * handled quite separately ... here.
3578 * On each call to sync_request, we gather one chunk worth of
3579 * destination stripes and flag them as expanding.
3580 * Then we find all the source stripes and request reads.
3581 * As the reads complete, handle_stripe will copy the data
3582 * into the destination stripe and release that stripe.
3584 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3585 struct stripe_head *sh;
3586 int pd_idx;
3587 sector_t first_sector, last_sector;
3588 int raid_disks = conf->previous_raid_disks;
3589 int data_disks = raid_disks - conf->max_degraded;
3590 int new_data_disks = conf->raid_disks - conf->max_degraded;
3591 int i;
3592 int dd_idx;
3593 sector_t writepos, safepos, gap;
3595 if (sector_nr == 0 &&
3596 conf->expand_progress != 0) {
3597 /* restarting in the middle, skip the initial sectors */
3598 sector_nr = conf->expand_progress;
3599 sector_div(sector_nr, new_data_disks);
3600 *skipped = 1;
3601 return sector_nr;
3604 /* we update the metadata when there is more than 3Meg
3605 * in the block range (that is rather arbitrary, should
3606 * probably be time based) or when the data about to be
3607 * copied would over-write the source of the data at
3608 * the front of the range.
3609 * i.e. one new_stripe forward from expand_progress new_maps
3610 * to after where expand_lo old_maps to
3612 writepos = conf->expand_progress +
3613 conf->chunk_size/512*(new_data_disks);
3614 sector_div(writepos, new_data_disks);
3615 safepos = conf->expand_lo;
3616 sector_div(safepos, data_disks);
3617 gap = conf->expand_progress - conf->expand_lo;
3619 if (writepos >= safepos ||
3620 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3621 /* Cannot proceed until we've updated the superblock... */
3622 wait_event(conf->wait_for_overlap,
3623 atomic_read(&conf->reshape_stripes)==0);
3624 mddev->reshape_position = conf->expand_progress;
3625 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3626 md_wakeup_thread(mddev->thread);
3627 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3628 kthread_should_stop());
3629 spin_lock_irq(&conf->device_lock);
3630 conf->expand_lo = mddev->reshape_position;
3631 spin_unlock_irq(&conf->device_lock);
3632 wake_up(&conf->wait_for_overlap);
3635 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3636 int j;
3637 int skipped = 0;
3638 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3639 sh = get_active_stripe(conf, sector_nr+i,
3640 conf->raid_disks, pd_idx, 0);
3641 set_bit(STRIPE_EXPANDING, &sh->state);
3642 atomic_inc(&conf->reshape_stripes);
3643 /* If any of this stripe is beyond the end of the old
3644 * array, then we need to zero those blocks
3646 for (j=sh->disks; j--;) {
3647 sector_t s;
3648 if (j == sh->pd_idx)
3649 continue;
3650 if (conf->level == 6 &&
3651 j == raid6_next_disk(sh->pd_idx, sh->disks))
3652 continue;
3653 s = compute_blocknr(sh, j);
3654 if (s < (mddev->array_size<<1)) {
3655 skipped = 1;
3656 continue;
3658 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3659 set_bit(R5_Expanded, &sh->dev[j].flags);
3660 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3662 if (!skipped) {
3663 set_bit(STRIPE_EXPAND_READY, &sh->state);
3664 set_bit(STRIPE_HANDLE, &sh->state);
3666 release_stripe(sh);
3668 spin_lock_irq(&conf->device_lock);
3669 conf->expand_progress = (sector_nr + i) * new_data_disks;
3670 spin_unlock_irq(&conf->device_lock);
3671 /* Ok, those stripe are ready. We can start scheduling
3672 * reads on the source stripes.
3673 * The source stripes are determined by mapping the first and last
3674 * block on the destination stripes.
3676 first_sector =
3677 raid5_compute_sector(sector_nr*(new_data_disks),
3678 raid_disks, data_disks,
3679 &dd_idx, &pd_idx, conf);
3680 last_sector =
3681 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3682 *(new_data_disks) -1,
3683 raid_disks, data_disks,
3684 &dd_idx, &pd_idx, conf);
3685 if (last_sector >= (mddev->size<<1))
3686 last_sector = (mddev->size<<1)-1;
3687 while (first_sector <= last_sector) {
3688 pd_idx = stripe_to_pdidx(first_sector, conf,
3689 conf->previous_raid_disks);
3690 sh = get_active_stripe(conf, first_sector,
3691 conf->previous_raid_disks, pd_idx, 0);
3692 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3693 set_bit(STRIPE_HANDLE, &sh->state);
3694 release_stripe(sh);
3695 first_sector += STRIPE_SECTORS;
3697 return conf->chunk_size>>9;
3700 /* FIXME go_faster isn't used */
3701 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3703 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3704 struct stripe_head *sh;
3705 int pd_idx;
3706 int raid_disks = conf->raid_disks;
3707 sector_t max_sector = mddev->size << 1;
3708 int sync_blocks;
3709 int still_degraded = 0;
3710 int i;
3712 if (sector_nr >= max_sector) {
3713 /* just being told to finish up .. nothing much to do */
3714 unplug_slaves(mddev);
3715 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3716 end_reshape(conf);
3717 return 0;
3720 if (mddev->curr_resync < max_sector) /* aborted */
3721 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3722 &sync_blocks, 1);
3723 else /* completed sync */
3724 conf->fullsync = 0;
3725 bitmap_close_sync(mddev->bitmap);
3727 return 0;
3730 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3731 return reshape_request(mddev, sector_nr, skipped);
3733 /* if there is too many failed drives and we are trying
3734 * to resync, then assert that we are finished, because there is
3735 * nothing we can do.
3737 if (mddev->degraded >= conf->max_degraded &&
3738 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3739 sector_t rv = (mddev->size << 1) - sector_nr;
3740 *skipped = 1;
3741 return rv;
3743 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3744 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3745 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3746 /* we can skip this block, and probably more */
3747 sync_blocks /= STRIPE_SECTORS;
3748 *skipped = 1;
3749 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3752 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3753 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3754 if (sh == NULL) {
3755 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3756 /* make sure we don't swamp the stripe cache if someone else
3757 * is trying to get access
3759 schedule_timeout_uninterruptible(1);
3761 /* Need to check if array will still be degraded after recovery/resync
3762 * We don't need to check the 'failed' flag as when that gets set,
3763 * recovery aborts.
3765 for (i=0; i<mddev->raid_disks; i++)
3766 if (conf->disks[i].rdev == NULL)
3767 still_degraded = 1;
3769 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3771 spin_lock(&sh->lock);
3772 set_bit(STRIPE_SYNCING, &sh->state);
3773 clear_bit(STRIPE_INSYNC, &sh->state);
3774 spin_unlock(&sh->lock);
3776 handle_stripe(sh, NULL);
3777 release_stripe(sh);
3779 return STRIPE_SECTORS;
3782 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3784 /* We may not be able to submit a whole bio at once as there
3785 * may not be enough stripe_heads available.
3786 * We cannot pre-allocate enough stripe_heads as we may need
3787 * more than exist in the cache (if we allow ever large chunks).
3788 * So we do one stripe head at a time and record in
3789 * ->bi_hw_segments how many have been done.
3791 * We *know* that this entire raid_bio is in one chunk, so
3792 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3794 struct stripe_head *sh;
3795 int dd_idx, pd_idx;
3796 sector_t sector, logical_sector, last_sector;
3797 int scnt = 0;
3798 int remaining;
3799 int handled = 0;
3801 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3802 sector = raid5_compute_sector( logical_sector,
3803 conf->raid_disks,
3804 conf->raid_disks - conf->max_degraded,
3805 &dd_idx,
3806 &pd_idx,
3807 conf);
3808 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3810 for (; logical_sector < last_sector;
3811 logical_sector += STRIPE_SECTORS,
3812 sector += STRIPE_SECTORS,
3813 scnt++) {
3815 if (scnt < raid_bio->bi_hw_segments)
3816 /* already done this stripe */
3817 continue;
3819 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3821 if (!sh) {
3822 /* failed to get a stripe - must wait */
3823 raid_bio->bi_hw_segments = scnt;
3824 conf->retry_read_aligned = raid_bio;
3825 return handled;
3828 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3829 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3830 release_stripe(sh);
3831 raid_bio->bi_hw_segments = scnt;
3832 conf->retry_read_aligned = raid_bio;
3833 return handled;
3836 handle_stripe(sh, NULL);
3837 release_stripe(sh);
3838 handled++;
3840 spin_lock_irq(&conf->device_lock);
3841 remaining = --raid_bio->bi_phys_segments;
3842 spin_unlock_irq(&conf->device_lock);
3843 if (remaining == 0) {
3845 raid_bio->bi_end_io(raid_bio,
3846 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3847 ? 0 : -EIO);
3849 if (atomic_dec_and_test(&conf->active_aligned_reads))
3850 wake_up(&conf->wait_for_stripe);
3851 return handled;
3857 * This is our raid5 kernel thread.
3859 * We scan the hash table for stripes which can be handled now.
3860 * During the scan, completed stripes are saved for us by the interrupt
3861 * handler, so that they will not have to wait for our next wakeup.
3863 static void raid5d (mddev_t *mddev)
3865 struct stripe_head *sh;
3866 raid5_conf_t *conf = mddev_to_conf(mddev);
3867 int handled;
3869 pr_debug("+++ raid5d active\n");
3871 md_check_recovery(mddev);
3873 handled = 0;
3874 spin_lock_irq(&conf->device_lock);
3875 while (1) {
3876 struct list_head *first;
3877 struct bio *bio;
3879 if (conf->seq_flush != conf->seq_write) {
3880 int seq = conf->seq_flush;
3881 spin_unlock_irq(&conf->device_lock);
3882 bitmap_unplug(mddev->bitmap);
3883 spin_lock_irq(&conf->device_lock);
3884 conf->seq_write = seq;
3885 activate_bit_delay(conf);
3888 if (list_empty(&conf->handle_list) &&
3889 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3890 !blk_queue_plugged(mddev->queue) &&
3891 !list_empty(&conf->delayed_list))
3892 raid5_activate_delayed(conf);
3894 while ((bio = remove_bio_from_retry(conf))) {
3895 int ok;
3896 spin_unlock_irq(&conf->device_lock);
3897 ok = retry_aligned_read(conf, bio);
3898 spin_lock_irq(&conf->device_lock);
3899 if (!ok)
3900 break;
3901 handled++;
3904 if (list_empty(&conf->handle_list)) {
3905 async_tx_issue_pending_all();
3906 break;
3909 first = conf->handle_list.next;
3910 sh = list_entry(first, struct stripe_head, lru);
3912 list_del_init(first);
3913 atomic_inc(&sh->count);
3914 BUG_ON(atomic_read(&sh->count)!= 1);
3915 spin_unlock_irq(&conf->device_lock);
3917 handled++;
3918 handle_stripe(sh, conf->spare_page);
3919 release_stripe(sh);
3921 spin_lock_irq(&conf->device_lock);
3923 pr_debug("%d stripes handled\n", handled);
3925 spin_unlock_irq(&conf->device_lock);
3927 unplug_slaves(mddev);
3929 pr_debug("--- raid5d inactive\n");
3932 static ssize_t
3933 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3935 raid5_conf_t *conf = mddev_to_conf(mddev);
3936 if (conf)
3937 return sprintf(page, "%d\n", conf->max_nr_stripes);
3938 else
3939 return 0;
3942 static ssize_t
3943 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3945 raid5_conf_t *conf = mddev_to_conf(mddev);
3946 char *end;
3947 int new;
3948 if (len >= PAGE_SIZE)
3949 return -EINVAL;
3950 if (!conf)
3951 return -ENODEV;
3953 new = simple_strtoul(page, &end, 10);
3954 if (!*page || (*end && *end != '\n') )
3955 return -EINVAL;
3956 if (new <= 16 || new > 32768)
3957 return -EINVAL;
3958 while (new < conf->max_nr_stripes) {
3959 if (drop_one_stripe(conf))
3960 conf->max_nr_stripes--;
3961 else
3962 break;
3964 md_allow_write(mddev);
3965 while (new > conf->max_nr_stripes) {
3966 if (grow_one_stripe(conf))
3967 conf->max_nr_stripes++;
3968 else break;
3970 return len;
3973 static struct md_sysfs_entry
3974 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3975 raid5_show_stripe_cache_size,
3976 raid5_store_stripe_cache_size);
3978 static ssize_t
3979 stripe_cache_active_show(mddev_t *mddev, char *page)
3981 raid5_conf_t *conf = mddev_to_conf(mddev);
3982 if (conf)
3983 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3984 else
3985 return 0;
3988 static struct md_sysfs_entry
3989 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3991 static struct attribute *raid5_attrs[] = {
3992 &raid5_stripecache_size.attr,
3993 &raid5_stripecache_active.attr,
3994 NULL,
3996 static struct attribute_group raid5_attrs_group = {
3997 .name = NULL,
3998 .attrs = raid5_attrs,
4001 static int run(mddev_t *mddev)
4003 raid5_conf_t *conf;
4004 int raid_disk, memory;
4005 mdk_rdev_t *rdev;
4006 struct disk_info *disk;
4007 struct list_head *tmp;
4008 int working_disks = 0;
4010 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4011 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4012 mdname(mddev), mddev->level);
4013 return -EIO;
4016 if (mddev->reshape_position != MaxSector) {
4017 /* Check that we can continue the reshape.
4018 * Currently only disks can change, it must
4019 * increase, and we must be past the point where
4020 * a stripe over-writes itself
4022 sector_t here_new, here_old;
4023 int old_disks;
4024 int max_degraded = (mddev->level == 5 ? 1 : 2);
4026 if (mddev->new_level != mddev->level ||
4027 mddev->new_layout != mddev->layout ||
4028 mddev->new_chunk != mddev->chunk_size) {
4029 printk(KERN_ERR "raid5: %s: unsupported reshape "
4030 "required - aborting.\n",
4031 mdname(mddev));
4032 return -EINVAL;
4034 if (mddev->delta_disks <= 0) {
4035 printk(KERN_ERR "raid5: %s: unsupported reshape "
4036 "(reduce disks) required - aborting.\n",
4037 mdname(mddev));
4038 return -EINVAL;
4040 old_disks = mddev->raid_disks - mddev->delta_disks;
4041 /* reshape_position must be on a new-stripe boundary, and one
4042 * further up in new geometry must map after here in old
4043 * geometry.
4045 here_new = mddev->reshape_position;
4046 if (sector_div(here_new, (mddev->chunk_size>>9)*
4047 (mddev->raid_disks - max_degraded))) {
4048 printk(KERN_ERR "raid5: reshape_position not "
4049 "on a stripe boundary\n");
4050 return -EINVAL;
4052 /* here_new is the stripe we will write to */
4053 here_old = mddev->reshape_position;
4054 sector_div(here_old, (mddev->chunk_size>>9)*
4055 (old_disks-max_degraded));
4056 /* here_old is the first stripe that we might need to read
4057 * from */
4058 if (here_new >= here_old) {
4059 /* Reading from the same stripe as writing to - bad */
4060 printk(KERN_ERR "raid5: reshape_position too early for "
4061 "auto-recovery - aborting.\n");
4062 return -EINVAL;
4064 printk(KERN_INFO "raid5: reshape will continue\n");
4065 /* OK, we should be able to continue; */
4069 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4070 if ((conf = mddev->private) == NULL)
4071 goto abort;
4072 if (mddev->reshape_position == MaxSector) {
4073 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4074 } else {
4075 conf->raid_disks = mddev->raid_disks;
4076 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4079 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4080 GFP_KERNEL);
4081 if (!conf->disks)
4082 goto abort;
4084 conf->mddev = mddev;
4086 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4087 goto abort;
4089 if (mddev->level == 6) {
4090 conf->spare_page = alloc_page(GFP_KERNEL);
4091 if (!conf->spare_page)
4092 goto abort;
4094 spin_lock_init(&conf->device_lock);
4095 init_waitqueue_head(&conf->wait_for_stripe);
4096 init_waitqueue_head(&conf->wait_for_overlap);
4097 INIT_LIST_HEAD(&conf->handle_list);
4098 INIT_LIST_HEAD(&conf->delayed_list);
4099 INIT_LIST_HEAD(&conf->bitmap_list);
4100 INIT_LIST_HEAD(&conf->inactive_list);
4101 atomic_set(&conf->active_stripes, 0);
4102 atomic_set(&conf->preread_active_stripes, 0);
4103 atomic_set(&conf->active_aligned_reads, 0);
4105 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4107 ITERATE_RDEV(mddev,rdev,tmp) {
4108 raid_disk = rdev->raid_disk;
4109 if (raid_disk >= conf->raid_disks
4110 || raid_disk < 0)
4111 continue;
4112 disk = conf->disks + raid_disk;
4114 disk->rdev = rdev;
4116 if (test_bit(In_sync, &rdev->flags)) {
4117 char b[BDEVNAME_SIZE];
4118 printk(KERN_INFO "raid5: device %s operational as raid"
4119 " disk %d\n", bdevname(rdev->bdev,b),
4120 raid_disk);
4121 working_disks++;
4126 * 0 for a fully functional array, 1 or 2 for a degraded array.
4128 mddev->degraded = conf->raid_disks - working_disks;
4129 conf->mddev = mddev;
4130 conf->chunk_size = mddev->chunk_size;
4131 conf->level = mddev->level;
4132 if (conf->level == 6)
4133 conf->max_degraded = 2;
4134 else
4135 conf->max_degraded = 1;
4136 conf->algorithm = mddev->layout;
4137 conf->max_nr_stripes = NR_STRIPES;
4138 conf->expand_progress = mddev->reshape_position;
4140 /* device size must be a multiple of chunk size */
4141 mddev->size &= ~(mddev->chunk_size/1024 -1);
4142 mddev->resync_max_sectors = mddev->size << 1;
4144 if (conf->level == 6 && conf->raid_disks < 4) {
4145 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4146 mdname(mddev), conf->raid_disks);
4147 goto abort;
4149 if (!conf->chunk_size || conf->chunk_size % 4) {
4150 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4151 conf->chunk_size, mdname(mddev));
4152 goto abort;
4154 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4155 printk(KERN_ERR
4156 "raid5: unsupported parity algorithm %d for %s\n",
4157 conf->algorithm, mdname(mddev));
4158 goto abort;
4160 if (mddev->degraded > conf->max_degraded) {
4161 printk(KERN_ERR "raid5: not enough operational devices for %s"
4162 " (%d/%d failed)\n",
4163 mdname(mddev), mddev->degraded, conf->raid_disks);
4164 goto abort;
4167 if (mddev->degraded > 0 &&
4168 mddev->recovery_cp != MaxSector) {
4169 if (mddev->ok_start_degraded)
4170 printk(KERN_WARNING
4171 "raid5: starting dirty degraded array: %s"
4172 "- data corruption possible.\n",
4173 mdname(mddev));
4174 else {
4175 printk(KERN_ERR
4176 "raid5: cannot start dirty degraded array for %s\n",
4177 mdname(mddev));
4178 goto abort;
4183 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4184 if (!mddev->thread) {
4185 printk(KERN_ERR
4186 "raid5: couldn't allocate thread for %s\n",
4187 mdname(mddev));
4188 goto abort;
4191 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4192 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4193 if (grow_stripes(conf, conf->max_nr_stripes)) {
4194 printk(KERN_ERR
4195 "raid5: couldn't allocate %dkB for buffers\n", memory);
4196 shrink_stripes(conf);
4197 md_unregister_thread(mddev->thread);
4198 goto abort;
4199 } else
4200 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4201 memory, mdname(mddev));
4203 if (mddev->degraded == 0)
4204 printk("raid5: raid level %d set %s active with %d out of %d"
4205 " devices, algorithm %d\n", conf->level, mdname(mddev),
4206 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4207 conf->algorithm);
4208 else
4209 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4210 " out of %d devices, algorithm %d\n", conf->level,
4211 mdname(mddev), mddev->raid_disks - mddev->degraded,
4212 mddev->raid_disks, conf->algorithm);
4214 print_raid5_conf(conf);
4216 if (conf->expand_progress != MaxSector) {
4217 printk("...ok start reshape thread\n");
4218 conf->expand_lo = conf->expand_progress;
4219 atomic_set(&conf->reshape_stripes, 0);
4220 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4221 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4222 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4223 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4224 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4225 "%s_reshape");
4228 /* read-ahead size must cover two whole stripes, which is
4229 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4232 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4233 int stripe = data_disks *
4234 (mddev->chunk_size / PAGE_SIZE);
4235 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4236 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4239 /* Ok, everything is just fine now */
4240 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4241 printk(KERN_WARNING
4242 "raid5: failed to create sysfs attributes for %s\n",
4243 mdname(mddev));
4245 mddev->queue->unplug_fn = raid5_unplug_device;
4246 mddev->queue->backing_dev_info.congested_data = mddev;
4247 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4249 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4250 conf->max_degraded);
4252 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4254 return 0;
4255 abort:
4256 if (conf) {
4257 print_raid5_conf(conf);
4258 safe_put_page(conf->spare_page);
4259 kfree(conf->disks);
4260 kfree(conf->stripe_hashtbl);
4261 kfree(conf);
4263 mddev->private = NULL;
4264 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4265 return -EIO;
4270 static int stop(mddev_t *mddev)
4272 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4274 md_unregister_thread(mddev->thread);
4275 mddev->thread = NULL;
4276 shrink_stripes(conf);
4277 kfree(conf->stripe_hashtbl);
4278 mddev->queue->backing_dev_info.congested_fn = NULL;
4279 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4280 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4281 kfree(conf->disks);
4282 kfree(conf);
4283 mddev->private = NULL;
4284 return 0;
4287 #ifdef DEBUG
4288 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4290 int i;
4292 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4293 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4294 seq_printf(seq, "sh %llu, count %d.\n",
4295 (unsigned long long)sh->sector, atomic_read(&sh->count));
4296 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4297 for (i = 0; i < sh->disks; i++) {
4298 seq_printf(seq, "(cache%d: %p %ld) ",
4299 i, sh->dev[i].page, sh->dev[i].flags);
4301 seq_printf(seq, "\n");
4304 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4306 struct stripe_head *sh;
4307 struct hlist_node *hn;
4308 int i;
4310 spin_lock_irq(&conf->device_lock);
4311 for (i = 0; i < NR_HASH; i++) {
4312 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4313 if (sh->raid_conf != conf)
4314 continue;
4315 print_sh(seq, sh);
4318 spin_unlock_irq(&conf->device_lock);
4320 #endif
4322 static void status (struct seq_file *seq, mddev_t *mddev)
4324 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4325 int i;
4327 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4328 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4329 for (i = 0; i < conf->raid_disks; i++)
4330 seq_printf (seq, "%s",
4331 conf->disks[i].rdev &&
4332 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4333 seq_printf (seq, "]");
4334 #ifdef DEBUG
4335 seq_printf (seq, "\n");
4336 printall(seq, conf);
4337 #endif
4340 static void print_raid5_conf (raid5_conf_t *conf)
4342 int i;
4343 struct disk_info *tmp;
4345 printk("RAID5 conf printout:\n");
4346 if (!conf) {
4347 printk("(conf==NULL)\n");
4348 return;
4350 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4351 conf->raid_disks - conf->mddev->degraded);
4353 for (i = 0; i < conf->raid_disks; i++) {
4354 char b[BDEVNAME_SIZE];
4355 tmp = conf->disks + i;
4356 if (tmp->rdev)
4357 printk(" disk %d, o:%d, dev:%s\n",
4358 i, !test_bit(Faulty, &tmp->rdev->flags),
4359 bdevname(tmp->rdev->bdev,b));
4363 static int raid5_spare_active(mddev_t *mddev)
4365 int i;
4366 raid5_conf_t *conf = mddev->private;
4367 struct disk_info *tmp;
4369 for (i = 0; i < conf->raid_disks; i++) {
4370 tmp = conf->disks + i;
4371 if (tmp->rdev
4372 && !test_bit(Faulty, &tmp->rdev->flags)
4373 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4374 unsigned long flags;
4375 spin_lock_irqsave(&conf->device_lock, flags);
4376 mddev->degraded--;
4377 spin_unlock_irqrestore(&conf->device_lock, flags);
4380 print_raid5_conf(conf);
4381 return 0;
4384 static int raid5_remove_disk(mddev_t *mddev, int number)
4386 raid5_conf_t *conf = mddev->private;
4387 int err = 0;
4388 mdk_rdev_t *rdev;
4389 struct disk_info *p = conf->disks + number;
4391 print_raid5_conf(conf);
4392 rdev = p->rdev;
4393 if (rdev) {
4394 if (test_bit(In_sync, &rdev->flags) ||
4395 atomic_read(&rdev->nr_pending)) {
4396 err = -EBUSY;
4397 goto abort;
4399 p->rdev = NULL;
4400 synchronize_rcu();
4401 if (atomic_read(&rdev->nr_pending)) {
4402 /* lost the race, try later */
4403 err = -EBUSY;
4404 p->rdev = rdev;
4407 abort:
4409 print_raid5_conf(conf);
4410 return err;
4413 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4415 raid5_conf_t *conf = mddev->private;
4416 int found = 0;
4417 int disk;
4418 struct disk_info *p;
4420 if (mddev->degraded > conf->max_degraded)
4421 /* no point adding a device */
4422 return 0;
4425 * find the disk ... but prefer rdev->saved_raid_disk
4426 * if possible.
4428 if (rdev->saved_raid_disk >= 0 &&
4429 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4430 disk = rdev->saved_raid_disk;
4431 else
4432 disk = 0;
4433 for ( ; disk < conf->raid_disks; disk++)
4434 if ((p=conf->disks + disk)->rdev == NULL) {
4435 clear_bit(In_sync, &rdev->flags);
4436 rdev->raid_disk = disk;
4437 found = 1;
4438 if (rdev->saved_raid_disk != disk)
4439 conf->fullsync = 1;
4440 rcu_assign_pointer(p->rdev, rdev);
4441 break;
4443 print_raid5_conf(conf);
4444 return found;
4447 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4449 /* no resync is happening, and there is enough space
4450 * on all devices, so we can resize.
4451 * We need to make sure resync covers any new space.
4452 * If the array is shrinking we should possibly wait until
4453 * any io in the removed space completes, but it hardly seems
4454 * worth it.
4456 raid5_conf_t *conf = mddev_to_conf(mddev);
4458 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4459 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4460 set_capacity(mddev->gendisk, mddev->array_size << 1);
4461 mddev->changed = 1;
4462 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4463 mddev->recovery_cp = mddev->size << 1;
4464 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4466 mddev->size = sectors /2;
4467 mddev->resync_max_sectors = sectors;
4468 return 0;
4471 #ifdef CONFIG_MD_RAID5_RESHAPE
4472 static int raid5_check_reshape(mddev_t *mddev)
4474 raid5_conf_t *conf = mddev_to_conf(mddev);
4475 int err;
4477 if (mddev->delta_disks < 0 ||
4478 mddev->new_level != mddev->level)
4479 return -EINVAL; /* Cannot shrink array or change level yet */
4480 if (mddev->delta_disks == 0)
4481 return 0; /* nothing to do */
4483 /* Can only proceed if there are plenty of stripe_heads.
4484 * We need a minimum of one full stripe,, and for sensible progress
4485 * it is best to have about 4 times that.
4486 * If we require 4 times, then the default 256 4K stripe_heads will
4487 * allow for chunk sizes up to 256K, which is probably OK.
4488 * If the chunk size is greater, user-space should request more
4489 * stripe_heads first.
4491 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4492 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4493 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4494 (mddev->chunk_size / STRIPE_SIZE)*4);
4495 return -ENOSPC;
4498 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4499 if (err)
4500 return err;
4502 if (mddev->degraded > conf->max_degraded)
4503 return -EINVAL;
4504 /* looks like we might be able to manage this */
4505 return 0;
4508 static int raid5_start_reshape(mddev_t *mddev)
4510 raid5_conf_t *conf = mddev_to_conf(mddev);
4511 mdk_rdev_t *rdev;
4512 struct list_head *rtmp;
4513 int spares = 0;
4514 int added_devices = 0;
4515 unsigned long flags;
4517 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4518 return -EBUSY;
4520 ITERATE_RDEV(mddev, rdev, rtmp)
4521 if (rdev->raid_disk < 0 &&
4522 !test_bit(Faulty, &rdev->flags))
4523 spares++;
4525 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4526 /* Not enough devices even to make a degraded array
4527 * of that size
4529 return -EINVAL;
4531 atomic_set(&conf->reshape_stripes, 0);
4532 spin_lock_irq(&conf->device_lock);
4533 conf->previous_raid_disks = conf->raid_disks;
4534 conf->raid_disks += mddev->delta_disks;
4535 conf->expand_progress = 0;
4536 conf->expand_lo = 0;
4537 spin_unlock_irq(&conf->device_lock);
4539 /* Add some new drives, as many as will fit.
4540 * We know there are enough to make the newly sized array work.
4542 ITERATE_RDEV(mddev, rdev, rtmp)
4543 if (rdev->raid_disk < 0 &&
4544 !test_bit(Faulty, &rdev->flags)) {
4545 if (raid5_add_disk(mddev, rdev)) {
4546 char nm[20];
4547 set_bit(In_sync, &rdev->flags);
4548 added_devices++;
4549 rdev->recovery_offset = 0;
4550 sprintf(nm, "rd%d", rdev->raid_disk);
4551 if (sysfs_create_link(&mddev->kobj,
4552 &rdev->kobj, nm))
4553 printk(KERN_WARNING
4554 "raid5: failed to create "
4555 " link %s for %s\n",
4556 nm, mdname(mddev));
4557 } else
4558 break;
4561 spin_lock_irqsave(&conf->device_lock, flags);
4562 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4563 spin_unlock_irqrestore(&conf->device_lock, flags);
4564 mddev->raid_disks = conf->raid_disks;
4565 mddev->reshape_position = 0;
4566 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4568 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4569 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4570 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4571 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4572 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4573 "%s_reshape");
4574 if (!mddev->sync_thread) {
4575 mddev->recovery = 0;
4576 spin_lock_irq(&conf->device_lock);
4577 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4578 conf->expand_progress = MaxSector;
4579 spin_unlock_irq(&conf->device_lock);
4580 return -EAGAIN;
4582 md_wakeup_thread(mddev->sync_thread);
4583 md_new_event(mddev);
4584 return 0;
4586 #endif
4588 static void end_reshape(raid5_conf_t *conf)
4590 struct block_device *bdev;
4592 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4593 conf->mddev->array_size = conf->mddev->size *
4594 (conf->raid_disks - conf->max_degraded);
4595 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4596 conf->mddev->changed = 1;
4598 bdev = bdget_disk(conf->mddev->gendisk, 0);
4599 if (bdev) {
4600 mutex_lock(&bdev->bd_inode->i_mutex);
4601 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4602 mutex_unlock(&bdev->bd_inode->i_mutex);
4603 bdput(bdev);
4605 spin_lock_irq(&conf->device_lock);
4606 conf->expand_progress = MaxSector;
4607 spin_unlock_irq(&conf->device_lock);
4608 conf->mddev->reshape_position = MaxSector;
4610 /* read-ahead size must cover two whole stripes, which is
4611 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4614 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4615 int stripe = data_disks *
4616 (conf->mddev->chunk_size / PAGE_SIZE);
4617 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4618 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4623 static void raid5_quiesce(mddev_t *mddev, int state)
4625 raid5_conf_t *conf = mddev_to_conf(mddev);
4627 switch(state) {
4628 case 2: /* resume for a suspend */
4629 wake_up(&conf->wait_for_overlap);
4630 break;
4632 case 1: /* stop all writes */
4633 spin_lock_irq(&conf->device_lock);
4634 conf->quiesce = 1;
4635 wait_event_lock_irq(conf->wait_for_stripe,
4636 atomic_read(&conf->active_stripes) == 0 &&
4637 atomic_read(&conf->active_aligned_reads) == 0,
4638 conf->device_lock, /* nothing */);
4639 spin_unlock_irq(&conf->device_lock);
4640 break;
4642 case 0: /* re-enable writes */
4643 spin_lock_irq(&conf->device_lock);
4644 conf->quiesce = 0;
4645 wake_up(&conf->wait_for_stripe);
4646 wake_up(&conf->wait_for_overlap);
4647 spin_unlock_irq(&conf->device_lock);
4648 break;
4652 static struct mdk_personality raid6_personality =
4654 .name = "raid6",
4655 .level = 6,
4656 .owner = THIS_MODULE,
4657 .make_request = make_request,
4658 .run = run,
4659 .stop = stop,
4660 .status = status,
4661 .error_handler = error,
4662 .hot_add_disk = raid5_add_disk,
4663 .hot_remove_disk= raid5_remove_disk,
4664 .spare_active = raid5_spare_active,
4665 .sync_request = sync_request,
4666 .resize = raid5_resize,
4667 #ifdef CONFIG_MD_RAID5_RESHAPE
4668 .check_reshape = raid5_check_reshape,
4669 .start_reshape = raid5_start_reshape,
4670 #endif
4671 .quiesce = raid5_quiesce,
4673 static struct mdk_personality raid5_personality =
4675 .name = "raid5",
4676 .level = 5,
4677 .owner = THIS_MODULE,
4678 .make_request = make_request,
4679 .run = run,
4680 .stop = stop,
4681 .status = status,
4682 .error_handler = error,
4683 .hot_add_disk = raid5_add_disk,
4684 .hot_remove_disk= raid5_remove_disk,
4685 .spare_active = raid5_spare_active,
4686 .sync_request = sync_request,
4687 .resize = raid5_resize,
4688 #ifdef CONFIG_MD_RAID5_RESHAPE
4689 .check_reshape = raid5_check_reshape,
4690 .start_reshape = raid5_start_reshape,
4691 #endif
4692 .quiesce = raid5_quiesce,
4695 static struct mdk_personality raid4_personality =
4697 .name = "raid4",
4698 .level = 4,
4699 .owner = THIS_MODULE,
4700 .make_request = make_request,
4701 .run = run,
4702 .stop = stop,
4703 .status = status,
4704 .error_handler = error,
4705 .hot_add_disk = raid5_add_disk,
4706 .hot_remove_disk= raid5_remove_disk,
4707 .spare_active = raid5_spare_active,
4708 .sync_request = sync_request,
4709 .resize = raid5_resize,
4710 #ifdef CONFIG_MD_RAID5_RESHAPE
4711 .check_reshape = raid5_check_reshape,
4712 .start_reshape = raid5_start_reshape,
4713 #endif
4714 .quiesce = raid5_quiesce,
4717 static int __init raid5_init(void)
4719 int e;
4721 e = raid6_select_algo();
4722 if ( e )
4723 return e;
4724 register_md_personality(&raid6_personality);
4725 register_md_personality(&raid5_personality);
4726 register_md_personality(&raid4_personality);
4727 return 0;
4730 static void raid5_exit(void)
4732 unregister_md_personality(&raid6_personality);
4733 unregister_md_personality(&raid5_personality);
4734 unregister_md_personality(&raid4_personality);
4737 module_init(raid5_init);
4738 module_exit(raid5_exit);
4739 MODULE_LICENSE("GPL");
4740 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4741 MODULE_ALIAS("md-raid5");
4742 MODULE_ALIAS("md-raid4");
4743 MODULE_ALIAS("md-level-5");
4744 MODULE_ALIAS("md-level-4");
4745 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4746 MODULE_ALIAS("md-raid6");
4747 MODULE_ALIAS("md-level-6");
4749 /* This used to be two separate modules, they were: */
4750 MODULE_ALIAS("raid5");
4751 MODULE_ALIAS("raid6");