x86: sparse_irq needs spin_lock in allocations
[linux-2.6/x86.git] / kernel / irq / handle.c
blobd638a911cbc11a4e8584b1e75829963ece12d92f
1 /*
2 * linux/kernel/irq/handle.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 * This file contains the core interrupt handling code.
9 * Detailed information is available in Documentation/DocBook/genericirq
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
19 #include "internals.h"
22 * lockdep: we want to handle all irq_desc locks as a single lock-class:
24 static struct lock_class_key irq_desc_lock_class;
26 /**
27 * handle_bad_irq - handle spurious and unhandled irqs
28 * @irq: the interrupt number
29 * @desc: description of the interrupt
31 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
33 void
34 handle_bad_irq(unsigned int irq, struct irq_desc *desc)
36 print_irq_desc(irq, desc);
37 kstat_irqs_this_cpu(desc)++;
38 ack_bad_irq(irq);
42 * Linux has a controller-independent interrupt architecture.
43 * Every controller has a 'controller-template', that is used
44 * by the main code to do the right thing. Each driver-visible
45 * interrupt source is transparently wired to the appropriate
46 * controller. Thus drivers need not be aware of the
47 * interrupt-controller.
49 * The code is designed to be easily extended with new/different
50 * interrupt controllers, without having to do assembly magic or
51 * having to touch the generic code.
53 * Controller mappings for all interrupt sources:
55 int nr_irqs = NR_IRQS;
56 EXPORT_SYMBOL_GPL(nr_irqs);
58 #ifdef CONFIG_HAVE_DYN_ARRAY
59 static struct irq_desc irq_desc_init = {
60 .irq = -1U,
61 .status = IRQ_DISABLED,
62 .chip = &no_irq_chip,
63 .handle_irq = handle_bad_irq,
64 .depth = 1,
65 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
66 #ifdef CONFIG_SMP
67 .affinity = CPU_MASK_ALL
68 #endif
72 static void init_one_irq_desc(struct irq_desc *desc)
74 memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
75 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
78 extern int after_bootmem;
79 extern void *__alloc_bootmem_nopanic(unsigned long size,
80 unsigned long align,
81 unsigned long goal);
83 static void init_kstat_irqs(struct irq_desc *desc, int nr_desc, int nr)
85 unsigned long bytes, total_bytes;
86 char *ptr;
87 int i;
88 unsigned long phys;
90 /* Compute how many bytes we need per irq and allocate them */
91 bytes = nr * sizeof(unsigned int);
92 total_bytes = bytes * nr_desc;
93 if (after_bootmem)
94 ptr = kzalloc(total_bytes, GFP_ATOMIC);
95 else
96 ptr = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
98 if (!ptr)
99 panic(" can not allocate kstat_irqs\n");
101 phys = __pa(ptr);
102 printk(KERN_DEBUG "kstat_irqs ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
104 for (i = 0; i < nr_desc; i++) {
105 desc[i].kstat_irqs = (unsigned int *)ptr;
106 ptr += bytes;
111 * Protect the sparse_irqs_free freelist:
113 static DEFINE_SPINLOCK(sparse_irq_lock);
115 #ifdef CONFIG_HAVE_SPARSE_IRQ
116 static struct irq_desc *sparse_irqs_free;
117 struct irq_desc *sparse_irqs;
118 #endif
120 static void __init init_work(void *data)
122 struct dyn_array *da = data;
123 int i;
124 struct irq_desc *desc;
126 desc = *da->name;
128 for (i = 0; i < *da->nr; i++) {
129 init_one_irq_desc(&desc[i]);
130 #ifndef CONFIG_HAVE_SPARSE_IRQ
131 desc[i].irq = i;
132 #endif
135 /* init kstat_irqs, nr_cpu_ids is ready already */
136 init_kstat_irqs(desc, *da->nr, nr_cpu_ids);
138 #ifdef CONFIG_HAVE_SPARSE_IRQ
139 for (i = 1; i < *da->nr; i++)
140 desc[i-1].next = &desc[i];
142 sparse_irqs_free = sparse_irqs;
143 sparse_irqs = NULL;
144 #endif
147 #ifdef CONFIG_HAVE_SPARSE_IRQ
148 static int nr_irq_desc = 32;
150 static int __init parse_nr_irq_desc(char *arg)
152 if (arg)
153 nr_irq_desc = simple_strtoul(arg, NULL, 0);
154 return 0;
157 early_param("nr_irq_desc", parse_nr_irq_desc);
159 DEFINE_DYN_ARRAY(sparse_irqs, sizeof(struct irq_desc), nr_irq_desc, PAGE_SIZE, init_work);
161 struct irq_desc *irq_to_desc(unsigned int irq)
163 struct irq_desc *desc;
165 desc = sparse_irqs;
166 while (desc) {
167 if (desc->irq == irq)
168 return desc;
170 desc = desc->next;
172 return NULL;
175 struct irq_desc *irq_to_desc_alloc(unsigned int irq)
177 struct irq_desc *desc, *desc_pri;
178 unsigned long flags;
179 int count = 0;
180 int i;
182 desc_pri = desc = sparse_irqs;
183 while (desc) {
184 if (desc->irq == irq)
185 return desc;
187 desc_pri = desc;
188 desc = desc->next;
189 count++;
192 spin_lock_irqsave(&sparse_irq_lock, flags);
194 * we run out of pre-allocate ones, allocate more
196 if (!sparse_irqs_free) {
197 unsigned long phys;
198 unsigned long total_bytes;
200 printk(KERN_DEBUG "try to get more irq_desc %d\n", nr_irq_desc);
202 total_bytes = sizeof(struct irq_desc) * nr_irq_desc;
203 if (after_bootmem)
204 desc = kzalloc(total_bytes, GFP_ATOMIC);
205 else
206 desc = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
208 if (!desc)
209 panic("please boot with nr_irq_desc= %d\n", count * 2);
211 phys = __pa(desc);
212 printk(KERN_DEBUG "irq_desc ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
214 for (i = 0; i < nr_irq_desc; i++)
215 init_one_irq_desc(&desc[i]);
217 for (i = 1; i < nr_irq_desc; i++)
218 desc[i-1].next = &desc[i];
220 /* init kstat_irqs, nr_cpu_ids is ready already */
221 init_kstat_irqs(desc, nr_irq_desc, nr_cpu_ids);
223 sparse_irqs_free = desc;
226 desc = sparse_irqs_free;
227 sparse_irqs_free = sparse_irqs_free->next;
228 desc->next = NULL;
229 if (desc_pri)
230 desc_pri->next = desc;
231 else
232 sparse_irqs = desc;
233 desc->irq = irq;
235 spin_unlock_irqrestore(&sparse_irq_lock, flags);
237 printk(KERN_DEBUG "found new irq_desc for irq %d\n", desc->irq);
238 #ifdef CONFIG_HAVE_SPARSE_IRQ_DEBUG
240 /* dump the results */
241 struct irq_desc *desc;
242 unsigned long phys;
243 unsigned long bytes = sizeof(struct irq_desc);
244 unsigned int irqx;
246 printk(KERN_DEBUG "=========================== %d\n", irq);
247 printk(KERN_DEBUG "irq_desc dump after get that for %d\n", irq);
248 for_each_irq_desc(irqx, desc) {
249 phys = __pa(desc);
250 printk(KERN_DEBUG "irq_desc %d ==> [%#lx - %#lx]\n", irqx, phys, phys + bytes);
252 printk(KERN_DEBUG "===========================\n");
254 #endif
255 return desc;
257 #else
258 struct irq_desc *irq_desc;
259 DEFINE_DYN_ARRAY(irq_desc, sizeof(struct irq_desc), nr_irqs, PAGE_SIZE, init_work);
261 #endif
263 #else
265 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
266 [0 ... NR_IRQS-1] = {
267 .status = IRQ_DISABLED,
268 .chip = &no_irq_chip,
269 .handle_irq = handle_bad_irq,
270 .depth = 1,
271 .lock = __SPIN_LOCK_UNLOCKED(sparse_irqs->lock),
272 #ifdef CONFIG_SMP
273 .affinity = CPU_MASK_ALL
274 #endif
278 #endif
280 #ifndef CONFIG_HAVE_SPARSE_IRQ
281 struct irq_desc *irq_to_desc(unsigned int irq)
283 if (irq < nr_irqs)
284 return &irq_desc[irq];
286 return NULL;
288 struct irq_desc *irq_to_desc_alloc(unsigned int irq)
290 return irq_to_desc(irq);
292 #endif
295 * What should we do if we get a hw irq event on an illegal vector?
296 * Each architecture has to answer this themself.
298 static void ack_bad(unsigned int irq)
300 struct irq_desc *desc;
302 desc = irq_to_desc(irq);
303 print_irq_desc(irq, desc);
304 ack_bad_irq(irq);
308 * NOP functions
310 static void noop(unsigned int irq)
314 static unsigned int noop_ret(unsigned int irq)
316 return 0;
320 * Generic no controller implementation
322 struct irq_chip no_irq_chip = {
323 .name = "none",
324 .startup = noop_ret,
325 .shutdown = noop,
326 .enable = noop,
327 .disable = noop,
328 .ack = ack_bad,
329 .end = noop,
333 * Generic dummy implementation which can be used for
334 * real dumb interrupt sources
336 struct irq_chip dummy_irq_chip = {
337 .name = "dummy",
338 .startup = noop_ret,
339 .shutdown = noop,
340 .enable = noop,
341 .disable = noop,
342 .ack = noop,
343 .mask = noop,
344 .unmask = noop,
345 .end = noop,
349 * Special, empty irq handler:
351 irqreturn_t no_action(int cpl, void *dev_id)
353 return IRQ_NONE;
357 * handle_IRQ_event - irq action chain handler
358 * @irq: the interrupt number
359 * @action: the interrupt action chain for this irq
361 * Handles the action chain of an irq event
363 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
365 irqreturn_t ret, retval = IRQ_NONE;
366 unsigned int status = 0;
368 if (!(action->flags & IRQF_DISABLED))
369 local_irq_enable_in_hardirq();
371 do {
372 ret = action->handler(irq, action->dev_id);
373 if (ret == IRQ_HANDLED)
374 status |= action->flags;
375 retval |= ret;
376 action = action->next;
377 } while (action);
379 if (status & IRQF_SAMPLE_RANDOM)
380 add_interrupt_randomness(irq);
381 local_irq_disable();
383 return retval;
386 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
388 * __do_IRQ - original all in one highlevel IRQ handler
389 * @irq: the interrupt number
391 * __do_IRQ handles all normal device IRQ's (the special
392 * SMP cross-CPU interrupts have their own specific
393 * handlers).
395 * This is the original x86 implementation which is used for every
396 * interrupt type.
398 unsigned int __do_IRQ(unsigned int irq)
400 struct irq_desc *desc = irq_to_desc(irq);
401 struct irqaction *action;
402 unsigned int status;
404 kstat_irqs_this_cpu(desc)++;
405 if (CHECK_IRQ_PER_CPU(desc->status)) {
406 irqreturn_t action_ret;
409 * No locking required for CPU-local interrupts:
411 if (desc->chip->ack)
412 desc->chip->ack(irq);
413 if (likely(!(desc->status & IRQ_DISABLED))) {
414 action_ret = handle_IRQ_event(irq, desc->action);
415 if (!noirqdebug)
416 note_interrupt(irq, desc, action_ret);
418 desc->chip->end(irq);
419 return 1;
422 spin_lock(&desc->lock);
423 if (desc->chip->ack)
424 desc->chip->ack(irq);
426 * REPLAY is when Linux resends an IRQ that was dropped earlier
427 * WAITING is used by probe to mark irqs that are being tested
429 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
430 status |= IRQ_PENDING; /* we _want_ to handle it */
433 * If the IRQ is disabled for whatever reason, we cannot
434 * use the action we have.
436 action = NULL;
437 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
438 action = desc->action;
439 status &= ~IRQ_PENDING; /* we commit to handling */
440 status |= IRQ_INPROGRESS; /* we are handling it */
442 desc->status = status;
445 * If there is no IRQ handler or it was disabled, exit early.
446 * Since we set PENDING, if another processor is handling
447 * a different instance of this same irq, the other processor
448 * will take care of it.
450 if (unlikely(!action))
451 goto out;
454 * Edge triggered interrupts need to remember
455 * pending events.
456 * This applies to any hw interrupts that allow a second
457 * instance of the same irq to arrive while we are in do_IRQ
458 * or in the handler. But the code here only handles the _second_
459 * instance of the irq, not the third or fourth. So it is mostly
460 * useful for irq hardware that does not mask cleanly in an
461 * SMP environment.
463 for (;;) {
464 irqreturn_t action_ret;
466 spin_unlock(&desc->lock);
468 action_ret = handle_IRQ_event(irq, action);
469 if (!noirqdebug)
470 note_interrupt(irq, desc, action_ret);
472 spin_lock(&desc->lock);
473 if (likely(!(desc->status & IRQ_PENDING)))
474 break;
475 desc->status &= ~IRQ_PENDING;
477 desc->status &= ~IRQ_INPROGRESS;
479 out:
481 * The ->end() handler has to deal with interrupts which got
482 * disabled while the handler was running.
484 desc->chip->end(irq);
485 spin_unlock(&desc->lock);
487 return 1;
489 #endif
492 #ifdef CONFIG_TRACE_IRQFLAGS
493 void early_init_irq_lock_class(void)
495 #ifndef CONFIG_HAVE_DYN_ARRAY
496 int i;
498 for (i = 0; i < nr_irqs; i++)
499 lockdep_set_class(&irq_desc[i].lock, &irq_desc_lock_class);
500 #endif
502 #endif
504 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
506 struct irq_desc *desc = irq_to_desc(irq);
507 return desc->kstat_irqs[cpu];
509 EXPORT_SYMBOL(kstat_irqs_cpu);