Merge branch 'linus'
[linux-2.6/x86.git] / arch / x86 / include / asm / spinlock.h
blob7edca0d03c450d432298327e4db72a221422f45d
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
4 #include <linux/atomic.h>
5 #include <asm/page.h>
6 #include <asm/processor.h>
7 #include <linux/compiler.h>
8 #include <asm/paravirt.h>
9 /*
10 * Your basic SMP spinlocks, allowing only a single CPU anywhere
12 * Simple spin lock operations. There are two variants, one clears IRQ's
13 * on the local processor, one does not.
15 * These are fair FIFO ticket locks, which are currently limited to 256
16 * CPUs.
18 * (the type definitions are in asm/spinlock_types.h)
21 #ifdef CONFIG_X86_32
22 # define LOCK_PTR_REG "a"
23 # define REG_PTR_MODE "k"
24 #else
25 # define LOCK_PTR_REG "D"
26 # define REG_PTR_MODE "q"
27 #endif
29 #if defined(CONFIG_X86_32) && \
30 (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
32 * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
33 * (PPro errata 66, 92)
35 static __always_inline void __ticket_unlock_release(struct arch_spinlock *lock)
37 if (sizeof(lock->tickets.head) == sizeof(u8))
38 asm volatile(LOCK_PREFIX "incb %0"
39 : "+m" (lock->tickets.head) : : "memory");
40 else
41 asm volatile(LOCK_PREFIX "incw %0"
42 : "+m" (lock->tickets.head) : : "memory");
45 #else
46 static __always_inline void __ticket_unlock_release(struct arch_spinlock *lock)
48 lock->tickets.head++;
50 #endif
53 * Ticket locks are conceptually two parts, one indicating the current head of
54 * the queue, and the other indicating the current tail. The lock is acquired
55 * by atomically noting the tail and incrementing it by one (thus adding
56 * ourself to the queue and noting our position), then waiting until the head
57 * becomes equal to the the initial value of the tail.
59 * We use an xadd covering *both* parts of the lock, to increment the tail and
60 * also load the position of the head, which takes care of memory ordering
61 * issues and should be optimal for the uncontended case. Note the tail must be
62 * in the high part, because a wide xadd increment of the low part would carry
63 * up and contaminate the high part.
65 * With fewer than 2^8 possible CPUs, we can use x86's partial registers to
66 * save some instructions and make the code more elegant. There really isn't
67 * much between them in performance though, especially as locks are out of line.
69 static __always_inline struct __raw_tickets __ticket_spin_claim(struct arch_spinlock *lock)
71 register struct __raw_tickets tickets = { .tail = 1 };
73 xadd(&lock->tickets, tickets);
75 return tickets;
78 static __always_inline void __ticket_spin_lock(struct arch_spinlock *lock)
80 register struct __raw_tickets inc;
82 inc = __ticket_spin_claim(lock);
84 for (;;) {
85 if (inc.head == inc.tail)
86 goto out;
87 cpu_relax();
88 inc.head = ACCESS_ONCE(lock->tickets.head);
90 out: barrier(); /* make sure nothing creeps before the lock is taken */
93 static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
95 arch_spinlock_t old, new;
97 old.tickets = ACCESS_ONCE(lock->tickets);
98 if (old.tickets.head != old.tickets.tail)
99 return 0;
101 new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
103 /* cmpxchg is a full barrier, so nothing can move before it */
104 return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
107 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
109 barrier(); /* prevent reordering out of locked region */
110 __ticket_unlock_release(lock);
111 barrier(); /* prevent reordering into locked region */
114 static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
116 struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
118 return !!(tmp.tail ^ tmp.head);
121 static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
123 struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
125 return ((tmp.tail - tmp.head) & TICKET_MASK) > 1;
128 #ifndef CONFIG_PARAVIRT_SPINLOCKS
130 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
132 return __ticket_spin_is_locked(lock);
135 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
137 return __ticket_spin_is_contended(lock);
139 #define arch_spin_is_contended arch_spin_is_contended
141 static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
143 __ticket_spin_lock(lock);
146 static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
148 return __ticket_spin_trylock(lock);
151 static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
153 __ticket_spin_unlock(lock);
156 static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
157 unsigned long flags)
159 arch_spin_lock(lock);
162 #endif /* CONFIG_PARAVIRT_SPINLOCKS */
164 static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
166 while (arch_spin_is_locked(lock))
167 cpu_relax();
171 * Read-write spinlocks, allowing multiple readers
172 * but only one writer.
174 * NOTE! it is quite common to have readers in interrupts
175 * but no interrupt writers. For those circumstances we
176 * can "mix" irq-safe locks - any writer needs to get a
177 * irq-safe write-lock, but readers can get non-irqsafe
178 * read-locks.
180 * On x86, we implement read-write locks as a 32-bit counter
181 * with the high bit (sign) being the "contended" bit.
185 * read_can_lock - would read_trylock() succeed?
186 * @lock: the rwlock in question.
188 static inline int arch_read_can_lock(arch_rwlock_t *lock)
190 return lock->lock > 0;
194 * write_can_lock - would write_trylock() succeed?
195 * @lock: the rwlock in question.
197 static inline int arch_write_can_lock(arch_rwlock_t *lock)
199 return lock->write == WRITE_LOCK_CMP;
202 static inline void arch_read_lock(arch_rwlock_t *rw)
204 asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
205 "jns 1f\n"
206 "call __read_lock_failed\n\t"
207 "1:\n"
208 ::LOCK_PTR_REG (rw) : "memory");
211 static inline void arch_write_lock(arch_rwlock_t *rw)
213 asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
214 "jz 1f\n"
215 "call __write_lock_failed\n\t"
216 "1:\n"
217 ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
218 : "memory");
221 static inline int arch_read_trylock(arch_rwlock_t *lock)
223 READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
225 if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
226 return 1;
227 READ_LOCK_ATOMIC(inc)(count);
228 return 0;
231 static inline int arch_write_trylock(arch_rwlock_t *lock)
233 atomic_t *count = (atomic_t *)&lock->write;
235 if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
236 return 1;
237 atomic_add(WRITE_LOCK_CMP, count);
238 return 0;
241 static inline void arch_read_unlock(arch_rwlock_t *rw)
243 asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
244 :"+m" (rw->lock) : : "memory");
247 static inline void arch_write_unlock(arch_rwlock_t *rw)
249 asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
250 : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
253 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
254 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
256 #undef READ_LOCK_SIZE
257 #undef READ_LOCK_ATOMIC
258 #undef WRITE_LOCK_ADD
259 #undef WRITE_LOCK_SUB
260 #undef WRITE_LOCK_CMP
262 #define arch_spin_relax(lock) cpu_relax()
263 #define arch_read_relax(lock) cpu_relax()
264 #define arch_write_relax(lock) cpu_relax()
266 /* The {read|write|spin}_lock() on x86 are full memory barriers. */
267 static inline void smp_mb__after_lock(void) { }
268 #define ARCH_HAS_SMP_MB_AFTER_LOCK
270 #endif /* _ASM_X86_SPINLOCK_H */