Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6/x86.git] / drivers / net / cxgb3 / cxgb3_main.c
blobf9eede0a4b865e4a2c19805559d1b6bd94ded1fd
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
62 enum {
63 MAX_TXQ_ENTRIES = 16384,
64 MAX_CTRL_TXQ_ENTRIES = 1024,
65 MAX_RSPQ_ENTRIES = 16384,
66 MAX_RX_BUFFERS = 16384,
67 MAX_RX_JUMBO_BUFFERS = 16384,
68 MIN_TXQ_ENTRIES = 4,
69 MIN_CTRL_TXQ_ENTRIES = 4,
70 MIN_RSPQ_ENTRIES = 32,
71 MIN_FL_ENTRIES = 32
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
80 #define EEPROM_MAGIC 0x38E2F10C
82 #define CH_DEVICE(devid, idx) \
83 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86 CH_DEVICE(0x20, 0), /* PE9000 */
87 CH_DEVICE(0x21, 1), /* T302E */
88 CH_DEVICE(0x22, 2), /* T310E */
89 CH_DEVICE(0x23, 3), /* T320X */
90 CH_DEVICE(0x24, 1), /* T302X */
91 CH_DEVICE(0x25, 3), /* T320E */
92 CH_DEVICE(0x26, 2), /* T310X */
93 CH_DEVICE(0x30, 2), /* T3B10 */
94 CH_DEVICE(0x31, 3), /* T3B20 */
95 CH_DEVICE(0x32, 1), /* T3B02 */
96 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
97 CH_DEVICE(0x36, 3), /* S320E-CR */
98 CH_DEVICE(0x37, 7), /* N320E-G2 */
99 {0,}
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
114 * The driver uses the best interrupt scheme available on a platform in the
115 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
116 * of these schemes the driver may consider as follows:
118 * msi = 2: choose from among all three options
119 * msi = 1: only consider MSI and pin interrupts
120 * msi = 0: force pin interrupts
122 static int msi = 2;
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
128 * The driver enables offload as a default.
129 * To disable it, use ofld_disable = 1.
132 static int ofld_disable = 0;
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
138 * We have work elements that we need to cancel when an interface is taken
139 * down. Normally the work elements would be executed by keventd but that
140 * can deadlock because of linkwatch. If our close method takes the rtnl
141 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143 * for our work to complete. Get our own work queue to solve this.
145 struct workqueue_struct *cxgb3_wq;
148 * link_report - show link status and link speed/duplex
149 * @p: the port whose settings are to be reported
151 * Shows the link status, speed, and duplex of a port.
153 static void link_report(struct net_device *dev)
155 if (!netif_carrier_ok(dev))
156 printk(KERN_INFO "%s: link down\n", dev->name);
157 else {
158 const char *s = "10Mbps";
159 const struct port_info *p = netdev_priv(dev);
161 switch (p->link_config.speed) {
162 case SPEED_10000:
163 s = "10Gbps";
164 break;
165 case SPEED_1000:
166 s = "1000Mbps";
167 break;
168 case SPEED_100:
169 s = "100Mbps";
170 break;
173 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179 struct port_info *pi)
181 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182 F_ENDROPPKT);
183 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189 struct port_info *pi)
191 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192 F_ENDROPPKT, 0);
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
197 struct net_device *dev = adap->port[port_id];
198 struct port_info *pi = netdev_priv(dev);
200 if (state == netif_carrier_ok(dev))
201 return;
203 if (state) {
204 struct cmac *mac = &pi->mac;
206 netif_carrier_on(dev);
208 disable_tx_fifo_drain(adap, pi);
210 /* Clear local faults */
211 t3_xgm_intr_disable(adap, pi->port_id);
212 t3_read_reg(adap, A_XGM_INT_STATUS +
213 pi->mac.offset);
214 t3_write_reg(adap,
215 A_XGM_INT_CAUSE + pi->mac.offset,
216 F_XGM_INT);
218 t3_set_reg_field(adap,
219 A_XGM_INT_ENABLE +
220 pi->mac.offset,
221 F_XGM_INT, F_XGM_INT);
222 t3_xgm_intr_enable(adap, pi->port_id);
224 t3_mac_enable(mac, MAC_DIRECTION_TX);
225 } else {
226 netif_carrier_off(dev);
228 /* Flush TX FIFO */
229 enable_tx_fifo_drain(adap, pi);
231 link_report(dev);
235 * t3_os_link_changed - handle link status changes
236 * @adapter: the adapter associated with the link change
237 * @port_id: the port index whose limk status has changed
238 * @link_stat: the new status of the link
239 * @speed: the new speed setting
240 * @duplex: the new duplex setting
241 * @pause: the new flow-control setting
243 * This is the OS-dependent handler for link status changes. The OS
244 * neutral handler takes care of most of the processing for these events,
245 * then calls this handler for any OS-specific processing.
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248 int speed, int duplex, int pause)
250 struct net_device *dev = adapter->port[port_id];
251 struct port_info *pi = netdev_priv(dev);
252 struct cmac *mac = &pi->mac;
254 /* Skip changes from disabled ports. */
255 if (!netif_running(dev))
256 return;
258 if (link_stat != netif_carrier_ok(dev)) {
259 if (link_stat) {
260 disable_tx_fifo_drain(adapter, pi);
262 t3_mac_enable(mac, MAC_DIRECTION_RX);
264 /* Clear local faults */
265 t3_xgm_intr_disable(adapter, pi->port_id);
266 t3_read_reg(adapter, A_XGM_INT_STATUS +
267 pi->mac.offset);
268 t3_write_reg(adapter,
269 A_XGM_INT_CAUSE + pi->mac.offset,
270 F_XGM_INT);
272 t3_set_reg_field(adapter,
273 A_XGM_INT_ENABLE + pi->mac.offset,
274 F_XGM_INT, F_XGM_INT);
275 t3_xgm_intr_enable(adapter, pi->port_id);
277 netif_carrier_on(dev);
278 } else {
279 netif_carrier_off(dev);
281 t3_xgm_intr_disable(adapter, pi->port_id);
282 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283 t3_set_reg_field(adapter,
284 A_XGM_INT_ENABLE + pi->mac.offset,
285 F_XGM_INT, 0);
287 if (is_10G(adapter))
288 pi->phy.ops->power_down(&pi->phy, 1);
290 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291 t3_mac_disable(mac, MAC_DIRECTION_RX);
292 t3_link_start(&pi->phy, mac, &pi->link_config);
294 /* Flush TX FIFO */
295 enable_tx_fifo_drain(adapter, pi);
298 link_report(dev);
303 * t3_os_phymod_changed - handle PHY module changes
304 * @phy: the PHY reporting the module change
305 * @mod_type: new module type
307 * This is the OS-dependent handler for PHY module changes. It is
308 * invoked when a PHY module is removed or inserted for any OS-specific
309 * processing.
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
313 static const char *mod_str[] = {
314 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
317 const struct net_device *dev = adap->port[port_id];
318 const struct port_info *pi = netdev_priv(dev);
320 if (pi->phy.modtype == phy_modtype_none)
321 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322 else
323 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324 mod_str[pi->phy.modtype]);
327 static void cxgb_set_rxmode(struct net_device *dev)
329 struct port_info *pi = netdev_priv(dev);
331 t3_mac_set_rx_mode(&pi->mac, dev);
335 * link_start - enable a port
336 * @dev: the device to enable
338 * Performs the MAC and PHY actions needed to enable a port.
340 static void link_start(struct net_device *dev)
342 struct port_info *pi = netdev_priv(dev);
343 struct cmac *mac = &pi->mac;
345 t3_mac_reset(mac);
346 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347 t3_mac_set_mtu(mac, dev->mtu);
348 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350 t3_mac_set_rx_mode(mac, dev);
351 t3_link_start(&pi->phy, mac, &pi->link_config);
352 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
355 static inline void cxgb_disable_msi(struct adapter *adapter)
357 if (adapter->flags & USING_MSIX) {
358 pci_disable_msix(adapter->pdev);
359 adapter->flags &= ~USING_MSIX;
360 } else if (adapter->flags & USING_MSI) {
361 pci_disable_msi(adapter->pdev);
362 adapter->flags &= ~USING_MSI;
367 * Interrupt handler for asynchronous events used with MSI-X.
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
371 t3_slow_intr_handler(cookie);
372 return IRQ_HANDLED;
376 * Name the MSI-X interrupts.
378 static void name_msix_vecs(struct adapter *adap)
380 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
382 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383 adap->msix_info[0].desc[n] = 0;
385 for_each_port(adap, j) {
386 struct net_device *d = adap->port[j];
387 const struct port_info *pi = netdev_priv(d);
389 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390 snprintf(adap->msix_info[msi_idx].desc, n,
391 "%s-%d", d->name, pi->first_qset + i);
392 adap->msix_info[msi_idx].desc[n] = 0;
397 static int request_msix_data_irqs(struct adapter *adap)
399 int i, j, err, qidx = 0;
401 for_each_port(adap, i) {
402 int nqsets = adap2pinfo(adap, i)->nqsets;
404 for (j = 0; j < nqsets; ++j) {
405 err = request_irq(adap->msix_info[qidx + 1].vec,
406 t3_intr_handler(adap,
407 adap->sge.qs[qidx].
408 rspq.polling), 0,
409 adap->msix_info[qidx + 1].desc,
410 &adap->sge.qs[qidx]);
411 if (err) {
412 while (--qidx >= 0)
413 free_irq(adap->msix_info[qidx + 1].vec,
414 &adap->sge.qs[qidx]);
415 return err;
417 qidx++;
420 return 0;
423 static void free_irq_resources(struct adapter *adapter)
425 if (adapter->flags & USING_MSIX) {
426 int i, n = 0;
428 free_irq(adapter->msix_info[0].vec, adapter);
429 for_each_port(adapter, i)
430 n += adap2pinfo(adapter, i)->nqsets;
432 for (i = 0; i < n; ++i)
433 free_irq(adapter->msix_info[i + 1].vec,
434 &adapter->sge.qs[i]);
435 } else
436 free_irq(adapter->pdev->irq, adapter);
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440 unsigned long n)
442 int attempts = 10;
444 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445 if (!--attempts)
446 return -ETIMEDOUT;
447 msleep(10);
449 return 0;
452 static int init_tp_parity(struct adapter *adap)
454 int i;
455 struct sk_buff *skb;
456 struct cpl_set_tcb_field *greq;
457 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
459 t3_tp_set_offload_mode(adap, 1);
461 for (i = 0; i < 16; i++) {
462 struct cpl_smt_write_req *req;
464 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465 if (!skb)
466 skb = adap->nofail_skb;
467 if (!skb)
468 goto alloc_skb_fail;
470 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471 memset(req, 0, sizeof(*req));
472 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474 req->mtu_idx = NMTUS - 1;
475 req->iff = i;
476 t3_mgmt_tx(adap, skb);
477 if (skb == adap->nofail_skb) {
478 await_mgmt_replies(adap, cnt, i + 1);
479 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480 if (!adap->nofail_skb)
481 goto alloc_skb_fail;
485 for (i = 0; i < 2048; i++) {
486 struct cpl_l2t_write_req *req;
488 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489 if (!skb)
490 skb = adap->nofail_skb;
491 if (!skb)
492 goto alloc_skb_fail;
494 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495 memset(req, 0, sizeof(*req));
496 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498 req->params = htonl(V_L2T_W_IDX(i));
499 t3_mgmt_tx(adap, skb);
500 if (skb == adap->nofail_skb) {
501 await_mgmt_replies(adap, cnt, 16 + i + 1);
502 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503 if (!adap->nofail_skb)
504 goto alloc_skb_fail;
508 for (i = 0; i < 2048; i++) {
509 struct cpl_rte_write_req *req;
511 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512 if (!skb)
513 skb = adap->nofail_skb;
514 if (!skb)
515 goto alloc_skb_fail;
517 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518 memset(req, 0, sizeof(*req));
519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522 t3_mgmt_tx(adap, skb);
523 if (skb == adap->nofail_skb) {
524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526 if (!adap->nofail_skb)
527 goto alloc_skb_fail;
531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532 if (!skb)
533 skb = adap->nofail_skb;
534 if (!skb)
535 goto alloc_skb_fail;
537 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538 memset(greq, 0, sizeof(*greq));
539 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541 greq->mask = cpu_to_be64(1);
542 t3_mgmt_tx(adap, skb);
544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545 if (skb == adap->nofail_skb) {
546 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
550 t3_tp_set_offload_mode(adap, 0);
551 return i;
553 alloc_skb_fail:
554 t3_tp_set_offload_mode(adap, 0);
555 return -ENOMEM;
559 * setup_rss - configure RSS
560 * @adap: the adapter
562 * Sets up RSS to distribute packets to multiple receive queues. We
563 * configure the RSS CPU lookup table to distribute to the number of HW
564 * receive queues, and the response queue lookup table to narrow that
565 * down to the response queues actually configured for each port.
566 * We always configure the RSS mapping for two ports since the mapping
567 * table has plenty of entries.
569 static void setup_rss(struct adapter *adap)
571 int i;
572 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574 u8 cpus[SGE_QSETS + 1];
575 u16 rspq_map[RSS_TABLE_SIZE];
577 for (i = 0; i < SGE_QSETS; ++i)
578 cpus[i] = i;
579 cpus[SGE_QSETS] = 0xff; /* terminator */
581 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582 rspq_map[i] = i % nq0;
583 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
591 static void ring_dbs(struct adapter *adap)
593 int i, j;
595 for (i = 0; i < SGE_QSETS; i++) {
596 struct sge_qset *qs = &adap->sge.qs[i];
598 if (qs->adap)
599 for (j = 0; j < SGE_TXQ_PER_SET; j++)
600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
604 static void init_napi(struct adapter *adap)
606 int i;
608 for (i = 0; i < SGE_QSETS; i++) {
609 struct sge_qset *qs = &adap->sge.qs[i];
611 if (qs->adap)
612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613 64);
617 * netif_napi_add() can be called only once per napi_struct because it
618 * adds each new napi_struct to a list. Be careful not to call it a
619 * second time, e.g., during EEH recovery, by making a note of it.
621 adap->flags |= NAPI_INIT;
625 * Wait until all NAPI handlers are descheduled. This includes the handlers of
626 * both netdevices representing interfaces and the dummy ones for the extra
627 * queues.
629 static void quiesce_rx(struct adapter *adap)
631 int i;
633 for (i = 0; i < SGE_QSETS; i++)
634 if (adap->sge.qs[i].adap)
635 napi_disable(&adap->sge.qs[i].napi);
638 static void enable_all_napi(struct adapter *adap)
640 int i;
641 for (i = 0; i < SGE_QSETS; i++)
642 if (adap->sge.qs[i].adap)
643 napi_enable(&adap->sge.qs[i].napi);
647 * set_qset_lro - Turn a queue set's LRO capability on and off
648 * @dev: the device the qset is attached to
649 * @qset_idx: the queue set index
650 * @val: the LRO switch
652 * Sets LRO on or off for a particular queue set.
653 * the device's features flag is updated to reflect the LRO
654 * capability when all queues belonging to the device are
655 * in the same state.
657 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
659 struct port_info *pi = netdev_priv(dev);
660 struct adapter *adapter = pi->adapter;
662 adapter->params.sge.qset[qset_idx].lro = !!val;
663 adapter->sge.qs[qset_idx].lro_enabled = !!val;
667 * setup_sge_qsets - configure SGE Tx/Rx/response queues
668 * @adap: the adapter
670 * Determines how many sets of SGE queues to use and initializes them.
671 * We support multiple queue sets per port if we have MSI-X, otherwise
672 * just one queue set per port.
674 static int setup_sge_qsets(struct adapter *adap)
676 int i, j, err, irq_idx = 0, qset_idx = 0;
677 unsigned int ntxq = SGE_TXQ_PER_SET;
679 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
680 irq_idx = -1;
682 for_each_port(adap, i) {
683 struct net_device *dev = adap->port[i];
684 struct port_info *pi = netdev_priv(dev);
686 pi->qs = &adap->sge.qs[pi->first_qset];
687 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
688 set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
689 err = t3_sge_alloc_qset(adap, qset_idx, 1,
690 (adap->flags & USING_MSIX) ? qset_idx + 1 :
691 irq_idx,
692 &adap->params.sge.qset[qset_idx], ntxq, dev,
693 netdev_get_tx_queue(dev, j));
694 if (err) {
695 t3_free_sge_resources(adap);
696 return err;
701 return 0;
704 static ssize_t attr_show(struct device *d, char *buf,
705 ssize_t(*format) (struct net_device *, char *))
707 ssize_t len;
709 /* Synchronize with ioctls that may shut down the device */
710 rtnl_lock();
711 len = (*format) (to_net_dev(d), buf);
712 rtnl_unlock();
713 return len;
716 static ssize_t attr_store(struct device *d,
717 const char *buf, size_t len,
718 ssize_t(*set) (struct net_device *, unsigned int),
719 unsigned int min_val, unsigned int max_val)
721 char *endp;
722 ssize_t ret;
723 unsigned int val;
725 if (!capable(CAP_NET_ADMIN))
726 return -EPERM;
728 val = simple_strtoul(buf, &endp, 0);
729 if (endp == buf || val < min_val || val > max_val)
730 return -EINVAL;
732 rtnl_lock();
733 ret = (*set) (to_net_dev(d), val);
734 if (!ret)
735 ret = len;
736 rtnl_unlock();
737 return ret;
740 #define CXGB3_SHOW(name, val_expr) \
741 static ssize_t format_##name(struct net_device *dev, char *buf) \
743 struct port_info *pi = netdev_priv(dev); \
744 struct adapter *adap = pi->adapter; \
745 return sprintf(buf, "%u\n", val_expr); \
747 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
748 char *buf) \
750 return attr_show(d, buf, format_##name); \
753 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
755 struct port_info *pi = netdev_priv(dev);
756 struct adapter *adap = pi->adapter;
757 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
759 if (adap->flags & FULL_INIT_DONE)
760 return -EBUSY;
761 if (val && adap->params.rev == 0)
762 return -EINVAL;
763 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
764 min_tids)
765 return -EINVAL;
766 adap->params.mc5.nfilters = val;
767 return 0;
770 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
771 const char *buf, size_t len)
773 return attr_store(d, buf, len, set_nfilters, 0, ~0);
776 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
778 struct port_info *pi = netdev_priv(dev);
779 struct adapter *adap = pi->adapter;
781 if (adap->flags & FULL_INIT_DONE)
782 return -EBUSY;
783 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
784 MC5_MIN_TIDS)
785 return -EINVAL;
786 adap->params.mc5.nservers = val;
787 return 0;
790 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
791 const char *buf, size_t len)
793 return attr_store(d, buf, len, set_nservers, 0, ~0);
796 #define CXGB3_ATTR_R(name, val_expr) \
797 CXGB3_SHOW(name, val_expr) \
798 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
800 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
801 CXGB3_SHOW(name, val_expr) \
802 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
804 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
805 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
806 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
808 static struct attribute *cxgb3_attrs[] = {
809 &dev_attr_cam_size.attr,
810 &dev_attr_nfilters.attr,
811 &dev_attr_nservers.attr,
812 NULL
815 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
817 static ssize_t tm_attr_show(struct device *d,
818 char *buf, int sched)
820 struct port_info *pi = netdev_priv(to_net_dev(d));
821 struct adapter *adap = pi->adapter;
822 unsigned int v, addr, bpt, cpt;
823 ssize_t len;
825 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
826 rtnl_lock();
827 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
828 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
829 if (sched & 1)
830 v >>= 16;
831 bpt = (v >> 8) & 0xff;
832 cpt = v & 0xff;
833 if (!cpt)
834 len = sprintf(buf, "disabled\n");
835 else {
836 v = (adap->params.vpd.cclk * 1000) / cpt;
837 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
839 rtnl_unlock();
840 return len;
843 static ssize_t tm_attr_store(struct device *d,
844 const char *buf, size_t len, int sched)
846 struct port_info *pi = netdev_priv(to_net_dev(d));
847 struct adapter *adap = pi->adapter;
848 unsigned int val;
849 char *endp;
850 ssize_t ret;
852 if (!capable(CAP_NET_ADMIN))
853 return -EPERM;
855 val = simple_strtoul(buf, &endp, 0);
856 if (endp == buf || val > 10000000)
857 return -EINVAL;
859 rtnl_lock();
860 ret = t3_config_sched(adap, val, sched);
861 if (!ret)
862 ret = len;
863 rtnl_unlock();
864 return ret;
867 #define TM_ATTR(name, sched) \
868 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
869 char *buf) \
871 return tm_attr_show(d, buf, sched); \
873 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
874 const char *buf, size_t len) \
876 return tm_attr_store(d, buf, len, sched); \
878 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
880 TM_ATTR(sched0, 0);
881 TM_ATTR(sched1, 1);
882 TM_ATTR(sched2, 2);
883 TM_ATTR(sched3, 3);
884 TM_ATTR(sched4, 4);
885 TM_ATTR(sched5, 5);
886 TM_ATTR(sched6, 6);
887 TM_ATTR(sched7, 7);
889 static struct attribute *offload_attrs[] = {
890 &dev_attr_sched0.attr,
891 &dev_attr_sched1.attr,
892 &dev_attr_sched2.attr,
893 &dev_attr_sched3.attr,
894 &dev_attr_sched4.attr,
895 &dev_attr_sched5.attr,
896 &dev_attr_sched6.attr,
897 &dev_attr_sched7.attr,
898 NULL
901 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
904 * Sends an sk_buff to an offload queue driver
905 * after dealing with any active network taps.
907 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
909 int ret;
911 local_bh_disable();
912 ret = t3_offload_tx(tdev, skb);
913 local_bh_enable();
914 return ret;
917 static int write_smt_entry(struct adapter *adapter, int idx)
919 struct cpl_smt_write_req *req;
920 struct port_info *pi = netdev_priv(adapter->port[idx]);
921 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
923 if (!skb)
924 return -ENOMEM;
926 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
927 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
928 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
929 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
930 req->iff = idx;
931 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
932 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
933 skb->priority = 1;
934 offload_tx(&adapter->tdev, skb);
935 return 0;
938 static int init_smt(struct adapter *adapter)
940 int i;
942 for_each_port(adapter, i)
943 write_smt_entry(adapter, i);
944 return 0;
947 static void init_port_mtus(struct adapter *adapter)
949 unsigned int mtus = adapter->port[0]->mtu;
951 if (adapter->port[1])
952 mtus |= adapter->port[1]->mtu << 16;
953 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
956 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
957 int hi, int port)
959 struct sk_buff *skb;
960 struct mngt_pktsched_wr *req;
961 int ret;
963 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
964 if (!skb)
965 skb = adap->nofail_skb;
966 if (!skb)
967 return -ENOMEM;
969 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
970 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
971 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
972 req->sched = sched;
973 req->idx = qidx;
974 req->min = lo;
975 req->max = hi;
976 req->binding = port;
977 ret = t3_mgmt_tx(adap, skb);
978 if (skb == adap->nofail_skb) {
979 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
980 GFP_KERNEL);
981 if (!adap->nofail_skb)
982 ret = -ENOMEM;
985 return ret;
988 static int bind_qsets(struct adapter *adap)
990 int i, j, err = 0;
992 for_each_port(adap, i) {
993 const struct port_info *pi = adap2pinfo(adap, i);
995 for (j = 0; j < pi->nqsets; ++j) {
996 int ret = send_pktsched_cmd(adap, 1,
997 pi->first_qset + j, -1,
998 -1, i);
999 if (ret)
1000 err = ret;
1004 return err;
1007 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
1008 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
1009 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
1010 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
1011 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
1012 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
1013 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1014 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1015 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1016 MODULE_FIRMWARE(FW_FNAME);
1017 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1018 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1019 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1020 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1021 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1023 static inline const char *get_edc_fw_name(int edc_idx)
1025 const char *fw_name = NULL;
1027 switch (edc_idx) {
1028 case EDC_OPT_AEL2005:
1029 fw_name = AEL2005_OPT_EDC_NAME;
1030 break;
1031 case EDC_TWX_AEL2005:
1032 fw_name = AEL2005_TWX_EDC_NAME;
1033 break;
1034 case EDC_TWX_AEL2020:
1035 fw_name = AEL2020_TWX_EDC_NAME;
1036 break;
1038 return fw_name;
1041 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1043 struct adapter *adapter = phy->adapter;
1044 const struct firmware *fw;
1045 char buf[64];
1046 u32 csum;
1047 const __be32 *p;
1048 u16 *cache = phy->phy_cache;
1049 int i, ret;
1051 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1053 ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1054 if (ret < 0) {
1055 dev_err(&adapter->pdev->dev,
1056 "could not upgrade firmware: unable to load %s\n",
1057 buf);
1058 return ret;
1061 /* check size, take checksum in account */
1062 if (fw->size > size + 4) {
1063 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1064 (unsigned int)fw->size, size + 4);
1065 ret = -EINVAL;
1068 /* compute checksum */
1069 p = (const __be32 *)fw->data;
1070 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1071 csum += ntohl(p[i]);
1073 if (csum != 0xffffffff) {
1074 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1075 csum);
1076 ret = -EINVAL;
1079 for (i = 0; i < size / 4 ; i++) {
1080 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1081 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1084 release_firmware(fw);
1086 return ret;
1089 static int upgrade_fw(struct adapter *adap)
1091 int ret;
1092 const struct firmware *fw;
1093 struct device *dev = &adap->pdev->dev;
1095 ret = request_firmware(&fw, FW_FNAME, dev);
1096 if (ret < 0) {
1097 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1098 FW_FNAME);
1099 return ret;
1101 ret = t3_load_fw(adap, fw->data, fw->size);
1102 release_firmware(fw);
1104 if (ret == 0)
1105 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1106 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1107 else
1108 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1109 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1111 return ret;
1114 static inline char t3rev2char(struct adapter *adapter)
1116 char rev = 0;
1118 switch(adapter->params.rev) {
1119 case T3_REV_B:
1120 case T3_REV_B2:
1121 rev = 'b';
1122 break;
1123 case T3_REV_C:
1124 rev = 'c';
1125 break;
1127 return rev;
1130 static int update_tpsram(struct adapter *adap)
1132 const struct firmware *tpsram;
1133 char buf[64];
1134 struct device *dev = &adap->pdev->dev;
1135 int ret;
1136 char rev;
1138 rev = t3rev2char(adap);
1139 if (!rev)
1140 return 0;
1142 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1144 ret = request_firmware(&tpsram, buf, dev);
1145 if (ret < 0) {
1146 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1147 buf);
1148 return ret;
1151 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1152 if (ret)
1153 goto release_tpsram;
1155 ret = t3_set_proto_sram(adap, tpsram->data);
1156 if (ret == 0)
1157 dev_info(dev,
1158 "successful update of protocol engine "
1159 "to %d.%d.%d\n",
1160 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1161 else
1162 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1163 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1164 if (ret)
1165 dev_err(dev, "loading protocol SRAM failed\n");
1167 release_tpsram:
1168 release_firmware(tpsram);
1170 return ret;
1174 * cxgb_up - enable the adapter
1175 * @adapter: adapter being enabled
1177 * Called when the first port is enabled, this function performs the
1178 * actions necessary to make an adapter operational, such as completing
1179 * the initialization of HW modules, and enabling interrupts.
1181 * Must be called with the rtnl lock held.
1183 static int cxgb_up(struct adapter *adap)
1185 int err;
1187 if (!(adap->flags & FULL_INIT_DONE)) {
1188 err = t3_check_fw_version(adap);
1189 if (err == -EINVAL) {
1190 err = upgrade_fw(adap);
1191 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1192 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1193 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1196 err = t3_check_tpsram_version(adap);
1197 if (err == -EINVAL) {
1198 err = update_tpsram(adap);
1199 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1200 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1201 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1205 * Clear interrupts now to catch errors if t3_init_hw fails.
1206 * We clear them again later as initialization may trigger
1207 * conditions that can interrupt.
1209 t3_intr_clear(adap);
1211 err = t3_init_hw(adap, 0);
1212 if (err)
1213 goto out;
1215 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1216 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1218 err = setup_sge_qsets(adap);
1219 if (err)
1220 goto out;
1222 setup_rss(adap);
1223 if (!(adap->flags & NAPI_INIT))
1224 init_napi(adap);
1226 t3_start_sge_timers(adap);
1227 adap->flags |= FULL_INIT_DONE;
1230 t3_intr_clear(adap);
1232 if (adap->flags & USING_MSIX) {
1233 name_msix_vecs(adap);
1234 err = request_irq(adap->msix_info[0].vec,
1235 t3_async_intr_handler, 0,
1236 adap->msix_info[0].desc, adap);
1237 if (err)
1238 goto irq_err;
1240 err = request_msix_data_irqs(adap);
1241 if (err) {
1242 free_irq(adap->msix_info[0].vec, adap);
1243 goto irq_err;
1245 } else if ((err = request_irq(adap->pdev->irq,
1246 t3_intr_handler(adap,
1247 adap->sge.qs[0].rspq.
1248 polling),
1249 (adap->flags & USING_MSI) ?
1250 0 : IRQF_SHARED,
1251 adap->name, adap)))
1252 goto irq_err;
1254 enable_all_napi(adap);
1255 t3_sge_start(adap);
1256 t3_intr_enable(adap);
1258 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1259 is_offload(adap) && init_tp_parity(adap) == 0)
1260 adap->flags |= TP_PARITY_INIT;
1262 if (adap->flags & TP_PARITY_INIT) {
1263 t3_write_reg(adap, A_TP_INT_CAUSE,
1264 F_CMCACHEPERR | F_ARPLUTPERR);
1265 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1268 if (!(adap->flags & QUEUES_BOUND)) {
1269 err = bind_qsets(adap);
1270 if (err) {
1271 CH_ERR(adap, "failed to bind qsets, err %d\n", err);
1272 t3_intr_disable(adap);
1273 free_irq_resources(adap);
1274 goto out;
1276 adap->flags |= QUEUES_BOUND;
1279 out:
1280 return err;
1281 irq_err:
1282 CH_ERR(adap, "request_irq failed, err %d\n", err);
1283 goto out;
1287 * Release resources when all the ports and offloading have been stopped.
1289 static void cxgb_down(struct adapter *adapter, int on_wq)
1291 t3_sge_stop(adapter);
1292 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1293 t3_intr_disable(adapter);
1294 spin_unlock_irq(&adapter->work_lock);
1296 free_irq_resources(adapter);
1297 quiesce_rx(adapter);
1298 t3_sge_stop(adapter);
1299 if (!on_wq)
1300 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1303 static void schedule_chk_task(struct adapter *adap)
1305 unsigned int timeo;
1307 timeo = adap->params.linkpoll_period ?
1308 (HZ * adap->params.linkpoll_period) / 10 :
1309 adap->params.stats_update_period * HZ;
1310 if (timeo)
1311 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1314 static int offload_open(struct net_device *dev)
1316 struct port_info *pi = netdev_priv(dev);
1317 struct adapter *adapter = pi->adapter;
1318 struct t3cdev *tdev = dev2t3cdev(dev);
1319 int adap_up = adapter->open_device_map & PORT_MASK;
1320 int err;
1322 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1323 return 0;
1325 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1326 goto out;
1328 t3_tp_set_offload_mode(adapter, 1);
1329 tdev->lldev = adapter->port[0];
1330 err = cxgb3_offload_activate(adapter);
1331 if (err)
1332 goto out;
1334 init_port_mtus(adapter);
1335 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1336 adapter->params.b_wnd,
1337 adapter->params.rev == 0 ?
1338 adapter->port[0]->mtu : 0xffff);
1339 init_smt(adapter);
1341 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1342 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1344 /* Call back all registered clients */
1345 cxgb3_add_clients(tdev);
1347 out:
1348 /* restore them in case the offload module has changed them */
1349 if (err) {
1350 t3_tp_set_offload_mode(adapter, 0);
1351 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1352 cxgb3_set_dummy_ops(tdev);
1354 return err;
1357 static int offload_close(struct t3cdev *tdev)
1359 struct adapter *adapter = tdev2adap(tdev);
1361 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1362 return 0;
1364 /* Call back all registered clients */
1365 cxgb3_remove_clients(tdev);
1367 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1369 /* Flush work scheduled while releasing TIDs */
1370 flush_scheduled_work();
1372 tdev->lldev = NULL;
1373 cxgb3_set_dummy_ops(tdev);
1374 t3_tp_set_offload_mode(adapter, 0);
1375 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1377 if (!adapter->open_device_map)
1378 cxgb_down(adapter, 0);
1380 cxgb3_offload_deactivate(adapter);
1381 return 0;
1384 static int cxgb_open(struct net_device *dev)
1386 struct port_info *pi = netdev_priv(dev);
1387 struct adapter *adapter = pi->adapter;
1388 int other_ports = adapter->open_device_map & PORT_MASK;
1389 int err;
1391 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1392 return err;
1394 set_bit(pi->port_id, &adapter->open_device_map);
1395 if (is_offload(adapter) && !ofld_disable) {
1396 err = offload_open(dev);
1397 if (err)
1398 printk(KERN_WARNING
1399 "Could not initialize offload capabilities\n");
1402 dev->real_num_tx_queues = pi->nqsets;
1403 link_start(dev);
1404 t3_port_intr_enable(adapter, pi->port_id);
1405 netif_tx_start_all_queues(dev);
1406 if (!other_ports)
1407 schedule_chk_task(adapter);
1409 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1410 return 0;
1413 static int __cxgb_close(struct net_device *dev, int on_wq)
1415 struct port_info *pi = netdev_priv(dev);
1416 struct adapter *adapter = pi->adapter;
1419 if (!adapter->open_device_map)
1420 return 0;
1422 /* Stop link fault interrupts */
1423 t3_xgm_intr_disable(adapter, pi->port_id);
1424 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1426 t3_port_intr_disable(adapter, pi->port_id);
1427 netif_tx_stop_all_queues(dev);
1428 pi->phy.ops->power_down(&pi->phy, 1);
1429 netif_carrier_off(dev);
1430 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1432 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1433 clear_bit(pi->port_id, &adapter->open_device_map);
1434 spin_unlock_irq(&adapter->work_lock);
1436 if (!(adapter->open_device_map & PORT_MASK))
1437 cancel_delayed_work_sync(&adapter->adap_check_task);
1439 if (!adapter->open_device_map)
1440 cxgb_down(adapter, on_wq);
1442 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1443 return 0;
1446 static int cxgb_close(struct net_device *dev)
1448 return __cxgb_close(dev, 0);
1451 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1453 struct port_info *pi = netdev_priv(dev);
1454 struct adapter *adapter = pi->adapter;
1455 struct net_device_stats *ns = &pi->netstats;
1456 const struct mac_stats *pstats;
1458 spin_lock(&adapter->stats_lock);
1459 pstats = t3_mac_update_stats(&pi->mac);
1460 spin_unlock(&adapter->stats_lock);
1462 ns->tx_bytes = pstats->tx_octets;
1463 ns->tx_packets = pstats->tx_frames;
1464 ns->rx_bytes = pstats->rx_octets;
1465 ns->rx_packets = pstats->rx_frames;
1466 ns->multicast = pstats->rx_mcast_frames;
1468 ns->tx_errors = pstats->tx_underrun;
1469 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1470 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1471 pstats->rx_fifo_ovfl;
1473 /* detailed rx_errors */
1474 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1475 ns->rx_over_errors = 0;
1476 ns->rx_crc_errors = pstats->rx_fcs_errs;
1477 ns->rx_frame_errors = pstats->rx_symbol_errs;
1478 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1479 ns->rx_missed_errors = pstats->rx_cong_drops;
1481 /* detailed tx_errors */
1482 ns->tx_aborted_errors = 0;
1483 ns->tx_carrier_errors = 0;
1484 ns->tx_fifo_errors = pstats->tx_underrun;
1485 ns->tx_heartbeat_errors = 0;
1486 ns->tx_window_errors = 0;
1487 return ns;
1490 static u32 get_msglevel(struct net_device *dev)
1492 struct port_info *pi = netdev_priv(dev);
1493 struct adapter *adapter = pi->adapter;
1495 return adapter->msg_enable;
1498 static void set_msglevel(struct net_device *dev, u32 val)
1500 struct port_info *pi = netdev_priv(dev);
1501 struct adapter *adapter = pi->adapter;
1503 adapter->msg_enable = val;
1506 static char stats_strings[][ETH_GSTRING_LEN] = {
1507 "TxOctetsOK ",
1508 "TxFramesOK ",
1509 "TxMulticastFramesOK",
1510 "TxBroadcastFramesOK",
1511 "TxPauseFrames ",
1512 "TxUnderrun ",
1513 "TxExtUnderrun ",
1515 "TxFrames64 ",
1516 "TxFrames65To127 ",
1517 "TxFrames128To255 ",
1518 "TxFrames256To511 ",
1519 "TxFrames512To1023 ",
1520 "TxFrames1024To1518 ",
1521 "TxFrames1519ToMax ",
1523 "RxOctetsOK ",
1524 "RxFramesOK ",
1525 "RxMulticastFramesOK",
1526 "RxBroadcastFramesOK",
1527 "RxPauseFrames ",
1528 "RxFCSErrors ",
1529 "RxSymbolErrors ",
1530 "RxShortErrors ",
1531 "RxJabberErrors ",
1532 "RxLengthErrors ",
1533 "RxFIFOoverflow ",
1535 "RxFrames64 ",
1536 "RxFrames65To127 ",
1537 "RxFrames128To255 ",
1538 "RxFrames256To511 ",
1539 "RxFrames512To1023 ",
1540 "RxFrames1024To1518 ",
1541 "RxFrames1519ToMax ",
1543 "PhyFIFOErrors ",
1544 "TSO ",
1545 "VLANextractions ",
1546 "VLANinsertions ",
1547 "TxCsumOffload ",
1548 "RxCsumGood ",
1549 "LroAggregated ",
1550 "LroFlushed ",
1551 "LroNoDesc ",
1552 "RxDrops ",
1554 "CheckTXEnToggled ",
1555 "CheckResets ",
1557 "LinkFaults ",
1560 static int get_sset_count(struct net_device *dev, int sset)
1562 switch (sset) {
1563 case ETH_SS_STATS:
1564 return ARRAY_SIZE(stats_strings);
1565 default:
1566 return -EOPNOTSUPP;
1570 #define T3_REGMAP_SIZE (3 * 1024)
1572 static int get_regs_len(struct net_device *dev)
1574 return T3_REGMAP_SIZE;
1577 static int get_eeprom_len(struct net_device *dev)
1579 return EEPROMSIZE;
1582 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1584 struct port_info *pi = netdev_priv(dev);
1585 struct adapter *adapter = pi->adapter;
1586 u32 fw_vers = 0;
1587 u32 tp_vers = 0;
1589 spin_lock(&adapter->stats_lock);
1590 t3_get_fw_version(adapter, &fw_vers);
1591 t3_get_tp_version(adapter, &tp_vers);
1592 spin_unlock(&adapter->stats_lock);
1594 strcpy(info->driver, DRV_NAME);
1595 strcpy(info->version, DRV_VERSION);
1596 strcpy(info->bus_info, pci_name(adapter->pdev));
1597 if (!fw_vers)
1598 strcpy(info->fw_version, "N/A");
1599 else {
1600 snprintf(info->fw_version, sizeof(info->fw_version),
1601 "%s %u.%u.%u TP %u.%u.%u",
1602 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1603 G_FW_VERSION_MAJOR(fw_vers),
1604 G_FW_VERSION_MINOR(fw_vers),
1605 G_FW_VERSION_MICRO(fw_vers),
1606 G_TP_VERSION_MAJOR(tp_vers),
1607 G_TP_VERSION_MINOR(tp_vers),
1608 G_TP_VERSION_MICRO(tp_vers));
1612 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1614 if (stringset == ETH_SS_STATS)
1615 memcpy(data, stats_strings, sizeof(stats_strings));
1618 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1619 struct port_info *p, int idx)
1621 int i;
1622 unsigned long tot = 0;
1624 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1625 tot += adapter->sge.qs[i].port_stats[idx];
1626 return tot;
1629 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1630 u64 *data)
1632 struct port_info *pi = netdev_priv(dev);
1633 struct adapter *adapter = pi->adapter;
1634 const struct mac_stats *s;
1636 spin_lock(&adapter->stats_lock);
1637 s = t3_mac_update_stats(&pi->mac);
1638 spin_unlock(&adapter->stats_lock);
1640 *data++ = s->tx_octets;
1641 *data++ = s->tx_frames;
1642 *data++ = s->tx_mcast_frames;
1643 *data++ = s->tx_bcast_frames;
1644 *data++ = s->tx_pause;
1645 *data++ = s->tx_underrun;
1646 *data++ = s->tx_fifo_urun;
1648 *data++ = s->tx_frames_64;
1649 *data++ = s->tx_frames_65_127;
1650 *data++ = s->tx_frames_128_255;
1651 *data++ = s->tx_frames_256_511;
1652 *data++ = s->tx_frames_512_1023;
1653 *data++ = s->tx_frames_1024_1518;
1654 *data++ = s->tx_frames_1519_max;
1656 *data++ = s->rx_octets;
1657 *data++ = s->rx_frames;
1658 *data++ = s->rx_mcast_frames;
1659 *data++ = s->rx_bcast_frames;
1660 *data++ = s->rx_pause;
1661 *data++ = s->rx_fcs_errs;
1662 *data++ = s->rx_symbol_errs;
1663 *data++ = s->rx_short;
1664 *data++ = s->rx_jabber;
1665 *data++ = s->rx_too_long;
1666 *data++ = s->rx_fifo_ovfl;
1668 *data++ = s->rx_frames_64;
1669 *data++ = s->rx_frames_65_127;
1670 *data++ = s->rx_frames_128_255;
1671 *data++ = s->rx_frames_256_511;
1672 *data++ = s->rx_frames_512_1023;
1673 *data++ = s->rx_frames_1024_1518;
1674 *data++ = s->rx_frames_1519_max;
1676 *data++ = pi->phy.fifo_errors;
1678 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1679 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1680 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1681 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1682 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1683 *data++ = 0;
1684 *data++ = 0;
1685 *data++ = 0;
1686 *data++ = s->rx_cong_drops;
1688 *data++ = s->num_toggled;
1689 *data++ = s->num_resets;
1691 *data++ = s->link_faults;
1694 static inline void reg_block_dump(struct adapter *ap, void *buf,
1695 unsigned int start, unsigned int end)
1697 u32 *p = buf + start;
1699 for (; start <= end; start += sizeof(u32))
1700 *p++ = t3_read_reg(ap, start);
1703 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1704 void *buf)
1706 struct port_info *pi = netdev_priv(dev);
1707 struct adapter *ap = pi->adapter;
1710 * Version scheme:
1711 * bits 0..9: chip version
1712 * bits 10..15: chip revision
1713 * bit 31: set for PCIe cards
1715 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1718 * We skip the MAC statistics registers because they are clear-on-read.
1719 * Also reading multi-register stats would need to synchronize with the
1720 * periodic mac stats accumulation. Hard to justify the complexity.
1722 memset(buf, 0, T3_REGMAP_SIZE);
1723 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1724 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1725 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1726 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1727 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1728 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1729 XGM_REG(A_XGM_SERDES_STAT3, 1));
1730 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1731 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1734 static int restart_autoneg(struct net_device *dev)
1736 struct port_info *p = netdev_priv(dev);
1738 if (!netif_running(dev))
1739 return -EAGAIN;
1740 if (p->link_config.autoneg != AUTONEG_ENABLE)
1741 return -EINVAL;
1742 p->phy.ops->autoneg_restart(&p->phy);
1743 return 0;
1746 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1748 struct port_info *pi = netdev_priv(dev);
1749 struct adapter *adapter = pi->adapter;
1750 int i;
1752 if (data == 0)
1753 data = 2;
1755 for (i = 0; i < data * 2; i++) {
1756 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1757 (i & 1) ? F_GPIO0_OUT_VAL : 0);
1758 if (msleep_interruptible(500))
1759 break;
1761 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1762 F_GPIO0_OUT_VAL);
1763 return 0;
1766 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1768 struct port_info *p = netdev_priv(dev);
1770 cmd->supported = p->link_config.supported;
1771 cmd->advertising = p->link_config.advertising;
1773 if (netif_carrier_ok(dev)) {
1774 cmd->speed = p->link_config.speed;
1775 cmd->duplex = p->link_config.duplex;
1776 } else {
1777 cmd->speed = -1;
1778 cmd->duplex = -1;
1781 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1782 cmd->phy_address = p->phy.mdio.prtad;
1783 cmd->transceiver = XCVR_EXTERNAL;
1784 cmd->autoneg = p->link_config.autoneg;
1785 cmd->maxtxpkt = 0;
1786 cmd->maxrxpkt = 0;
1787 return 0;
1790 static int speed_duplex_to_caps(int speed, int duplex)
1792 int cap = 0;
1794 switch (speed) {
1795 case SPEED_10:
1796 if (duplex == DUPLEX_FULL)
1797 cap = SUPPORTED_10baseT_Full;
1798 else
1799 cap = SUPPORTED_10baseT_Half;
1800 break;
1801 case SPEED_100:
1802 if (duplex == DUPLEX_FULL)
1803 cap = SUPPORTED_100baseT_Full;
1804 else
1805 cap = SUPPORTED_100baseT_Half;
1806 break;
1807 case SPEED_1000:
1808 if (duplex == DUPLEX_FULL)
1809 cap = SUPPORTED_1000baseT_Full;
1810 else
1811 cap = SUPPORTED_1000baseT_Half;
1812 break;
1813 case SPEED_10000:
1814 if (duplex == DUPLEX_FULL)
1815 cap = SUPPORTED_10000baseT_Full;
1817 return cap;
1820 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1821 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1822 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1823 ADVERTISED_10000baseT_Full)
1825 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1827 struct port_info *p = netdev_priv(dev);
1828 struct link_config *lc = &p->link_config;
1830 if (!(lc->supported & SUPPORTED_Autoneg)) {
1832 * PHY offers a single speed/duplex. See if that's what's
1833 * being requested.
1835 if (cmd->autoneg == AUTONEG_DISABLE) {
1836 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1837 if (lc->supported & cap)
1838 return 0;
1840 return -EINVAL;
1843 if (cmd->autoneg == AUTONEG_DISABLE) {
1844 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1846 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1847 return -EINVAL;
1848 lc->requested_speed = cmd->speed;
1849 lc->requested_duplex = cmd->duplex;
1850 lc->advertising = 0;
1851 } else {
1852 cmd->advertising &= ADVERTISED_MASK;
1853 cmd->advertising &= lc->supported;
1854 if (!cmd->advertising)
1855 return -EINVAL;
1856 lc->requested_speed = SPEED_INVALID;
1857 lc->requested_duplex = DUPLEX_INVALID;
1858 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1860 lc->autoneg = cmd->autoneg;
1861 if (netif_running(dev))
1862 t3_link_start(&p->phy, &p->mac, lc);
1863 return 0;
1866 static void get_pauseparam(struct net_device *dev,
1867 struct ethtool_pauseparam *epause)
1869 struct port_info *p = netdev_priv(dev);
1871 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1872 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1873 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1876 static int set_pauseparam(struct net_device *dev,
1877 struct ethtool_pauseparam *epause)
1879 struct port_info *p = netdev_priv(dev);
1880 struct link_config *lc = &p->link_config;
1882 if (epause->autoneg == AUTONEG_DISABLE)
1883 lc->requested_fc = 0;
1884 else if (lc->supported & SUPPORTED_Autoneg)
1885 lc->requested_fc = PAUSE_AUTONEG;
1886 else
1887 return -EINVAL;
1889 if (epause->rx_pause)
1890 lc->requested_fc |= PAUSE_RX;
1891 if (epause->tx_pause)
1892 lc->requested_fc |= PAUSE_TX;
1893 if (lc->autoneg == AUTONEG_ENABLE) {
1894 if (netif_running(dev))
1895 t3_link_start(&p->phy, &p->mac, lc);
1896 } else {
1897 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1898 if (netif_running(dev))
1899 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1901 return 0;
1904 static u32 get_rx_csum(struct net_device *dev)
1906 struct port_info *p = netdev_priv(dev);
1908 return p->rx_offload & T3_RX_CSUM;
1911 static int set_rx_csum(struct net_device *dev, u32 data)
1913 struct port_info *p = netdev_priv(dev);
1915 if (data) {
1916 p->rx_offload |= T3_RX_CSUM;
1917 } else {
1918 int i;
1920 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1921 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1922 set_qset_lro(dev, i, 0);
1924 return 0;
1927 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1929 struct port_info *pi = netdev_priv(dev);
1930 struct adapter *adapter = pi->adapter;
1931 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1933 e->rx_max_pending = MAX_RX_BUFFERS;
1934 e->rx_mini_max_pending = 0;
1935 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1936 e->tx_max_pending = MAX_TXQ_ENTRIES;
1938 e->rx_pending = q->fl_size;
1939 e->rx_mini_pending = q->rspq_size;
1940 e->rx_jumbo_pending = q->jumbo_size;
1941 e->tx_pending = q->txq_size[0];
1944 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1946 struct port_info *pi = netdev_priv(dev);
1947 struct adapter *adapter = pi->adapter;
1948 struct qset_params *q;
1949 int i;
1951 if (e->rx_pending > MAX_RX_BUFFERS ||
1952 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1953 e->tx_pending > MAX_TXQ_ENTRIES ||
1954 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1955 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1956 e->rx_pending < MIN_FL_ENTRIES ||
1957 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1958 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1959 return -EINVAL;
1961 if (adapter->flags & FULL_INIT_DONE)
1962 return -EBUSY;
1964 q = &adapter->params.sge.qset[pi->first_qset];
1965 for (i = 0; i < pi->nqsets; ++i, ++q) {
1966 q->rspq_size = e->rx_mini_pending;
1967 q->fl_size = e->rx_pending;
1968 q->jumbo_size = e->rx_jumbo_pending;
1969 q->txq_size[0] = e->tx_pending;
1970 q->txq_size[1] = e->tx_pending;
1971 q->txq_size[2] = e->tx_pending;
1973 return 0;
1976 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1978 struct port_info *pi = netdev_priv(dev);
1979 struct adapter *adapter = pi->adapter;
1980 struct qset_params *qsp = &adapter->params.sge.qset[0];
1981 struct sge_qset *qs = &adapter->sge.qs[0];
1983 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1984 return -EINVAL;
1986 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1987 t3_update_qset_coalesce(qs, qsp);
1988 return 0;
1991 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1993 struct port_info *pi = netdev_priv(dev);
1994 struct adapter *adapter = pi->adapter;
1995 struct qset_params *q = adapter->params.sge.qset;
1997 c->rx_coalesce_usecs = q->coalesce_usecs;
1998 return 0;
2001 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2002 u8 * data)
2004 struct port_info *pi = netdev_priv(dev);
2005 struct adapter *adapter = pi->adapter;
2006 int i, err = 0;
2008 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2009 if (!buf)
2010 return -ENOMEM;
2012 e->magic = EEPROM_MAGIC;
2013 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2014 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2016 if (!err)
2017 memcpy(data, buf + e->offset, e->len);
2018 kfree(buf);
2019 return err;
2022 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2023 u8 * data)
2025 struct port_info *pi = netdev_priv(dev);
2026 struct adapter *adapter = pi->adapter;
2027 u32 aligned_offset, aligned_len;
2028 __le32 *p;
2029 u8 *buf;
2030 int err;
2032 if (eeprom->magic != EEPROM_MAGIC)
2033 return -EINVAL;
2035 aligned_offset = eeprom->offset & ~3;
2036 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2038 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2039 buf = kmalloc(aligned_len, GFP_KERNEL);
2040 if (!buf)
2041 return -ENOMEM;
2042 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2043 if (!err && aligned_len > 4)
2044 err = t3_seeprom_read(adapter,
2045 aligned_offset + aligned_len - 4,
2046 (__le32 *) & buf[aligned_len - 4]);
2047 if (err)
2048 goto out;
2049 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2050 } else
2051 buf = data;
2053 err = t3_seeprom_wp(adapter, 0);
2054 if (err)
2055 goto out;
2057 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2058 err = t3_seeprom_write(adapter, aligned_offset, *p);
2059 aligned_offset += 4;
2062 if (!err)
2063 err = t3_seeprom_wp(adapter, 1);
2064 out:
2065 if (buf != data)
2066 kfree(buf);
2067 return err;
2070 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2072 wol->supported = 0;
2073 wol->wolopts = 0;
2074 memset(&wol->sopass, 0, sizeof(wol->sopass));
2077 static const struct ethtool_ops cxgb_ethtool_ops = {
2078 .get_settings = get_settings,
2079 .set_settings = set_settings,
2080 .get_drvinfo = get_drvinfo,
2081 .get_msglevel = get_msglevel,
2082 .set_msglevel = set_msglevel,
2083 .get_ringparam = get_sge_param,
2084 .set_ringparam = set_sge_param,
2085 .get_coalesce = get_coalesce,
2086 .set_coalesce = set_coalesce,
2087 .get_eeprom_len = get_eeprom_len,
2088 .get_eeprom = get_eeprom,
2089 .set_eeprom = set_eeprom,
2090 .get_pauseparam = get_pauseparam,
2091 .set_pauseparam = set_pauseparam,
2092 .get_rx_csum = get_rx_csum,
2093 .set_rx_csum = set_rx_csum,
2094 .set_tx_csum = ethtool_op_set_tx_csum,
2095 .set_sg = ethtool_op_set_sg,
2096 .get_link = ethtool_op_get_link,
2097 .get_strings = get_strings,
2098 .phys_id = cxgb3_phys_id,
2099 .nway_reset = restart_autoneg,
2100 .get_sset_count = get_sset_count,
2101 .get_ethtool_stats = get_stats,
2102 .get_regs_len = get_regs_len,
2103 .get_regs = get_regs,
2104 .get_wol = get_wol,
2105 .set_tso = ethtool_op_set_tso,
2108 static int in_range(int val, int lo, int hi)
2110 return val < 0 || (val <= hi && val >= lo);
2113 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2115 struct port_info *pi = netdev_priv(dev);
2116 struct adapter *adapter = pi->adapter;
2117 u32 cmd;
2118 int ret;
2120 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2121 return -EFAULT;
2123 switch (cmd) {
2124 case CHELSIO_SET_QSET_PARAMS:{
2125 int i;
2126 struct qset_params *q;
2127 struct ch_qset_params t;
2128 int q1 = pi->first_qset;
2129 int nqsets = pi->nqsets;
2131 if (!capable(CAP_NET_ADMIN))
2132 return -EPERM;
2133 if (copy_from_user(&t, useraddr, sizeof(t)))
2134 return -EFAULT;
2135 if (t.qset_idx >= SGE_QSETS)
2136 return -EINVAL;
2137 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2138 !in_range(t.cong_thres, 0, 255) ||
2139 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2140 MAX_TXQ_ENTRIES) ||
2141 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2142 MAX_TXQ_ENTRIES) ||
2143 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2144 MAX_CTRL_TXQ_ENTRIES) ||
2145 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2146 MAX_RX_BUFFERS) ||
2147 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2148 MAX_RX_JUMBO_BUFFERS) ||
2149 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2150 MAX_RSPQ_ENTRIES))
2151 return -EINVAL;
2153 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
2154 for_each_port(adapter, i) {
2155 pi = adap2pinfo(adapter, i);
2156 if (t.qset_idx >= pi->first_qset &&
2157 t.qset_idx < pi->first_qset + pi->nqsets &&
2158 !(pi->rx_offload & T3_RX_CSUM))
2159 return -EINVAL;
2162 if ((adapter->flags & FULL_INIT_DONE) &&
2163 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2164 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2165 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2166 t.polling >= 0 || t.cong_thres >= 0))
2167 return -EBUSY;
2169 /* Allow setting of any available qset when offload enabled */
2170 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2171 q1 = 0;
2172 for_each_port(adapter, i) {
2173 pi = adap2pinfo(adapter, i);
2174 nqsets += pi->first_qset + pi->nqsets;
2178 if (t.qset_idx < q1)
2179 return -EINVAL;
2180 if (t.qset_idx > q1 + nqsets - 1)
2181 return -EINVAL;
2183 q = &adapter->params.sge.qset[t.qset_idx];
2185 if (t.rspq_size >= 0)
2186 q->rspq_size = t.rspq_size;
2187 if (t.fl_size[0] >= 0)
2188 q->fl_size = t.fl_size[0];
2189 if (t.fl_size[1] >= 0)
2190 q->jumbo_size = t.fl_size[1];
2191 if (t.txq_size[0] >= 0)
2192 q->txq_size[0] = t.txq_size[0];
2193 if (t.txq_size[1] >= 0)
2194 q->txq_size[1] = t.txq_size[1];
2195 if (t.txq_size[2] >= 0)
2196 q->txq_size[2] = t.txq_size[2];
2197 if (t.cong_thres >= 0)
2198 q->cong_thres = t.cong_thres;
2199 if (t.intr_lat >= 0) {
2200 struct sge_qset *qs =
2201 &adapter->sge.qs[t.qset_idx];
2203 q->coalesce_usecs = t.intr_lat;
2204 t3_update_qset_coalesce(qs, q);
2206 if (t.polling >= 0) {
2207 if (adapter->flags & USING_MSIX)
2208 q->polling = t.polling;
2209 else {
2210 /* No polling with INTx for T3A */
2211 if (adapter->params.rev == 0 &&
2212 !(adapter->flags & USING_MSI))
2213 t.polling = 0;
2215 for (i = 0; i < SGE_QSETS; i++) {
2216 q = &adapter->params.sge.
2217 qset[i];
2218 q->polling = t.polling;
2222 if (t.lro >= 0)
2223 set_qset_lro(dev, t.qset_idx, t.lro);
2225 break;
2227 case CHELSIO_GET_QSET_PARAMS:{
2228 struct qset_params *q;
2229 struct ch_qset_params t;
2230 int q1 = pi->first_qset;
2231 int nqsets = pi->nqsets;
2232 int i;
2234 if (copy_from_user(&t, useraddr, sizeof(t)))
2235 return -EFAULT;
2237 /* Display qsets for all ports when offload enabled */
2238 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2239 q1 = 0;
2240 for_each_port(adapter, i) {
2241 pi = adap2pinfo(adapter, i);
2242 nqsets = pi->first_qset + pi->nqsets;
2246 if (t.qset_idx >= nqsets)
2247 return -EINVAL;
2249 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2250 t.rspq_size = q->rspq_size;
2251 t.txq_size[0] = q->txq_size[0];
2252 t.txq_size[1] = q->txq_size[1];
2253 t.txq_size[2] = q->txq_size[2];
2254 t.fl_size[0] = q->fl_size;
2255 t.fl_size[1] = q->jumbo_size;
2256 t.polling = q->polling;
2257 t.lro = q->lro;
2258 t.intr_lat = q->coalesce_usecs;
2259 t.cong_thres = q->cong_thres;
2260 t.qnum = q1;
2262 if (adapter->flags & USING_MSIX)
2263 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2264 else
2265 t.vector = adapter->pdev->irq;
2267 if (copy_to_user(useraddr, &t, sizeof(t)))
2268 return -EFAULT;
2269 break;
2271 case CHELSIO_SET_QSET_NUM:{
2272 struct ch_reg edata;
2273 unsigned int i, first_qset = 0, other_qsets = 0;
2275 if (!capable(CAP_NET_ADMIN))
2276 return -EPERM;
2277 if (adapter->flags & FULL_INIT_DONE)
2278 return -EBUSY;
2279 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2280 return -EFAULT;
2281 if (edata.val < 1 ||
2282 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2283 return -EINVAL;
2285 for_each_port(adapter, i)
2286 if (adapter->port[i] && adapter->port[i] != dev)
2287 other_qsets += adap2pinfo(adapter, i)->nqsets;
2289 if (edata.val + other_qsets > SGE_QSETS)
2290 return -EINVAL;
2292 pi->nqsets = edata.val;
2294 for_each_port(adapter, i)
2295 if (adapter->port[i]) {
2296 pi = adap2pinfo(adapter, i);
2297 pi->first_qset = first_qset;
2298 first_qset += pi->nqsets;
2300 break;
2302 case CHELSIO_GET_QSET_NUM:{
2303 struct ch_reg edata;
2305 memset(&edata, 0, sizeof(struct ch_reg));
2307 edata.cmd = CHELSIO_GET_QSET_NUM;
2308 edata.val = pi->nqsets;
2309 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2310 return -EFAULT;
2311 break;
2313 case CHELSIO_LOAD_FW:{
2314 u8 *fw_data;
2315 struct ch_mem_range t;
2317 if (!capable(CAP_SYS_RAWIO))
2318 return -EPERM;
2319 if (copy_from_user(&t, useraddr, sizeof(t)))
2320 return -EFAULT;
2321 /* Check t.len sanity ? */
2322 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2323 if (IS_ERR(fw_data))
2324 return PTR_ERR(fw_data);
2326 ret = t3_load_fw(adapter, fw_data, t.len);
2327 kfree(fw_data);
2328 if (ret)
2329 return ret;
2330 break;
2332 case CHELSIO_SETMTUTAB:{
2333 struct ch_mtus m;
2334 int i;
2336 if (!is_offload(adapter))
2337 return -EOPNOTSUPP;
2338 if (!capable(CAP_NET_ADMIN))
2339 return -EPERM;
2340 if (offload_running(adapter))
2341 return -EBUSY;
2342 if (copy_from_user(&m, useraddr, sizeof(m)))
2343 return -EFAULT;
2344 if (m.nmtus != NMTUS)
2345 return -EINVAL;
2346 if (m.mtus[0] < 81) /* accommodate SACK */
2347 return -EINVAL;
2349 /* MTUs must be in ascending order */
2350 for (i = 1; i < NMTUS; ++i)
2351 if (m.mtus[i] < m.mtus[i - 1])
2352 return -EINVAL;
2354 memcpy(adapter->params.mtus, m.mtus,
2355 sizeof(adapter->params.mtus));
2356 break;
2358 case CHELSIO_GET_PM:{
2359 struct tp_params *p = &adapter->params.tp;
2360 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2362 if (!is_offload(adapter))
2363 return -EOPNOTSUPP;
2364 m.tx_pg_sz = p->tx_pg_size;
2365 m.tx_num_pg = p->tx_num_pgs;
2366 m.rx_pg_sz = p->rx_pg_size;
2367 m.rx_num_pg = p->rx_num_pgs;
2368 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2369 if (copy_to_user(useraddr, &m, sizeof(m)))
2370 return -EFAULT;
2371 break;
2373 case CHELSIO_SET_PM:{
2374 struct ch_pm m;
2375 struct tp_params *p = &adapter->params.tp;
2377 if (!is_offload(adapter))
2378 return -EOPNOTSUPP;
2379 if (!capable(CAP_NET_ADMIN))
2380 return -EPERM;
2381 if (adapter->flags & FULL_INIT_DONE)
2382 return -EBUSY;
2383 if (copy_from_user(&m, useraddr, sizeof(m)))
2384 return -EFAULT;
2385 if (!is_power_of_2(m.rx_pg_sz) ||
2386 !is_power_of_2(m.tx_pg_sz))
2387 return -EINVAL; /* not power of 2 */
2388 if (!(m.rx_pg_sz & 0x14000))
2389 return -EINVAL; /* not 16KB or 64KB */
2390 if (!(m.tx_pg_sz & 0x1554000))
2391 return -EINVAL;
2392 if (m.tx_num_pg == -1)
2393 m.tx_num_pg = p->tx_num_pgs;
2394 if (m.rx_num_pg == -1)
2395 m.rx_num_pg = p->rx_num_pgs;
2396 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2397 return -EINVAL;
2398 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2399 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2400 return -EINVAL;
2401 p->rx_pg_size = m.rx_pg_sz;
2402 p->tx_pg_size = m.tx_pg_sz;
2403 p->rx_num_pgs = m.rx_num_pg;
2404 p->tx_num_pgs = m.tx_num_pg;
2405 break;
2407 case CHELSIO_GET_MEM:{
2408 struct ch_mem_range t;
2409 struct mc7 *mem;
2410 u64 buf[32];
2412 if (!is_offload(adapter))
2413 return -EOPNOTSUPP;
2414 if (!(adapter->flags & FULL_INIT_DONE))
2415 return -EIO; /* need the memory controllers */
2416 if (copy_from_user(&t, useraddr, sizeof(t)))
2417 return -EFAULT;
2418 if ((t.addr & 7) || (t.len & 7))
2419 return -EINVAL;
2420 if (t.mem_id == MEM_CM)
2421 mem = &adapter->cm;
2422 else if (t.mem_id == MEM_PMRX)
2423 mem = &adapter->pmrx;
2424 else if (t.mem_id == MEM_PMTX)
2425 mem = &adapter->pmtx;
2426 else
2427 return -EINVAL;
2430 * Version scheme:
2431 * bits 0..9: chip version
2432 * bits 10..15: chip revision
2434 t.version = 3 | (adapter->params.rev << 10);
2435 if (copy_to_user(useraddr, &t, sizeof(t)))
2436 return -EFAULT;
2439 * Read 256 bytes at a time as len can be large and we don't
2440 * want to use huge intermediate buffers.
2442 useraddr += sizeof(t); /* advance to start of buffer */
2443 while (t.len) {
2444 unsigned int chunk =
2445 min_t(unsigned int, t.len, sizeof(buf));
2447 ret =
2448 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2449 buf);
2450 if (ret)
2451 return ret;
2452 if (copy_to_user(useraddr, buf, chunk))
2453 return -EFAULT;
2454 useraddr += chunk;
2455 t.addr += chunk;
2456 t.len -= chunk;
2458 break;
2460 case CHELSIO_SET_TRACE_FILTER:{
2461 struct ch_trace t;
2462 const struct trace_params *tp;
2464 if (!capable(CAP_NET_ADMIN))
2465 return -EPERM;
2466 if (!offload_running(adapter))
2467 return -EAGAIN;
2468 if (copy_from_user(&t, useraddr, sizeof(t)))
2469 return -EFAULT;
2471 tp = (const struct trace_params *)&t.sip;
2472 if (t.config_tx)
2473 t3_config_trace_filter(adapter, tp, 0,
2474 t.invert_match,
2475 t.trace_tx);
2476 if (t.config_rx)
2477 t3_config_trace_filter(adapter, tp, 1,
2478 t.invert_match,
2479 t.trace_rx);
2480 break;
2482 default:
2483 return -EOPNOTSUPP;
2485 return 0;
2488 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2490 struct mii_ioctl_data *data = if_mii(req);
2491 struct port_info *pi = netdev_priv(dev);
2492 struct adapter *adapter = pi->adapter;
2494 switch (cmd) {
2495 case SIOCGMIIREG:
2496 case SIOCSMIIREG:
2497 /* Convert phy_id from older PRTAD/DEVAD format */
2498 if (is_10G(adapter) &&
2499 !mdio_phy_id_is_c45(data->phy_id) &&
2500 (data->phy_id & 0x1f00) &&
2501 !(data->phy_id & 0xe0e0))
2502 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2503 data->phy_id & 0x1f);
2504 /* FALLTHRU */
2505 case SIOCGMIIPHY:
2506 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2507 case SIOCCHIOCTL:
2508 return cxgb_extension_ioctl(dev, req->ifr_data);
2509 default:
2510 return -EOPNOTSUPP;
2514 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2516 struct port_info *pi = netdev_priv(dev);
2517 struct adapter *adapter = pi->adapter;
2518 int ret;
2520 if (new_mtu < 81) /* accommodate SACK */
2521 return -EINVAL;
2522 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2523 return ret;
2524 dev->mtu = new_mtu;
2525 init_port_mtus(adapter);
2526 if (adapter->params.rev == 0 && offload_running(adapter))
2527 t3_load_mtus(adapter, adapter->params.mtus,
2528 adapter->params.a_wnd, adapter->params.b_wnd,
2529 adapter->port[0]->mtu);
2530 return 0;
2533 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2535 struct port_info *pi = netdev_priv(dev);
2536 struct adapter *adapter = pi->adapter;
2537 struct sockaddr *addr = p;
2539 if (!is_valid_ether_addr(addr->sa_data))
2540 return -EINVAL;
2542 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2543 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2544 if (offload_running(adapter))
2545 write_smt_entry(adapter, pi->port_id);
2546 return 0;
2550 * t3_synchronize_rx - wait for current Rx processing on a port to complete
2551 * @adap: the adapter
2552 * @p: the port
2554 * Ensures that current Rx processing on any of the queues associated with
2555 * the given port completes before returning. We do this by acquiring and
2556 * releasing the locks of the response queues associated with the port.
2558 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2560 int i;
2562 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2563 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2565 spin_lock_irq(&q->lock);
2566 spin_unlock_irq(&q->lock);
2570 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2572 struct port_info *pi = netdev_priv(dev);
2573 struct adapter *adapter = pi->adapter;
2575 pi->vlan_grp = grp;
2576 if (adapter->params.rev > 0)
2577 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2578 else {
2579 /* single control for all ports */
2580 unsigned int i, have_vlans = 0;
2581 for_each_port(adapter, i)
2582 have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2584 t3_set_vlan_accel(adapter, 1, have_vlans);
2586 t3_synchronize_rx(adapter, pi);
2589 #ifdef CONFIG_NET_POLL_CONTROLLER
2590 static void cxgb_netpoll(struct net_device *dev)
2592 struct port_info *pi = netdev_priv(dev);
2593 struct adapter *adapter = pi->adapter;
2594 int qidx;
2596 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2597 struct sge_qset *qs = &adapter->sge.qs[qidx];
2598 void *source;
2600 if (adapter->flags & USING_MSIX)
2601 source = qs;
2602 else
2603 source = adapter;
2605 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2608 #endif
2611 * Periodic accumulation of MAC statistics.
2613 static void mac_stats_update(struct adapter *adapter)
2615 int i;
2617 for_each_port(adapter, i) {
2618 struct net_device *dev = adapter->port[i];
2619 struct port_info *p = netdev_priv(dev);
2621 if (netif_running(dev)) {
2622 spin_lock(&adapter->stats_lock);
2623 t3_mac_update_stats(&p->mac);
2624 spin_unlock(&adapter->stats_lock);
2629 static void check_link_status(struct adapter *adapter)
2631 int i;
2633 for_each_port(adapter, i) {
2634 struct net_device *dev = adapter->port[i];
2635 struct port_info *p = netdev_priv(dev);
2636 int link_fault;
2638 spin_lock_irq(&adapter->work_lock);
2639 link_fault = p->link_fault;
2640 spin_unlock_irq(&adapter->work_lock);
2642 if (link_fault) {
2643 t3_link_fault(adapter, i);
2644 continue;
2647 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2648 t3_xgm_intr_disable(adapter, i);
2649 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2651 t3_link_changed(adapter, i);
2652 t3_xgm_intr_enable(adapter, i);
2657 static void check_t3b2_mac(struct adapter *adapter)
2659 int i;
2661 if (!rtnl_trylock()) /* synchronize with ifdown */
2662 return;
2664 for_each_port(adapter, i) {
2665 struct net_device *dev = adapter->port[i];
2666 struct port_info *p = netdev_priv(dev);
2667 int status;
2669 if (!netif_running(dev))
2670 continue;
2672 status = 0;
2673 if (netif_running(dev) && netif_carrier_ok(dev))
2674 status = t3b2_mac_watchdog_task(&p->mac);
2675 if (status == 1)
2676 p->mac.stats.num_toggled++;
2677 else if (status == 2) {
2678 struct cmac *mac = &p->mac;
2680 t3_mac_set_mtu(mac, dev->mtu);
2681 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2682 cxgb_set_rxmode(dev);
2683 t3_link_start(&p->phy, mac, &p->link_config);
2684 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2685 t3_port_intr_enable(adapter, p->port_id);
2686 p->mac.stats.num_resets++;
2689 rtnl_unlock();
2693 static void t3_adap_check_task(struct work_struct *work)
2695 struct adapter *adapter = container_of(work, struct adapter,
2696 adap_check_task.work);
2697 const struct adapter_params *p = &adapter->params;
2698 int port;
2699 unsigned int v, status, reset;
2701 adapter->check_task_cnt++;
2703 check_link_status(adapter);
2705 /* Accumulate MAC stats if needed */
2706 if (!p->linkpoll_period ||
2707 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2708 p->stats_update_period) {
2709 mac_stats_update(adapter);
2710 adapter->check_task_cnt = 0;
2713 if (p->rev == T3_REV_B2)
2714 check_t3b2_mac(adapter);
2717 * Scan the XGMAC's to check for various conditions which we want to
2718 * monitor in a periodic polling manner rather than via an interrupt
2719 * condition. This is used for conditions which would otherwise flood
2720 * the system with interrupts and we only really need to know that the
2721 * conditions are "happening" ... For each condition we count the
2722 * detection of the condition and reset it for the next polling loop.
2724 for_each_port(adapter, port) {
2725 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2726 u32 cause;
2728 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2729 reset = 0;
2730 if (cause & F_RXFIFO_OVERFLOW) {
2731 mac->stats.rx_fifo_ovfl++;
2732 reset |= F_RXFIFO_OVERFLOW;
2735 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2739 * We do the same as above for FL_EMPTY interrupts.
2741 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2742 reset = 0;
2744 if (status & F_FLEMPTY) {
2745 struct sge_qset *qs = &adapter->sge.qs[0];
2746 int i = 0;
2748 reset |= F_FLEMPTY;
2750 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2751 0xffff;
2753 while (v) {
2754 qs->fl[i].empty += (v & 1);
2755 if (i)
2756 qs++;
2757 i ^= 1;
2758 v >>= 1;
2762 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2764 /* Schedule the next check update if any port is active. */
2765 spin_lock_irq(&adapter->work_lock);
2766 if (adapter->open_device_map & PORT_MASK)
2767 schedule_chk_task(adapter);
2768 spin_unlock_irq(&adapter->work_lock);
2771 static void db_full_task(struct work_struct *work)
2773 struct adapter *adapter = container_of(work, struct adapter,
2774 db_full_task);
2776 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2779 static void db_empty_task(struct work_struct *work)
2781 struct adapter *adapter = container_of(work, struct adapter,
2782 db_empty_task);
2784 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2787 static void db_drop_task(struct work_struct *work)
2789 struct adapter *adapter = container_of(work, struct adapter,
2790 db_drop_task);
2791 unsigned long delay = 1000;
2792 unsigned short r;
2794 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2797 * Sleep a while before ringing the driver qset dbs.
2798 * The delay is between 1000-2023 usecs.
2800 get_random_bytes(&r, 2);
2801 delay += r & 1023;
2802 set_current_state(TASK_UNINTERRUPTIBLE);
2803 schedule_timeout(usecs_to_jiffies(delay));
2804 ring_dbs(adapter);
2808 * Processes external (PHY) interrupts in process context.
2810 static void ext_intr_task(struct work_struct *work)
2812 struct adapter *adapter = container_of(work, struct adapter,
2813 ext_intr_handler_task);
2814 int i;
2816 /* Disable link fault interrupts */
2817 for_each_port(adapter, i) {
2818 struct net_device *dev = adapter->port[i];
2819 struct port_info *p = netdev_priv(dev);
2821 t3_xgm_intr_disable(adapter, i);
2822 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2825 /* Re-enable link fault interrupts */
2826 t3_phy_intr_handler(adapter);
2828 for_each_port(adapter, i)
2829 t3_xgm_intr_enable(adapter, i);
2831 /* Now reenable external interrupts */
2832 spin_lock_irq(&adapter->work_lock);
2833 if (adapter->slow_intr_mask) {
2834 adapter->slow_intr_mask |= F_T3DBG;
2835 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2836 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2837 adapter->slow_intr_mask);
2839 spin_unlock_irq(&adapter->work_lock);
2843 * Interrupt-context handler for external (PHY) interrupts.
2845 void t3_os_ext_intr_handler(struct adapter *adapter)
2848 * Schedule a task to handle external interrupts as they may be slow
2849 * and we use a mutex to protect MDIO registers. We disable PHY
2850 * interrupts in the meantime and let the task reenable them when
2851 * it's done.
2853 spin_lock(&adapter->work_lock);
2854 if (adapter->slow_intr_mask) {
2855 adapter->slow_intr_mask &= ~F_T3DBG;
2856 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2857 adapter->slow_intr_mask);
2858 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2860 spin_unlock(&adapter->work_lock);
2863 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2865 struct net_device *netdev = adapter->port[port_id];
2866 struct port_info *pi = netdev_priv(netdev);
2868 spin_lock(&adapter->work_lock);
2869 pi->link_fault = 1;
2870 spin_unlock(&adapter->work_lock);
2873 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2875 int i, ret = 0;
2877 if (is_offload(adapter) &&
2878 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2879 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2880 offload_close(&adapter->tdev);
2883 /* Stop all ports */
2884 for_each_port(adapter, i) {
2885 struct net_device *netdev = adapter->port[i];
2887 if (netif_running(netdev))
2888 __cxgb_close(netdev, on_wq);
2891 /* Stop SGE timers */
2892 t3_stop_sge_timers(adapter);
2894 adapter->flags &= ~FULL_INIT_DONE;
2896 if (reset)
2897 ret = t3_reset_adapter(adapter);
2899 pci_disable_device(adapter->pdev);
2901 return ret;
2904 static int t3_reenable_adapter(struct adapter *adapter)
2906 if (pci_enable_device(adapter->pdev)) {
2907 dev_err(&adapter->pdev->dev,
2908 "Cannot re-enable PCI device after reset.\n");
2909 goto err;
2911 pci_set_master(adapter->pdev);
2912 pci_restore_state(adapter->pdev);
2913 pci_save_state(adapter->pdev);
2915 /* Free sge resources */
2916 t3_free_sge_resources(adapter);
2918 if (t3_replay_prep_adapter(adapter))
2919 goto err;
2921 return 0;
2922 err:
2923 return -1;
2926 static void t3_resume_ports(struct adapter *adapter)
2928 int i;
2930 /* Restart the ports */
2931 for_each_port(adapter, i) {
2932 struct net_device *netdev = adapter->port[i];
2934 if (netif_running(netdev)) {
2935 if (cxgb_open(netdev)) {
2936 dev_err(&adapter->pdev->dev,
2937 "can't bring device back up"
2938 " after reset\n");
2939 continue;
2944 if (is_offload(adapter) && !ofld_disable)
2945 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2949 * processes a fatal error.
2950 * Bring the ports down, reset the chip, bring the ports back up.
2952 static void fatal_error_task(struct work_struct *work)
2954 struct adapter *adapter = container_of(work, struct adapter,
2955 fatal_error_handler_task);
2956 int err = 0;
2958 rtnl_lock();
2959 err = t3_adapter_error(adapter, 1, 1);
2960 if (!err)
2961 err = t3_reenable_adapter(adapter);
2962 if (!err)
2963 t3_resume_ports(adapter);
2965 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2966 rtnl_unlock();
2969 void t3_fatal_err(struct adapter *adapter)
2971 unsigned int fw_status[4];
2973 if (adapter->flags & FULL_INIT_DONE) {
2974 t3_sge_stop(adapter);
2975 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2976 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2977 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2978 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2980 spin_lock(&adapter->work_lock);
2981 t3_intr_disable(adapter);
2982 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2983 spin_unlock(&adapter->work_lock);
2985 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2986 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2987 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2988 fw_status[0], fw_status[1],
2989 fw_status[2], fw_status[3]);
2993 * t3_io_error_detected - called when PCI error is detected
2994 * @pdev: Pointer to PCI device
2995 * @state: The current pci connection state
2997 * This function is called after a PCI bus error affecting
2998 * this device has been detected.
3000 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
3001 pci_channel_state_t state)
3003 struct adapter *adapter = pci_get_drvdata(pdev);
3004 int ret;
3006 if (state == pci_channel_io_perm_failure)
3007 return PCI_ERS_RESULT_DISCONNECT;
3009 ret = t3_adapter_error(adapter, 0, 0);
3011 /* Request a slot reset. */
3012 return PCI_ERS_RESULT_NEED_RESET;
3016 * t3_io_slot_reset - called after the pci bus has been reset.
3017 * @pdev: Pointer to PCI device
3019 * Restart the card from scratch, as if from a cold-boot.
3021 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3023 struct adapter *adapter = pci_get_drvdata(pdev);
3025 if (!t3_reenable_adapter(adapter))
3026 return PCI_ERS_RESULT_RECOVERED;
3028 return PCI_ERS_RESULT_DISCONNECT;
3032 * t3_io_resume - called when traffic can start flowing again.
3033 * @pdev: Pointer to PCI device
3035 * This callback is called when the error recovery driver tells us that
3036 * its OK to resume normal operation.
3038 static void t3_io_resume(struct pci_dev *pdev)
3040 struct adapter *adapter = pci_get_drvdata(pdev);
3042 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3043 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3045 t3_resume_ports(adapter);
3048 static struct pci_error_handlers t3_err_handler = {
3049 .error_detected = t3_io_error_detected,
3050 .slot_reset = t3_io_slot_reset,
3051 .resume = t3_io_resume,
3055 * Set the number of qsets based on the number of CPUs and the number of ports,
3056 * not to exceed the number of available qsets, assuming there are enough qsets
3057 * per port in HW.
3059 static void set_nqsets(struct adapter *adap)
3061 int i, j = 0;
3062 int num_cpus = num_online_cpus();
3063 int hwports = adap->params.nports;
3064 int nqsets = adap->msix_nvectors - 1;
3066 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3067 if (hwports == 2 &&
3068 (hwports * nqsets > SGE_QSETS ||
3069 num_cpus >= nqsets / hwports))
3070 nqsets /= hwports;
3071 if (nqsets > num_cpus)
3072 nqsets = num_cpus;
3073 if (nqsets < 1 || hwports == 4)
3074 nqsets = 1;
3075 } else
3076 nqsets = 1;
3078 for_each_port(adap, i) {
3079 struct port_info *pi = adap2pinfo(adap, i);
3081 pi->first_qset = j;
3082 pi->nqsets = nqsets;
3083 j = pi->first_qset + nqsets;
3085 dev_info(&adap->pdev->dev,
3086 "Port %d using %d queue sets.\n", i, nqsets);
3090 static int __devinit cxgb_enable_msix(struct adapter *adap)
3092 struct msix_entry entries[SGE_QSETS + 1];
3093 int vectors;
3094 int i, err;
3096 vectors = ARRAY_SIZE(entries);
3097 for (i = 0; i < vectors; ++i)
3098 entries[i].entry = i;
3100 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3101 vectors = err;
3103 if (err < 0)
3104 pci_disable_msix(adap->pdev);
3106 if (!err && vectors < (adap->params.nports + 1)) {
3107 pci_disable_msix(adap->pdev);
3108 err = -1;
3111 if (!err) {
3112 for (i = 0; i < vectors; ++i)
3113 adap->msix_info[i].vec = entries[i].vector;
3114 adap->msix_nvectors = vectors;
3117 return err;
3120 static void __devinit print_port_info(struct adapter *adap,
3121 const struct adapter_info *ai)
3123 static const char *pci_variant[] = {
3124 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3127 int i;
3128 char buf[80];
3130 if (is_pcie(adap))
3131 snprintf(buf, sizeof(buf), "%s x%d",
3132 pci_variant[adap->params.pci.variant],
3133 adap->params.pci.width);
3134 else
3135 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3136 pci_variant[adap->params.pci.variant],
3137 adap->params.pci.speed, adap->params.pci.width);
3139 for_each_port(adap, i) {
3140 struct net_device *dev = adap->port[i];
3141 const struct port_info *pi = netdev_priv(dev);
3143 if (!test_bit(i, &adap->registered_device_map))
3144 continue;
3145 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3146 dev->name, ai->desc, pi->phy.desc,
3147 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3148 (adap->flags & USING_MSIX) ? " MSI-X" :
3149 (adap->flags & USING_MSI) ? " MSI" : "");
3150 if (adap->name == dev->name && adap->params.vpd.mclk)
3151 printk(KERN_INFO
3152 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3153 adap->name, t3_mc7_size(&adap->cm) >> 20,
3154 t3_mc7_size(&adap->pmtx) >> 20,
3155 t3_mc7_size(&adap->pmrx) >> 20,
3156 adap->params.vpd.sn);
3160 static const struct net_device_ops cxgb_netdev_ops = {
3161 .ndo_open = cxgb_open,
3162 .ndo_stop = cxgb_close,
3163 .ndo_start_xmit = t3_eth_xmit,
3164 .ndo_get_stats = cxgb_get_stats,
3165 .ndo_validate_addr = eth_validate_addr,
3166 .ndo_set_multicast_list = cxgb_set_rxmode,
3167 .ndo_do_ioctl = cxgb_ioctl,
3168 .ndo_change_mtu = cxgb_change_mtu,
3169 .ndo_set_mac_address = cxgb_set_mac_addr,
3170 .ndo_vlan_rx_register = vlan_rx_register,
3171 #ifdef CONFIG_NET_POLL_CONTROLLER
3172 .ndo_poll_controller = cxgb_netpoll,
3173 #endif
3176 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3178 struct port_info *pi = netdev_priv(dev);
3180 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3181 pi->iscsic.mac_addr[3] |= 0x80;
3184 static int __devinit init_one(struct pci_dev *pdev,
3185 const struct pci_device_id *ent)
3187 static int version_printed;
3189 int i, err, pci_using_dac = 0;
3190 resource_size_t mmio_start, mmio_len;
3191 const struct adapter_info *ai;
3192 struct adapter *adapter = NULL;
3193 struct port_info *pi;
3195 if (!version_printed) {
3196 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3197 ++version_printed;
3200 if (!cxgb3_wq) {
3201 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3202 if (!cxgb3_wq) {
3203 printk(KERN_ERR DRV_NAME
3204 ": cannot initialize work queue\n");
3205 return -ENOMEM;
3209 err = pci_enable_device(pdev);
3210 if (err) {
3211 dev_err(&pdev->dev, "cannot enable PCI device\n");
3212 goto out;
3215 err = pci_request_regions(pdev, DRV_NAME);
3216 if (err) {
3217 /* Just info, some other driver may have claimed the device. */
3218 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3219 goto out_disable_device;
3222 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3223 pci_using_dac = 1;
3224 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3225 if (err) {
3226 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3227 "coherent allocations\n");
3228 goto out_release_regions;
3230 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3231 dev_err(&pdev->dev, "no usable DMA configuration\n");
3232 goto out_release_regions;
3235 pci_set_master(pdev);
3236 pci_save_state(pdev);
3238 mmio_start = pci_resource_start(pdev, 0);
3239 mmio_len = pci_resource_len(pdev, 0);
3240 ai = t3_get_adapter_info(ent->driver_data);
3242 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3243 if (!adapter) {
3244 err = -ENOMEM;
3245 goto out_release_regions;
3248 adapter->nofail_skb =
3249 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3250 if (!adapter->nofail_skb) {
3251 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3252 err = -ENOMEM;
3253 goto out_free_adapter;
3256 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3257 if (!adapter->regs) {
3258 dev_err(&pdev->dev, "cannot map device registers\n");
3259 err = -ENOMEM;
3260 goto out_free_adapter;
3263 adapter->pdev = pdev;
3264 adapter->name = pci_name(pdev);
3265 adapter->msg_enable = dflt_msg_enable;
3266 adapter->mmio_len = mmio_len;
3268 mutex_init(&adapter->mdio_lock);
3269 spin_lock_init(&adapter->work_lock);
3270 spin_lock_init(&adapter->stats_lock);
3272 INIT_LIST_HEAD(&adapter->adapter_list);
3273 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3274 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3276 INIT_WORK(&adapter->db_full_task, db_full_task);
3277 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3278 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3280 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3282 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3283 struct net_device *netdev;
3285 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3286 if (!netdev) {
3287 err = -ENOMEM;
3288 goto out_free_dev;
3291 SET_NETDEV_DEV(netdev, &pdev->dev);
3293 adapter->port[i] = netdev;
3294 pi = netdev_priv(netdev);
3295 pi->adapter = adapter;
3296 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3297 pi->port_id = i;
3298 netif_carrier_off(netdev);
3299 netif_tx_stop_all_queues(netdev);
3300 netdev->irq = pdev->irq;
3301 netdev->mem_start = mmio_start;
3302 netdev->mem_end = mmio_start + mmio_len - 1;
3303 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3304 netdev->features |= NETIF_F_GRO;
3305 if (pci_using_dac)
3306 netdev->features |= NETIF_F_HIGHDMA;
3308 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3309 netdev->netdev_ops = &cxgb_netdev_ops;
3310 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3313 pci_set_drvdata(pdev, adapter);
3314 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3315 err = -ENODEV;
3316 goto out_free_dev;
3320 * The card is now ready to go. If any errors occur during device
3321 * registration we do not fail the whole card but rather proceed only
3322 * with the ports we manage to register successfully. However we must
3323 * register at least one net device.
3325 for_each_port(adapter, i) {
3326 err = register_netdev(adapter->port[i]);
3327 if (err)
3328 dev_warn(&pdev->dev,
3329 "cannot register net device %s, skipping\n",
3330 adapter->port[i]->name);
3331 else {
3333 * Change the name we use for messages to the name of
3334 * the first successfully registered interface.
3336 if (!adapter->registered_device_map)
3337 adapter->name = adapter->port[i]->name;
3339 __set_bit(i, &adapter->registered_device_map);
3342 if (!adapter->registered_device_map) {
3343 dev_err(&pdev->dev, "could not register any net devices\n");
3344 goto out_free_dev;
3347 for_each_port(adapter, i)
3348 cxgb3_init_iscsi_mac(adapter->port[i]);
3350 /* Driver's ready. Reflect it on LEDs */
3351 t3_led_ready(adapter);
3353 if (is_offload(adapter)) {
3354 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3355 cxgb3_adapter_ofld(adapter);
3358 /* See what interrupts we'll be using */
3359 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3360 adapter->flags |= USING_MSIX;
3361 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3362 adapter->flags |= USING_MSI;
3364 set_nqsets(adapter);
3366 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3367 &cxgb3_attr_group);
3369 print_port_info(adapter, ai);
3370 return 0;
3372 out_free_dev:
3373 iounmap(adapter->regs);
3374 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3375 if (adapter->port[i])
3376 free_netdev(adapter->port[i]);
3378 out_free_adapter:
3379 kfree(adapter);
3381 out_release_regions:
3382 pci_release_regions(pdev);
3383 out_disable_device:
3384 pci_disable_device(pdev);
3385 pci_set_drvdata(pdev, NULL);
3386 out:
3387 return err;
3390 static void __devexit remove_one(struct pci_dev *pdev)
3392 struct adapter *adapter = pci_get_drvdata(pdev);
3394 if (adapter) {
3395 int i;
3397 t3_sge_stop(adapter);
3398 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3399 &cxgb3_attr_group);
3401 if (is_offload(adapter)) {
3402 cxgb3_adapter_unofld(adapter);
3403 if (test_bit(OFFLOAD_DEVMAP_BIT,
3404 &adapter->open_device_map))
3405 offload_close(&adapter->tdev);
3408 for_each_port(adapter, i)
3409 if (test_bit(i, &adapter->registered_device_map))
3410 unregister_netdev(adapter->port[i]);
3412 t3_stop_sge_timers(adapter);
3413 t3_free_sge_resources(adapter);
3414 cxgb_disable_msi(adapter);
3416 for_each_port(adapter, i)
3417 if (adapter->port[i])
3418 free_netdev(adapter->port[i]);
3420 iounmap(adapter->regs);
3421 if (adapter->nofail_skb)
3422 kfree_skb(adapter->nofail_skb);
3423 kfree(adapter);
3424 pci_release_regions(pdev);
3425 pci_disable_device(pdev);
3426 pci_set_drvdata(pdev, NULL);
3430 static struct pci_driver driver = {
3431 .name = DRV_NAME,
3432 .id_table = cxgb3_pci_tbl,
3433 .probe = init_one,
3434 .remove = __devexit_p(remove_one),
3435 .err_handler = &t3_err_handler,
3438 static int __init cxgb3_init_module(void)
3440 int ret;
3442 cxgb3_offload_init();
3444 ret = pci_register_driver(&driver);
3445 return ret;
3448 static void __exit cxgb3_cleanup_module(void)
3450 pci_unregister_driver(&driver);
3451 if (cxgb3_wq)
3452 destroy_workqueue(cxgb3_wq);
3455 module_init(cxgb3_init_module);
3456 module_exit(cxgb3_cleanup_module);