[PATCH] libata: Add ->set_mode hook for odd drivers
[linux-2.6/x86.git] / drivers / scsi / libata-core.c
blob10933cb722e65a08891e601d1e0daef848254d90
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
62 #include "libata.h"
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
68 struct ata_device *dev);
69 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
71 static unsigned int ata_unique_id = 1;
72 static struct workqueue_struct *ata_wq;
74 int atapi_enabled = 1;
75 module_param(atapi_enabled, int, 0444);
76 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
78 int libata_fua = 0;
79 module_param_named(fua, libata_fua, int, 0444);
80 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
82 MODULE_AUTHOR("Jeff Garzik");
83 MODULE_DESCRIPTION("Library module for ATA devices");
84 MODULE_LICENSE("GPL");
85 MODULE_VERSION(DRV_VERSION);
88 /**
89 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
90 * @tf: Taskfile to convert
91 * @fis: Buffer into which data will output
92 * @pmp: Port multiplier port
94 * Converts a standard ATA taskfile to a Serial ATA
95 * FIS structure (Register - Host to Device).
97 * LOCKING:
98 * Inherited from caller.
101 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
103 fis[0] = 0x27; /* Register - Host to Device FIS */
104 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
105 bit 7 indicates Command FIS */
106 fis[2] = tf->command;
107 fis[3] = tf->feature;
109 fis[4] = tf->lbal;
110 fis[5] = tf->lbam;
111 fis[6] = tf->lbah;
112 fis[7] = tf->device;
114 fis[8] = tf->hob_lbal;
115 fis[9] = tf->hob_lbam;
116 fis[10] = tf->hob_lbah;
117 fis[11] = tf->hob_feature;
119 fis[12] = tf->nsect;
120 fis[13] = tf->hob_nsect;
121 fis[14] = 0;
122 fis[15] = tf->ctl;
124 fis[16] = 0;
125 fis[17] = 0;
126 fis[18] = 0;
127 fis[19] = 0;
131 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
132 * @fis: Buffer from which data will be input
133 * @tf: Taskfile to output
135 * Converts a serial ATA FIS structure to a standard ATA taskfile.
137 * LOCKING:
138 * Inherited from caller.
141 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
143 tf->command = fis[2]; /* status */
144 tf->feature = fis[3]; /* error */
146 tf->lbal = fis[4];
147 tf->lbam = fis[5];
148 tf->lbah = fis[6];
149 tf->device = fis[7];
151 tf->hob_lbal = fis[8];
152 tf->hob_lbam = fis[9];
153 tf->hob_lbah = fis[10];
155 tf->nsect = fis[12];
156 tf->hob_nsect = fis[13];
159 static const u8 ata_rw_cmds[] = {
160 /* pio multi */
161 ATA_CMD_READ_MULTI,
162 ATA_CMD_WRITE_MULTI,
163 ATA_CMD_READ_MULTI_EXT,
164 ATA_CMD_WRITE_MULTI_EXT,
168 ATA_CMD_WRITE_MULTI_FUA_EXT,
169 /* pio */
170 ATA_CMD_PIO_READ,
171 ATA_CMD_PIO_WRITE,
172 ATA_CMD_PIO_READ_EXT,
173 ATA_CMD_PIO_WRITE_EXT,
178 /* dma */
179 ATA_CMD_READ,
180 ATA_CMD_WRITE,
181 ATA_CMD_READ_EXT,
182 ATA_CMD_WRITE_EXT,
186 ATA_CMD_WRITE_FUA_EXT
190 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
191 * @qc: command to examine and configure
193 * Examine the device configuration and tf->flags to calculate
194 * the proper read/write commands and protocol to use.
196 * LOCKING:
197 * caller.
199 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
201 struct ata_taskfile *tf = &qc->tf;
202 struct ata_device *dev = qc->dev;
203 u8 cmd;
205 int index, fua, lba48, write;
207 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
208 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
209 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
211 if (dev->flags & ATA_DFLAG_PIO) {
212 tf->protocol = ATA_PROT_PIO;
213 index = dev->multi_count ? 0 : 8;
214 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
215 /* Unable to use DMA due to host limitation */
216 tf->protocol = ATA_PROT_PIO;
217 index = dev->multi_count ? 0 : 8;
218 } else {
219 tf->protocol = ATA_PROT_DMA;
220 index = 16;
223 cmd = ata_rw_cmds[index + fua + lba48 + write];
224 if (cmd) {
225 tf->command = cmd;
226 return 0;
228 return -1;
232 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
233 * @pio_mask: pio_mask
234 * @mwdma_mask: mwdma_mask
235 * @udma_mask: udma_mask
237 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
238 * unsigned int xfer_mask.
240 * LOCKING:
241 * None.
243 * RETURNS:
244 * Packed xfer_mask.
246 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
247 unsigned int mwdma_mask,
248 unsigned int udma_mask)
250 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
251 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
252 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
256 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
257 * @xfer_mask: xfer_mask to unpack
258 * @pio_mask: resulting pio_mask
259 * @mwdma_mask: resulting mwdma_mask
260 * @udma_mask: resulting udma_mask
262 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
263 * Any NULL distination masks will be ignored.
265 static void ata_unpack_xfermask(unsigned int xfer_mask,
266 unsigned int *pio_mask,
267 unsigned int *mwdma_mask,
268 unsigned int *udma_mask)
270 if (pio_mask)
271 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
272 if (mwdma_mask)
273 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
274 if (udma_mask)
275 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278 static const struct ata_xfer_ent {
279 unsigned int shift, bits;
280 u8 base;
281 } ata_xfer_tbl[] = {
282 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
283 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
284 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
285 { -1, },
289 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
290 * @xfer_mask: xfer_mask of interest
292 * Return matching XFER_* value for @xfer_mask. Only the highest
293 * bit of @xfer_mask is considered.
295 * LOCKING:
296 * None.
298 * RETURNS:
299 * Matching XFER_* value, 0 if no match found.
301 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
303 int highbit = fls(xfer_mask) - 1;
304 const struct ata_xfer_ent *ent;
306 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
307 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
308 return ent->base + highbit - ent->shift;
309 return 0;
313 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
314 * @xfer_mode: XFER_* of interest
316 * Return matching xfer_mask for @xfer_mode.
318 * LOCKING:
319 * None.
321 * RETURNS:
322 * Matching xfer_mask, 0 if no match found.
324 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
326 const struct ata_xfer_ent *ent;
328 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
329 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
330 return 1 << (ent->shift + xfer_mode - ent->base);
331 return 0;
335 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
336 * @xfer_mode: XFER_* of interest
338 * Return matching xfer_shift for @xfer_mode.
340 * LOCKING:
341 * None.
343 * RETURNS:
344 * Matching xfer_shift, -1 if no match found.
346 static int ata_xfer_mode2shift(unsigned int xfer_mode)
348 const struct ata_xfer_ent *ent;
350 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
351 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
352 return ent->shift;
353 return -1;
357 * ata_mode_string - convert xfer_mask to string
358 * @xfer_mask: mask of bits supported; only highest bit counts.
360 * Determine string which represents the highest speed
361 * (highest bit in @modemask).
363 * LOCKING:
364 * None.
366 * RETURNS:
367 * Constant C string representing highest speed listed in
368 * @mode_mask, or the constant C string "<n/a>".
370 static const char *ata_mode_string(unsigned int xfer_mask)
372 static const char * const xfer_mode_str[] = {
373 "PIO0",
374 "PIO1",
375 "PIO2",
376 "PIO3",
377 "PIO4",
378 "MWDMA0",
379 "MWDMA1",
380 "MWDMA2",
381 "UDMA/16",
382 "UDMA/25",
383 "UDMA/33",
384 "UDMA/44",
385 "UDMA/66",
386 "UDMA/100",
387 "UDMA/133",
388 "UDMA7",
390 int highbit;
392 highbit = fls(xfer_mask) - 1;
393 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
394 return xfer_mode_str[highbit];
395 return "<n/a>";
398 static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
400 if (ata_dev_present(dev)) {
401 printk(KERN_WARNING "ata%u: dev %u disabled\n",
402 ap->id, dev->devno);
403 dev->class++;
408 * ata_pio_devchk - PATA device presence detection
409 * @ap: ATA channel to examine
410 * @device: Device to examine (starting at zero)
412 * This technique was originally described in
413 * Hale Landis's ATADRVR (www.ata-atapi.com), and
414 * later found its way into the ATA/ATAPI spec.
416 * Write a pattern to the ATA shadow registers,
417 * and if a device is present, it will respond by
418 * correctly storing and echoing back the
419 * ATA shadow register contents.
421 * LOCKING:
422 * caller.
425 static unsigned int ata_pio_devchk(struct ata_port *ap,
426 unsigned int device)
428 struct ata_ioports *ioaddr = &ap->ioaddr;
429 u8 nsect, lbal;
431 ap->ops->dev_select(ap, device);
433 outb(0x55, ioaddr->nsect_addr);
434 outb(0xaa, ioaddr->lbal_addr);
436 outb(0xaa, ioaddr->nsect_addr);
437 outb(0x55, ioaddr->lbal_addr);
439 outb(0x55, ioaddr->nsect_addr);
440 outb(0xaa, ioaddr->lbal_addr);
442 nsect = inb(ioaddr->nsect_addr);
443 lbal = inb(ioaddr->lbal_addr);
445 if ((nsect == 0x55) && (lbal == 0xaa))
446 return 1; /* we found a device */
448 return 0; /* nothing found */
452 * ata_mmio_devchk - PATA device presence detection
453 * @ap: ATA channel to examine
454 * @device: Device to examine (starting at zero)
456 * This technique was originally described in
457 * Hale Landis's ATADRVR (www.ata-atapi.com), and
458 * later found its way into the ATA/ATAPI spec.
460 * Write a pattern to the ATA shadow registers,
461 * and if a device is present, it will respond by
462 * correctly storing and echoing back the
463 * ATA shadow register contents.
465 * LOCKING:
466 * caller.
469 static unsigned int ata_mmio_devchk(struct ata_port *ap,
470 unsigned int device)
472 struct ata_ioports *ioaddr = &ap->ioaddr;
473 u8 nsect, lbal;
475 ap->ops->dev_select(ap, device);
477 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
478 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
480 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
481 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
483 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
484 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
486 nsect = readb((void __iomem *) ioaddr->nsect_addr);
487 lbal = readb((void __iomem *) ioaddr->lbal_addr);
489 if ((nsect == 0x55) && (lbal == 0xaa))
490 return 1; /* we found a device */
492 return 0; /* nothing found */
496 * ata_devchk - PATA device presence detection
497 * @ap: ATA channel to examine
498 * @device: Device to examine (starting at zero)
500 * Dispatch ATA device presence detection, depending
501 * on whether we are using PIO or MMIO to talk to the
502 * ATA shadow registers.
504 * LOCKING:
505 * caller.
508 static unsigned int ata_devchk(struct ata_port *ap,
509 unsigned int device)
511 if (ap->flags & ATA_FLAG_MMIO)
512 return ata_mmio_devchk(ap, device);
513 return ata_pio_devchk(ap, device);
517 * ata_dev_classify - determine device type based on ATA-spec signature
518 * @tf: ATA taskfile register set for device to be identified
520 * Determine from taskfile register contents whether a device is
521 * ATA or ATAPI, as per "Signature and persistence" section
522 * of ATA/PI spec (volume 1, sect 5.14).
524 * LOCKING:
525 * None.
527 * RETURNS:
528 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
529 * the event of failure.
532 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
534 /* Apple's open source Darwin code hints that some devices only
535 * put a proper signature into the LBA mid/high registers,
536 * So, we only check those. It's sufficient for uniqueness.
539 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
540 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
541 DPRINTK("found ATA device by sig\n");
542 return ATA_DEV_ATA;
545 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
546 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
547 DPRINTK("found ATAPI device by sig\n");
548 return ATA_DEV_ATAPI;
551 DPRINTK("unknown device\n");
552 return ATA_DEV_UNKNOWN;
556 * ata_dev_try_classify - Parse returned ATA device signature
557 * @ap: ATA channel to examine
558 * @device: Device to examine (starting at zero)
559 * @r_err: Value of error register on completion
561 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
562 * an ATA/ATAPI-defined set of values is placed in the ATA
563 * shadow registers, indicating the results of device detection
564 * and diagnostics.
566 * Select the ATA device, and read the values from the ATA shadow
567 * registers. Then parse according to the Error register value,
568 * and the spec-defined values examined by ata_dev_classify().
570 * LOCKING:
571 * caller.
573 * RETURNS:
574 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
577 static unsigned int
578 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
580 struct ata_taskfile tf;
581 unsigned int class;
582 u8 err;
584 ap->ops->dev_select(ap, device);
586 memset(&tf, 0, sizeof(tf));
588 ap->ops->tf_read(ap, &tf);
589 err = tf.feature;
590 if (r_err)
591 *r_err = err;
593 /* see if device passed diags */
594 if (err == 1)
595 /* do nothing */ ;
596 else if ((device == 0) && (err == 0x81))
597 /* do nothing */ ;
598 else
599 return ATA_DEV_NONE;
601 /* determine if device is ATA or ATAPI */
602 class = ata_dev_classify(&tf);
604 if (class == ATA_DEV_UNKNOWN)
605 return ATA_DEV_NONE;
606 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
607 return ATA_DEV_NONE;
608 return class;
612 * ata_id_string - Convert IDENTIFY DEVICE page into string
613 * @id: IDENTIFY DEVICE results we will examine
614 * @s: string into which data is output
615 * @ofs: offset into identify device page
616 * @len: length of string to return. must be an even number.
618 * The strings in the IDENTIFY DEVICE page are broken up into
619 * 16-bit chunks. Run through the string, and output each
620 * 8-bit chunk linearly, regardless of platform.
622 * LOCKING:
623 * caller.
626 void ata_id_string(const u16 *id, unsigned char *s,
627 unsigned int ofs, unsigned int len)
629 unsigned int c;
631 while (len > 0) {
632 c = id[ofs] >> 8;
633 *s = c;
634 s++;
636 c = id[ofs] & 0xff;
637 *s = c;
638 s++;
640 ofs++;
641 len -= 2;
646 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
647 * @id: IDENTIFY DEVICE results we will examine
648 * @s: string into which data is output
649 * @ofs: offset into identify device page
650 * @len: length of string to return. must be an odd number.
652 * This function is identical to ata_id_string except that it
653 * trims trailing spaces and terminates the resulting string with
654 * null. @len must be actual maximum length (even number) + 1.
656 * LOCKING:
657 * caller.
659 void ata_id_c_string(const u16 *id, unsigned char *s,
660 unsigned int ofs, unsigned int len)
662 unsigned char *p;
664 WARN_ON(!(len & 1));
666 ata_id_string(id, s, ofs, len - 1);
668 p = s + strnlen(s, len - 1);
669 while (p > s && p[-1] == ' ')
670 p--;
671 *p = '\0';
674 static u64 ata_id_n_sectors(const u16 *id)
676 if (ata_id_has_lba(id)) {
677 if (ata_id_has_lba48(id))
678 return ata_id_u64(id, 100);
679 else
680 return ata_id_u32(id, 60);
681 } else {
682 if (ata_id_current_chs_valid(id))
683 return ata_id_u32(id, 57);
684 else
685 return id[1] * id[3] * id[6];
690 * ata_noop_dev_select - Select device 0/1 on ATA bus
691 * @ap: ATA channel to manipulate
692 * @device: ATA device (numbered from zero) to select
694 * This function performs no actual function.
696 * May be used as the dev_select() entry in ata_port_operations.
698 * LOCKING:
699 * caller.
701 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
707 * ata_std_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
711 * Use the method defined in the ATA specification to
712 * make either device 0, or device 1, active on the
713 * ATA channel. Works with both PIO and MMIO.
715 * May be used as the dev_select() entry in ata_port_operations.
717 * LOCKING:
718 * caller.
721 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
723 u8 tmp;
725 if (device == 0)
726 tmp = ATA_DEVICE_OBS;
727 else
728 tmp = ATA_DEVICE_OBS | ATA_DEV1;
730 if (ap->flags & ATA_FLAG_MMIO) {
731 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
732 } else {
733 outb(tmp, ap->ioaddr.device_addr);
735 ata_pause(ap); /* needed; also flushes, for mmio */
739 * ata_dev_select - Select device 0/1 on ATA bus
740 * @ap: ATA channel to manipulate
741 * @device: ATA device (numbered from zero) to select
742 * @wait: non-zero to wait for Status register BSY bit to clear
743 * @can_sleep: non-zero if context allows sleeping
745 * Use the method defined in the ATA specification to
746 * make either device 0, or device 1, active on the
747 * ATA channel.
749 * This is a high-level version of ata_std_dev_select(),
750 * which additionally provides the services of inserting
751 * the proper pauses and status polling, where needed.
753 * LOCKING:
754 * caller.
757 void ata_dev_select(struct ata_port *ap, unsigned int device,
758 unsigned int wait, unsigned int can_sleep)
760 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
761 ap->id, device, wait);
763 if (wait)
764 ata_wait_idle(ap);
766 ap->ops->dev_select(ap, device);
768 if (wait) {
769 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
770 msleep(150);
771 ata_wait_idle(ap);
776 * ata_dump_id - IDENTIFY DEVICE info debugging output
777 * @id: IDENTIFY DEVICE page to dump
779 * Dump selected 16-bit words from the given IDENTIFY DEVICE
780 * page.
782 * LOCKING:
783 * caller.
786 static inline void ata_dump_id(const u16 *id)
788 DPRINTK("49==0x%04x "
789 "53==0x%04x "
790 "63==0x%04x "
791 "64==0x%04x "
792 "75==0x%04x \n",
793 id[49],
794 id[53],
795 id[63],
796 id[64],
797 id[75]);
798 DPRINTK("80==0x%04x "
799 "81==0x%04x "
800 "82==0x%04x "
801 "83==0x%04x "
802 "84==0x%04x \n",
803 id[80],
804 id[81],
805 id[82],
806 id[83],
807 id[84]);
808 DPRINTK("88==0x%04x "
809 "93==0x%04x\n",
810 id[88],
811 id[93]);
815 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
816 * @id: IDENTIFY data to compute xfer mask from
818 * Compute the xfermask for this device. This is not as trivial
819 * as it seems if we must consider early devices correctly.
821 * FIXME: pre IDE drive timing (do we care ?).
823 * LOCKING:
824 * None.
826 * RETURNS:
827 * Computed xfermask
829 static unsigned int ata_id_xfermask(const u16 *id)
831 unsigned int pio_mask, mwdma_mask, udma_mask;
833 /* Usual case. Word 53 indicates word 64 is valid */
834 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
835 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
836 pio_mask <<= 3;
837 pio_mask |= 0x7;
838 } else {
839 /* If word 64 isn't valid then Word 51 high byte holds
840 * the PIO timing number for the maximum. Turn it into
841 * a mask.
843 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
845 /* But wait.. there's more. Design your standards by
846 * committee and you too can get a free iordy field to
847 * process. However its the speeds not the modes that
848 * are supported... Note drivers using the timing API
849 * will get this right anyway
853 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
855 udma_mask = 0;
856 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
857 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
859 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
863 * ata_port_queue_task - Queue port_task
864 * @ap: The ata_port to queue port_task for
866 * Schedule @fn(@data) for execution after @delay jiffies using
867 * port_task. There is one port_task per port and it's the
868 * user(low level driver)'s responsibility to make sure that only
869 * one task is active at any given time.
871 * libata core layer takes care of synchronization between
872 * port_task and EH. ata_port_queue_task() may be ignored for EH
873 * synchronization.
875 * LOCKING:
876 * Inherited from caller.
878 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
879 unsigned long delay)
881 int rc;
883 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
884 return;
886 PREPARE_WORK(&ap->port_task, fn, data);
888 if (!delay)
889 rc = queue_work(ata_wq, &ap->port_task);
890 else
891 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
893 /* rc == 0 means that another user is using port task */
894 WARN_ON(rc == 0);
898 * ata_port_flush_task - Flush port_task
899 * @ap: The ata_port to flush port_task for
901 * After this function completes, port_task is guranteed not to
902 * be running or scheduled.
904 * LOCKING:
905 * Kernel thread context (may sleep)
907 void ata_port_flush_task(struct ata_port *ap)
909 unsigned long flags;
911 DPRINTK("ENTER\n");
913 spin_lock_irqsave(&ap->host_set->lock, flags);
914 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
915 spin_unlock_irqrestore(&ap->host_set->lock, flags);
917 DPRINTK("flush #1\n");
918 flush_workqueue(ata_wq);
921 * At this point, if a task is running, it's guaranteed to see
922 * the FLUSH flag; thus, it will never queue pio tasks again.
923 * Cancel and flush.
925 if (!cancel_delayed_work(&ap->port_task)) {
926 DPRINTK("flush #2\n");
927 flush_workqueue(ata_wq);
930 spin_lock_irqsave(&ap->host_set->lock, flags);
931 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
934 DPRINTK("EXIT\n");
937 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
939 struct completion *waiting = qc->private_data;
941 qc->ap->ops->tf_read(qc->ap, &qc->tf);
942 complete(waiting);
946 * ata_exec_internal - execute libata internal command
947 * @ap: Port to which the command is sent
948 * @dev: Device to which the command is sent
949 * @tf: Taskfile registers for the command and the result
950 * @dma_dir: Data tranfer direction of the command
951 * @buf: Data buffer of the command
952 * @buflen: Length of data buffer
954 * Executes libata internal command with timeout. @tf contains
955 * command on entry and result on return. Timeout and error
956 * conditions are reported via return value. No recovery action
957 * is taken after a command times out. It's caller's duty to
958 * clean up after timeout.
960 * LOCKING:
961 * None. Should be called with kernel context, might sleep.
964 static unsigned
965 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
966 struct ata_taskfile *tf,
967 int dma_dir, void *buf, unsigned int buflen)
969 u8 command = tf->command;
970 struct ata_queued_cmd *qc;
971 DECLARE_COMPLETION(wait);
972 unsigned long flags;
973 unsigned int err_mask;
975 spin_lock_irqsave(&ap->host_set->lock, flags);
977 qc = ata_qc_new_init(ap, dev);
978 BUG_ON(qc == NULL);
980 qc->tf = *tf;
981 qc->dma_dir = dma_dir;
982 if (dma_dir != DMA_NONE) {
983 ata_sg_init_one(qc, buf, buflen);
984 qc->nsect = buflen / ATA_SECT_SIZE;
987 qc->private_data = &wait;
988 qc->complete_fn = ata_qc_complete_internal;
990 qc->err_mask = ata_qc_issue(qc);
991 if (qc->err_mask)
992 ata_qc_complete(qc);
994 spin_unlock_irqrestore(&ap->host_set->lock, flags);
996 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
997 ata_port_flush_task(ap);
999 spin_lock_irqsave(&ap->host_set->lock, flags);
1001 /* We're racing with irq here. If we lose, the
1002 * following test prevents us from completing the qc
1003 * again. If completion irq occurs after here but
1004 * before the caller cleans up, it will result in a
1005 * spurious interrupt. We can live with that.
1007 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1008 qc->err_mask = AC_ERR_TIMEOUT;
1009 ata_qc_complete(qc);
1010 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1011 ap->id, command);
1014 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1017 *tf = qc->tf;
1018 err_mask = qc->err_mask;
1020 ata_qc_free(qc);
1022 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1023 * Until those drivers are fixed, we detect the condition
1024 * here, fail the command with AC_ERR_SYSTEM and reenable the
1025 * port.
1027 * Note that this doesn't change any behavior as internal
1028 * command failure results in disabling the device in the
1029 * higher layer for LLDDs without new reset/EH callbacks.
1031 * Kill the following code as soon as those drivers are fixed.
1033 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1034 err_mask |= AC_ERR_SYSTEM;
1035 ata_port_probe(ap);
1038 return err_mask;
1042 * ata_pio_need_iordy - check if iordy needed
1043 * @adev: ATA device
1045 * Check if the current speed of the device requires IORDY. Used
1046 * by various controllers for chip configuration.
1049 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1051 int pio;
1052 int speed = adev->pio_mode - XFER_PIO_0;
1054 if (speed < 2)
1055 return 0;
1056 if (speed > 2)
1057 return 1;
1059 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1061 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1062 pio = adev->id[ATA_ID_EIDE_PIO];
1063 /* Is the speed faster than the drive allows non IORDY ? */
1064 if (pio) {
1065 /* This is cycle times not frequency - watch the logic! */
1066 if (pio > 240) /* PIO2 is 240nS per cycle */
1067 return 1;
1068 return 0;
1071 return 0;
1075 * ata_dev_read_id - Read ID data from the specified device
1076 * @ap: port on which target device resides
1077 * @dev: target device
1078 * @p_class: pointer to class of the target device (may be changed)
1079 * @post_reset: is this read ID post-reset?
1080 * @p_id: read IDENTIFY page (newly allocated)
1082 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1083 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1084 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1085 * for pre-ATA4 drives.
1087 * LOCKING:
1088 * Kernel thread context (may sleep)
1090 * RETURNS:
1091 * 0 on success, -errno otherwise.
1093 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1094 unsigned int *p_class, int post_reset, u16 **p_id)
1096 unsigned int class = *p_class;
1097 struct ata_taskfile tf;
1098 unsigned int err_mask = 0;
1099 u16 *id;
1100 const char *reason;
1101 int rc;
1103 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1105 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1107 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1108 if (id == NULL) {
1109 rc = -ENOMEM;
1110 reason = "out of memory";
1111 goto err_out;
1114 retry:
1115 ata_tf_init(ap, &tf, dev->devno);
1117 switch (class) {
1118 case ATA_DEV_ATA:
1119 tf.command = ATA_CMD_ID_ATA;
1120 break;
1121 case ATA_DEV_ATAPI:
1122 tf.command = ATA_CMD_ID_ATAPI;
1123 break;
1124 default:
1125 rc = -ENODEV;
1126 reason = "unsupported class";
1127 goto err_out;
1130 tf.protocol = ATA_PROT_PIO;
1132 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1133 id, sizeof(id[0]) * ATA_ID_WORDS);
1134 if (err_mask) {
1135 rc = -EIO;
1136 reason = "I/O error";
1137 goto err_out;
1140 swap_buf_le16(id, ATA_ID_WORDS);
1142 /* sanity check */
1143 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1144 rc = -EINVAL;
1145 reason = "device reports illegal type";
1146 goto err_out;
1149 if (post_reset && class == ATA_DEV_ATA) {
1151 * The exact sequence expected by certain pre-ATA4 drives is:
1152 * SRST RESET
1153 * IDENTIFY
1154 * INITIALIZE DEVICE PARAMETERS
1155 * anything else..
1156 * Some drives were very specific about that exact sequence.
1158 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1159 err_mask = ata_dev_init_params(ap, dev);
1160 if (err_mask) {
1161 rc = -EIO;
1162 reason = "INIT_DEV_PARAMS failed";
1163 goto err_out;
1166 /* current CHS translation info (id[53-58]) might be
1167 * changed. reread the identify device info.
1169 post_reset = 0;
1170 goto retry;
1174 *p_class = class;
1175 *p_id = id;
1176 return 0;
1178 err_out:
1179 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1180 ap->id, dev->devno, reason);
1181 kfree(id);
1182 return rc;
1185 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1186 struct ata_device *dev)
1188 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1192 * ata_dev_configure - Configure the specified ATA/ATAPI device
1193 * @ap: Port on which target device resides
1194 * @dev: Target device to configure
1195 * @print_info: Enable device info printout
1197 * Configure @dev according to @dev->id. Generic and low-level
1198 * driver specific fixups are also applied.
1200 * LOCKING:
1201 * Kernel thread context (may sleep)
1203 * RETURNS:
1204 * 0 on success, -errno otherwise
1206 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1207 int print_info)
1209 const u16 *id = dev->id;
1210 unsigned int xfer_mask;
1211 int i, rc;
1213 if (!ata_dev_present(dev)) {
1214 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1215 ap->id, dev->devno);
1216 return 0;
1219 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1221 /* print device capabilities */
1222 if (print_info)
1223 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1224 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1225 ap->id, dev->devno, id[49], id[82], id[83],
1226 id[84], id[85], id[86], id[87], id[88]);
1228 /* initialize to-be-configured parameters */
1229 dev->flags = 0;
1230 dev->max_sectors = 0;
1231 dev->cdb_len = 0;
1232 dev->n_sectors = 0;
1233 dev->cylinders = 0;
1234 dev->heads = 0;
1235 dev->sectors = 0;
1238 * common ATA, ATAPI feature tests
1241 /* find max transfer mode; for printk only */
1242 xfer_mask = ata_id_xfermask(id);
1244 ata_dump_id(id);
1246 /* ATA-specific feature tests */
1247 if (dev->class == ATA_DEV_ATA) {
1248 dev->n_sectors = ata_id_n_sectors(id);
1250 if (ata_id_has_lba(id)) {
1251 const char *lba_desc;
1253 lba_desc = "LBA";
1254 dev->flags |= ATA_DFLAG_LBA;
1255 if (ata_id_has_lba48(id)) {
1256 dev->flags |= ATA_DFLAG_LBA48;
1257 lba_desc = "LBA48";
1260 /* print device info to dmesg */
1261 if (print_info)
1262 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1263 "max %s, %Lu sectors: %s\n",
1264 ap->id, dev->devno,
1265 ata_id_major_version(id),
1266 ata_mode_string(xfer_mask),
1267 (unsigned long long)dev->n_sectors,
1268 lba_desc);
1269 } else {
1270 /* CHS */
1272 /* Default translation */
1273 dev->cylinders = id[1];
1274 dev->heads = id[3];
1275 dev->sectors = id[6];
1277 if (ata_id_current_chs_valid(id)) {
1278 /* Current CHS translation is valid. */
1279 dev->cylinders = id[54];
1280 dev->heads = id[55];
1281 dev->sectors = id[56];
1284 /* print device info to dmesg */
1285 if (print_info)
1286 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1287 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1288 ap->id, dev->devno,
1289 ata_id_major_version(id),
1290 ata_mode_string(xfer_mask),
1291 (unsigned long long)dev->n_sectors,
1292 dev->cylinders, dev->heads, dev->sectors);
1295 dev->cdb_len = 16;
1298 /* ATAPI-specific feature tests */
1299 else if (dev->class == ATA_DEV_ATAPI) {
1300 rc = atapi_cdb_len(id);
1301 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1302 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1303 rc = -EINVAL;
1304 goto err_out_nosup;
1306 dev->cdb_len = (unsigned int) rc;
1308 /* print device info to dmesg */
1309 if (print_info)
1310 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1311 ap->id, dev->devno, ata_mode_string(xfer_mask));
1314 ap->host->max_cmd_len = 0;
1315 for (i = 0; i < ATA_MAX_DEVICES; i++)
1316 ap->host->max_cmd_len = max_t(unsigned int,
1317 ap->host->max_cmd_len,
1318 ap->device[i].cdb_len);
1320 /* limit bridge transfers to udma5, 200 sectors */
1321 if (ata_dev_knobble(ap, dev)) {
1322 if (print_info)
1323 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1324 ap->id, dev->devno);
1325 dev->udma_mask &= ATA_UDMA5;
1326 dev->max_sectors = ATA_MAX_SECTORS;
1329 if (ap->ops->dev_config)
1330 ap->ops->dev_config(ap, dev);
1332 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1333 return 0;
1335 err_out_nosup:
1336 DPRINTK("EXIT, err\n");
1337 return rc;
1341 * ata_bus_probe - Reset and probe ATA bus
1342 * @ap: Bus to probe
1344 * Master ATA bus probing function. Initiates a hardware-dependent
1345 * bus reset, then attempts to identify any devices found on
1346 * the bus.
1348 * LOCKING:
1349 * PCI/etc. bus probe sem.
1351 * RETURNS:
1352 * Zero on success, non-zero on error.
1355 static int ata_bus_probe(struct ata_port *ap)
1357 unsigned int classes[ATA_MAX_DEVICES];
1358 unsigned int i, rc, found = 0;
1360 ata_port_probe(ap);
1362 /* reset and determine device classes */
1363 for (i = 0; i < ATA_MAX_DEVICES; i++)
1364 classes[i] = ATA_DEV_UNKNOWN;
1366 if (ap->ops->probe_reset) {
1367 rc = ap->ops->probe_reset(ap, classes);
1368 if (rc) {
1369 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1370 return rc;
1372 } else {
1373 ap->ops->phy_reset(ap);
1375 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1376 for (i = 0; i < ATA_MAX_DEVICES; i++)
1377 classes[i] = ap->device[i].class;
1379 ata_port_probe(ap);
1382 for (i = 0; i < ATA_MAX_DEVICES; i++)
1383 if (classes[i] == ATA_DEV_UNKNOWN)
1384 classes[i] = ATA_DEV_NONE;
1386 /* read IDENTIFY page and configure devices */
1387 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1388 struct ata_device *dev = &ap->device[i];
1390 dev->class = classes[i];
1392 if (!ata_dev_present(dev))
1393 continue;
1395 WARN_ON(dev->id != NULL);
1396 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1397 dev->class = ATA_DEV_NONE;
1398 continue;
1401 if (ata_dev_configure(ap, dev, 1)) {
1402 ata_dev_disable(ap, dev);
1403 continue;
1406 found = 1;
1409 if (!found)
1410 goto err_out_disable;
1412 if (ap->ops->set_mode)
1413 ap->ops->set_mode(ap);
1414 else
1415 ata_set_mode(ap);
1417 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1418 goto err_out_disable;
1420 return 0;
1422 err_out_disable:
1423 ap->ops->port_disable(ap);
1424 return -1;
1428 * ata_port_probe - Mark port as enabled
1429 * @ap: Port for which we indicate enablement
1431 * Modify @ap data structure such that the system
1432 * thinks that the entire port is enabled.
1434 * LOCKING: host_set lock, or some other form of
1435 * serialization.
1438 void ata_port_probe(struct ata_port *ap)
1440 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1444 * sata_print_link_status - Print SATA link status
1445 * @ap: SATA port to printk link status about
1447 * This function prints link speed and status of a SATA link.
1449 * LOCKING:
1450 * None.
1452 static void sata_print_link_status(struct ata_port *ap)
1454 u32 sstatus, tmp;
1455 const char *speed;
1457 if (!ap->ops->scr_read)
1458 return;
1460 sstatus = scr_read(ap, SCR_STATUS);
1462 if (sata_dev_present(ap)) {
1463 tmp = (sstatus >> 4) & 0xf;
1464 if (tmp & (1 << 0))
1465 speed = "1.5";
1466 else if (tmp & (1 << 1))
1467 speed = "3.0";
1468 else
1469 speed = "<unknown>";
1470 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1471 ap->id, speed, sstatus);
1472 } else {
1473 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1474 ap->id, sstatus);
1479 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1480 * @ap: SATA port associated with target SATA PHY.
1482 * This function issues commands to standard SATA Sxxx
1483 * PHY registers, to wake up the phy (and device), and
1484 * clear any reset condition.
1486 * LOCKING:
1487 * PCI/etc. bus probe sem.
1490 void __sata_phy_reset(struct ata_port *ap)
1492 u32 sstatus;
1493 unsigned long timeout = jiffies + (HZ * 5);
1495 if (ap->flags & ATA_FLAG_SATA_RESET) {
1496 /* issue phy wake/reset */
1497 scr_write_flush(ap, SCR_CONTROL, 0x301);
1498 /* Couldn't find anything in SATA I/II specs, but
1499 * AHCI-1.1 10.4.2 says at least 1 ms. */
1500 mdelay(1);
1502 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1504 /* wait for phy to become ready, if necessary */
1505 do {
1506 msleep(200);
1507 sstatus = scr_read(ap, SCR_STATUS);
1508 if ((sstatus & 0xf) != 1)
1509 break;
1510 } while (time_before(jiffies, timeout));
1512 /* print link status */
1513 sata_print_link_status(ap);
1515 /* TODO: phy layer with polling, timeouts, etc. */
1516 if (sata_dev_present(ap))
1517 ata_port_probe(ap);
1518 else
1519 ata_port_disable(ap);
1521 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1522 return;
1524 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1525 ata_port_disable(ap);
1526 return;
1529 ap->cbl = ATA_CBL_SATA;
1533 * sata_phy_reset - Reset SATA bus.
1534 * @ap: SATA port associated with target SATA PHY.
1536 * This function resets the SATA bus, and then probes
1537 * the bus for devices.
1539 * LOCKING:
1540 * PCI/etc. bus probe sem.
1543 void sata_phy_reset(struct ata_port *ap)
1545 __sata_phy_reset(ap);
1546 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1547 return;
1548 ata_bus_reset(ap);
1552 * ata_dev_pair - return other device on cable
1553 * @ap: port
1554 * @adev: device
1556 * Obtain the other device on the same cable, or if none is
1557 * present NULL is returned
1560 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1562 struct ata_device *pair = &ap->device[1 - adev->devno];
1563 if (!ata_dev_present(pair))
1564 return NULL;
1565 return pair;
1569 * ata_port_disable - Disable port.
1570 * @ap: Port to be disabled.
1572 * Modify @ap data structure such that the system
1573 * thinks that the entire port is disabled, and should
1574 * never attempt to probe or communicate with devices
1575 * on this port.
1577 * LOCKING: host_set lock, or some other form of
1578 * serialization.
1581 void ata_port_disable(struct ata_port *ap)
1583 ap->device[0].class = ATA_DEV_NONE;
1584 ap->device[1].class = ATA_DEV_NONE;
1585 ap->flags |= ATA_FLAG_PORT_DISABLED;
1589 * This mode timing computation functionality is ported over from
1590 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1593 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1594 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1595 * for PIO 5, which is a nonstandard extension and UDMA6, which
1596 * is currently supported only by Maxtor drives.
1599 static const struct ata_timing ata_timing[] = {
1601 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1602 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1603 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1604 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1606 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1607 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1608 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1610 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1612 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1613 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1614 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1616 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1617 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1618 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1620 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1621 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1622 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1624 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1625 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1626 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1628 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1630 { 0xFF }
1633 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1634 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1636 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1638 q->setup = EZ(t->setup * 1000, T);
1639 q->act8b = EZ(t->act8b * 1000, T);
1640 q->rec8b = EZ(t->rec8b * 1000, T);
1641 q->cyc8b = EZ(t->cyc8b * 1000, T);
1642 q->active = EZ(t->active * 1000, T);
1643 q->recover = EZ(t->recover * 1000, T);
1644 q->cycle = EZ(t->cycle * 1000, T);
1645 q->udma = EZ(t->udma * 1000, UT);
1648 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1649 struct ata_timing *m, unsigned int what)
1651 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1652 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1653 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1654 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1655 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1656 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1657 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1658 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1661 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1663 const struct ata_timing *t;
1665 for (t = ata_timing; t->mode != speed; t++)
1666 if (t->mode == 0xFF)
1667 return NULL;
1668 return t;
1671 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1672 struct ata_timing *t, int T, int UT)
1674 const struct ata_timing *s;
1675 struct ata_timing p;
1678 * Find the mode.
1681 if (!(s = ata_timing_find_mode(speed)))
1682 return -EINVAL;
1684 memcpy(t, s, sizeof(*s));
1687 * If the drive is an EIDE drive, it can tell us it needs extended
1688 * PIO/MW_DMA cycle timing.
1691 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1692 memset(&p, 0, sizeof(p));
1693 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1694 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1695 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1696 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1697 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1699 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1703 * Convert the timing to bus clock counts.
1706 ata_timing_quantize(t, t, T, UT);
1709 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1710 * S.M.A.R.T * and some other commands. We have to ensure that the
1711 * DMA cycle timing is slower/equal than the fastest PIO timing.
1714 if (speed > XFER_PIO_4) {
1715 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1716 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1720 * Lengthen active & recovery time so that cycle time is correct.
1723 if (t->act8b + t->rec8b < t->cyc8b) {
1724 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1725 t->rec8b = t->cyc8b - t->act8b;
1728 if (t->active + t->recover < t->cycle) {
1729 t->active += (t->cycle - (t->active + t->recover)) / 2;
1730 t->recover = t->cycle - t->active;
1733 return 0;
1736 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1738 unsigned int err_mask;
1739 int rc;
1741 if (dev->xfer_shift == ATA_SHIFT_PIO)
1742 dev->flags |= ATA_DFLAG_PIO;
1744 err_mask = ata_dev_set_xfermode(ap, dev);
1745 if (err_mask) {
1746 printk(KERN_ERR
1747 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1748 ap->id, err_mask);
1749 return -EIO;
1752 rc = ata_dev_revalidate(ap, dev, 0);
1753 if (rc) {
1754 printk(KERN_ERR
1755 "ata%u: failed to revalidate after set xfermode\n",
1756 ap->id);
1757 return rc;
1760 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1761 dev->xfer_shift, (int)dev->xfer_mode);
1763 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1764 ap->id, dev->devno,
1765 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1766 return 0;
1769 static int ata_host_set_pio(struct ata_port *ap)
1771 int i;
1773 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1774 struct ata_device *dev = &ap->device[i];
1776 if (!ata_dev_present(dev))
1777 continue;
1779 if (!dev->pio_mode) {
1780 printk(KERN_WARNING "ata%u: no PIO support for device %d.\n", ap->id, i);
1781 return -1;
1784 dev->xfer_mode = dev->pio_mode;
1785 dev->xfer_shift = ATA_SHIFT_PIO;
1786 if (ap->ops->set_piomode)
1787 ap->ops->set_piomode(ap, dev);
1790 return 0;
1793 static void ata_host_set_dma(struct ata_port *ap)
1795 int i;
1797 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1798 struct ata_device *dev = &ap->device[i];
1800 if (!ata_dev_present(dev) || !dev->dma_mode)
1801 continue;
1803 dev->xfer_mode = dev->dma_mode;
1804 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1805 if (ap->ops->set_dmamode)
1806 ap->ops->set_dmamode(ap, dev);
1811 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1812 * @ap: port on which timings will be programmed
1814 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1816 * LOCKING:
1817 * PCI/etc. bus probe sem.
1819 static void ata_set_mode(struct ata_port *ap)
1821 int i, rc;
1823 /* step 1: calculate xfer_mask */
1824 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1825 struct ata_device *dev = &ap->device[i];
1826 unsigned int pio_mask, dma_mask;
1828 if (!ata_dev_present(dev))
1829 continue;
1831 ata_dev_xfermask(ap, dev);
1833 /* TODO: let LLDD filter dev->*_mask here */
1835 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1836 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1837 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1838 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
1841 /* step 2: always set host PIO timings */
1842 rc = ata_host_set_pio(ap);
1843 if (rc)
1844 goto err_out;
1846 /* step 3: set host DMA timings */
1847 ata_host_set_dma(ap);
1849 /* step 4: update devices' xfer mode */
1850 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1851 struct ata_device *dev = &ap->device[i];
1853 if (!ata_dev_present(dev))
1854 continue;
1856 if (ata_dev_set_mode(ap, dev))
1857 goto err_out;
1860 if (ap->ops->post_set_mode)
1861 ap->ops->post_set_mode(ap);
1863 return;
1865 err_out:
1866 ata_port_disable(ap);
1870 * ata_tf_to_host - issue ATA taskfile to host controller
1871 * @ap: port to which command is being issued
1872 * @tf: ATA taskfile register set
1874 * Issues ATA taskfile register set to ATA host controller,
1875 * with proper synchronization with interrupt handler and
1876 * other threads.
1878 * LOCKING:
1879 * spin_lock_irqsave(host_set lock)
1882 static inline void ata_tf_to_host(struct ata_port *ap,
1883 const struct ata_taskfile *tf)
1885 ap->ops->tf_load(ap, tf);
1886 ap->ops->exec_command(ap, tf);
1890 * ata_busy_sleep - sleep until BSY clears, or timeout
1891 * @ap: port containing status register to be polled
1892 * @tmout_pat: impatience timeout
1893 * @tmout: overall timeout
1895 * Sleep until ATA Status register bit BSY clears,
1896 * or a timeout occurs.
1898 * LOCKING: None.
1901 unsigned int ata_busy_sleep (struct ata_port *ap,
1902 unsigned long tmout_pat, unsigned long tmout)
1904 unsigned long timer_start, timeout;
1905 u8 status;
1907 status = ata_busy_wait(ap, ATA_BUSY, 300);
1908 timer_start = jiffies;
1909 timeout = timer_start + tmout_pat;
1910 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1911 msleep(50);
1912 status = ata_busy_wait(ap, ATA_BUSY, 3);
1915 if (status & ATA_BUSY)
1916 printk(KERN_WARNING "ata%u is slow to respond, "
1917 "please be patient\n", ap->id);
1919 timeout = timer_start + tmout;
1920 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1921 msleep(50);
1922 status = ata_chk_status(ap);
1925 if (status & ATA_BUSY) {
1926 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1927 ap->id, tmout / HZ);
1928 return 1;
1931 return 0;
1934 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1936 struct ata_ioports *ioaddr = &ap->ioaddr;
1937 unsigned int dev0 = devmask & (1 << 0);
1938 unsigned int dev1 = devmask & (1 << 1);
1939 unsigned long timeout;
1941 /* if device 0 was found in ata_devchk, wait for its
1942 * BSY bit to clear
1944 if (dev0)
1945 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1947 /* if device 1 was found in ata_devchk, wait for
1948 * register access, then wait for BSY to clear
1950 timeout = jiffies + ATA_TMOUT_BOOT;
1951 while (dev1) {
1952 u8 nsect, lbal;
1954 ap->ops->dev_select(ap, 1);
1955 if (ap->flags & ATA_FLAG_MMIO) {
1956 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1957 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1958 } else {
1959 nsect = inb(ioaddr->nsect_addr);
1960 lbal = inb(ioaddr->lbal_addr);
1962 if ((nsect == 1) && (lbal == 1))
1963 break;
1964 if (time_after(jiffies, timeout)) {
1965 dev1 = 0;
1966 break;
1968 msleep(50); /* give drive a breather */
1970 if (dev1)
1971 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1973 /* is all this really necessary? */
1974 ap->ops->dev_select(ap, 0);
1975 if (dev1)
1976 ap->ops->dev_select(ap, 1);
1977 if (dev0)
1978 ap->ops->dev_select(ap, 0);
1981 static unsigned int ata_bus_softreset(struct ata_port *ap,
1982 unsigned int devmask)
1984 struct ata_ioports *ioaddr = &ap->ioaddr;
1986 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1988 /* software reset. causes dev0 to be selected */
1989 if (ap->flags & ATA_FLAG_MMIO) {
1990 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1991 udelay(20); /* FIXME: flush */
1992 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1993 udelay(20); /* FIXME: flush */
1994 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1995 } else {
1996 outb(ap->ctl, ioaddr->ctl_addr);
1997 udelay(10);
1998 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1999 udelay(10);
2000 outb(ap->ctl, ioaddr->ctl_addr);
2003 /* spec mandates ">= 2ms" before checking status.
2004 * We wait 150ms, because that was the magic delay used for
2005 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2006 * between when the ATA command register is written, and then
2007 * status is checked. Because waiting for "a while" before
2008 * checking status is fine, post SRST, we perform this magic
2009 * delay here as well.
2011 * Old drivers/ide uses the 2mS rule and then waits for ready
2013 msleep(150);
2015 /* Before we perform post reset processing we want to see if
2016 * the bus shows 0xFF because the odd clown forgets the D7
2017 * pulldown resistor.
2019 if (ata_check_status(ap) == 0xFF)
2020 return AC_ERR_OTHER;
2022 ata_bus_post_reset(ap, devmask);
2024 return 0;
2028 * ata_bus_reset - reset host port and associated ATA channel
2029 * @ap: port to reset
2031 * This is typically the first time we actually start issuing
2032 * commands to the ATA channel. We wait for BSY to clear, then
2033 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2034 * result. Determine what devices, if any, are on the channel
2035 * by looking at the device 0/1 error register. Look at the signature
2036 * stored in each device's taskfile registers, to determine if
2037 * the device is ATA or ATAPI.
2039 * LOCKING:
2040 * PCI/etc. bus probe sem.
2041 * Obtains host_set lock.
2043 * SIDE EFFECTS:
2044 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2047 void ata_bus_reset(struct ata_port *ap)
2049 struct ata_ioports *ioaddr = &ap->ioaddr;
2050 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2051 u8 err;
2052 unsigned int dev0, dev1 = 0, devmask = 0;
2054 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2056 /* determine if device 0/1 are present */
2057 if (ap->flags & ATA_FLAG_SATA_RESET)
2058 dev0 = 1;
2059 else {
2060 dev0 = ata_devchk(ap, 0);
2061 if (slave_possible)
2062 dev1 = ata_devchk(ap, 1);
2065 if (dev0)
2066 devmask |= (1 << 0);
2067 if (dev1)
2068 devmask |= (1 << 1);
2070 /* select device 0 again */
2071 ap->ops->dev_select(ap, 0);
2073 /* issue bus reset */
2074 if (ap->flags & ATA_FLAG_SRST)
2075 if (ata_bus_softreset(ap, devmask))
2076 goto err_out;
2079 * determine by signature whether we have ATA or ATAPI devices
2081 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2082 if ((slave_possible) && (err != 0x81))
2083 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2085 /* re-enable interrupts */
2086 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2087 ata_irq_on(ap);
2089 /* is double-select really necessary? */
2090 if (ap->device[1].class != ATA_DEV_NONE)
2091 ap->ops->dev_select(ap, 1);
2092 if (ap->device[0].class != ATA_DEV_NONE)
2093 ap->ops->dev_select(ap, 0);
2095 /* if no devices were detected, disable this port */
2096 if ((ap->device[0].class == ATA_DEV_NONE) &&
2097 (ap->device[1].class == ATA_DEV_NONE))
2098 goto err_out;
2100 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2101 /* set up device control for ATA_FLAG_SATA_RESET */
2102 if (ap->flags & ATA_FLAG_MMIO)
2103 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2104 else
2105 outb(ap->ctl, ioaddr->ctl_addr);
2108 DPRINTK("EXIT\n");
2109 return;
2111 err_out:
2112 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2113 ap->ops->port_disable(ap);
2115 DPRINTK("EXIT\n");
2118 static int sata_phy_resume(struct ata_port *ap)
2120 unsigned long timeout = jiffies + (HZ * 5);
2121 u32 sstatus;
2123 scr_write_flush(ap, SCR_CONTROL, 0x300);
2125 /* Wait for phy to become ready, if necessary. */
2126 do {
2127 msleep(200);
2128 sstatus = scr_read(ap, SCR_STATUS);
2129 if ((sstatus & 0xf) != 1)
2130 return 0;
2131 } while (time_before(jiffies, timeout));
2133 return -1;
2137 * ata_std_probeinit - initialize probing
2138 * @ap: port to be probed
2140 * @ap is about to be probed. Initialize it. This function is
2141 * to be used as standard callback for ata_drive_probe_reset().
2143 * NOTE!!! Do not use this function as probeinit if a low level
2144 * driver implements only hardreset. Just pass NULL as probeinit
2145 * in that case. Using this function is probably okay but doing
2146 * so makes reset sequence different from the original
2147 * ->phy_reset implementation and Jeff nervous. :-P
2149 extern void ata_std_probeinit(struct ata_port *ap)
2151 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
2152 sata_phy_resume(ap);
2153 if (sata_dev_present(ap))
2154 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2159 * ata_std_softreset - reset host port via ATA SRST
2160 * @ap: port to reset
2161 * @verbose: fail verbosely
2162 * @classes: resulting classes of attached devices
2164 * Reset host port using ATA SRST. This function is to be used
2165 * as standard callback for ata_drive_*_reset() functions.
2167 * LOCKING:
2168 * Kernel thread context (may sleep)
2170 * RETURNS:
2171 * 0 on success, -errno otherwise.
2173 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2175 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2176 unsigned int devmask = 0, err_mask;
2177 u8 err;
2179 DPRINTK("ENTER\n");
2181 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2182 classes[0] = ATA_DEV_NONE;
2183 goto out;
2186 /* determine if device 0/1 are present */
2187 if (ata_devchk(ap, 0))
2188 devmask |= (1 << 0);
2189 if (slave_possible && ata_devchk(ap, 1))
2190 devmask |= (1 << 1);
2192 /* select device 0 again */
2193 ap->ops->dev_select(ap, 0);
2195 /* issue bus reset */
2196 DPRINTK("about to softreset, devmask=%x\n", devmask);
2197 err_mask = ata_bus_softreset(ap, devmask);
2198 if (err_mask) {
2199 if (verbose)
2200 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2201 ap->id, err_mask);
2202 else
2203 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2204 err_mask);
2205 return -EIO;
2208 /* determine by signature whether we have ATA or ATAPI devices */
2209 classes[0] = ata_dev_try_classify(ap, 0, &err);
2210 if (slave_possible && err != 0x81)
2211 classes[1] = ata_dev_try_classify(ap, 1, &err);
2213 out:
2214 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2215 return 0;
2219 * sata_std_hardreset - reset host port via SATA phy reset
2220 * @ap: port to reset
2221 * @verbose: fail verbosely
2222 * @class: resulting class of attached device
2224 * SATA phy-reset host port using DET bits of SControl register.
2225 * This function is to be used as standard callback for
2226 * ata_drive_*_reset().
2228 * LOCKING:
2229 * Kernel thread context (may sleep)
2231 * RETURNS:
2232 * 0 on success, -errno otherwise.
2234 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2236 DPRINTK("ENTER\n");
2238 /* Issue phy wake/reset */
2239 scr_write_flush(ap, SCR_CONTROL, 0x301);
2242 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2243 * 10.4.2 says at least 1 ms.
2245 msleep(1);
2247 /* Bring phy back */
2248 sata_phy_resume(ap);
2250 /* TODO: phy layer with polling, timeouts, etc. */
2251 if (!sata_dev_present(ap)) {
2252 *class = ATA_DEV_NONE;
2253 DPRINTK("EXIT, link offline\n");
2254 return 0;
2257 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2258 if (verbose)
2259 printk(KERN_ERR "ata%u: COMRESET failed "
2260 "(device not ready)\n", ap->id);
2261 else
2262 DPRINTK("EXIT, device not ready\n");
2263 return -EIO;
2266 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2268 *class = ata_dev_try_classify(ap, 0, NULL);
2270 DPRINTK("EXIT, class=%u\n", *class);
2271 return 0;
2275 * ata_std_postreset - standard postreset callback
2276 * @ap: the target ata_port
2277 * @classes: classes of attached devices
2279 * This function is invoked after a successful reset. Note that
2280 * the device might have been reset more than once using
2281 * different reset methods before postreset is invoked.
2283 * This function is to be used as standard callback for
2284 * ata_drive_*_reset().
2286 * LOCKING:
2287 * Kernel thread context (may sleep)
2289 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2291 DPRINTK("ENTER\n");
2293 /* set cable type if it isn't already set */
2294 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2295 ap->cbl = ATA_CBL_SATA;
2297 /* print link status */
2298 if (ap->cbl == ATA_CBL_SATA)
2299 sata_print_link_status(ap);
2301 /* re-enable interrupts */
2302 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2303 ata_irq_on(ap);
2305 /* is double-select really necessary? */
2306 if (classes[0] != ATA_DEV_NONE)
2307 ap->ops->dev_select(ap, 1);
2308 if (classes[1] != ATA_DEV_NONE)
2309 ap->ops->dev_select(ap, 0);
2311 /* bail out if no device is present */
2312 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2313 DPRINTK("EXIT, no device\n");
2314 return;
2317 /* set up device control */
2318 if (ap->ioaddr.ctl_addr) {
2319 if (ap->flags & ATA_FLAG_MMIO)
2320 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2321 else
2322 outb(ap->ctl, ap->ioaddr.ctl_addr);
2325 DPRINTK("EXIT\n");
2329 * ata_std_probe_reset - standard probe reset method
2330 * @ap: prot to perform probe-reset
2331 * @classes: resulting classes of attached devices
2333 * The stock off-the-shelf ->probe_reset method.
2335 * LOCKING:
2336 * Kernel thread context (may sleep)
2338 * RETURNS:
2339 * 0 on success, -errno otherwise.
2341 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2343 ata_reset_fn_t hardreset;
2345 hardreset = NULL;
2346 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2347 hardreset = sata_std_hardreset;
2349 return ata_drive_probe_reset(ap, ata_std_probeinit,
2350 ata_std_softreset, hardreset,
2351 ata_std_postreset, classes);
2354 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2355 ata_postreset_fn_t postreset,
2356 unsigned int *classes)
2358 int i, rc;
2360 for (i = 0; i < ATA_MAX_DEVICES; i++)
2361 classes[i] = ATA_DEV_UNKNOWN;
2363 rc = reset(ap, 0, classes);
2364 if (rc)
2365 return rc;
2367 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2368 * is complete and convert all ATA_DEV_UNKNOWN to
2369 * ATA_DEV_NONE.
2371 for (i = 0; i < ATA_MAX_DEVICES; i++)
2372 if (classes[i] != ATA_DEV_UNKNOWN)
2373 break;
2375 if (i < ATA_MAX_DEVICES)
2376 for (i = 0; i < ATA_MAX_DEVICES; i++)
2377 if (classes[i] == ATA_DEV_UNKNOWN)
2378 classes[i] = ATA_DEV_NONE;
2380 if (postreset)
2381 postreset(ap, classes);
2383 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2387 * ata_drive_probe_reset - Perform probe reset with given methods
2388 * @ap: port to reset
2389 * @probeinit: probeinit method (can be NULL)
2390 * @softreset: softreset method (can be NULL)
2391 * @hardreset: hardreset method (can be NULL)
2392 * @postreset: postreset method (can be NULL)
2393 * @classes: resulting classes of attached devices
2395 * Reset the specified port and classify attached devices using
2396 * given methods. This function prefers softreset but tries all
2397 * possible reset sequences to reset and classify devices. This
2398 * function is intended to be used for constructing ->probe_reset
2399 * callback by low level drivers.
2401 * Reset methods should follow the following rules.
2403 * - Return 0 on sucess, -errno on failure.
2404 * - If classification is supported, fill classes[] with
2405 * recognized class codes.
2406 * - If classification is not supported, leave classes[] alone.
2407 * - If verbose is non-zero, print error message on failure;
2408 * otherwise, shut up.
2410 * LOCKING:
2411 * Kernel thread context (may sleep)
2413 * RETURNS:
2414 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2415 * if classification fails, and any error code from reset
2416 * methods.
2418 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2419 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2420 ata_postreset_fn_t postreset, unsigned int *classes)
2422 int rc = -EINVAL;
2424 if (probeinit)
2425 probeinit(ap);
2427 if (softreset) {
2428 rc = do_probe_reset(ap, softreset, postreset, classes);
2429 if (rc == 0)
2430 return 0;
2433 if (!hardreset)
2434 return rc;
2436 rc = do_probe_reset(ap, hardreset, postreset, classes);
2437 if (rc == 0 || rc != -ENODEV)
2438 return rc;
2440 if (softreset)
2441 rc = do_probe_reset(ap, softreset, postreset, classes);
2443 return rc;
2447 * ata_dev_same_device - Determine whether new ID matches configured device
2448 * @ap: port on which the device to compare against resides
2449 * @dev: device to compare against
2450 * @new_class: class of the new device
2451 * @new_id: IDENTIFY page of the new device
2453 * Compare @new_class and @new_id against @dev and determine
2454 * whether @dev is the device indicated by @new_class and
2455 * @new_id.
2457 * LOCKING:
2458 * None.
2460 * RETURNS:
2461 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2463 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2464 unsigned int new_class, const u16 *new_id)
2466 const u16 *old_id = dev->id;
2467 unsigned char model[2][41], serial[2][21];
2468 u64 new_n_sectors;
2470 if (dev->class != new_class) {
2471 printk(KERN_INFO
2472 "ata%u: dev %u class mismatch %d != %d\n",
2473 ap->id, dev->devno, dev->class, new_class);
2474 return 0;
2477 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2478 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2479 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2480 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2481 new_n_sectors = ata_id_n_sectors(new_id);
2483 if (strcmp(model[0], model[1])) {
2484 printk(KERN_INFO
2485 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2486 ap->id, dev->devno, model[0], model[1]);
2487 return 0;
2490 if (strcmp(serial[0], serial[1])) {
2491 printk(KERN_INFO
2492 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2493 ap->id, dev->devno, serial[0], serial[1]);
2494 return 0;
2497 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2498 printk(KERN_INFO
2499 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2500 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2501 (unsigned long long)new_n_sectors);
2502 return 0;
2505 return 1;
2509 * ata_dev_revalidate - Revalidate ATA device
2510 * @ap: port on which the device to revalidate resides
2511 * @dev: device to revalidate
2512 * @post_reset: is this revalidation after reset?
2514 * Re-read IDENTIFY page and make sure @dev is still attached to
2515 * the port.
2517 * LOCKING:
2518 * Kernel thread context (may sleep)
2520 * RETURNS:
2521 * 0 on success, negative errno otherwise
2523 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2524 int post_reset)
2526 unsigned int class;
2527 u16 *id;
2528 int rc;
2530 if (!ata_dev_present(dev))
2531 return -ENODEV;
2533 class = dev->class;
2534 id = NULL;
2536 /* allocate & read ID data */
2537 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2538 if (rc)
2539 goto fail;
2541 /* is the device still there? */
2542 if (!ata_dev_same_device(ap, dev, class, id)) {
2543 rc = -ENODEV;
2544 goto fail;
2547 kfree(dev->id);
2548 dev->id = id;
2550 /* configure device according to the new ID */
2551 return ata_dev_configure(ap, dev, 0);
2553 fail:
2554 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2555 ap->id, dev->devno, rc);
2556 kfree(id);
2557 return rc;
2560 static const char * const ata_dma_blacklist [] = {
2561 "WDC AC11000H", NULL,
2562 "WDC AC22100H", NULL,
2563 "WDC AC32500H", NULL,
2564 "WDC AC33100H", NULL,
2565 "WDC AC31600H", NULL,
2566 "WDC AC32100H", "24.09P07",
2567 "WDC AC23200L", "21.10N21",
2568 "Compaq CRD-8241B", NULL,
2569 "CRD-8400B", NULL,
2570 "CRD-8480B", NULL,
2571 "CRD-8482B", NULL,
2572 "CRD-84", NULL,
2573 "SanDisk SDP3B", NULL,
2574 "SanDisk SDP3B-64", NULL,
2575 "SANYO CD-ROM CRD", NULL,
2576 "HITACHI CDR-8", NULL,
2577 "HITACHI CDR-8335", NULL,
2578 "HITACHI CDR-8435", NULL,
2579 "Toshiba CD-ROM XM-6202B", NULL,
2580 "TOSHIBA CD-ROM XM-1702BC", NULL,
2581 "CD-532E-A", NULL,
2582 "E-IDE CD-ROM CR-840", NULL,
2583 "CD-ROM Drive/F5A", NULL,
2584 "WPI CDD-820", NULL,
2585 "SAMSUNG CD-ROM SC-148C", NULL,
2586 "SAMSUNG CD-ROM SC", NULL,
2587 "SanDisk SDP3B-64", NULL,
2588 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2589 "_NEC DV5800A", NULL,
2590 "SAMSUNG CD-ROM SN-124", "N001"
2593 static int ata_strim(char *s, size_t len)
2595 len = strnlen(s, len);
2597 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2598 while ((len > 0) && (s[len - 1] == ' ')) {
2599 len--;
2600 s[len] = 0;
2602 return len;
2605 static int ata_dma_blacklisted(const struct ata_device *dev)
2607 unsigned char model_num[40];
2608 unsigned char model_rev[16];
2609 unsigned int nlen, rlen;
2610 int i;
2612 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2613 sizeof(model_num));
2614 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2615 sizeof(model_rev));
2616 nlen = ata_strim(model_num, sizeof(model_num));
2617 rlen = ata_strim(model_rev, sizeof(model_rev));
2619 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2620 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2621 if (ata_dma_blacklist[i+1] == NULL)
2622 return 1;
2623 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2624 return 1;
2627 return 0;
2631 * ata_dev_xfermask - Compute supported xfermask of the given device
2632 * @ap: Port on which the device to compute xfermask for resides
2633 * @dev: Device to compute xfermask for
2635 * Compute supported xfermask of @dev and store it in
2636 * dev->*_mask. This function is responsible for applying all
2637 * known limits including host controller limits, device
2638 * blacklist, etc...
2640 * FIXME: The current implementation limits all transfer modes to
2641 * the fastest of the lowested device on the port. This is not
2642 * required on most controllers.
2644 * LOCKING:
2645 * None.
2647 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2649 unsigned long xfer_mask;
2650 int i;
2652 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2653 ap->udma_mask);
2655 /* use port-wide xfermask for now */
2656 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2657 struct ata_device *d = &ap->device[i];
2658 if (!ata_dev_present(d))
2659 continue;
2660 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2661 d->udma_mask);
2662 xfer_mask &= ata_id_xfermask(d->id);
2663 if (ata_dma_blacklisted(d))
2664 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2667 if (ata_dma_blacklisted(dev))
2668 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2669 "disabling DMA\n", ap->id, dev->devno);
2671 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2672 &dev->udma_mask);
2676 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2677 * @ap: Port associated with device @dev
2678 * @dev: Device to which command will be sent
2680 * Issue SET FEATURES - XFER MODE command to device @dev
2681 * on port @ap.
2683 * LOCKING:
2684 * PCI/etc. bus probe sem.
2686 * RETURNS:
2687 * 0 on success, AC_ERR_* mask otherwise.
2690 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2691 struct ata_device *dev)
2693 struct ata_taskfile tf;
2694 unsigned int err_mask;
2696 /* set up set-features taskfile */
2697 DPRINTK("set features - xfer mode\n");
2699 ata_tf_init(ap, &tf, dev->devno);
2700 tf.command = ATA_CMD_SET_FEATURES;
2701 tf.feature = SETFEATURES_XFER;
2702 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2703 tf.protocol = ATA_PROT_NODATA;
2704 tf.nsect = dev->xfer_mode;
2706 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2708 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2709 return err_mask;
2713 * ata_dev_init_params - Issue INIT DEV PARAMS command
2714 * @ap: Port associated with device @dev
2715 * @dev: Device to which command will be sent
2717 * LOCKING:
2718 * Kernel thread context (may sleep)
2720 * RETURNS:
2721 * 0 on success, AC_ERR_* mask otherwise.
2724 static unsigned int ata_dev_init_params(struct ata_port *ap,
2725 struct ata_device *dev)
2727 struct ata_taskfile tf;
2728 unsigned int err_mask;
2729 u16 sectors = dev->id[6];
2730 u16 heads = dev->id[3];
2732 /* Number of sectors per track 1-255. Number of heads 1-16 */
2733 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2734 return 0;
2736 /* set up init dev params taskfile */
2737 DPRINTK("init dev params \n");
2739 ata_tf_init(ap, &tf, dev->devno);
2740 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2741 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2742 tf.protocol = ATA_PROT_NODATA;
2743 tf.nsect = sectors;
2744 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2746 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2748 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2749 return err_mask;
2753 * ata_sg_clean - Unmap DMA memory associated with command
2754 * @qc: Command containing DMA memory to be released
2756 * Unmap all mapped DMA memory associated with this command.
2758 * LOCKING:
2759 * spin_lock_irqsave(host_set lock)
2762 static void ata_sg_clean(struct ata_queued_cmd *qc)
2764 struct ata_port *ap = qc->ap;
2765 struct scatterlist *sg = qc->__sg;
2766 int dir = qc->dma_dir;
2767 void *pad_buf = NULL;
2769 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2770 WARN_ON(sg == NULL);
2772 if (qc->flags & ATA_QCFLAG_SINGLE)
2773 WARN_ON(qc->n_elem > 1);
2775 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2777 /* if we padded the buffer out to 32-bit bound, and data
2778 * xfer direction is from-device, we must copy from the
2779 * pad buffer back into the supplied buffer
2781 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2782 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2784 if (qc->flags & ATA_QCFLAG_SG) {
2785 if (qc->n_elem)
2786 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
2787 /* restore last sg */
2788 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2789 if (pad_buf) {
2790 struct scatterlist *psg = &qc->pad_sgent;
2791 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2792 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2793 kunmap_atomic(addr, KM_IRQ0);
2795 } else {
2796 if (qc->n_elem)
2797 dma_unmap_single(ap->dev,
2798 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2799 dir);
2800 /* restore sg */
2801 sg->length += qc->pad_len;
2802 if (pad_buf)
2803 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2804 pad_buf, qc->pad_len);
2807 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2808 qc->__sg = NULL;
2812 * ata_fill_sg - Fill PCI IDE PRD table
2813 * @qc: Metadata associated with taskfile to be transferred
2815 * Fill PCI IDE PRD (scatter-gather) table with segments
2816 * associated with the current disk command.
2818 * LOCKING:
2819 * spin_lock_irqsave(host_set lock)
2822 static void ata_fill_sg(struct ata_queued_cmd *qc)
2824 struct ata_port *ap = qc->ap;
2825 struct scatterlist *sg;
2826 unsigned int idx;
2828 WARN_ON(qc->__sg == NULL);
2829 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
2831 idx = 0;
2832 ata_for_each_sg(sg, qc) {
2833 u32 addr, offset;
2834 u32 sg_len, len;
2836 /* determine if physical DMA addr spans 64K boundary.
2837 * Note h/w doesn't support 64-bit, so we unconditionally
2838 * truncate dma_addr_t to u32.
2840 addr = (u32) sg_dma_address(sg);
2841 sg_len = sg_dma_len(sg);
2843 while (sg_len) {
2844 offset = addr & 0xffff;
2845 len = sg_len;
2846 if ((offset + sg_len) > 0x10000)
2847 len = 0x10000 - offset;
2849 ap->prd[idx].addr = cpu_to_le32(addr);
2850 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2851 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2853 idx++;
2854 sg_len -= len;
2855 addr += len;
2859 if (idx)
2860 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2863 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2864 * @qc: Metadata associated with taskfile to check
2866 * Allow low-level driver to filter ATA PACKET commands, returning
2867 * a status indicating whether or not it is OK to use DMA for the
2868 * supplied PACKET command.
2870 * LOCKING:
2871 * spin_lock_irqsave(host_set lock)
2873 * RETURNS: 0 when ATAPI DMA can be used
2874 * nonzero otherwise
2876 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2878 struct ata_port *ap = qc->ap;
2879 int rc = 0; /* Assume ATAPI DMA is OK by default */
2881 if (ap->ops->check_atapi_dma)
2882 rc = ap->ops->check_atapi_dma(qc);
2884 return rc;
2887 * ata_qc_prep - Prepare taskfile for submission
2888 * @qc: Metadata associated with taskfile to be prepared
2890 * Prepare ATA taskfile for submission.
2892 * LOCKING:
2893 * spin_lock_irqsave(host_set lock)
2895 void ata_qc_prep(struct ata_queued_cmd *qc)
2897 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2898 return;
2900 ata_fill_sg(qc);
2903 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2906 * ata_sg_init_one - Associate command with memory buffer
2907 * @qc: Command to be associated
2908 * @buf: Memory buffer
2909 * @buflen: Length of memory buffer, in bytes.
2911 * Initialize the data-related elements of queued_cmd @qc
2912 * to point to a single memory buffer, @buf of byte length @buflen.
2914 * LOCKING:
2915 * spin_lock_irqsave(host_set lock)
2918 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2920 struct scatterlist *sg;
2922 qc->flags |= ATA_QCFLAG_SINGLE;
2924 memset(&qc->sgent, 0, sizeof(qc->sgent));
2925 qc->__sg = &qc->sgent;
2926 qc->n_elem = 1;
2927 qc->orig_n_elem = 1;
2928 qc->buf_virt = buf;
2930 sg = qc->__sg;
2931 sg_init_one(sg, buf, buflen);
2935 * ata_sg_init - Associate command with scatter-gather table.
2936 * @qc: Command to be associated
2937 * @sg: Scatter-gather table.
2938 * @n_elem: Number of elements in s/g table.
2940 * Initialize the data-related elements of queued_cmd @qc
2941 * to point to a scatter-gather table @sg, containing @n_elem
2942 * elements.
2944 * LOCKING:
2945 * spin_lock_irqsave(host_set lock)
2948 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2949 unsigned int n_elem)
2951 qc->flags |= ATA_QCFLAG_SG;
2952 qc->__sg = sg;
2953 qc->n_elem = n_elem;
2954 qc->orig_n_elem = n_elem;
2958 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2959 * @qc: Command with memory buffer to be mapped.
2961 * DMA-map the memory buffer associated with queued_cmd @qc.
2963 * LOCKING:
2964 * spin_lock_irqsave(host_set lock)
2966 * RETURNS:
2967 * Zero on success, negative on error.
2970 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2972 struct ata_port *ap = qc->ap;
2973 int dir = qc->dma_dir;
2974 struct scatterlist *sg = qc->__sg;
2975 dma_addr_t dma_address;
2976 int trim_sg = 0;
2978 /* we must lengthen transfers to end on a 32-bit boundary */
2979 qc->pad_len = sg->length & 3;
2980 if (qc->pad_len) {
2981 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2982 struct scatterlist *psg = &qc->pad_sgent;
2984 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2986 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2988 if (qc->tf.flags & ATA_TFLAG_WRITE)
2989 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2990 qc->pad_len);
2992 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2993 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2994 /* trim sg */
2995 sg->length -= qc->pad_len;
2996 if (sg->length == 0)
2997 trim_sg = 1;
2999 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3000 sg->length, qc->pad_len);
3003 if (trim_sg) {
3004 qc->n_elem--;
3005 goto skip_map;
3008 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3009 sg->length, dir);
3010 if (dma_mapping_error(dma_address)) {
3011 /* restore sg */
3012 sg->length += qc->pad_len;
3013 return -1;
3016 sg_dma_address(sg) = dma_address;
3017 sg_dma_len(sg) = sg->length;
3019 skip_map:
3020 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3021 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3023 return 0;
3027 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3028 * @qc: Command with scatter-gather table to be mapped.
3030 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3032 * LOCKING:
3033 * spin_lock_irqsave(host_set lock)
3035 * RETURNS:
3036 * Zero on success, negative on error.
3040 static int ata_sg_setup(struct ata_queued_cmd *qc)
3042 struct ata_port *ap = qc->ap;
3043 struct scatterlist *sg = qc->__sg;
3044 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3045 int n_elem, pre_n_elem, dir, trim_sg = 0;
3047 VPRINTK("ENTER, ata%u\n", ap->id);
3048 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3050 /* we must lengthen transfers to end on a 32-bit boundary */
3051 qc->pad_len = lsg->length & 3;
3052 if (qc->pad_len) {
3053 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3054 struct scatterlist *psg = &qc->pad_sgent;
3055 unsigned int offset;
3057 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3059 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3062 * psg->page/offset are used to copy to-be-written
3063 * data in this function or read data in ata_sg_clean.
3065 offset = lsg->offset + lsg->length - qc->pad_len;
3066 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3067 psg->offset = offset_in_page(offset);
3069 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3070 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3071 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3072 kunmap_atomic(addr, KM_IRQ0);
3075 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3076 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3077 /* trim last sg */
3078 lsg->length -= qc->pad_len;
3079 if (lsg->length == 0)
3080 trim_sg = 1;
3082 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3083 qc->n_elem - 1, lsg->length, qc->pad_len);
3086 pre_n_elem = qc->n_elem;
3087 if (trim_sg && pre_n_elem)
3088 pre_n_elem--;
3090 if (!pre_n_elem) {
3091 n_elem = 0;
3092 goto skip_map;
3095 dir = qc->dma_dir;
3096 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3097 if (n_elem < 1) {
3098 /* restore last sg */
3099 lsg->length += qc->pad_len;
3100 return -1;
3103 DPRINTK("%d sg elements mapped\n", n_elem);
3105 skip_map:
3106 qc->n_elem = n_elem;
3108 return 0;
3112 * ata_poll_qc_complete - turn irq back on and finish qc
3113 * @qc: Command to complete
3114 * @err_mask: ATA status register content
3116 * LOCKING:
3117 * None. (grabs host lock)
3120 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3122 struct ata_port *ap = qc->ap;
3123 unsigned long flags;
3125 spin_lock_irqsave(&ap->host_set->lock, flags);
3126 ap->flags &= ~ATA_FLAG_NOINTR;
3127 ata_irq_on(ap);
3128 ata_qc_complete(qc);
3129 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3133 * ata_pio_poll - poll using PIO, depending on current state
3134 * @ap: the target ata_port
3136 * LOCKING:
3137 * None. (executing in kernel thread context)
3139 * RETURNS:
3140 * timeout value to use
3143 static unsigned long ata_pio_poll(struct ata_port *ap)
3145 struct ata_queued_cmd *qc;
3146 u8 status;
3147 unsigned int poll_state = HSM_ST_UNKNOWN;
3148 unsigned int reg_state = HSM_ST_UNKNOWN;
3150 qc = ata_qc_from_tag(ap, ap->active_tag);
3151 WARN_ON(qc == NULL);
3153 switch (ap->hsm_task_state) {
3154 case HSM_ST:
3155 case HSM_ST_POLL:
3156 poll_state = HSM_ST_POLL;
3157 reg_state = HSM_ST;
3158 break;
3159 case HSM_ST_LAST:
3160 case HSM_ST_LAST_POLL:
3161 poll_state = HSM_ST_LAST_POLL;
3162 reg_state = HSM_ST_LAST;
3163 break;
3164 default:
3165 BUG();
3166 break;
3169 status = ata_chk_status(ap);
3170 if (status & ATA_BUSY) {
3171 if (time_after(jiffies, ap->pio_task_timeout)) {
3172 qc->err_mask |= AC_ERR_TIMEOUT;
3173 ap->hsm_task_state = HSM_ST_TMOUT;
3174 return 0;
3176 ap->hsm_task_state = poll_state;
3177 return ATA_SHORT_PAUSE;
3180 ap->hsm_task_state = reg_state;
3181 return 0;
3185 * ata_pio_complete - check if drive is busy or idle
3186 * @ap: the target ata_port
3188 * LOCKING:
3189 * None. (executing in kernel thread context)
3191 * RETURNS:
3192 * Non-zero if qc completed, zero otherwise.
3195 static int ata_pio_complete (struct ata_port *ap)
3197 struct ata_queued_cmd *qc;
3198 u8 drv_stat;
3201 * This is purely heuristic. This is a fast path. Sometimes when
3202 * we enter, BSY will be cleared in a chk-status or two. If not,
3203 * the drive is probably seeking or something. Snooze for a couple
3204 * msecs, then chk-status again. If still busy, fall back to
3205 * HSM_ST_POLL state.
3207 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3208 if (drv_stat & ATA_BUSY) {
3209 msleep(2);
3210 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3211 if (drv_stat & ATA_BUSY) {
3212 ap->hsm_task_state = HSM_ST_LAST_POLL;
3213 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3214 return 0;
3218 qc = ata_qc_from_tag(ap, ap->active_tag);
3219 WARN_ON(qc == NULL);
3221 drv_stat = ata_wait_idle(ap);
3222 if (!ata_ok(drv_stat)) {
3223 qc->err_mask |= __ac_err_mask(drv_stat);
3224 ap->hsm_task_state = HSM_ST_ERR;
3225 return 0;
3228 ap->hsm_task_state = HSM_ST_IDLE;
3230 WARN_ON(qc->err_mask);
3231 ata_poll_qc_complete(qc);
3233 /* another command may start at this point */
3235 return 1;
3240 * swap_buf_le16 - swap halves of 16-bit words in place
3241 * @buf: Buffer to swap
3242 * @buf_words: Number of 16-bit words in buffer.
3244 * Swap halves of 16-bit words if needed to convert from
3245 * little-endian byte order to native cpu byte order, or
3246 * vice-versa.
3248 * LOCKING:
3249 * Inherited from caller.
3251 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3253 #ifdef __BIG_ENDIAN
3254 unsigned int i;
3256 for (i = 0; i < buf_words; i++)
3257 buf[i] = le16_to_cpu(buf[i]);
3258 #endif /* __BIG_ENDIAN */
3262 * ata_mmio_data_xfer - Transfer data by MMIO
3263 * @ap: port to read/write
3264 * @buf: data buffer
3265 * @buflen: buffer length
3266 * @write_data: read/write
3268 * Transfer data from/to the device data register by MMIO.
3270 * LOCKING:
3271 * Inherited from caller.
3274 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3275 unsigned int buflen, int write_data)
3277 unsigned int i;
3278 unsigned int words = buflen >> 1;
3279 u16 *buf16 = (u16 *) buf;
3280 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3282 /* Transfer multiple of 2 bytes */
3283 if (write_data) {
3284 for (i = 0; i < words; i++)
3285 writew(le16_to_cpu(buf16[i]), mmio);
3286 } else {
3287 for (i = 0; i < words; i++)
3288 buf16[i] = cpu_to_le16(readw(mmio));
3291 /* Transfer trailing 1 byte, if any. */
3292 if (unlikely(buflen & 0x01)) {
3293 u16 align_buf[1] = { 0 };
3294 unsigned char *trailing_buf = buf + buflen - 1;
3296 if (write_data) {
3297 memcpy(align_buf, trailing_buf, 1);
3298 writew(le16_to_cpu(align_buf[0]), mmio);
3299 } else {
3300 align_buf[0] = cpu_to_le16(readw(mmio));
3301 memcpy(trailing_buf, align_buf, 1);
3307 * ata_pio_data_xfer - Transfer data by PIO
3308 * @ap: port to read/write
3309 * @buf: data buffer
3310 * @buflen: buffer length
3311 * @write_data: read/write
3313 * Transfer data from/to the device data register by PIO.
3315 * LOCKING:
3316 * Inherited from caller.
3319 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3320 unsigned int buflen, int write_data)
3322 unsigned int words = buflen >> 1;
3324 /* Transfer multiple of 2 bytes */
3325 if (write_data)
3326 outsw(ap->ioaddr.data_addr, buf, words);
3327 else
3328 insw(ap->ioaddr.data_addr, buf, words);
3330 /* Transfer trailing 1 byte, if any. */
3331 if (unlikely(buflen & 0x01)) {
3332 u16 align_buf[1] = { 0 };
3333 unsigned char *trailing_buf = buf + buflen - 1;
3335 if (write_data) {
3336 memcpy(align_buf, trailing_buf, 1);
3337 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3338 } else {
3339 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3340 memcpy(trailing_buf, align_buf, 1);
3346 * ata_data_xfer - Transfer data from/to the data register.
3347 * @ap: port to read/write
3348 * @buf: data buffer
3349 * @buflen: buffer length
3350 * @do_write: read/write
3352 * Transfer data from/to the device data register.
3354 * LOCKING:
3355 * Inherited from caller.
3358 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3359 unsigned int buflen, int do_write)
3361 /* Make the crap hardware pay the costs not the good stuff */
3362 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3363 unsigned long flags;
3364 local_irq_save(flags);
3365 if (ap->flags & ATA_FLAG_MMIO)
3366 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3367 else
3368 ata_pio_data_xfer(ap, buf, buflen, do_write);
3369 local_irq_restore(flags);
3370 } else {
3371 if (ap->flags & ATA_FLAG_MMIO)
3372 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3373 else
3374 ata_pio_data_xfer(ap, buf, buflen, do_write);
3379 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3380 * @qc: Command on going
3382 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3384 * LOCKING:
3385 * Inherited from caller.
3388 static void ata_pio_sector(struct ata_queued_cmd *qc)
3390 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3391 struct scatterlist *sg = qc->__sg;
3392 struct ata_port *ap = qc->ap;
3393 struct page *page;
3394 unsigned int offset;
3395 unsigned char *buf;
3397 if (qc->cursect == (qc->nsect - 1))
3398 ap->hsm_task_state = HSM_ST_LAST;
3400 page = sg[qc->cursg].page;
3401 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3403 /* get the current page and offset */
3404 page = nth_page(page, (offset >> PAGE_SHIFT));
3405 offset %= PAGE_SIZE;
3407 buf = kmap(page) + offset;
3409 qc->cursect++;
3410 qc->cursg_ofs++;
3412 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3413 qc->cursg++;
3414 qc->cursg_ofs = 0;
3417 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3419 /* do the actual data transfer */
3420 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3421 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3423 kunmap(page);
3427 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3428 * @qc: Command on going
3429 * @bytes: number of bytes
3431 * Transfer Transfer data from/to the ATAPI device.
3433 * LOCKING:
3434 * Inherited from caller.
3438 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3440 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3441 struct scatterlist *sg = qc->__sg;
3442 struct ata_port *ap = qc->ap;
3443 struct page *page;
3444 unsigned char *buf;
3445 unsigned int offset, count;
3447 if (qc->curbytes + bytes >= qc->nbytes)
3448 ap->hsm_task_state = HSM_ST_LAST;
3450 next_sg:
3451 if (unlikely(qc->cursg >= qc->n_elem)) {
3453 * The end of qc->sg is reached and the device expects
3454 * more data to transfer. In order not to overrun qc->sg
3455 * and fulfill length specified in the byte count register,
3456 * - for read case, discard trailing data from the device
3457 * - for write case, padding zero data to the device
3459 u16 pad_buf[1] = { 0 };
3460 unsigned int words = bytes >> 1;
3461 unsigned int i;
3463 if (words) /* warning if bytes > 1 */
3464 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3465 ap->id, bytes);
3467 for (i = 0; i < words; i++)
3468 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3470 ap->hsm_task_state = HSM_ST_LAST;
3471 return;
3474 sg = &qc->__sg[qc->cursg];
3476 page = sg->page;
3477 offset = sg->offset + qc->cursg_ofs;
3479 /* get the current page and offset */
3480 page = nth_page(page, (offset >> PAGE_SHIFT));
3481 offset %= PAGE_SIZE;
3483 /* don't overrun current sg */
3484 count = min(sg->length - qc->cursg_ofs, bytes);
3486 /* don't cross page boundaries */
3487 count = min(count, (unsigned int)PAGE_SIZE - offset);
3489 buf = kmap(page) + offset;
3491 bytes -= count;
3492 qc->curbytes += count;
3493 qc->cursg_ofs += count;
3495 if (qc->cursg_ofs == sg->length) {
3496 qc->cursg++;
3497 qc->cursg_ofs = 0;
3500 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3502 /* do the actual data transfer */
3503 ata_data_xfer(ap, buf, count, do_write);
3505 kunmap(page);
3507 if (bytes)
3508 goto next_sg;
3512 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3513 * @qc: Command on going
3515 * Transfer Transfer data from/to the ATAPI device.
3517 * LOCKING:
3518 * Inherited from caller.
3521 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3523 struct ata_port *ap = qc->ap;
3524 struct ata_device *dev = qc->dev;
3525 unsigned int ireason, bc_lo, bc_hi, bytes;
3526 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3528 ap->ops->tf_read(ap, &qc->tf);
3529 ireason = qc->tf.nsect;
3530 bc_lo = qc->tf.lbam;
3531 bc_hi = qc->tf.lbah;
3532 bytes = (bc_hi << 8) | bc_lo;
3534 /* shall be cleared to zero, indicating xfer of data */
3535 if (ireason & (1 << 0))
3536 goto err_out;
3538 /* make sure transfer direction matches expected */
3539 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3540 if (do_write != i_write)
3541 goto err_out;
3543 __atapi_pio_bytes(qc, bytes);
3545 return;
3547 err_out:
3548 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3549 ap->id, dev->devno);
3550 qc->err_mask |= AC_ERR_HSM;
3551 ap->hsm_task_state = HSM_ST_ERR;
3555 * ata_pio_block - start PIO on a block
3556 * @ap: the target ata_port
3558 * LOCKING:
3559 * None. (executing in kernel thread context)
3562 static void ata_pio_block(struct ata_port *ap)
3564 struct ata_queued_cmd *qc;
3565 u8 status;
3568 * This is purely heuristic. This is a fast path.
3569 * Sometimes when we enter, BSY will be cleared in
3570 * a chk-status or two. If not, the drive is probably seeking
3571 * or something. Snooze for a couple msecs, then
3572 * chk-status again. If still busy, fall back to
3573 * HSM_ST_POLL state.
3575 status = ata_busy_wait(ap, ATA_BUSY, 5);
3576 if (status & ATA_BUSY) {
3577 msleep(2);
3578 status = ata_busy_wait(ap, ATA_BUSY, 10);
3579 if (status & ATA_BUSY) {
3580 ap->hsm_task_state = HSM_ST_POLL;
3581 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3582 return;
3586 qc = ata_qc_from_tag(ap, ap->active_tag);
3587 WARN_ON(qc == NULL);
3589 /* check error */
3590 if (status & (ATA_ERR | ATA_DF)) {
3591 qc->err_mask |= AC_ERR_DEV;
3592 ap->hsm_task_state = HSM_ST_ERR;
3593 return;
3596 /* transfer data if any */
3597 if (is_atapi_taskfile(&qc->tf)) {
3598 /* DRQ=0 means no more data to transfer */
3599 if ((status & ATA_DRQ) == 0) {
3600 ap->hsm_task_state = HSM_ST_LAST;
3601 return;
3604 atapi_pio_bytes(qc);
3605 } else {
3606 /* handle BSY=0, DRQ=0 as error */
3607 if ((status & ATA_DRQ) == 0) {
3608 qc->err_mask |= AC_ERR_HSM;
3609 ap->hsm_task_state = HSM_ST_ERR;
3610 return;
3613 ata_pio_sector(qc);
3617 static void ata_pio_error(struct ata_port *ap)
3619 struct ata_queued_cmd *qc;
3621 qc = ata_qc_from_tag(ap, ap->active_tag);
3622 WARN_ON(qc == NULL);
3624 if (qc->tf.command != ATA_CMD_PACKET)
3625 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3627 /* make sure qc->err_mask is available to
3628 * know what's wrong and recover
3630 WARN_ON(qc->err_mask == 0);
3632 ap->hsm_task_state = HSM_ST_IDLE;
3634 ata_poll_qc_complete(qc);
3637 static void ata_pio_task(void *_data)
3639 struct ata_port *ap = _data;
3640 unsigned long timeout;
3641 int qc_completed;
3643 fsm_start:
3644 timeout = 0;
3645 qc_completed = 0;
3647 switch (ap->hsm_task_state) {
3648 case HSM_ST_IDLE:
3649 return;
3651 case HSM_ST:
3652 ata_pio_block(ap);
3653 break;
3655 case HSM_ST_LAST:
3656 qc_completed = ata_pio_complete(ap);
3657 break;
3659 case HSM_ST_POLL:
3660 case HSM_ST_LAST_POLL:
3661 timeout = ata_pio_poll(ap);
3662 break;
3664 case HSM_ST_TMOUT:
3665 case HSM_ST_ERR:
3666 ata_pio_error(ap);
3667 return;
3670 if (timeout)
3671 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
3672 else if (!qc_completed)
3673 goto fsm_start;
3677 * atapi_packet_task - Write CDB bytes to hardware
3678 * @_data: Port to which ATAPI device is attached.
3680 * When device has indicated its readiness to accept
3681 * a CDB, this function is called. Send the CDB.
3682 * If DMA is to be performed, exit immediately.
3683 * Otherwise, we are in polling mode, so poll
3684 * status under operation succeeds or fails.
3686 * LOCKING:
3687 * Kernel thread context (may sleep)
3690 static void atapi_packet_task(void *_data)
3692 struct ata_port *ap = _data;
3693 struct ata_queued_cmd *qc;
3694 u8 status;
3696 qc = ata_qc_from_tag(ap, ap->active_tag);
3697 WARN_ON(qc == NULL);
3698 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3700 /* sleep-wait for BSY to clear */
3701 DPRINTK("busy wait\n");
3702 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3703 qc->err_mask |= AC_ERR_TIMEOUT;
3704 goto err_out;
3707 /* make sure DRQ is set */
3708 status = ata_chk_status(ap);
3709 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3710 qc->err_mask |= AC_ERR_HSM;
3711 goto err_out;
3714 /* send SCSI cdb */
3715 DPRINTK("send cdb\n");
3716 WARN_ON(qc->dev->cdb_len < 12);
3718 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3719 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3720 unsigned long flags;
3722 /* Once we're done issuing command and kicking bmdma,
3723 * irq handler takes over. To not lose irq, we need
3724 * to clear NOINTR flag before sending cdb, but
3725 * interrupt handler shouldn't be invoked before we're
3726 * finished. Hence, the following locking.
3728 spin_lock_irqsave(&ap->host_set->lock, flags);
3729 ap->flags &= ~ATA_FLAG_NOINTR;
3730 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3731 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3732 ap->ops->bmdma_start(qc); /* initiate bmdma */
3733 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3734 } else {
3735 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3737 /* PIO commands are handled by polling */
3738 ap->hsm_task_state = HSM_ST;
3739 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3742 return;
3744 err_out:
3745 ata_poll_qc_complete(qc);
3749 * ata_qc_timeout - Handle timeout of queued command
3750 * @qc: Command that timed out
3752 * Some part of the kernel (currently, only the SCSI layer)
3753 * has noticed that the active command on port @ap has not
3754 * completed after a specified length of time. Handle this
3755 * condition by disabling DMA (if necessary) and completing
3756 * transactions, with error if necessary.
3758 * This also handles the case of the "lost interrupt", where
3759 * for some reason (possibly hardware bug, possibly driver bug)
3760 * an interrupt was not delivered to the driver, even though the
3761 * transaction completed successfully.
3763 * LOCKING:
3764 * Inherited from SCSI layer (none, can sleep)
3767 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3769 struct ata_port *ap = qc->ap;
3770 struct ata_host_set *host_set = ap->host_set;
3771 u8 host_stat = 0, drv_stat;
3772 unsigned long flags;
3774 DPRINTK("ENTER\n");
3776 ap->hsm_task_state = HSM_ST_IDLE;
3778 spin_lock_irqsave(&host_set->lock, flags);
3780 switch (qc->tf.protocol) {
3782 case ATA_PROT_DMA:
3783 case ATA_PROT_ATAPI_DMA:
3784 host_stat = ap->ops->bmdma_status(ap);
3786 /* before we do anything else, clear DMA-Start bit */
3787 ap->ops->bmdma_stop(qc);
3789 /* fall through */
3791 default:
3792 ata_altstatus(ap);
3793 drv_stat = ata_chk_status(ap);
3795 /* ack bmdma irq events */
3796 ap->ops->irq_clear(ap);
3798 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3799 ap->id, qc->tf.command, drv_stat, host_stat);
3801 /* complete taskfile transaction */
3802 qc->err_mask |= ac_err_mask(drv_stat);
3803 break;
3806 spin_unlock_irqrestore(&host_set->lock, flags);
3808 ata_eh_qc_complete(qc);
3810 DPRINTK("EXIT\n");
3814 * ata_eng_timeout - Handle timeout of queued command
3815 * @ap: Port on which timed-out command is active
3817 * Some part of the kernel (currently, only the SCSI layer)
3818 * has noticed that the active command on port @ap has not
3819 * completed after a specified length of time. Handle this
3820 * condition by disabling DMA (if necessary) and completing
3821 * transactions, with error if necessary.
3823 * This also handles the case of the "lost interrupt", where
3824 * for some reason (possibly hardware bug, possibly driver bug)
3825 * an interrupt was not delivered to the driver, even though the
3826 * transaction completed successfully.
3828 * LOCKING:
3829 * Inherited from SCSI layer (none, can sleep)
3832 void ata_eng_timeout(struct ata_port *ap)
3834 DPRINTK("ENTER\n");
3836 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
3838 DPRINTK("EXIT\n");
3842 * ata_qc_new - Request an available ATA command, for queueing
3843 * @ap: Port associated with device @dev
3844 * @dev: Device from whom we request an available command structure
3846 * LOCKING:
3847 * None.
3850 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3852 struct ata_queued_cmd *qc = NULL;
3853 unsigned int i;
3855 for (i = 0; i < ATA_MAX_QUEUE; i++)
3856 if (!test_and_set_bit(i, &ap->qactive)) {
3857 qc = ata_qc_from_tag(ap, i);
3858 break;
3861 if (qc)
3862 qc->tag = i;
3864 return qc;
3868 * ata_qc_new_init - Request an available ATA command, and initialize it
3869 * @ap: Port associated with device @dev
3870 * @dev: Device from whom we request an available command structure
3872 * LOCKING:
3873 * None.
3876 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3877 struct ata_device *dev)
3879 struct ata_queued_cmd *qc;
3881 qc = ata_qc_new(ap);
3882 if (qc) {
3883 qc->scsicmd = NULL;
3884 qc->ap = ap;
3885 qc->dev = dev;
3887 ata_qc_reinit(qc);
3890 return qc;
3894 * ata_qc_free - free unused ata_queued_cmd
3895 * @qc: Command to complete
3897 * Designed to free unused ata_queued_cmd object
3898 * in case something prevents using it.
3900 * LOCKING:
3901 * spin_lock_irqsave(host_set lock)
3903 void ata_qc_free(struct ata_queued_cmd *qc)
3905 struct ata_port *ap = qc->ap;
3906 unsigned int tag;
3908 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3910 qc->flags = 0;
3911 tag = qc->tag;
3912 if (likely(ata_tag_valid(tag))) {
3913 if (tag == ap->active_tag)
3914 ap->active_tag = ATA_TAG_POISON;
3915 qc->tag = ATA_TAG_POISON;
3916 clear_bit(tag, &ap->qactive);
3920 void __ata_qc_complete(struct ata_queued_cmd *qc)
3922 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3923 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3925 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3926 ata_sg_clean(qc);
3928 /* atapi: mark qc as inactive to prevent the interrupt handler
3929 * from completing the command twice later, before the error handler
3930 * is called. (when rc != 0 and atapi request sense is needed)
3932 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3934 /* call completion callback */
3935 qc->complete_fn(qc);
3938 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3940 struct ata_port *ap = qc->ap;
3942 switch (qc->tf.protocol) {
3943 case ATA_PROT_DMA:
3944 case ATA_PROT_ATAPI_DMA:
3945 return 1;
3947 case ATA_PROT_ATAPI:
3948 case ATA_PROT_PIO:
3949 if (ap->flags & ATA_FLAG_PIO_DMA)
3950 return 1;
3952 /* fall through */
3954 default:
3955 return 0;
3958 /* never reached */
3962 * ata_qc_issue - issue taskfile to device
3963 * @qc: command to issue to device
3965 * Prepare an ATA command to submission to device.
3966 * This includes mapping the data into a DMA-able
3967 * area, filling in the S/G table, and finally
3968 * writing the taskfile to hardware, starting the command.
3970 * LOCKING:
3971 * spin_lock_irqsave(host_set lock)
3973 * RETURNS:
3974 * Zero on success, AC_ERR_* mask on failure
3977 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
3979 struct ata_port *ap = qc->ap;
3981 if (ata_should_dma_map(qc)) {
3982 if (qc->flags & ATA_QCFLAG_SG) {
3983 if (ata_sg_setup(qc))
3984 goto sg_err;
3985 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3986 if (ata_sg_setup_one(qc))
3987 goto sg_err;
3989 } else {
3990 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3993 ap->ops->qc_prep(qc);
3995 qc->ap->active_tag = qc->tag;
3996 qc->flags |= ATA_QCFLAG_ACTIVE;
3998 return ap->ops->qc_issue(qc);
4000 sg_err:
4001 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4002 return AC_ERR_SYSTEM;
4007 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4008 * @qc: command to issue to device
4010 * Using various libata functions and hooks, this function
4011 * starts an ATA command. ATA commands are grouped into
4012 * classes called "protocols", and issuing each type of protocol
4013 * is slightly different.
4015 * May be used as the qc_issue() entry in ata_port_operations.
4017 * LOCKING:
4018 * spin_lock_irqsave(host_set lock)
4020 * RETURNS:
4021 * Zero on success, AC_ERR_* mask on failure
4024 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4026 struct ata_port *ap = qc->ap;
4028 ata_dev_select(ap, qc->dev->devno, 1, 0);
4030 switch (qc->tf.protocol) {
4031 case ATA_PROT_NODATA:
4032 ata_tf_to_host(ap, &qc->tf);
4033 break;
4035 case ATA_PROT_DMA:
4036 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4037 ap->ops->bmdma_setup(qc); /* set up bmdma */
4038 ap->ops->bmdma_start(qc); /* initiate bmdma */
4039 break;
4041 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4042 ata_qc_set_polling(qc);
4043 ata_tf_to_host(ap, &qc->tf);
4044 ap->hsm_task_state = HSM_ST;
4045 ata_port_queue_task(ap, ata_pio_task, ap, 0);
4046 break;
4048 case ATA_PROT_ATAPI:
4049 ata_qc_set_polling(qc);
4050 ata_tf_to_host(ap, &qc->tf);
4051 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4052 break;
4054 case ATA_PROT_ATAPI_NODATA:
4055 ap->flags |= ATA_FLAG_NOINTR;
4056 ata_tf_to_host(ap, &qc->tf);
4057 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4058 break;
4060 case ATA_PROT_ATAPI_DMA:
4061 ap->flags |= ATA_FLAG_NOINTR;
4062 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4063 ap->ops->bmdma_setup(qc); /* set up bmdma */
4064 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4065 break;
4067 default:
4068 WARN_ON(1);
4069 return AC_ERR_SYSTEM;
4072 return 0;
4076 * ata_host_intr - Handle host interrupt for given (port, task)
4077 * @ap: Port on which interrupt arrived (possibly...)
4078 * @qc: Taskfile currently active in engine
4080 * Handle host interrupt for given queued command. Currently,
4081 * only DMA interrupts are handled. All other commands are
4082 * handled via polling with interrupts disabled (nIEN bit).
4084 * LOCKING:
4085 * spin_lock_irqsave(host_set lock)
4087 * RETURNS:
4088 * One if interrupt was handled, zero if not (shared irq).
4091 inline unsigned int ata_host_intr (struct ata_port *ap,
4092 struct ata_queued_cmd *qc)
4094 u8 status, host_stat;
4096 switch (qc->tf.protocol) {
4098 case ATA_PROT_DMA:
4099 case ATA_PROT_ATAPI_DMA:
4100 case ATA_PROT_ATAPI:
4101 /* check status of DMA engine */
4102 host_stat = ap->ops->bmdma_status(ap);
4103 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4105 /* if it's not our irq... */
4106 if (!(host_stat & ATA_DMA_INTR))
4107 goto idle_irq;
4109 /* before we do anything else, clear DMA-Start bit */
4110 ap->ops->bmdma_stop(qc);
4112 /* fall through */
4114 case ATA_PROT_ATAPI_NODATA:
4115 case ATA_PROT_NODATA:
4116 /* check altstatus */
4117 status = ata_altstatus(ap);
4118 if (status & ATA_BUSY)
4119 goto idle_irq;
4121 /* check main status, clearing INTRQ */
4122 status = ata_chk_status(ap);
4123 if (unlikely(status & ATA_BUSY))
4124 goto idle_irq;
4125 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4126 ap->id, qc->tf.protocol, status);
4128 /* ack bmdma irq events */
4129 ap->ops->irq_clear(ap);
4131 /* complete taskfile transaction */
4132 qc->err_mask |= ac_err_mask(status);
4133 ata_qc_complete(qc);
4134 break;
4136 default:
4137 goto idle_irq;
4140 return 1; /* irq handled */
4142 idle_irq:
4143 ap->stats.idle_irq++;
4145 #ifdef ATA_IRQ_TRAP
4146 if ((ap->stats.idle_irq % 1000) == 0) {
4147 ata_irq_ack(ap, 0); /* debug trap */
4148 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4149 return 1;
4151 #endif
4152 return 0; /* irq not handled */
4156 * ata_interrupt - Default ATA host interrupt handler
4157 * @irq: irq line (unused)
4158 * @dev_instance: pointer to our ata_host_set information structure
4159 * @regs: unused
4161 * Default interrupt handler for PCI IDE devices. Calls
4162 * ata_host_intr() for each port that is not disabled.
4164 * LOCKING:
4165 * Obtains host_set lock during operation.
4167 * RETURNS:
4168 * IRQ_NONE or IRQ_HANDLED.
4171 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4173 struct ata_host_set *host_set = dev_instance;
4174 unsigned int i;
4175 unsigned int handled = 0;
4176 unsigned long flags;
4178 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4179 spin_lock_irqsave(&host_set->lock, flags);
4181 for (i = 0; i < host_set->n_ports; i++) {
4182 struct ata_port *ap;
4184 ap = host_set->ports[i];
4185 if (ap &&
4186 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4187 struct ata_queued_cmd *qc;
4189 qc = ata_qc_from_tag(ap, ap->active_tag);
4190 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4191 (qc->flags & ATA_QCFLAG_ACTIVE))
4192 handled |= ata_host_intr(ap, qc);
4196 spin_unlock_irqrestore(&host_set->lock, flags);
4198 return IRQ_RETVAL(handled);
4203 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4204 * without filling any other registers
4206 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4207 u8 cmd)
4209 struct ata_taskfile tf;
4210 int err;
4212 ata_tf_init(ap, &tf, dev->devno);
4214 tf.command = cmd;
4215 tf.flags |= ATA_TFLAG_DEVICE;
4216 tf.protocol = ATA_PROT_NODATA;
4218 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4219 if (err)
4220 printk(KERN_ERR "%s: ata command failed: %d\n",
4221 __FUNCTION__, err);
4223 return err;
4226 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4228 u8 cmd;
4230 if (!ata_try_flush_cache(dev))
4231 return 0;
4233 if (ata_id_has_flush_ext(dev->id))
4234 cmd = ATA_CMD_FLUSH_EXT;
4235 else
4236 cmd = ATA_CMD_FLUSH;
4238 return ata_do_simple_cmd(ap, dev, cmd);
4241 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4243 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4246 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4248 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4252 * ata_device_resume - wakeup a previously suspended devices
4253 * @ap: port the device is connected to
4254 * @dev: the device to resume
4256 * Kick the drive back into action, by sending it an idle immediate
4257 * command and making sure its transfer mode matches between drive
4258 * and host.
4261 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4263 if (ap->flags & ATA_FLAG_SUSPENDED) {
4264 ap->flags &= ~ATA_FLAG_SUSPENDED;
4265 ata_set_mode(ap);
4267 if (!ata_dev_present(dev))
4268 return 0;
4269 if (dev->class == ATA_DEV_ATA)
4270 ata_start_drive(ap, dev);
4272 return 0;
4276 * ata_device_suspend - prepare a device for suspend
4277 * @ap: port the device is connected to
4278 * @dev: the device to suspend
4280 * Flush the cache on the drive, if appropriate, then issue a
4281 * standbynow command.
4283 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4285 if (!ata_dev_present(dev))
4286 return 0;
4287 if (dev->class == ATA_DEV_ATA)
4288 ata_flush_cache(ap, dev);
4290 if (state.event != PM_EVENT_FREEZE)
4291 ata_standby_drive(ap, dev);
4292 ap->flags |= ATA_FLAG_SUSPENDED;
4293 return 0;
4297 * ata_port_start - Set port up for dma.
4298 * @ap: Port to initialize
4300 * Called just after data structures for each port are
4301 * initialized. Allocates space for PRD table.
4303 * May be used as the port_start() entry in ata_port_operations.
4305 * LOCKING:
4306 * Inherited from caller.
4309 int ata_port_start (struct ata_port *ap)
4311 struct device *dev = ap->dev;
4312 int rc;
4314 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4315 if (!ap->prd)
4316 return -ENOMEM;
4318 rc = ata_pad_alloc(ap, dev);
4319 if (rc) {
4320 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4321 return rc;
4324 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4326 return 0;
4331 * ata_port_stop - Undo ata_port_start()
4332 * @ap: Port to shut down
4334 * Frees the PRD table.
4336 * May be used as the port_stop() entry in ata_port_operations.
4338 * LOCKING:
4339 * Inherited from caller.
4342 void ata_port_stop (struct ata_port *ap)
4344 struct device *dev = ap->dev;
4346 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4347 ata_pad_free(ap, dev);
4350 void ata_host_stop (struct ata_host_set *host_set)
4352 if (host_set->mmio_base)
4353 iounmap(host_set->mmio_base);
4358 * ata_host_remove - Unregister SCSI host structure with upper layers
4359 * @ap: Port to unregister
4360 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4362 * LOCKING:
4363 * Inherited from caller.
4366 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4368 struct Scsi_Host *sh = ap->host;
4370 DPRINTK("ENTER\n");
4372 if (do_unregister)
4373 scsi_remove_host(sh);
4375 ap->ops->port_stop(ap);
4379 * ata_host_init - Initialize an ata_port structure
4380 * @ap: Structure to initialize
4381 * @host: associated SCSI mid-layer structure
4382 * @host_set: Collection of hosts to which @ap belongs
4383 * @ent: Probe information provided by low-level driver
4384 * @port_no: Port number associated with this ata_port
4386 * Initialize a new ata_port structure, and its associated
4387 * scsi_host.
4389 * LOCKING:
4390 * Inherited from caller.
4393 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4394 struct ata_host_set *host_set,
4395 const struct ata_probe_ent *ent, unsigned int port_no)
4397 unsigned int i;
4399 host->max_id = 16;
4400 host->max_lun = 1;
4401 host->max_channel = 1;
4402 host->unique_id = ata_unique_id++;
4403 host->max_cmd_len = 12;
4405 ap->flags = ATA_FLAG_PORT_DISABLED;
4406 ap->id = host->unique_id;
4407 ap->host = host;
4408 ap->ctl = ATA_DEVCTL_OBS;
4409 ap->host_set = host_set;
4410 ap->dev = ent->dev;
4411 ap->port_no = port_no;
4412 ap->hard_port_no =
4413 ent->legacy_mode ? ent->hard_port_no : port_no;
4414 ap->pio_mask = ent->pio_mask;
4415 ap->mwdma_mask = ent->mwdma_mask;
4416 ap->udma_mask = ent->udma_mask;
4417 ap->flags |= ent->host_flags;
4418 ap->ops = ent->port_ops;
4419 ap->cbl = ATA_CBL_NONE;
4420 ap->active_tag = ATA_TAG_POISON;
4421 ap->last_ctl = 0xFF;
4423 INIT_WORK(&ap->port_task, NULL, NULL);
4424 INIT_LIST_HEAD(&ap->eh_done_q);
4426 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4427 struct ata_device *dev = &ap->device[i];
4428 dev->devno = i;
4429 dev->pio_mask = UINT_MAX;
4430 dev->mwdma_mask = UINT_MAX;
4431 dev->udma_mask = UINT_MAX;
4434 #ifdef ATA_IRQ_TRAP
4435 ap->stats.unhandled_irq = 1;
4436 ap->stats.idle_irq = 1;
4437 #endif
4439 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4443 * ata_host_add - Attach low-level ATA driver to system
4444 * @ent: Information provided by low-level driver
4445 * @host_set: Collections of ports to which we add
4446 * @port_no: Port number associated with this host
4448 * Attach low-level ATA driver to system.
4450 * LOCKING:
4451 * PCI/etc. bus probe sem.
4453 * RETURNS:
4454 * New ata_port on success, for NULL on error.
4457 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4458 struct ata_host_set *host_set,
4459 unsigned int port_no)
4461 struct Scsi_Host *host;
4462 struct ata_port *ap;
4463 int rc;
4465 DPRINTK("ENTER\n");
4467 if (!ent->port_ops->probe_reset &&
4468 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4469 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4470 port_no);
4471 return NULL;
4474 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4475 if (!host)
4476 return NULL;
4478 host->transportt = &ata_scsi_transport_template;
4480 ap = (struct ata_port *) &host->hostdata[0];
4482 ata_host_init(ap, host, host_set, ent, port_no);
4484 rc = ap->ops->port_start(ap);
4485 if (rc)
4486 goto err_out;
4488 return ap;
4490 err_out:
4491 scsi_host_put(host);
4492 return NULL;
4496 * ata_device_add - Register hardware device with ATA and SCSI layers
4497 * @ent: Probe information describing hardware device to be registered
4499 * This function processes the information provided in the probe
4500 * information struct @ent, allocates the necessary ATA and SCSI
4501 * host information structures, initializes them, and registers
4502 * everything with requisite kernel subsystems.
4504 * This function requests irqs, probes the ATA bus, and probes
4505 * the SCSI bus.
4507 * LOCKING:
4508 * PCI/etc. bus probe sem.
4510 * RETURNS:
4511 * Number of ports registered. Zero on error (no ports registered).
4514 int ata_device_add(const struct ata_probe_ent *ent)
4516 unsigned int count = 0, i;
4517 struct device *dev = ent->dev;
4518 struct ata_host_set *host_set;
4520 DPRINTK("ENTER\n");
4521 /* alloc a container for our list of ATA ports (buses) */
4522 host_set = kzalloc(sizeof(struct ata_host_set) +
4523 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4524 if (!host_set)
4525 return 0;
4526 spin_lock_init(&host_set->lock);
4528 host_set->dev = dev;
4529 host_set->n_ports = ent->n_ports;
4530 host_set->irq = ent->irq;
4531 host_set->mmio_base = ent->mmio_base;
4532 host_set->private_data = ent->private_data;
4533 host_set->ops = ent->port_ops;
4535 /* register each port bound to this device */
4536 for (i = 0; i < ent->n_ports; i++) {
4537 struct ata_port *ap;
4538 unsigned long xfer_mode_mask;
4540 ap = ata_host_add(ent, host_set, i);
4541 if (!ap)
4542 goto err_out;
4544 host_set->ports[i] = ap;
4545 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4546 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4547 (ap->pio_mask << ATA_SHIFT_PIO);
4549 /* print per-port info to dmesg */
4550 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4551 "bmdma 0x%lX irq %lu\n",
4552 ap->id,
4553 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4554 ata_mode_string(xfer_mode_mask),
4555 ap->ioaddr.cmd_addr,
4556 ap->ioaddr.ctl_addr,
4557 ap->ioaddr.bmdma_addr,
4558 ent->irq);
4560 ata_chk_status(ap);
4561 host_set->ops->irq_clear(ap);
4562 count++;
4565 if (!count)
4566 goto err_free_ret;
4568 /* obtain irq, that is shared between channels */
4569 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4570 DRV_NAME, host_set))
4571 goto err_out;
4573 /* perform each probe synchronously */
4574 DPRINTK("probe begin\n");
4575 for (i = 0; i < count; i++) {
4576 struct ata_port *ap;
4577 int rc;
4579 ap = host_set->ports[i];
4581 DPRINTK("ata%u: bus probe begin\n", ap->id);
4582 rc = ata_bus_probe(ap);
4583 DPRINTK("ata%u: bus probe end\n", ap->id);
4585 if (rc) {
4586 /* FIXME: do something useful here?
4587 * Current libata behavior will
4588 * tear down everything when
4589 * the module is removed
4590 * or the h/w is unplugged.
4594 rc = scsi_add_host(ap->host, dev);
4595 if (rc) {
4596 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4597 ap->id);
4598 /* FIXME: do something useful here */
4599 /* FIXME: handle unconditional calls to
4600 * scsi_scan_host and ata_host_remove, below,
4601 * at the very least
4606 /* probes are done, now scan each port's disk(s) */
4607 DPRINTK("host probe begin\n");
4608 for (i = 0; i < count; i++) {
4609 struct ata_port *ap = host_set->ports[i];
4611 ata_scsi_scan_host(ap);
4614 dev_set_drvdata(dev, host_set);
4616 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4617 return ent->n_ports; /* success */
4619 err_out:
4620 for (i = 0; i < count; i++) {
4621 ata_host_remove(host_set->ports[i], 1);
4622 scsi_host_put(host_set->ports[i]->host);
4624 err_free_ret:
4625 kfree(host_set);
4626 VPRINTK("EXIT, returning 0\n");
4627 return 0;
4631 * ata_host_set_remove - PCI layer callback for device removal
4632 * @host_set: ATA host set that was removed
4634 * Unregister all objects associated with this host set. Free those
4635 * objects.
4637 * LOCKING:
4638 * Inherited from calling layer (may sleep).
4641 void ata_host_set_remove(struct ata_host_set *host_set)
4643 struct ata_port *ap;
4644 unsigned int i;
4646 for (i = 0; i < host_set->n_ports; i++) {
4647 ap = host_set->ports[i];
4648 scsi_remove_host(ap->host);
4651 free_irq(host_set->irq, host_set);
4653 for (i = 0; i < host_set->n_ports; i++) {
4654 ap = host_set->ports[i];
4656 ata_scsi_release(ap->host);
4658 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4659 struct ata_ioports *ioaddr = &ap->ioaddr;
4661 if (ioaddr->cmd_addr == 0x1f0)
4662 release_region(0x1f0, 8);
4663 else if (ioaddr->cmd_addr == 0x170)
4664 release_region(0x170, 8);
4667 scsi_host_put(ap->host);
4670 if (host_set->ops->host_stop)
4671 host_set->ops->host_stop(host_set);
4673 kfree(host_set);
4677 * ata_scsi_release - SCSI layer callback hook for host unload
4678 * @host: libata host to be unloaded
4680 * Performs all duties necessary to shut down a libata port...
4681 * Kill port kthread, disable port, and release resources.
4683 * LOCKING:
4684 * Inherited from SCSI layer.
4686 * RETURNS:
4687 * One.
4690 int ata_scsi_release(struct Scsi_Host *host)
4692 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4693 int i;
4695 DPRINTK("ENTER\n");
4697 ap->ops->port_disable(ap);
4698 ata_host_remove(ap, 0);
4699 for (i = 0; i < ATA_MAX_DEVICES; i++)
4700 kfree(ap->device[i].id);
4702 DPRINTK("EXIT\n");
4703 return 1;
4707 * ata_std_ports - initialize ioaddr with standard port offsets.
4708 * @ioaddr: IO address structure to be initialized
4710 * Utility function which initializes data_addr, error_addr,
4711 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4712 * device_addr, status_addr, and command_addr to standard offsets
4713 * relative to cmd_addr.
4715 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4718 void ata_std_ports(struct ata_ioports *ioaddr)
4720 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4721 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4722 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4723 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4724 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4725 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4726 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4727 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4728 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4729 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4733 #ifdef CONFIG_PCI
4735 void ata_pci_host_stop (struct ata_host_set *host_set)
4737 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4739 pci_iounmap(pdev, host_set->mmio_base);
4743 * ata_pci_remove_one - PCI layer callback for device removal
4744 * @pdev: PCI device that was removed
4746 * PCI layer indicates to libata via this hook that
4747 * hot-unplug or module unload event has occurred.
4748 * Handle this by unregistering all objects associated
4749 * with this PCI device. Free those objects. Then finally
4750 * release PCI resources and disable device.
4752 * LOCKING:
4753 * Inherited from PCI layer (may sleep).
4756 void ata_pci_remove_one (struct pci_dev *pdev)
4758 struct device *dev = pci_dev_to_dev(pdev);
4759 struct ata_host_set *host_set = dev_get_drvdata(dev);
4761 ata_host_set_remove(host_set);
4762 pci_release_regions(pdev);
4763 pci_disable_device(pdev);
4764 dev_set_drvdata(dev, NULL);
4767 /* move to PCI subsystem */
4768 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4770 unsigned long tmp = 0;
4772 switch (bits->width) {
4773 case 1: {
4774 u8 tmp8 = 0;
4775 pci_read_config_byte(pdev, bits->reg, &tmp8);
4776 tmp = tmp8;
4777 break;
4779 case 2: {
4780 u16 tmp16 = 0;
4781 pci_read_config_word(pdev, bits->reg, &tmp16);
4782 tmp = tmp16;
4783 break;
4785 case 4: {
4786 u32 tmp32 = 0;
4787 pci_read_config_dword(pdev, bits->reg, &tmp32);
4788 tmp = tmp32;
4789 break;
4792 default:
4793 return -EINVAL;
4796 tmp &= bits->mask;
4798 return (tmp == bits->val) ? 1 : 0;
4801 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4803 pci_save_state(pdev);
4804 pci_disable_device(pdev);
4805 pci_set_power_state(pdev, PCI_D3hot);
4806 return 0;
4809 int ata_pci_device_resume(struct pci_dev *pdev)
4811 pci_set_power_state(pdev, PCI_D0);
4812 pci_restore_state(pdev);
4813 pci_enable_device(pdev);
4814 pci_set_master(pdev);
4815 return 0;
4817 #endif /* CONFIG_PCI */
4820 static int __init ata_init(void)
4822 ata_wq = create_workqueue("ata");
4823 if (!ata_wq)
4824 return -ENOMEM;
4826 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4827 return 0;
4830 static void __exit ata_exit(void)
4832 destroy_workqueue(ata_wq);
4835 module_init(ata_init);
4836 module_exit(ata_exit);
4838 static unsigned long ratelimit_time;
4839 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4841 int ata_ratelimit(void)
4843 int rc;
4844 unsigned long flags;
4846 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4848 if (time_after(jiffies, ratelimit_time)) {
4849 rc = 1;
4850 ratelimit_time = jiffies + (HZ/5);
4851 } else
4852 rc = 0;
4854 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4856 return rc;
4860 * libata is essentially a library of internal helper functions for
4861 * low-level ATA host controller drivers. As such, the API/ABI is
4862 * likely to change as new drivers are added and updated.
4863 * Do not depend on ABI/API stability.
4866 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4867 EXPORT_SYMBOL_GPL(ata_std_ports);
4868 EXPORT_SYMBOL_GPL(ata_device_add);
4869 EXPORT_SYMBOL_GPL(ata_host_set_remove);
4870 EXPORT_SYMBOL_GPL(ata_sg_init);
4871 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4872 EXPORT_SYMBOL_GPL(__ata_qc_complete);
4873 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4874 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4875 EXPORT_SYMBOL_GPL(ata_tf_load);
4876 EXPORT_SYMBOL_GPL(ata_tf_read);
4877 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4878 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4879 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4880 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4881 EXPORT_SYMBOL_GPL(ata_check_status);
4882 EXPORT_SYMBOL_GPL(ata_altstatus);
4883 EXPORT_SYMBOL_GPL(ata_exec_command);
4884 EXPORT_SYMBOL_GPL(ata_port_start);
4885 EXPORT_SYMBOL_GPL(ata_port_stop);
4886 EXPORT_SYMBOL_GPL(ata_host_stop);
4887 EXPORT_SYMBOL_GPL(ata_interrupt);
4888 EXPORT_SYMBOL_GPL(ata_qc_prep);
4889 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4890 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4891 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4892 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4893 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4894 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4895 EXPORT_SYMBOL_GPL(ata_port_probe);
4896 EXPORT_SYMBOL_GPL(sata_phy_reset);
4897 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4898 EXPORT_SYMBOL_GPL(ata_bus_reset);
4899 EXPORT_SYMBOL_GPL(ata_std_probeinit);
4900 EXPORT_SYMBOL_GPL(ata_std_softreset);
4901 EXPORT_SYMBOL_GPL(sata_std_hardreset);
4902 EXPORT_SYMBOL_GPL(ata_std_postreset);
4903 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
4904 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
4905 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
4906 EXPORT_SYMBOL_GPL(ata_dev_classify);
4907 EXPORT_SYMBOL_GPL(ata_dev_pair);
4908 EXPORT_SYMBOL_GPL(ata_port_disable);
4909 EXPORT_SYMBOL_GPL(ata_ratelimit);
4910 EXPORT_SYMBOL_GPL(ata_busy_sleep);
4911 EXPORT_SYMBOL_GPL(ata_port_queue_task);
4912 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4913 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4914 EXPORT_SYMBOL_GPL(ata_scsi_error);
4915 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4916 EXPORT_SYMBOL_GPL(ata_scsi_release);
4917 EXPORT_SYMBOL_GPL(ata_host_intr);
4918 EXPORT_SYMBOL_GPL(ata_id_string);
4919 EXPORT_SYMBOL_GPL(ata_id_c_string);
4920 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4921 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4922 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
4924 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
4925 EXPORT_SYMBOL_GPL(ata_timing_compute);
4926 EXPORT_SYMBOL_GPL(ata_timing_merge);
4928 #ifdef CONFIG_PCI
4929 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4930 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4931 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4932 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4933 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4934 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4935 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
4936 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
4937 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
4938 #endif /* CONFIG_PCI */
4940 EXPORT_SYMBOL_GPL(ata_device_suspend);
4941 EXPORT_SYMBOL_GPL(ata_device_resume);
4942 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4943 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);