Fix IRQ flag handling naming
[linux-2.6/x86.git] / Documentation / rbtree.txt
blob221f38be98f47be1e682876ef55c2984a8484e76
1 Red-black Trees (rbtree) in Linux
2 January 18, 2007
3 Rob Landley <rob@landley.net>
4 =============================
6 What are red-black trees, and what are they for?
7 ------------------------------------------------
9 Red-black trees are a type of self-balancing binary search tree, used for
10 storing sortable key/value data pairs.  This differs from radix trees (which
11 are used to efficiently store sparse arrays and thus use long integer indexes
12 to insert/access/delete nodes) and hash tables (which are not kept sorted to
13 be easily traversed in order, and must be tuned for a specific size and
14 hash function where rbtrees scale gracefully storing arbitrary keys).
16 Red-black trees are similar to AVL trees, but provide faster real-time bounded
17 worst case performance for insertion and deletion (at most two rotations and
18 three rotations, respectively, to balance the tree), with slightly slower
19 (but still O(log n)) lookup time.
21 To quote Linux Weekly News:
23     There are a number of red-black trees in use in the kernel.
24     The anticipatory, deadline, and CFQ I/O schedulers all employ
25     rbtrees to track requests; the packet CD/DVD driver does the same.
26     The high-resolution timer code uses an rbtree to organize outstanding
27     timer requests.  The ext3 filesystem tracks directory entries in a
28     red-black tree.  Virtual memory areas (VMAs) are tracked with red-black
29     trees, as are epoll file descriptors, cryptographic keys, and network
30     packets in the "hierarchical token bucket" scheduler.
32 This document covers use of the Linux rbtree implementation.  For more
33 information on the nature and implementation of Red Black Trees,  see:
35   Linux Weekly News article on red-black trees
36     http://lwn.net/Articles/184495/
38   Wikipedia entry on red-black trees
39     http://en.wikipedia.org/wiki/Red-black_tree
41 Linux implementation of red-black trees
42 ---------------------------------------
44 Linux's rbtree implementation lives in the file "lib/rbtree.c".  To use it,
45 "#include <linux/rbtree.h>".
47 The Linux rbtree implementation is optimized for speed, and thus has one
48 less layer of indirection (and better cache locality) than more traditional
49 tree implementations.  Instead of using pointers to separate rb_node and data
50 structures, each instance of struct rb_node is embedded in the data structure
51 it organizes.  And instead of using a comparison callback function pointer,
52 users are expected to write their own tree search and insert functions
53 which call the provided rbtree functions.  Locking is also left up to the
54 user of the rbtree code.
56 Creating a new rbtree
57 ---------------------
59 Data nodes in an rbtree tree are structures containing a struct rb_node member:
61   struct mytype {
62         struct rb_node node;
63         char *keystring;
64   };
66 When dealing with a pointer to the embedded struct rb_node, the containing data
67 structure may be accessed with the standard container_of() macro.  In addition,
68 individual members may be accessed directly via rb_entry(node, type, member).
70 At the root of each rbtree is an rb_root structure, which is initialized to be
71 empty via:
73   struct rb_root mytree = RB_ROOT;
75 Searching for a value in an rbtree
76 ----------------------------------
78 Writing a search function for your tree is fairly straightforward: start at the
79 root, compare each value, and follow the left or right branch as necessary.
81 Example:
83   struct mytype *my_search(struct rb_root *root, char *string)
84   {
85         struct rb_node *node = root->rb_node;
87         while (node) {
88                 struct mytype *data = container_of(node, struct mytype, node);
89                 int result;
91                 result = strcmp(string, data->keystring);
93                 if (result < 0)
94                         node = node->rb_left;
95                 else if (result > 0)
96                         node = node->rb_right;
97                 else
98                         return data;
99         }
100         return NULL;
101   }
103 Inserting data into an rbtree
104 -----------------------------
106 Inserting data in the tree involves first searching for the place to insert the
107 new node, then inserting the node and rebalancing ("recoloring") the tree.
109 The search for insertion differs from the previous search by finding the
110 location of the pointer on which to graft the new node.  The new node also
111 needs a link to its parent node for rebalancing purposes.
113 Example:
115   int my_insert(struct rb_root *root, struct mytype *data)
116   {
117         struct rb_node **new = &(root->rb_node), *parent = NULL;
119         /* Figure out where to put new node */
120         while (*new) {
121                 struct mytype *this = container_of(*new, struct mytype, node);
122                 int result = strcmp(data->keystring, this->keystring);
124                 parent = *new;
125                 if (result < 0)
126                         new = &((*new)->rb_left);
127                 else if (result > 0)
128                         new = &((*new)->rb_right);
129                 else
130                         return FALSE;
131         }
133         /* Add new node and rebalance tree. */
134         rb_link_node(&data->node, parent, new);
135         rb_insert_color(&data->node, root);
137         return TRUE;
138   }
140 Removing or replacing existing data in an rbtree
141 ------------------------------------------------
143 To remove an existing node from a tree, call:
145   void rb_erase(struct rb_node *victim, struct rb_root *tree);
147 Example:
149   struct mytype *data = mysearch(&mytree, "walrus");
151   if (data) {
152         rb_erase(&data->node, &mytree);
153         myfree(data);
154   }
156 To replace an existing node in a tree with a new one with the same key, call:
158   void rb_replace_node(struct rb_node *old, struct rb_node *new,
159                         struct rb_root *tree);
161 Replacing a node this way does not re-sort the tree: If the new node doesn't
162 have the same key as the old node, the rbtree will probably become corrupted.
164 Iterating through the elements stored in an rbtree (in sort order)
165 ------------------------------------------------------------------
167 Four functions are provided for iterating through an rbtree's contents in
168 sorted order.  These work on arbitrary trees, and should not need to be
169 modified or wrapped (except for locking purposes):
171   struct rb_node *rb_first(struct rb_root *tree);
172   struct rb_node *rb_last(struct rb_root *tree);
173   struct rb_node *rb_next(struct rb_node *node);
174   struct rb_node *rb_prev(struct rb_node *node);
176 To start iterating, call rb_first() or rb_last() with a pointer to the root
177 of the tree, which will return a pointer to the node structure contained in
178 the first or last element in the tree.  To continue, fetch the next or previous
179 node by calling rb_next() or rb_prev() on the current node.  This will return
180 NULL when there are no more nodes left.
182 The iterator functions return a pointer to the embedded struct rb_node, from
183 which the containing data structure may be accessed with the container_of()
184 macro, and individual members may be accessed directly via
185 rb_entry(node, type, member).
187 Example:
189   struct rb_node *node;
190   for (node = rb_first(&mytree); node; node = rb_next(node))
191         printk("key=%s\n", rb_entry(node, struct mytype, node)->keystring);
193 Support for Augmented rbtrees
194 -----------------------------
196 Augmented rbtree is an rbtree with "some" additional data stored in each node.
197 This data can be used to augment some new functionality to rbtree.
198 Augmented rbtree is an optional feature built on top of basic rbtree
199 infrastructure. rbtree user who wants this feature will have an augment
200 callback function in rb_root initialized.
202 This callback function will be called from rbtree core routines whenever
203 a node has a change in one or both of its children. It is the responsibility
204 of the callback function to recalculate the additional data that is in the
205 rb node using new children information. Note that if this new additional
206 data affects the parent node's additional data, then callback function has
207 to handle it and do the recursive updates.
210 Interval tree is an example of augmented rb tree. Reference -
211 "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein.
212 More details about interval trees:
214 Classical rbtree has a single key and it cannot be directly used to store
215 interval ranges like [lo:hi] and do a quick lookup for any overlap with a new
216 lo:hi or to find whether there is an exact match for a new lo:hi.
218 However, rbtree can be augmented to store such interval ranges in a structured
219 way making it possible to do efficient lookup and exact match.
221 This "extra information" stored in each node is the maximum hi
222 (max_hi) value among all the nodes that are its descendents. This
223 information can be maintained at each node just be looking at the node
224 and its immediate children. And this will be used in O(log n) lookup
225 for lowest match (lowest start address among all possible matches)
226 with something like:
228 find_lowest_match(lo, hi, node)
230         lowest_match = NULL;
231         while (node) {
232                 if (max_hi(node->left) > lo) {
233                         // Lowest overlap if any must be on left side
234                         node = node->left;
235                 } else if (overlap(lo, hi, node)) {
236                         lowest_match = node;
237                         break;
238                 } else if (lo > node->lo) {
239                         // Lowest overlap if any must be on right side
240                         node = node->right;
241                 } else {
242                         break;
243                 }
244         }
245         return lowest_match;
248 Finding exact match will be to first find lowest match and then to follow
249 successor nodes looking for exact match, until the start of a node is beyond
250 the hi value we are looking for.