igb: add counter for dma out of sync errors
[linux-2.6/x86.git] / drivers / net / igb / igb_main.c
blobc05ca3461f60e5b147f76391f0274421570e89a8
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
62 static struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69 /* required last entry */
70 {0, }
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98 struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
126 static int igb_suspend(struct pci_dev *, pm_message_t);
127 #ifdef CONFIG_PM
128 static int igb_resume(struct pci_dev *);
129 #endif
130 static void igb_shutdown(struct pci_dev *);
131 #ifdef CONFIG_IGB_DCA
132 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133 static struct notifier_block dca_notifier = {
134 .notifier_call = igb_notify_dca,
135 .next = NULL,
136 .priority = 0
138 #endif
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 /* for netdump / net console */
142 static void igb_netpoll(struct net_device *);
143 #endif
145 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146 pci_channel_state_t);
147 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148 static void igb_io_resume(struct pci_dev *);
150 static struct pci_error_handlers igb_err_handler = {
151 .error_detected = igb_io_error_detected,
152 .slot_reset = igb_io_slot_reset,
153 .resume = igb_io_resume,
157 static struct pci_driver igb_driver = {
158 .name = igb_driver_name,
159 .id_table = igb_pci_tbl,
160 .probe = igb_probe,
161 .remove = __devexit_p(igb_remove),
162 #ifdef CONFIG_PM
163 /* Power Managment Hooks */
164 .suspend = igb_suspend,
165 .resume = igb_resume,
166 #endif
167 .shutdown = igb_shutdown,
168 .err_handler = &igb_err_handler
171 static int global_quad_port_a; /* global quad port a indication */
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
178 #ifdef DEBUG
180 * igb_get_hw_dev_name - return device name string
181 * used by hardware layer to print debugging information
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
185 struct igb_adapter *adapter = hw->back;
186 return adapter->netdev->name;
188 #endif
191 * igb_init_module - Driver Registration Routine
193 * igb_init_module is the first routine called when the driver is
194 * loaded. All it does is register with the PCI subsystem.
196 static int __init igb_init_module(void)
198 int ret;
199 printk(KERN_INFO "%s - version %s\n",
200 igb_driver_string, igb_driver_version);
202 printk(KERN_INFO "%s\n", igb_copyright);
204 global_quad_port_a = 0;
206 #ifdef CONFIG_IGB_DCA
207 dca_register_notify(&dca_notifier);
208 #endif
210 ret = pci_register_driver(&igb_driver);
211 return ret;
214 module_init(igb_init_module);
217 * igb_exit_module - Driver Exit Cleanup Routine
219 * igb_exit_module is called just before the driver is removed
220 * from memory.
222 static void __exit igb_exit_module(void)
224 #ifdef CONFIG_IGB_DCA
225 dca_unregister_notify(&dca_notifier);
226 #endif
227 pci_unregister_driver(&igb_driver);
230 module_exit(igb_exit_module);
232 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
234 * igb_cache_ring_register - Descriptor ring to register mapping
235 * @adapter: board private structure to initialize
237 * Once we know the feature-set enabled for the device, we'll cache
238 * the register offset the descriptor ring is assigned to.
240 static void igb_cache_ring_register(struct igb_adapter *adapter)
242 int i;
244 switch (adapter->hw.mac.type) {
245 case e1000_82576:
246 /* The queues are allocated for virtualization such that VF 0
247 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248 * In order to avoid collision we start at the first free queue
249 * and continue consuming queues in the same sequence
251 for (i = 0; i < adapter->num_rx_queues; i++)
252 adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253 for (i = 0; i < adapter->num_tx_queues; i++)
254 adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
255 break;
256 case e1000_82575:
257 default:
258 for (i = 0; i < adapter->num_rx_queues; i++)
259 adapter->rx_ring[i].reg_idx = i;
260 for (i = 0; i < adapter->num_tx_queues; i++)
261 adapter->tx_ring[i].reg_idx = i;
262 break;
267 * igb_alloc_queues - Allocate memory for all rings
268 * @adapter: board private structure to initialize
270 * We allocate one ring per queue at run-time since we don't know the
271 * number of queues at compile-time.
273 static int igb_alloc_queues(struct igb_adapter *adapter)
275 int i;
277 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278 sizeof(struct igb_ring), GFP_KERNEL);
279 if (!adapter->tx_ring)
280 return -ENOMEM;
282 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283 sizeof(struct igb_ring), GFP_KERNEL);
284 if (!adapter->rx_ring) {
285 kfree(adapter->tx_ring);
286 return -ENOMEM;
289 adapter->rx_ring->buddy = adapter->tx_ring;
291 for (i = 0; i < adapter->num_tx_queues; i++) {
292 struct igb_ring *ring = &(adapter->tx_ring[i]);
293 ring->count = adapter->tx_ring_count;
294 ring->adapter = adapter;
295 ring->queue_index = i;
297 for (i = 0; i < adapter->num_rx_queues; i++) {
298 struct igb_ring *ring = &(adapter->rx_ring[i]);
299 ring->count = adapter->rx_ring_count;
300 ring->adapter = adapter;
301 ring->queue_index = i;
302 ring->itr_register = E1000_ITR;
304 /* set a default napi handler for each rx_ring */
305 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
308 igb_cache_ring_register(adapter);
309 return 0;
312 static void igb_free_queues(struct igb_adapter *adapter)
314 int i;
316 for (i = 0; i < adapter->num_rx_queues; i++)
317 netif_napi_del(&adapter->rx_ring[i].napi);
319 kfree(adapter->tx_ring);
320 kfree(adapter->rx_ring);
323 #define IGB_N0_QUEUE -1
324 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325 int tx_queue, int msix_vector)
327 u32 msixbm = 0;
328 struct e1000_hw *hw = &adapter->hw;
329 u32 ivar, index;
331 switch (hw->mac.type) {
332 case e1000_82575:
333 /* The 82575 assigns vectors using a bitmask, which matches the
334 bitmask for the EICR/EIMS/EIMC registers. To assign one
335 or more queues to a vector, we write the appropriate bits
336 into the MSIXBM register for that vector. */
337 if (rx_queue > IGB_N0_QUEUE) {
338 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339 adapter->rx_ring[rx_queue].eims_value = msixbm;
341 if (tx_queue > IGB_N0_QUEUE) {
342 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343 adapter->tx_ring[tx_queue].eims_value =
344 E1000_EICR_TX_QUEUE0 << tx_queue;
346 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
347 break;
348 case e1000_82576:
349 /* 82576 uses a table-based method for assigning vectors.
350 Each queue has a single entry in the table to which we write
351 a vector number along with a "valid" bit. Sadly, the layout
352 of the table is somewhat counterintuitive. */
353 if (rx_queue > IGB_N0_QUEUE) {
354 index = (rx_queue >> 1);
355 ivar = array_rd32(E1000_IVAR0, index);
356 if (rx_queue & 0x1) {
357 /* vector goes into third byte of register */
358 ivar = ivar & 0xFF00FFFF;
359 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
360 } else {
361 /* vector goes into low byte of register */
362 ivar = ivar & 0xFFFFFF00;
363 ivar |= msix_vector | E1000_IVAR_VALID;
365 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366 array_wr32(E1000_IVAR0, index, ivar);
368 if (tx_queue > IGB_N0_QUEUE) {
369 index = (tx_queue >> 1);
370 ivar = array_rd32(E1000_IVAR0, index);
371 if (tx_queue & 0x1) {
372 /* vector goes into high byte of register */
373 ivar = ivar & 0x00FFFFFF;
374 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
375 } else {
376 /* vector goes into second byte of register */
377 ivar = ivar & 0xFFFF00FF;
378 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
380 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381 array_wr32(E1000_IVAR0, index, ivar);
383 break;
384 default:
385 BUG();
386 break;
391 * igb_configure_msix - Configure MSI-X hardware
393 * igb_configure_msix sets up the hardware to properly
394 * generate MSI-X interrupts.
396 static void igb_configure_msix(struct igb_adapter *adapter)
398 u32 tmp;
399 int i, vector = 0;
400 struct e1000_hw *hw = &adapter->hw;
402 adapter->eims_enable_mask = 0;
403 if (hw->mac.type == e1000_82576)
404 /* Turn on MSI-X capability first, or our settings
405 * won't stick. And it will take days to debug. */
406 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
407 E1000_GPIE_PBA | E1000_GPIE_EIAME |
408 E1000_GPIE_NSICR);
410 for (i = 0; i < adapter->num_tx_queues; i++) {
411 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413 adapter->eims_enable_mask |= tx_ring->eims_value;
414 if (tx_ring->itr_val)
415 writel(tx_ring->itr_val,
416 hw->hw_addr + tx_ring->itr_register);
417 else
418 writel(1, hw->hw_addr + tx_ring->itr_register);
421 for (i = 0; i < adapter->num_rx_queues; i++) {
422 struct igb_ring *rx_ring = &adapter->rx_ring[i];
423 rx_ring->buddy = NULL;
424 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425 adapter->eims_enable_mask |= rx_ring->eims_value;
426 if (rx_ring->itr_val)
427 writel(rx_ring->itr_val,
428 hw->hw_addr + rx_ring->itr_register);
429 else
430 writel(1, hw->hw_addr + rx_ring->itr_register);
434 /* set vector for other causes, i.e. link changes */
435 switch (hw->mac.type) {
436 case e1000_82575:
437 array_wr32(E1000_MSIXBM(0), vector++,
438 E1000_EIMS_OTHER);
440 tmp = rd32(E1000_CTRL_EXT);
441 /* enable MSI-X PBA support*/
442 tmp |= E1000_CTRL_EXT_PBA_CLR;
444 /* Auto-Mask interrupts upon ICR read. */
445 tmp |= E1000_CTRL_EXT_EIAME;
446 tmp |= E1000_CTRL_EXT_IRCA;
448 wr32(E1000_CTRL_EXT, tmp);
449 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
450 adapter->eims_other = E1000_EIMS_OTHER;
452 break;
454 case e1000_82576:
455 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456 wr32(E1000_IVAR_MISC, tmp);
458 adapter->eims_enable_mask = (1 << (vector)) - 1;
459 adapter->eims_other = 1 << (vector - 1);
460 break;
461 default:
462 /* do nothing, since nothing else supports MSI-X */
463 break;
464 } /* switch (hw->mac.type) */
465 wrfl();
469 * igb_request_msix - Initialize MSI-X interrupts
471 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
472 * kernel.
474 static int igb_request_msix(struct igb_adapter *adapter)
476 struct net_device *netdev = adapter->netdev;
477 int i, err = 0, vector = 0;
479 vector = 0;
481 for (i = 0; i < adapter->num_tx_queues; i++) {
482 struct igb_ring *ring = &(adapter->tx_ring[i]);
483 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
484 err = request_irq(adapter->msix_entries[vector].vector,
485 &igb_msix_tx, 0, ring->name,
486 &(adapter->tx_ring[i]));
487 if (err)
488 goto out;
489 ring->itr_register = E1000_EITR(0) + (vector << 2);
490 ring->itr_val = 976; /* ~4000 ints/sec */
491 vector++;
493 for (i = 0; i < adapter->num_rx_queues; i++) {
494 struct igb_ring *ring = &(adapter->rx_ring[i]);
495 if (strlen(netdev->name) < (IFNAMSIZ - 5))
496 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
497 else
498 memcpy(ring->name, netdev->name, IFNAMSIZ);
499 err = request_irq(adapter->msix_entries[vector].vector,
500 &igb_msix_rx, 0, ring->name,
501 &(adapter->rx_ring[i]));
502 if (err)
503 goto out;
504 ring->itr_register = E1000_EITR(0) + (vector << 2);
505 ring->itr_val = adapter->itr;
506 /* overwrite the poll routine for MSIX, we've already done
507 * netif_napi_add */
508 ring->napi.poll = &igb_clean_rx_ring_msix;
509 vector++;
512 err = request_irq(adapter->msix_entries[vector].vector,
513 &igb_msix_other, 0, netdev->name, netdev);
514 if (err)
515 goto out;
517 igb_configure_msix(adapter);
518 return 0;
519 out:
520 return err;
523 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
525 if (adapter->msix_entries) {
526 pci_disable_msix(adapter->pdev);
527 kfree(adapter->msix_entries);
528 adapter->msix_entries = NULL;
529 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
530 pci_disable_msi(adapter->pdev);
531 return;
536 * igb_set_interrupt_capability - set MSI or MSI-X if supported
538 * Attempt to configure interrupts using the best available
539 * capabilities of the hardware and kernel.
541 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
543 int err;
544 int numvecs, i;
546 /* Number of supported queues. */
547 /* Having more queues than CPUs doesn't make sense. */
548 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
549 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
551 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
552 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
553 GFP_KERNEL);
554 if (!adapter->msix_entries)
555 goto msi_only;
557 for (i = 0; i < numvecs; i++)
558 adapter->msix_entries[i].entry = i;
560 err = pci_enable_msix(adapter->pdev,
561 adapter->msix_entries,
562 numvecs);
563 if (err == 0)
564 goto out;
566 igb_reset_interrupt_capability(adapter);
568 /* If we can't do MSI-X, try MSI */
569 msi_only:
570 adapter->num_rx_queues = 1;
571 adapter->num_tx_queues = 1;
572 if (!pci_enable_msi(adapter->pdev))
573 adapter->flags |= IGB_FLAG_HAS_MSI;
574 out:
575 /* Notify the stack of the (possibly) reduced Tx Queue count. */
576 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
577 return;
581 * igb_request_irq - initialize interrupts
583 * Attempts to configure interrupts using the best available
584 * capabilities of the hardware and kernel.
586 static int igb_request_irq(struct igb_adapter *adapter)
588 struct net_device *netdev = adapter->netdev;
589 struct e1000_hw *hw = &adapter->hw;
590 int err = 0;
592 if (adapter->msix_entries) {
593 err = igb_request_msix(adapter);
594 if (!err)
595 goto request_done;
596 /* fall back to MSI */
597 igb_reset_interrupt_capability(adapter);
598 if (!pci_enable_msi(adapter->pdev))
599 adapter->flags |= IGB_FLAG_HAS_MSI;
600 igb_free_all_tx_resources(adapter);
601 igb_free_all_rx_resources(adapter);
602 adapter->num_rx_queues = 1;
603 igb_alloc_queues(adapter);
604 } else {
605 switch (hw->mac.type) {
606 case e1000_82575:
607 wr32(E1000_MSIXBM(0),
608 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
609 break;
610 case e1000_82576:
611 wr32(E1000_IVAR0, E1000_IVAR_VALID);
612 break;
613 default:
614 break;
618 if (adapter->flags & IGB_FLAG_HAS_MSI) {
619 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
620 netdev->name, netdev);
621 if (!err)
622 goto request_done;
623 /* fall back to legacy interrupts */
624 igb_reset_interrupt_capability(adapter);
625 adapter->flags &= ~IGB_FLAG_HAS_MSI;
628 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
629 netdev->name, netdev);
631 if (err)
632 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
633 err);
635 request_done:
636 return err;
639 static void igb_free_irq(struct igb_adapter *adapter)
641 struct net_device *netdev = adapter->netdev;
643 if (adapter->msix_entries) {
644 int vector = 0, i;
646 for (i = 0; i < adapter->num_tx_queues; i++)
647 free_irq(adapter->msix_entries[vector++].vector,
648 &(adapter->tx_ring[i]));
649 for (i = 0; i < adapter->num_rx_queues; i++)
650 free_irq(adapter->msix_entries[vector++].vector,
651 &(adapter->rx_ring[i]));
653 free_irq(adapter->msix_entries[vector++].vector, netdev);
654 return;
657 free_irq(adapter->pdev->irq, netdev);
661 * igb_irq_disable - Mask off interrupt generation on the NIC
662 * @adapter: board private structure
664 static void igb_irq_disable(struct igb_adapter *adapter)
666 struct e1000_hw *hw = &adapter->hw;
668 if (adapter->msix_entries) {
669 wr32(E1000_EIAM, 0);
670 wr32(E1000_EIMC, ~0);
671 wr32(E1000_EIAC, 0);
674 wr32(E1000_IAM, 0);
675 wr32(E1000_IMC, ~0);
676 wrfl();
677 synchronize_irq(adapter->pdev->irq);
681 * igb_irq_enable - Enable default interrupt generation settings
682 * @adapter: board private structure
684 static void igb_irq_enable(struct igb_adapter *adapter)
686 struct e1000_hw *hw = &adapter->hw;
688 if (adapter->msix_entries) {
689 wr32(E1000_EIAC, adapter->eims_enable_mask);
690 wr32(E1000_EIAM, adapter->eims_enable_mask);
691 wr32(E1000_EIMS, adapter->eims_enable_mask);
692 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
693 } else {
694 wr32(E1000_IMS, IMS_ENABLE_MASK);
695 wr32(E1000_IAM, IMS_ENABLE_MASK);
699 static void igb_update_mng_vlan(struct igb_adapter *adapter)
701 struct net_device *netdev = adapter->netdev;
702 u16 vid = adapter->hw.mng_cookie.vlan_id;
703 u16 old_vid = adapter->mng_vlan_id;
704 if (adapter->vlgrp) {
705 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
706 if (adapter->hw.mng_cookie.status &
707 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
708 igb_vlan_rx_add_vid(netdev, vid);
709 adapter->mng_vlan_id = vid;
710 } else
711 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
713 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
714 (vid != old_vid) &&
715 !vlan_group_get_device(adapter->vlgrp, old_vid))
716 igb_vlan_rx_kill_vid(netdev, old_vid);
717 } else
718 adapter->mng_vlan_id = vid;
723 * igb_release_hw_control - release control of the h/w to f/w
724 * @adapter: address of board private structure
726 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
727 * For ASF and Pass Through versions of f/w this means that the
728 * driver is no longer loaded.
731 static void igb_release_hw_control(struct igb_adapter *adapter)
733 struct e1000_hw *hw = &adapter->hw;
734 u32 ctrl_ext;
736 /* Let firmware take over control of h/w */
737 ctrl_ext = rd32(E1000_CTRL_EXT);
738 wr32(E1000_CTRL_EXT,
739 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
744 * igb_get_hw_control - get control of the h/w from f/w
745 * @adapter: address of board private structure
747 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
748 * For ASF and Pass Through versions of f/w this means that
749 * the driver is loaded.
752 static void igb_get_hw_control(struct igb_adapter *adapter)
754 struct e1000_hw *hw = &adapter->hw;
755 u32 ctrl_ext;
757 /* Let firmware know the driver has taken over */
758 ctrl_ext = rd32(E1000_CTRL_EXT);
759 wr32(E1000_CTRL_EXT,
760 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
764 * igb_configure - configure the hardware for RX and TX
765 * @adapter: private board structure
767 static void igb_configure(struct igb_adapter *adapter)
769 struct net_device *netdev = adapter->netdev;
770 int i;
772 igb_get_hw_control(adapter);
773 igb_set_multi(netdev);
775 igb_restore_vlan(adapter);
777 igb_configure_tx(adapter);
778 igb_setup_rctl(adapter);
779 igb_configure_rx(adapter);
781 igb_rx_fifo_flush_82575(&adapter->hw);
783 /* call IGB_DESC_UNUSED which always leaves
784 * at least 1 descriptor unused to make sure
785 * next_to_use != next_to_clean */
786 for (i = 0; i < adapter->num_rx_queues; i++) {
787 struct igb_ring *ring = &adapter->rx_ring[i];
788 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
792 adapter->tx_queue_len = netdev->tx_queue_len;
797 * igb_up - Open the interface and prepare it to handle traffic
798 * @adapter: board private structure
801 int igb_up(struct igb_adapter *adapter)
803 struct e1000_hw *hw = &adapter->hw;
804 int i;
806 /* hardware has been reset, we need to reload some things */
807 igb_configure(adapter);
809 clear_bit(__IGB_DOWN, &adapter->state);
811 for (i = 0; i < adapter->num_rx_queues; i++)
812 napi_enable(&adapter->rx_ring[i].napi);
813 if (adapter->msix_entries)
814 igb_configure_msix(adapter);
816 /* Clear any pending interrupts. */
817 rd32(E1000_ICR);
818 igb_irq_enable(adapter);
820 /* Fire a link change interrupt to start the watchdog. */
821 wr32(E1000_ICS, E1000_ICS_LSC);
822 return 0;
825 void igb_down(struct igb_adapter *adapter)
827 struct e1000_hw *hw = &adapter->hw;
828 struct net_device *netdev = adapter->netdev;
829 u32 tctl, rctl;
830 int i;
832 /* signal that we're down so the interrupt handler does not
833 * reschedule our watchdog timer */
834 set_bit(__IGB_DOWN, &adapter->state);
836 /* disable receives in the hardware */
837 rctl = rd32(E1000_RCTL);
838 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
839 /* flush and sleep below */
841 netif_tx_stop_all_queues(netdev);
843 /* disable transmits in the hardware */
844 tctl = rd32(E1000_TCTL);
845 tctl &= ~E1000_TCTL_EN;
846 wr32(E1000_TCTL, tctl);
847 /* flush both disables and wait for them to finish */
848 wrfl();
849 msleep(10);
851 for (i = 0; i < adapter->num_rx_queues; i++)
852 napi_disable(&adapter->rx_ring[i].napi);
854 igb_irq_disable(adapter);
856 del_timer_sync(&adapter->watchdog_timer);
857 del_timer_sync(&adapter->phy_info_timer);
859 netdev->tx_queue_len = adapter->tx_queue_len;
860 netif_carrier_off(netdev);
861 adapter->link_speed = 0;
862 adapter->link_duplex = 0;
864 if (!pci_channel_offline(adapter->pdev))
865 igb_reset(adapter);
866 igb_clean_all_tx_rings(adapter);
867 igb_clean_all_rx_rings(adapter);
870 void igb_reinit_locked(struct igb_adapter *adapter)
872 WARN_ON(in_interrupt());
873 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
874 msleep(1);
875 igb_down(adapter);
876 igb_up(adapter);
877 clear_bit(__IGB_RESETTING, &adapter->state);
880 void igb_reset(struct igb_adapter *adapter)
882 struct e1000_hw *hw = &adapter->hw;
883 struct e1000_mac_info *mac = &hw->mac;
884 struct e1000_fc_info *fc = &hw->fc;
885 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
886 u16 hwm;
888 /* Repartition Pba for greater than 9k mtu
889 * To take effect CTRL.RST is required.
891 if (mac->type != e1000_82576) {
892 pba = E1000_PBA_34K;
894 else {
895 pba = E1000_PBA_64K;
898 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
899 (mac->type < e1000_82576)) {
900 /* adjust PBA for jumbo frames */
901 wr32(E1000_PBA, pba);
903 /* To maintain wire speed transmits, the Tx FIFO should be
904 * large enough to accommodate two full transmit packets,
905 * rounded up to the next 1KB and expressed in KB. Likewise,
906 * the Rx FIFO should be large enough to accommodate at least
907 * one full receive packet and is similarly rounded up and
908 * expressed in KB. */
909 pba = rd32(E1000_PBA);
910 /* upper 16 bits has Tx packet buffer allocation size in KB */
911 tx_space = pba >> 16;
912 /* lower 16 bits has Rx packet buffer allocation size in KB */
913 pba &= 0xffff;
914 /* the tx fifo also stores 16 bytes of information about the tx
915 * but don't include ethernet FCS because hardware appends it */
916 min_tx_space = (adapter->max_frame_size +
917 sizeof(struct e1000_tx_desc) -
918 ETH_FCS_LEN) * 2;
919 min_tx_space = ALIGN(min_tx_space, 1024);
920 min_tx_space >>= 10;
921 /* software strips receive CRC, so leave room for it */
922 min_rx_space = adapter->max_frame_size;
923 min_rx_space = ALIGN(min_rx_space, 1024);
924 min_rx_space >>= 10;
926 /* If current Tx allocation is less than the min Tx FIFO size,
927 * and the min Tx FIFO size is less than the current Rx FIFO
928 * allocation, take space away from current Rx allocation */
929 if (tx_space < min_tx_space &&
930 ((min_tx_space - tx_space) < pba)) {
931 pba = pba - (min_tx_space - tx_space);
933 /* if short on rx space, rx wins and must trump tx
934 * adjustment */
935 if (pba < min_rx_space)
936 pba = min_rx_space;
938 wr32(E1000_PBA, pba);
941 /* flow control settings */
942 /* The high water mark must be low enough to fit one full frame
943 * (or the size used for early receive) above it in the Rx FIFO.
944 * Set it to the lower of:
945 * - 90% of the Rx FIFO size, or
946 * - the full Rx FIFO size minus one full frame */
947 hwm = min(((pba << 10) * 9 / 10),
948 ((pba << 10) - 2 * adapter->max_frame_size));
950 if (mac->type < e1000_82576) {
951 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
952 fc->low_water = fc->high_water - 8;
953 } else {
954 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
955 fc->low_water = fc->high_water - 16;
957 fc->pause_time = 0xFFFF;
958 fc->send_xon = 1;
959 fc->type = fc->original_type;
961 /* Allow time for pending master requests to run */
962 adapter->hw.mac.ops.reset_hw(&adapter->hw);
963 wr32(E1000_WUC, 0);
965 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
966 dev_err(&adapter->pdev->dev, "Hardware Error\n");
968 igb_update_mng_vlan(adapter);
970 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
971 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
973 igb_reset_adaptive(&adapter->hw);
974 igb_get_phy_info(&adapter->hw);
977 static const struct net_device_ops igb_netdev_ops = {
978 .ndo_open = igb_open,
979 .ndo_stop = igb_close,
980 .ndo_start_xmit = igb_xmit_frame_adv,
981 .ndo_get_stats = igb_get_stats,
982 .ndo_set_multicast_list = igb_set_multi,
983 .ndo_set_mac_address = igb_set_mac,
984 .ndo_change_mtu = igb_change_mtu,
985 .ndo_do_ioctl = igb_ioctl,
986 .ndo_tx_timeout = igb_tx_timeout,
987 .ndo_validate_addr = eth_validate_addr,
988 .ndo_vlan_rx_register = igb_vlan_rx_register,
989 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
990 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
991 #ifdef CONFIG_NET_POLL_CONTROLLER
992 .ndo_poll_controller = igb_netpoll,
993 #endif
997 * igb_probe - Device Initialization Routine
998 * @pdev: PCI device information struct
999 * @ent: entry in igb_pci_tbl
1001 * Returns 0 on success, negative on failure
1003 * igb_probe initializes an adapter identified by a pci_dev structure.
1004 * The OS initialization, configuring of the adapter private structure,
1005 * and a hardware reset occur.
1007 static int __devinit igb_probe(struct pci_dev *pdev,
1008 const struct pci_device_id *ent)
1010 struct net_device *netdev;
1011 struct igb_adapter *adapter;
1012 struct e1000_hw *hw;
1013 struct pci_dev *us_dev;
1014 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1015 unsigned long mmio_start, mmio_len;
1016 int i, err, pci_using_dac, pos;
1017 u16 eeprom_data = 0, state = 0;
1018 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1019 u32 part_num;
1021 err = pci_enable_device_mem(pdev);
1022 if (err)
1023 return err;
1025 pci_using_dac = 0;
1026 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1027 if (!err) {
1028 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1029 if (!err)
1030 pci_using_dac = 1;
1031 } else {
1032 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1033 if (err) {
1034 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1035 if (err) {
1036 dev_err(&pdev->dev, "No usable DMA "
1037 "configuration, aborting\n");
1038 goto err_dma;
1043 /* 82575 requires that the pci-e link partner disable the L0s state */
1044 switch (pdev->device) {
1045 case E1000_DEV_ID_82575EB_COPPER:
1046 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1047 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1048 us_dev = pdev->bus->self;
1049 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1050 if (pos) {
1051 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1052 &state);
1053 state &= ~PCIE_LINK_STATE_L0S;
1054 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1055 state);
1056 dev_info(&pdev->dev,
1057 "Disabling ASPM L0s upstream switch port %s\n",
1058 pci_name(us_dev));
1060 default:
1061 break;
1064 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1065 IORESOURCE_MEM),
1066 igb_driver_name);
1067 if (err)
1068 goto err_pci_reg;
1070 err = pci_enable_pcie_error_reporting(pdev);
1071 if (err) {
1072 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1073 "0x%x\n", err);
1074 /* non-fatal, continue */
1077 pci_set_master(pdev);
1078 pci_save_state(pdev);
1080 err = -ENOMEM;
1081 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1082 if (!netdev)
1083 goto err_alloc_etherdev;
1085 SET_NETDEV_DEV(netdev, &pdev->dev);
1087 pci_set_drvdata(pdev, netdev);
1088 adapter = netdev_priv(netdev);
1089 adapter->netdev = netdev;
1090 adapter->pdev = pdev;
1091 hw = &adapter->hw;
1092 hw->back = adapter;
1093 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1095 mmio_start = pci_resource_start(pdev, 0);
1096 mmio_len = pci_resource_len(pdev, 0);
1098 err = -EIO;
1099 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1100 if (!adapter->hw.hw_addr)
1101 goto err_ioremap;
1103 netdev->netdev_ops = &igb_netdev_ops;
1104 igb_set_ethtool_ops(netdev);
1105 netdev->watchdog_timeo = 5 * HZ;
1107 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1109 netdev->mem_start = mmio_start;
1110 netdev->mem_end = mmio_start + mmio_len;
1112 /* PCI config space info */
1113 hw->vendor_id = pdev->vendor;
1114 hw->device_id = pdev->device;
1115 hw->revision_id = pdev->revision;
1116 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1117 hw->subsystem_device_id = pdev->subsystem_device;
1119 /* setup the private structure */
1120 hw->back = adapter;
1121 /* Copy the default MAC, PHY and NVM function pointers */
1122 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1123 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1124 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1125 /* Initialize skew-specific constants */
1126 err = ei->get_invariants(hw);
1127 if (err)
1128 goto err_hw_init;
1130 err = igb_sw_init(adapter);
1131 if (err)
1132 goto err_sw_init;
1134 igb_get_bus_info_pcie(hw);
1136 /* set flags */
1137 switch (hw->mac.type) {
1138 case e1000_82575:
1139 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1140 break;
1141 case e1000_82576:
1142 default:
1143 break;
1146 hw->phy.autoneg_wait_to_complete = false;
1147 hw->mac.adaptive_ifs = true;
1149 /* Copper options */
1150 if (hw->phy.media_type == e1000_media_type_copper) {
1151 hw->phy.mdix = AUTO_ALL_MODES;
1152 hw->phy.disable_polarity_correction = false;
1153 hw->phy.ms_type = e1000_ms_hw_default;
1156 if (igb_check_reset_block(hw))
1157 dev_info(&pdev->dev,
1158 "PHY reset is blocked due to SOL/IDER session.\n");
1160 netdev->features = NETIF_F_SG |
1161 NETIF_F_IP_CSUM |
1162 NETIF_F_HW_VLAN_TX |
1163 NETIF_F_HW_VLAN_RX |
1164 NETIF_F_HW_VLAN_FILTER;
1166 netdev->features |= NETIF_F_IPV6_CSUM;
1167 netdev->features |= NETIF_F_TSO;
1168 netdev->features |= NETIF_F_TSO6;
1170 #ifdef CONFIG_IGB_LRO
1171 netdev->features |= NETIF_F_GRO;
1172 #endif
1174 netdev->vlan_features |= NETIF_F_TSO;
1175 netdev->vlan_features |= NETIF_F_TSO6;
1176 netdev->vlan_features |= NETIF_F_IP_CSUM;
1177 netdev->vlan_features |= NETIF_F_SG;
1179 if (pci_using_dac)
1180 netdev->features |= NETIF_F_HIGHDMA;
1182 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1184 /* before reading the NVM, reset the controller to put the device in a
1185 * known good starting state */
1186 hw->mac.ops.reset_hw(hw);
1188 /* make sure the NVM is good */
1189 if (igb_validate_nvm_checksum(hw) < 0) {
1190 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1191 err = -EIO;
1192 goto err_eeprom;
1195 /* copy the MAC address out of the NVM */
1196 if (hw->mac.ops.read_mac_addr(hw))
1197 dev_err(&pdev->dev, "NVM Read Error\n");
1199 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1200 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1202 if (!is_valid_ether_addr(netdev->perm_addr)) {
1203 dev_err(&pdev->dev, "Invalid MAC Address\n");
1204 err = -EIO;
1205 goto err_eeprom;
1208 init_timer(&adapter->watchdog_timer);
1209 adapter->watchdog_timer.function = &igb_watchdog;
1210 adapter->watchdog_timer.data = (unsigned long) adapter;
1212 init_timer(&adapter->phy_info_timer);
1213 adapter->phy_info_timer.function = &igb_update_phy_info;
1214 adapter->phy_info_timer.data = (unsigned long) adapter;
1216 INIT_WORK(&adapter->reset_task, igb_reset_task);
1217 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1219 /* Initialize link & ring properties that are user-changeable */
1220 adapter->tx_ring->count = 256;
1221 for (i = 0; i < adapter->num_tx_queues; i++)
1222 adapter->tx_ring[i].count = adapter->tx_ring->count;
1223 adapter->rx_ring->count = 256;
1224 for (i = 0; i < adapter->num_rx_queues; i++)
1225 adapter->rx_ring[i].count = adapter->rx_ring->count;
1227 adapter->fc_autoneg = true;
1228 hw->mac.autoneg = true;
1229 hw->phy.autoneg_advertised = 0x2f;
1231 hw->fc.original_type = e1000_fc_default;
1232 hw->fc.type = e1000_fc_default;
1234 adapter->itr_setting = 3;
1235 adapter->itr = IGB_START_ITR;
1237 igb_validate_mdi_setting(hw);
1239 adapter->rx_csum = 1;
1241 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1242 * enable the ACPI Magic Packet filter
1245 if (hw->bus.func == 0 ||
1246 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1247 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1249 if (eeprom_data & eeprom_apme_mask)
1250 adapter->eeprom_wol |= E1000_WUFC_MAG;
1252 /* now that we have the eeprom settings, apply the special cases where
1253 * the eeprom may be wrong or the board simply won't support wake on
1254 * lan on a particular port */
1255 switch (pdev->device) {
1256 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1257 adapter->eeprom_wol = 0;
1258 break;
1259 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1260 case E1000_DEV_ID_82576_FIBER:
1261 case E1000_DEV_ID_82576_SERDES:
1262 /* Wake events only supported on port A for dual fiber
1263 * regardless of eeprom setting */
1264 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1265 adapter->eeprom_wol = 0;
1266 break;
1269 /* initialize the wol settings based on the eeprom settings */
1270 adapter->wol = adapter->eeprom_wol;
1271 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1273 /* reset the hardware with the new settings */
1274 igb_reset(adapter);
1276 /* let the f/w know that the h/w is now under the control of the
1277 * driver. */
1278 igb_get_hw_control(adapter);
1280 /* tell the stack to leave us alone until igb_open() is called */
1281 netif_carrier_off(netdev);
1282 netif_tx_stop_all_queues(netdev);
1284 strcpy(netdev->name, "eth%d");
1285 err = register_netdev(netdev);
1286 if (err)
1287 goto err_register;
1289 #ifdef CONFIG_IGB_DCA
1290 if (dca_add_requester(&pdev->dev) == 0) {
1291 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1292 dev_info(&pdev->dev, "DCA enabled\n");
1293 /* Always use CB2 mode, difference is masked
1294 * in the CB driver. */
1295 wr32(E1000_DCA_CTRL, 2);
1296 igb_setup_dca(adapter);
1298 #endif
1300 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1301 /* print bus type/speed/width info */
1302 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1303 netdev->name,
1304 ((hw->bus.speed == e1000_bus_speed_2500)
1305 ? "2.5Gb/s" : "unknown"),
1306 ((hw->bus.width == e1000_bus_width_pcie_x4)
1307 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1308 ? "Width x1" : "unknown"),
1309 netdev->dev_addr);
1311 igb_read_part_num(hw, &part_num);
1312 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1313 (part_num >> 8), (part_num & 0xff));
1315 dev_info(&pdev->dev,
1316 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1317 adapter->msix_entries ? "MSI-X" :
1318 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1319 adapter->num_rx_queues, adapter->num_tx_queues);
1321 return 0;
1323 err_register:
1324 igb_release_hw_control(adapter);
1325 err_eeprom:
1326 if (!igb_check_reset_block(hw))
1327 igb_reset_phy(hw);
1329 if (hw->flash_address)
1330 iounmap(hw->flash_address);
1332 igb_free_queues(adapter);
1333 err_sw_init:
1334 err_hw_init:
1335 iounmap(hw->hw_addr);
1336 err_ioremap:
1337 free_netdev(netdev);
1338 err_alloc_etherdev:
1339 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1340 IORESOURCE_MEM));
1341 err_pci_reg:
1342 err_dma:
1343 pci_disable_device(pdev);
1344 return err;
1348 * igb_remove - Device Removal Routine
1349 * @pdev: PCI device information struct
1351 * igb_remove is called by the PCI subsystem to alert the driver
1352 * that it should release a PCI device. The could be caused by a
1353 * Hot-Plug event, or because the driver is going to be removed from
1354 * memory.
1356 static void __devexit igb_remove(struct pci_dev *pdev)
1358 struct net_device *netdev = pci_get_drvdata(pdev);
1359 struct igb_adapter *adapter = netdev_priv(netdev);
1360 #ifdef CONFIG_IGB_DCA
1361 struct e1000_hw *hw = &adapter->hw;
1362 #endif
1363 int err;
1365 /* flush_scheduled work may reschedule our watchdog task, so
1366 * explicitly disable watchdog tasks from being rescheduled */
1367 set_bit(__IGB_DOWN, &adapter->state);
1368 del_timer_sync(&adapter->watchdog_timer);
1369 del_timer_sync(&adapter->phy_info_timer);
1371 flush_scheduled_work();
1373 #ifdef CONFIG_IGB_DCA
1374 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1375 dev_info(&pdev->dev, "DCA disabled\n");
1376 dca_remove_requester(&pdev->dev);
1377 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1378 wr32(E1000_DCA_CTRL, 1);
1380 #endif
1382 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1383 * would have already happened in close and is redundant. */
1384 igb_release_hw_control(adapter);
1386 unregister_netdev(netdev);
1388 if (!igb_check_reset_block(&adapter->hw))
1389 igb_reset_phy(&adapter->hw);
1391 igb_reset_interrupt_capability(adapter);
1393 igb_free_queues(adapter);
1395 iounmap(adapter->hw.hw_addr);
1396 if (adapter->hw.flash_address)
1397 iounmap(adapter->hw.flash_address);
1398 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1399 IORESOURCE_MEM));
1401 free_netdev(netdev);
1403 err = pci_disable_pcie_error_reporting(pdev);
1404 if (err)
1405 dev_err(&pdev->dev,
1406 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1408 pci_disable_device(pdev);
1412 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1413 * @adapter: board private structure to initialize
1415 * igb_sw_init initializes the Adapter private data structure.
1416 * Fields are initialized based on PCI device information and
1417 * OS network device settings (MTU size).
1419 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1421 struct e1000_hw *hw = &adapter->hw;
1422 struct net_device *netdev = adapter->netdev;
1423 struct pci_dev *pdev = adapter->pdev;
1425 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1427 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1428 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1429 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1430 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1431 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1432 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1434 /* This call may decrease the number of queues depending on
1435 * interrupt mode. */
1436 igb_set_interrupt_capability(adapter);
1438 if (igb_alloc_queues(adapter)) {
1439 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1440 return -ENOMEM;
1443 /* Explicitly disable IRQ since the NIC can be in any state. */
1444 igb_irq_disable(adapter);
1446 set_bit(__IGB_DOWN, &adapter->state);
1447 return 0;
1451 * igb_open - Called when a network interface is made active
1452 * @netdev: network interface device structure
1454 * Returns 0 on success, negative value on failure
1456 * The open entry point is called when a network interface is made
1457 * active by the system (IFF_UP). At this point all resources needed
1458 * for transmit and receive operations are allocated, the interrupt
1459 * handler is registered with the OS, the watchdog timer is started,
1460 * and the stack is notified that the interface is ready.
1462 static int igb_open(struct net_device *netdev)
1464 struct igb_adapter *adapter = netdev_priv(netdev);
1465 struct e1000_hw *hw = &adapter->hw;
1466 int err;
1467 int i;
1469 /* disallow open during test */
1470 if (test_bit(__IGB_TESTING, &adapter->state))
1471 return -EBUSY;
1473 /* allocate transmit descriptors */
1474 err = igb_setup_all_tx_resources(adapter);
1475 if (err)
1476 goto err_setup_tx;
1478 /* allocate receive descriptors */
1479 err = igb_setup_all_rx_resources(adapter);
1480 if (err)
1481 goto err_setup_rx;
1483 /* e1000_power_up_phy(adapter); */
1485 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1486 if ((adapter->hw.mng_cookie.status &
1487 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1488 igb_update_mng_vlan(adapter);
1490 /* before we allocate an interrupt, we must be ready to handle it.
1491 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1492 * as soon as we call pci_request_irq, so we have to setup our
1493 * clean_rx handler before we do so. */
1494 igb_configure(adapter);
1496 err = igb_request_irq(adapter);
1497 if (err)
1498 goto err_req_irq;
1500 /* From here on the code is the same as igb_up() */
1501 clear_bit(__IGB_DOWN, &adapter->state);
1503 for (i = 0; i < adapter->num_rx_queues; i++)
1504 napi_enable(&adapter->rx_ring[i].napi);
1506 /* Clear any pending interrupts. */
1507 rd32(E1000_ICR);
1509 igb_irq_enable(adapter);
1511 netif_tx_start_all_queues(netdev);
1513 /* Fire a link status change interrupt to start the watchdog. */
1514 wr32(E1000_ICS, E1000_ICS_LSC);
1516 return 0;
1518 err_req_irq:
1519 igb_release_hw_control(adapter);
1520 /* e1000_power_down_phy(adapter); */
1521 igb_free_all_rx_resources(adapter);
1522 err_setup_rx:
1523 igb_free_all_tx_resources(adapter);
1524 err_setup_tx:
1525 igb_reset(adapter);
1527 return err;
1531 * igb_close - Disables a network interface
1532 * @netdev: network interface device structure
1534 * Returns 0, this is not allowed to fail
1536 * The close entry point is called when an interface is de-activated
1537 * by the OS. The hardware is still under the driver's control, but
1538 * needs to be disabled. A global MAC reset is issued to stop the
1539 * hardware, and all transmit and receive resources are freed.
1541 static int igb_close(struct net_device *netdev)
1543 struct igb_adapter *adapter = netdev_priv(netdev);
1545 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1546 igb_down(adapter);
1548 igb_free_irq(adapter);
1550 igb_free_all_tx_resources(adapter);
1551 igb_free_all_rx_resources(adapter);
1553 /* kill manageability vlan ID if supported, but not if a vlan with
1554 * the same ID is registered on the host OS (let 8021q kill it) */
1555 if ((adapter->hw.mng_cookie.status &
1556 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1557 !(adapter->vlgrp &&
1558 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1559 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1561 return 0;
1565 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1566 * @adapter: board private structure
1567 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1569 * Return 0 on success, negative on failure
1572 int igb_setup_tx_resources(struct igb_adapter *adapter,
1573 struct igb_ring *tx_ring)
1575 struct pci_dev *pdev = adapter->pdev;
1576 int size;
1578 size = sizeof(struct igb_buffer) * tx_ring->count;
1579 tx_ring->buffer_info = vmalloc(size);
1580 if (!tx_ring->buffer_info)
1581 goto err;
1582 memset(tx_ring->buffer_info, 0, size);
1584 /* round up to nearest 4K */
1585 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1586 tx_ring->size = ALIGN(tx_ring->size, 4096);
1588 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1589 &tx_ring->dma);
1591 if (!tx_ring->desc)
1592 goto err;
1594 tx_ring->adapter = adapter;
1595 tx_ring->next_to_use = 0;
1596 tx_ring->next_to_clean = 0;
1597 return 0;
1599 err:
1600 vfree(tx_ring->buffer_info);
1601 dev_err(&adapter->pdev->dev,
1602 "Unable to allocate memory for the transmit descriptor ring\n");
1603 return -ENOMEM;
1607 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1608 * (Descriptors) for all queues
1609 * @adapter: board private structure
1611 * Return 0 on success, negative on failure
1613 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1615 int i, err = 0;
1616 int r_idx;
1618 for (i = 0; i < adapter->num_tx_queues; i++) {
1619 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1620 if (err) {
1621 dev_err(&adapter->pdev->dev,
1622 "Allocation for Tx Queue %u failed\n", i);
1623 for (i--; i >= 0; i--)
1624 igb_free_tx_resources(&adapter->tx_ring[i]);
1625 break;
1629 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1630 r_idx = i % adapter->num_tx_queues;
1631 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1633 return err;
1637 * igb_configure_tx - Configure transmit Unit after Reset
1638 * @adapter: board private structure
1640 * Configure the Tx unit of the MAC after a reset.
1642 static void igb_configure_tx(struct igb_adapter *adapter)
1644 u64 tdba;
1645 struct e1000_hw *hw = &adapter->hw;
1646 u32 tctl;
1647 u32 txdctl, txctrl;
1648 int i, j;
1650 for (i = 0; i < adapter->num_tx_queues; i++) {
1651 struct igb_ring *ring = &(adapter->tx_ring[i]);
1652 j = ring->reg_idx;
1653 wr32(E1000_TDLEN(j),
1654 ring->count * sizeof(struct e1000_tx_desc));
1655 tdba = ring->dma;
1656 wr32(E1000_TDBAL(j),
1657 tdba & 0x00000000ffffffffULL);
1658 wr32(E1000_TDBAH(j), tdba >> 32);
1660 ring->head = E1000_TDH(j);
1661 ring->tail = E1000_TDT(j);
1662 writel(0, hw->hw_addr + ring->tail);
1663 writel(0, hw->hw_addr + ring->head);
1664 txdctl = rd32(E1000_TXDCTL(j));
1665 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1666 wr32(E1000_TXDCTL(j), txdctl);
1668 /* Turn off Relaxed Ordering on head write-backs. The
1669 * writebacks MUST be delivered in order or it will
1670 * completely screw up our bookeeping.
1672 txctrl = rd32(E1000_DCA_TXCTRL(j));
1673 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1674 wr32(E1000_DCA_TXCTRL(j), txctrl);
1679 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1681 /* Program the Transmit Control Register */
1683 tctl = rd32(E1000_TCTL);
1684 tctl &= ~E1000_TCTL_CT;
1685 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1686 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1688 igb_config_collision_dist(hw);
1690 /* Setup Transmit Descriptor Settings for eop descriptor */
1691 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1693 /* Enable transmits */
1694 tctl |= E1000_TCTL_EN;
1696 wr32(E1000_TCTL, tctl);
1700 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1701 * @adapter: board private structure
1702 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1704 * Returns 0 on success, negative on failure
1707 int igb_setup_rx_resources(struct igb_adapter *adapter,
1708 struct igb_ring *rx_ring)
1710 struct pci_dev *pdev = adapter->pdev;
1711 int size, desc_len;
1713 size = sizeof(struct igb_buffer) * rx_ring->count;
1714 rx_ring->buffer_info = vmalloc(size);
1715 if (!rx_ring->buffer_info)
1716 goto err;
1717 memset(rx_ring->buffer_info, 0, size);
1719 desc_len = sizeof(union e1000_adv_rx_desc);
1721 /* Round up to nearest 4K */
1722 rx_ring->size = rx_ring->count * desc_len;
1723 rx_ring->size = ALIGN(rx_ring->size, 4096);
1725 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1726 &rx_ring->dma);
1728 if (!rx_ring->desc)
1729 goto err;
1731 rx_ring->next_to_clean = 0;
1732 rx_ring->next_to_use = 0;
1734 rx_ring->adapter = adapter;
1736 return 0;
1738 err:
1739 vfree(rx_ring->buffer_info);
1740 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1741 "the receive descriptor ring\n");
1742 return -ENOMEM;
1746 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1747 * (Descriptors) for all queues
1748 * @adapter: board private structure
1750 * Return 0 on success, negative on failure
1752 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1754 int i, err = 0;
1756 for (i = 0; i < adapter->num_rx_queues; i++) {
1757 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1758 if (err) {
1759 dev_err(&adapter->pdev->dev,
1760 "Allocation for Rx Queue %u failed\n", i);
1761 for (i--; i >= 0; i--)
1762 igb_free_rx_resources(&adapter->rx_ring[i]);
1763 break;
1767 return err;
1771 * igb_setup_rctl - configure the receive control registers
1772 * @adapter: Board private structure
1774 static void igb_setup_rctl(struct igb_adapter *adapter)
1776 struct e1000_hw *hw = &adapter->hw;
1777 u32 rctl;
1778 u32 srrctl = 0;
1779 int i, j;
1781 rctl = rd32(E1000_RCTL);
1783 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1784 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1786 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1787 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1790 * enable stripping of CRC. It's unlikely this will break BMC
1791 * redirection as it did with e1000. Newer features require
1792 * that the HW strips the CRC.
1794 rctl |= E1000_RCTL_SECRC;
1797 * disable store bad packets and clear size bits.
1799 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1801 /* enable LPE when to prevent packets larger than max_frame_size */
1802 rctl |= E1000_RCTL_LPE;
1804 /* Setup buffer sizes */
1805 switch (adapter->rx_buffer_len) {
1806 case IGB_RXBUFFER_256:
1807 rctl |= E1000_RCTL_SZ_256;
1808 break;
1809 case IGB_RXBUFFER_512:
1810 rctl |= E1000_RCTL_SZ_512;
1811 break;
1812 default:
1813 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1814 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1815 break;
1818 /* 82575 and greater support packet-split where the protocol
1819 * header is placed in skb->data and the packet data is
1820 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1821 * In the case of a non-split, skb->data is linearly filled,
1822 * followed by the page buffers. Therefore, skb->data is
1823 * sized to hold the largest protocol header.
1825 /* allocations using alloc_page take too long for regular MTU
1826 * so only enable packet split for jumbo frames */
1827 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1828 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1829 srrctl |= adapter->rx_ps_hdr_size <<
1830 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1831 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1832 } else {
1833 adapter->rx_ps_hdr_size = 0;
1834 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1837 for (i = 0; i < adapter->num_rx_queues; i++) {
1838 j = adapter->rx_ring[i].reg_idx;
1839 wr32(E1000_SRRCTL(j), srrctl);
1842 wr32(E1000_RCTL, rctl);
1846 * igb_configure_rx - Configure receive Unit after Reset
1847 * @adapter: board private structure
1849 * Configure the Rx unit of the MAC after a reset.
1851 static void igb_configure_rx(struct igb_adapter *adapter)
1853 u64 rdba;
1854 struct e1000_hw *hw = &adapter->hw;
1855 u32 rctl, rxcsum;
1856 u32 rxdctl;
1857 int i, j;
1859 /* disable receives while setting up the descriptors */
1860 rctl = rd32(E1000_RCTL);
1861 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1862 wrfl();
1863 mdelay(10);
1865 if (adapter->itr_setting > 3)
1866 wr32(E1000_ITR, adapter->itr);
1868 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1869 * the Base and Length of the Rx Descriptor Ring */
1870 for (i = 0; i < adapter->num_rx_queues; i++) {
1871 struct igb_ring *ring = &(adapter->rx_ring[i]);
1872 j = ring->reg_idx;
1873 rdba = ring->dma;
1874 wr32(E1000_RDBAL(j),
1875 rdba & 0x00000000ffffffffULL);
1876 wr32(E1000_RDBAH(j), rdba >> 32);
1877 wr32(E1000_RDLEN(j),
1878 ring->count * sizeof(union e1000_adv_rx_desc));
1880 ring->head = E1000_RDH(j);
1881 ring->tail = E1000_RDT(j);
1882 writel(0, hw->hw_addr + ring->tail);
1883 writel(0, hw->hw_addr + ring->head);
1885 rxdctl = rd32(E1000_RXDCTL(j));
1886 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1887 rxdctl &= 0xFFF00000;
1888 rxdctl |= IGB_RX_PTHRESH;
1889 rxdctl |= IGB_RX_HTHRESH << 8;
1890 rxdctl |= IGB_RX_WTHRESH << 16;
1891 wr32(E1000_RXDCTL(j), rxdctl);
1894 if (adapter->num_rx_queues > 1) {
1895 u32 random[10];
1896 u32 mrqc;
1897 u32 j, shift;
1898 union e1000_reta {
1899 u32 dword;
1900 u8 bytes[4];
1901 } reta;
1903 get_random_bytes(&random[0], 40);
1905 if (hw->mac.type >= e1000_82576)
1906 shift = 0;
1907 else
1908 shift = 6;
1909 for (j = 0; j < (32 * 4); j++) {
1910 reta.bytes[j & 3] =
1911 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1912 if ((j & 3) == 3)
1913 writel(reta.dword,
1914 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1916 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1918 /* Fill out hash function seeds */
1919 for (j = 0; j < 10; j++)
1920 array_wr32(E1000_RSSRK(0), j, random[j]);
1922 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1923 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1924 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1925 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1926 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1927 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1928 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1929 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1932 wr32(E1000_MRQC, mrqc);
1934 /* Multiqueue and raw packet checksumming are mutually
1935 * exclusive. Note that this not the same as TCP/IP
1936 * checksumming, which works fine. */
1937 rxcsum = rd32(E1000_RXCSUM);
1938 rxcsum |= E1000_RXCSUM_PCSD;
1939 wr32(E1000_RXCSUM, rxcsum);
1940 } else {
1941 /* Enable Receive Checksum Offload for TCP and UDP */
1942 rxcsum = rd32(E1000_RXCSUM);
1943 if (adapter->rx_csum) {
1944 rxcsum |= E1000_RXCSUM_TUOFL;
1946 /* Enable IPv4 payload checksum for UDP fragments
1947 * Must be used in conjunction with packet-split. */
1948 if (adapter->rx_ps_hdr_size)
1949 rxcsum |= E1000_RXCSUM_IPPCSE;
1950 } else {
1951 rxcsum &= ~E1000_RXCSUM_TUOFL;
1952 /* don't need to clear IPPCSE as it defaults to 0 */
1954 wr32(E1000_RXCSUM, rxcsum);
1957 if (adapter->vlgrp)
1958 wr32(E1000_RLPML,
1959 adapter->max_frame_size + VLAN_TAG_SIZE);
1960 else
1961 wr32(E1000_RLPML, adapter->max_frame_size);
1963 /* Enable Receives */
1964 wr32(E1000_RCTL, rctl);
1968 * igb_free_tx_resources - Free Tx Resources per Queue
1969 * @tx_ring: Tx descriptor ring for a specific queue
1971 * Free all transmit software resources
1973 void igb_free_tx_resources(struct igb_ring *tx_ring)
1975 struct pci_dev *pdev = tx_ring->adapter->pdev;
1977 igb_clean_tx_ring(tx_ring);
1979 vfree(tx_ring->buffer_info);
1980 tx_ring->buffer_info = NULL;
1982 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1984 tx_ring->desc = NULL;
1988 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1989 * @adapter: board private structure
1991 * Free all transmit software resources
1993 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1995 int i;
1997 for (i = 0; i < adapter->num_tx_queues; i++)
1998 igb_free_tx_resources(&adapter->tx_ring[i]);
2001 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2002 struct igb_buffer *buffer_info)
2004 if (buffer_info->dma) {
2005 pci_unmap_page(adapter->pdev,
2006 buffer_info->dma,
2007 buffer_info->length,
2008 PCI_DMA_TODEVICE);
2009 buffer_info->dma = 0;
2011 if (buffer_info->skb) {
2012 dev_kfree_skb_any(buffer_info->skb);
2013 buffer_info->skb = NULL;
2015 buffer_info->time_stamp = 0;
2016 /* buffer_info must be completely set up in the transmit path */
2020 * igb_clean_tx_ring - Free Tx Buffers
2021 * @tx_ring: ring to be cleaned
2023 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2025 struct igb_adapter *adapter = tx_ring->adapter;
2026 struct igb_buffer *buffer_info;
2027 unsigned long size;
2028 unsigned int i;
2030 if (!tx_ring->buffer_info)
2031 return;
2032 /* Free all the Tx ring sk_buffs */
2034 for (i = 0; i < tx_ring->count; i++) {
2035 buffer_info = &tx_ring->buffer_info[i];
2036 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2039 size = sizeof(struct igb_buffer) * tx_ring->count;
2040 memset(tx_ring->buffer_info, 0, size);
2042 /* Zero out the descriptor ring */
2044 memset(tx_ring->desc, 0, tx_ring->size);
2046 tx_ring->next_to_use = 0;
2047 tx_ring->next_to_clean = 0;
2049 writel(0, adapter->hw.hw_addr + tx_ring->head);
2050 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2054 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2055 * @adapter: board private structure
2057 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2059 int i;
2061 for (i = 0; i < adapter->num_tx_queues; i++)
2062 igb_clean_tx_ring(&adapter->tx_ring[i]);
2066 * igb_free_rx_resources - Free Rx Resources
2067 * @rx_ring: ring to clean the resources from
2069 * Free all receive software resources
2071 void igb_free_rx_resources(struct igb_ring *rx_ring)
2073 struct pci_dev *pdev = rx_ring->adapter->pdev;
2075 igb_clean_rx_ring(rx_ring);
2077 vfree(rx_ring->buffer_info);
2078 rx_ring->buffer_info = NULL;
2080 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2082 rx_ring->desc = NULL;
2086 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2087 * @adapter: board private structure
2089 * Free all receive software resources
2091 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2093 int i;
2095 for (i = 0; i < adapter->num_rx_queues; i++)
2096 igb_free_rx_resources(&adapter->rx_ring[i]);
2100 * igb_clean_rx_ring - Free Rx Buffers per Queue
2101 * @rx_ring: ring to free buffers from
2103 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2105 struct igb_adapter *adapter = rx_ring->adapter;
2106 struct igb_buffer *buffer_info;
2107 struct pci_dev *pdev = adapter->pdev;
2108 unsigned long size;
2109 unsigned int i;
2111 if (!rx_ring->buffer_info)
2112 return;
2113 /* Free all the Rx ring sk_buffs */
2114 for (i = 0; i < rx_ring->count; i++) {
2115 buffer_info = &rx_ring->buffer_info[i];
2116 if (buffer_info->dma) {
2117 if (adapter->rx_ps_hdr_size)
2118 pci_unmap_single(pdev, buffer_info->dma,
2119 adapter->rx_ps_hdr_size,
2120 PCI_DMA_FROMDEVICE);
2121 else
2122 pci_unmap_single(pdev, buffer_info->dma,
2123 adapter->rx_buffer_len,
2124 PCI_DMA_FROMDEVICE);
2125 buffer_info->dma = 0;
2128 if (buffer_info->skb) {
2129 dev_kfree_skb(buffer_info->skb);
2130 buffer_info->skb = NULL;
2132 if (buffer_info->page) {
2133 if (buffer_info->page_dma)
2134 pci_unmap_page(pdev, buffer_info->page_dma,
2135 PAGE_SIZE / 2,
2136 PCI_DMA_FROMDEVICE);
2137 put_page(buffer_info->page);
2138 buffer_info->page = NULL;
2139 buffer_info->page_dma = 0;
2140 buffer_info->page_offset = 0;
2144 size = sizeof(struct igb_buffer) * rx_ring->count;
2145 memset(rx_ring->buffer_info, 0, size);
2147 /* Zero out the descriptor ring */
2148 memset(rx_ring->desc, 0, rx_ring->size);
2150 rx_ring->next_to_clean = 0;
2151 rx_ring->next_to_use = 0;
2153 writel(0, adapter->hw.hw_addr + rx_ring->head);
2154 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2158 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2159 * @adapter: board private structure
2161 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2163 int i;
2165 for (i = 0; i < adapter->num_rx_queues; i++)
2166 igb_clean_rx_ring(&adapter->rx_ring[i]);
2170 * igb_set_mac - Change the Ethernet Address of the NIC
2171 * @netdev: network interface device structure
2172 * @p: pointer to an address structure
2174 * Returns 0 on success, negative on failure
2176 static int igb_set_mac(struct net_device *netdev, void *p)
2178 struct igb_adapter *adapter = netdev_priv(netdev);
2179 struct sockaddr *addr = p;
2181 if (!is_valid_ether_addr(addr->sa_data))
2182 return -EADDRNOTAVAIL;
2184 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2185 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2187 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2189 return 0;
2193 * igb_set_multi - Multicast and Promiscuous mode set
2194 * @netdev: network interface device structure
2196 * The set_multi entry point is called whenever the multicast address
2197 * list or the network interface flags are updated. This routine is
2198 * responsible for configuring the hardware for proper multicast,
2199 * promiscuous mode, and all-multi behavior.
2201 static void igb_set_multi(struct net_device *netdev)
2203 struct igb_adapter *adapter = netdev_priv(netdev);
2204 struct e1000_hw *hw = &adapter->hw;
2205 struct e1000_mac_info *mac = &hw->mac;
2206 struct dev_mc_list *mc_ptr;
2207 u8 *mta_list;
2208 u32 rctl;
2209 int i;
2211 /* Check for Promiscuous and All Multicast modes */
2213 rctl = rd32(E1000_RCTL);
2215 if (netdev->flags & IFF_PROMISC) {
2216 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2217 rctl &= ~E1000_RCTL_VFE;
2218 } else {
2219 if (netdev->flags & IFF_ALLMULTI) {
2220 rctl |= E1000_RCTL_MPE;
2221 rctl &= ~E1000_RCTL_UPE;
2222 } else
2223 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2224 rctl |= E1000_RCTL_VFE;
2226 wr32(E1000_RCTL, rctl);
2228 if (!netdev->mc_count) {
2229 /* nothing to program, so clear mc list */
2230 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2231 mac->rar_entry_count);
2232 return;
2235 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2236 if (!mta_list)
2237 return;
2239 /* The shared function expects a packed array of only addresses. */
2240 mc_ptr = netdev->mc_list;
2242 for (i = 0; i < netdev->mc_count; i++) {
2243 if (!mc_ptr)
2244 break;
2245 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2246 mc_ptr = mc_ptr->next;
2248 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2249 mac->rar_entry_count);
2250 kfree(mta_list);
2253 /* Need to wait a few seconds after link up to get diagnostic information from
2254 * the phy */
2255 static void igb_update_phy_info(unsigned long data)
2257 struct igb_adapter *adapter = (struct igb_adapter *) data;
2258 igb_get_phy_info(&adapter->hw);
2262 * igb_has_link - check shared code for link and determine up/down
2263 * @adapter: pointer to driver private info
2265 static bool igb_has_link(struct igb_adapter *adapter)
2267 struct e1000_hw *hw = &adapter->hw;
2268 bool link_active = false;
2269 s32 ret_val = 0;
2271 /* get_link_status is set on LSC (link status) interrupt or
2272 * rx sequence error interrupt. get_link_status will stay
2273 * false until the e1000_check_for_link establishes link
2274 * for copper adapters ONLY
2276 switch (hw->phy.media_type) {
2277 case e1000_media_type_copper:
2278 if (hw->mac.get_link_status) {
2279 ret_val = hw->mac.ops.check_for_link(hw);
2280 link_active = !hw->mac.get_link_status;
2281 } else {
2282 link_active = true;
2284 break;
2285 case e1000_media_type_fiber:
2286 ret_val = hw->mac.ops.check_for_link(hw);
2287 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2288 break;
2289 case e1000_media_type_internal_serdes:
2290 ret_val = hw->mac.ops.check_for_link(hw);
2291 link_active = hw->mac.serdes_has_link;
2292 break;
2293 default:
2294 case e1000_media_type_unknown:
2295 break;
2298 return link_active;
2302 * igb_watchdog - Timer Call-back
2303 * @data: pointer to adapter cast into an unsigned long
2305 static void igb_watchdog(unsigned long data)
2307 struct igb_adapter *adapter = (struct igb_adapter *)data;
2308 /* Do the rest outside of interrupt context */
2309 schedule_work(&adapter->watchdog_task);
2312 static void igb_watchdog_task(struct work_struct *work)
2314 struct igb_adapter *adapter = container_of(work,
2315 struct igb_adapter, watchdog_task);
2316 struct e1000_hw *hw = &adapter->hw;
2318 struct net_device *netdev = adapter->netdev;
2319 struct igb_ring *tx_ring = adapter->tx_ring;
2320 struct e1000_mac_info *mac = &adapter->hw.mac;
2321 u32 link;
2322 u32 eics = 0;
2323 s32 ret_val;
2324 int i;
2326 link = igb_has_link(adapter);
2327 if ((netif_carrier_ok(netdev)) && link)
2328 goto link_up;
2330 if (link) {
2331 if (!netif_carrier_ok(netdev)) {
2332 u32 ctrl;
2333 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2334 &adapter->link_speed,
2335 &adapter->link_duplex);
2337 ctrl = rd32(E1000_CTRL);
2338 /* Links status message must follow this format */
2339 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2340 "Flow Control: %s\n",
2341 netdev->name,
2342 adapter->link_speed,
2343 adapter->link_duplex == FULL_DUPLEX ?
2344 "Full Duplex" : "Half Duplex",
2345 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2346 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2347 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2348 E1000_CTRL_TFCE) ? "TX" : "None")));
2350 /* tweak tx_queue_len according to speed/duplex and
2351 * adjust the timeout factor */
2352 netdev->tx_queue_len = adapter->tx_queue_len;
2353 adapter->tx_timeout_factor = 1;
2354 switch (adapter->link_speed) {
2355 case SPEED_10:
2356 netdev->tx_queue_len = 10;
2357 adapter->tx_timeout_factor = 14;
2358 break;
2359 case SPEED_100:
2360 netdev->tx_queue_len = 100;
2361 /* maybe add some timeout factor ? */
2362 break;
2365 netif_carrier_on(netdev);
2366 netif_tx_wake_all_queues(netdev);
2368 if (!test_bit(__IGB_DOWN, &adapter->state))
2369 mod_timer(&adapter->phy_info_timer,
2370 round_jiffies(jiffies + 2 * HZ));
2372 } else {
2373 if (netif_carrier_ok(netdev)) {
2374 adapter->link_speed = 0;
2375 adapter->link_duplex = 0;
2376 /* Links status message must follow this format */
2377 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2378 netdev->name);
2379 netif_carrier_off(netdev);
2380 netif_tx_stop_all_queues(netdev);
2381 if (!test_bit(__IGB_DOWN, &adapter->state))
2382 mod_timer(&adapter->phy_info_timer,
2383 round_jiffies(jiffies + 2 * HZ));
2387 link_up:
2388 igb_update_stats(adapter);
2390 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2391 adapter->tpt_old = adapter->stats.tpt;
2392 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2393 adapter->colc_old = adapter->stats.colc;
2395 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2396 adapter->gorc_old = adapter->stats.gorc;
2397 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2398 adapter->gotc_old = adapter->stats.gotc;
2400 igb_update_adaptive(&adapter->hw);
2402 if (!netif_carrier_ok(netdev)) {
2403 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2404 /* We've lost link, so the controller stops DMA,
2405 * but we've got queued Tx work that's never going
2406 * to get done, so reset controller to flush Tx.
2407 * (Do the reset outside of interrupt context). */
2408 adapter->tx_timeout_count++;
2409 schedule_work(&adapter->reset_task);
2413 /* Cause software interrupt to ensure rx ring is cleaned */
2414 if (adapter->msix_entries) {
2415 for (i = 0; i < adapter->num_rx_queues; i++)
2416 eics |= adapter->rx_ring[i].eims_value;
2417 wr32(E1000_EICS, eics);
2418 } else {
2419 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2422 /* Force detection of hung controller every watchdog period */
2423 tx_ring->detect_tx_hung = true;
2425 /* Reset the timer */
2426 if (!test_bit(__IGB_DOWN, &adapter->state))
2427 mod_timer(&adapter->watchdog_timer,
2428 round_jiffies(jiffies + 2 * HZ));
2431 enum latency_range {
2432 lowest_latency = 0,
2433 low_latency = 1,
2434 bulk_latency = 2,
2435 latency_invalid = 255
2440 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2442 * Stores a new ITR value based on strictly on packet size. This
2443 * algorithm is less sophisticated than that used in igb_update_itr,
2444 * due to the difficulty of synchronizing statistics across multiple
2445 * receive rings. The divisors and thresholds used by this fuction
2446 * were determined based on theoretical maximum wire speed and testing
2447 * data, in order to minimize response time while increasing bulk
2448 * throughput.
2449 * This functionality is controlled by the InterruptThrottleRate module
2450 * parameter (see igb_param.c)
2451 * NOTE: This function is called only when operating in a multiqueue
2452 * receive environment.
2453 * @rx_ring: pointer to ring
2455 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2457 int new_val = rx_ring->itr_val;
2458 int avg_wire_size = 0;
2459 struct igb_adapter *adapter = rx_ring->adapter;
2461 if (!rx_ring->total_packets)
2462 goto clear_counts; /* no packets, so don't do anything */
2464 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2465 * ints/sec - ITR timer value of 120 ticks.
2467 if (adapter->link_speed != SPEED_1000) {
2468 new_val = 120;
2469 goto set_itr_val;
2471 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2473 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2474 avg_wire_size += 24;
2476 /* Don't starve jumbo frames */
2477 avg_wire_size = min(avg_wire_size, 3000);
2479 /* Give a little boost to mid-size frames */
2480 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2481 new_val = avg_wire_size / 3;
2482 else
2483 new_val = avg_wire_size / 2;
2485 set_itr_val:
2486 if (new_val != rx_ring->itr_val) {
2487 rx_ring->itr_val = new_val;
2488 rx_ring->set_itr = 1;
2490 clear_counts:
2491 rx_ring->total_bytes = 0;
2492 rx_ring->total_packets = 0;
2496 * igb_update_itr - update the dynamic ITR value based on statistics
2497 * Stores a new ITR value based on packets and byte
2498 * counts during the last interrupt. The advantage of per interrupt
2499 * computation is faster updates and more accurate ITR for the current
2500 * traffic pattern. Constants in this function were computed
2501 * based on theoretical maximum wire speed and thresholds were set based
2502 * on testing data as well as attempting to minimize response time
2503 * while increasing bulk throughput.
2504 * this functionality is controlled by the InterruptThrottleRate module
2505 * parameter (see igb_param.c)
2506 * NOTE: These calculations are only valid when operating in a single-
2507 * queue environment.
2508 * @adapter: pointer to adapter
2509 * @itr_setting: current adapter->itr
2510 * @packets: the number of packets during this measurement interval
2511 * @bytes: the number of bytes during this measurement interval
2513 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2514 int packets, int bytes)
2516 unsigned int retval = itr_setting;
2518 if (packets == 0)
2519 goto update_itr_done;
2521 switch (itr_setting) {
2522 case lowest_latency:
2523 /* handle TSO and jumbo frames */
2524 if (bytes/packets > 8000)
2525 retval = bulk_latency;
2526 else if ((packets < 5) && (bytes > 512))
2527 retval = low_latency;
2528 break;
2529 case low_latency: /* 50 usec aka 20000 ints/s */
2530 if (bytes > 10000) {
2531 /* this if handles the TSO accounting */
2532 if (bytes/packets > 8000) {
2533 retval = bulk_latency;
2534 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2535 retval = bulk_latency;
2536 } else if ((packets > 35)) {
2537 retval = lowest_latency;
2539 } else if (bytes/packets > 2000) {
2540 retval = bulk_latency;
2541 } else if (packets <= 2 && bytes < 512) {
2542 retval = lowest_latency;
2544 break;
2545 case bulk_latency: /* 250 usec aka 4000 ints/s */
2546 if (bytes > 25000) {
2547 if (packets > 35)
2548 retval = low_latency;
2549 } else if (bytes < 6000) {
2550 retval = low_latency;
2552 break;
2555 update_itr_done:
2556 return retval;
2559 static void igb_set_itr(struct igb_adapter *adapter)
2561 u16 current_itr;
2562 u32 new_itr = adapter->itr;
2564 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2565 if (adapter->link_speed != SPEED_1000) {
2566 current_itr = 0;
2567 new_itr = 4000;
2568 goto set_itr_now;
2571 adapter->rx_itr = igb_update_itr(adapter,
2572 adapter->rx_itr,
2573 adapter->rx_ring->total_packets,
2574 adapter->rx_ring->total_bytes);
2576 if (adapter->rx_ring->buddy) {
2577 adapter->tx_itr = igb_update_itr(adapter,
2578 adapter->tx_itr,
2579 adapter->tx_ring->total_packets,
2580 adapter->tx_ring->total_bytes);
2582 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2583 } else {
2584 current_itr = adapter->rx_itr;
2587 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2588 if (adapter->itr_setting == 3 &&
2589 current_itr == lowest_latency)
2590 current_itr = low_latency;
2592 switch (current_itr) {
2593 /* counts and packets in update_itr are dependent on these numbers */
2594 case lowest_latency:
2595 new_itr = 70000;
2596 break;
2597 case low_latency:
2598 new_itr = 20000; /* aka hwitr = ~200 */
2599 break;
2600 case bulk_latency:
2601 new_itr = 4000;
2602 break;
2603 default:
2604 break;
2607 set_itr_now:
2608 adapter->rx_ring->total_bytes = 0;
2609 adapter->rx_ring->total_packets = 0;
2610 if (adapter->rx_ring->buddy) {
2611 adapter->rx_ring->buddy->total_bytes = 0;
2612 adapter->rx_ring->buddy->total_packets = 0;
2615 if (new_itr != adapter->itr) {
2616 /* this attempts to bias the interrupt rate towards Bulk
2617 * by adding intermediate steps when interrupt rate is
2618 * increasing */
2619 new_itr = new_itr > adapter->itr ?
2620 min(adapter->itr + (new_itr >> 2), new_itr) :
2621 new_itr;
2622 /* Don't write the value here; it resets the adapter's
2623 * internal timer, and causes us to delay far longer than
2624 * we should between interrupts. Instead, we write the ITR
2625 * value at the beginning of the next interrupt so the timing
2626 * ends up being correct.
2628 adapter->itr = new_itr;
2629 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2630 adapter->rx_ring->set_itr = 1;
2633 return;
2637 #define IGB_TX_FLAGS_CSUM 0x00000001
2638 #define IGB_TX_FLAGS_VLAN 0x00000002
2639 #define IGB_TX_FLAGS_TSO 0x00000004
2640 #define IGB_TX_FLAGS_IPV4 0x00000008
2641 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2642 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2644 static inline int igb_tso_adv(struct igb_adapter *adapter,
2645 struct igb_ring *tx_ring,
2646 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2648 struct e1000_adv_tx_context_desc *context_desc;
2649 unsigned int i;
2650 int err;
2651 struct igb_buffer *buffer_info;
2652 u32 info = 0, tu_cmd = 0;
2653 u32 mss_l4len_idx, l4len;
2654 *hdr_len = 0;
2656 if (skb_header_cloned(skb)) {
2657 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2658 if (err)
2659 return err;
2662 l4len = tcp_hdrlen(skb);
2663 *hdr_len += l4len;
2665 if (skb->protocol == htons(ETH_P_IP)) {
2666 struct iphdr *iph = ip_hdr(skb);
2667 iph->tot_len = 0;
2668 iph->check = 0;
2669 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2670 iph->daddr, 0,
2671 IPPROTO_TCP,
2673 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2674 ipv6_hdr(skb)->payload_len = 0;
2675 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2676 &ipv6_hdr(skb)->daddr,
2677 0, IPPROTO_TCP, 0);
2680 i = tx_ring->next_to_use;
2682 buffer_info = &tx_ring->buffer_info[i];
2683 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2684 /* VLAN MACLEN IPLEN */
2685 if (tx_flags & IGB_TX_FLAGS_VLAN)
2686 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2687 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2688 *hdr_len += skb_network_offset(skb);
2689 info |= skb_network_header_len(skb);
2690 *hdr_len += skb_network_header_len(skb);
2691 context_desc->vlan_macip_lens = cpu_to_le32(info);
2693 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2694 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2696 if (skb->protocol == htons(ETH_P_IP))
2697 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2698 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2700 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2702 /* MSS L4LEN IDX */
2703 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2704 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2706 /* Context index must be unique per ring. */
2707 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2708 mss_l4len_idx |= tx_ring->queue_index << 4;
2710 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2711 context_desc->seqnum_seed = 0;
2713 buffer_info->time_stamp = jiffies;
2714 buffer_info->next_to_watch = i;
2715 buffer_info->dma = 0;
2716 i++;
2717 if (i == tx_ring->count)
2718 i = 0;
2720 tx_ring->next_to_use = i;
2722 return true;
2725 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2726 struct igb_ring *tx_ring,
2727 struct sk_buff *skb, u32 tx_flags)
2729 struct e1000_adv_tx_context_desc *context_desc;
2730 unsigned int i;
2731 struct igb_buffer *buffer_info;
2732 u32 info = 0, tu_cmd = 0;
2734 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2735 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2736 i = tx_ring->next_to_use;
2737 buffer_info = &tx_ring->buffer_info[i];
2738 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2740 if (tx_flags & IGB_TX_FLAGS_VLAN)
2741 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2742 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2743 if (skb->ip_summed == CHECKSUM_PARTIAL)
2744 info |= skb_network_header_len(skb);
2746 context_desc->vlan_macip_lens = cpu_to_le32(info);
2748 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2750 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2751 switch (skb->protocol) {
2752 case cpu_to_be16(ETH_P_IP):
2753 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2754 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2755 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2756 break;
2757 case cpu_to_be16(ETH_P_IPV6):
2758 /* XXX what about other V6 headers?? */
2759 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2760 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2761 break;
2762 default:
2763 if (unlikely(net_ratelimit()))
2764 dev_warn(&adapter->pdev->dev,
2765 "partial checksum but proto=%x!\n",
2766 skb->protocol);
2767 break;
2771 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2772 context_desc->seqnum_seed = 0;
2773 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2774 context_desc->mss_l4len_idx =
2775 cpu_to_le32(tx_ring->queue_index << 4);
2777 buffer_info->time_stamp = jiffies;
2778 buffer_info->next_to_watch = i;
2779 buffer_info->dma = 0;
2781 i++;
2782 if (i == tx_ring->count)
2783 i = 0;
2784 tx_ring->next_to_use = i;
2786 return true;
2790 return false;
2793 #define IGB_MAX_TXD_PWR 16
2794 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2796 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2797 struct igb_ring *tx_ring, struct sk_buff *skb,
2798 unsigned int first)
2800 struct igb_buffer *buffer_info;
2801 unsigned int len = skb_headlen(skb);
2802 unsigned int count = 0, i;
2803 unsigned int f;
2805 i = tx_ring->next_to_use;
2807 buffer_info = &tx_ring->buffer_info[i];
2808 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2809 buffer_info->length = len;
2810 /* set time_stamp *before* dma to help avoid a possible race */
2811 buffer_info->time_stamp = jiffies;
2812 buffer_info->next_to_watch = i;
2813 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2814 PCI_DMA_TODEVICE);
2815 count++;
2816 i++;
2817 if (i == tx_ring->count)
2818 i = 0;
2820 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2821 struct skb_frag_struct *frag;
2823 frag = &skb_shinfo(skb)->frags[f];
2824 len = frag->size;
2826 buffer_info = &tx_ring->buffer_info[i];
2827 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2828 buffer_info->length = len;
2829 buffer_info->time_stamp = jiffies;
2830 buffer_info->next_to_watch = i;
2831 buffer_info->dma = pci_map_page(adapter->pdev,
2832 frag->page,
2833 frag->page_offset,
2834 len,
2835 PCI_DMA_TODEVICE);
2837 count++;
2838 i++;
2839 if (i == tx_ring->count)
2840 i = 0;
2843 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2844 tx_ring->buffer_info[i].skb = skb;
2845 tx_ring->buffer_info[first].next_to_watch = i;
2847 return count;
2850 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2851 struct igb_ring *tx_ring,
2852 int tx_flags, int count, u32 paylen,
2853 u8 hdr_len)
2855 union e1000_adv_tx_desc *tx_desc = NULL;
2856 struct igb_buffer *buffer_info;
2857 u32 olinfo_status = 0, cmd_type_len;
2858 unsigned int i;
2860 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2861 E1000_ADVTXD_DCMD_DEXT);
2863 if (tx_flags & IGB_TX_FLAGS_VLAN)
2864 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2866 if (tx_flags & IGB_TX_FLAGS_TSO) {
2867 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2869 /* insert tcp checksum */
2870 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2872 /* insert ip checksum */
2873 if (tx_flags & IGB_TX_FLAGS_IPV4)
2874 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2876 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2877 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2880 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2881 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2882 IGB_TX_FLAGS_VLAN)))
2883 olinfo_status |= tx_ring->queue_index << 4;
2885 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2887 i = tx_ring->next_to_use;
2888 while (count--) {
2889 buffer_info = &tx_ring->buffer_info[i];
2890 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2891 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2892 tx_desc->read.cmd_type_len =
2893 cpu_to_le32(cmd_type_len | buffer_info->length);
2894 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2895 i++;
2896 if (i == tx_ring->count)
2897 i = 0;
2900 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2901 /* Force memory writes to complete before letting h/w
2902 * know there are new descriptors to fetch. (Only
2903 * applicable for weak-ordered memory model archs,
2904 * such as IA-64). */
2905 wmb();
2907 tx_ring->next_to_use = i;
2908 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2909 /* we need this if more than one processor can write to our tail
2910 * at a time, it syncronizes IO on IA64/Altix systems */
2911 mmiowb();
2914 static int __igb_maybe_stop_tx(struct net_device *netdev,
2915 struct igb_ring *tx_ring, int size)
2917 struct igb_adapter *adapter = netdev_priv(netdev);
2919 netif_stop_subqueue(netdev, tx_ring->queue_index);
2921 /* Herbert's original patch had:
2922 * smp_mb__after_netif_stop_queue();
2923 * but since that doesn't exist yet, just open code it. */
2924 smp_mb();
2926 /* We need to check again in a case another CPU has just
2927 * made room available. */
2928 if (IGB_DESC_UNUSED(tx_ring) < size)
2929 return -EBUSY;
2931 /* A reprieve! */
2932 netif_wake_subqueue(netdev, tx_ring->queue_index);
2933 ++adapter->restart_queue;
2934 return 0;
2937 static int igb_maybe_stop_tx(struct net_device *netdev,
2938 struct igb_ring *tx_ring, int size)
2940 if (IGB_DESC_UNUSED(tx_ring) >= size)
2941 return 0;
2942 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2945 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2947 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2948 struct net_device *netdev,
2949 struct igb_ring *tx_ring)
2951 struct igb_adapter *adapter = netdev_priv(netdev);
2952 unsigned int first;
2953 unsigned int tx_flags = 0;
2954 unsigned int len;
2955 u8 hdr_len = 0;
2956 int tso = 0;
2958 len = skb_headlen(skb);
2960 if (test_bit(__IGB_DOWN, &adapter->state)) {
2961 dev_kfree_skb_any(skb);
2962 return NETDEV_TX_OK;
2965 if (skb->len <= 0) {
2966 dev_kfree_skb_any(skb);
2967 return NETDEV_TX_OK;
2970 /* need: 1 descriptor per page,
2971 * + 2 desc gap to keep tail from touching head,
2972 * + 1 desc for skb->data,
2973 * + 1 desc for context descriptor,
2974 * otherwise try next time */
2975 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2976 /* this is a hard error */
2977 return NETDEV_TX_BUSY;
2979 skb_orphan(skb);
2981 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2982 tx_flags |= IGB_TX_FLAGS_VLAN;
2983 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2986 if (skb->protocol == htons(ETH_P_IP))
2987 tx_flags |= IGB_TX_FLAGS_IPV4;
2989 first = tx_ring->next_to_use;
2991 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2992 &hdr_len) : 0;
2994 if (tso < 0) {
2995 dev_kfree_skb_any(skb);
2996 return NETDEV_TX_OK;
2999 if (tso)
3000 tx_flags |= IGB_TX_FLAGS_TSO;
3001 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3002 if (skb->ip_summed == CHECKSUM_PARTIAL)
3003 tx_flags |= IGB_TX_FLAGS_CSUM;
3005 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3006 igb_tx_map_adv(adapter, tx_ring, skb, first),
3007 skb->len, hdr_len);
3009 netdev->trans_start = jiffies;
3011 /* Make sure there is space in the ring for the next send. */
3012 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3014 return NETDEV_TX_OK;
3017 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3019 struct igb_adapter *adapter = netdev_priv(netdev);
3020 struct igb_ring *tx_ring;
3022 int r_idx = 0;
3023 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3024 tx_ring = adapter->multi_tx_table[r_idx];
3026 /* This goes back to the question of how to logically map a tx queue
3027 * to a flow. Right now, performance is impacted slightly negatively
3028 * if using multiple tx queues. If the stack breaks away from a
3029 * single qdisc implementation, we can look at this again. */
3030 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3034 * igb_tx_timeout - Respond to a Tx Hang
3035 * @netdev: network interface device structure
3037 static void igb_tx_timeout(struct net_device *netdev)
3039 struct igb_adapter *adapter = netdev_priv(netdev);
3040 struct e1000_hw *hw = &adapter->hw;
3042 /* Do the reset outside of interrupt context */
3043 adapter->tx_timeout_count++;
3044 schedule_work(&adapter->reset_task);
3045 wr32(E1000_EICS, adapter->eims_enable_mask &
3046 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3049 static void igb_reset_task(struct work_struct *work)
3051 struct igb_adapter *adapter;
3052 adapter = container_of(work, struct igb_adapter, reset_task);
3054 igb_reinit_locked(adapter);
3058 * igb_get_stats - Get System Network Statistics
3059 * @netdev: network interface device structure
3061 * Returns the address of the device statistics structure.
3062 * The statistics are actually updated from the timer callback.
3064 static struct net_device_stats *
3065 igb_get_stats(struct net_device *netdev)
3067 struct igb_adapter *adapter = netdev_priv(netdev);
3069 /* only return the current stats */
3070 return &adapter->net_stats;
3074 * igb_change_mtu - Change the Maximum Transfer Unit
3075 * @netdev: network interface device structure
3076 * @new_mtu: new value for maximum frame size
3078 * Returns 0 on success, negative on failure
3080 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3082 struct igb_adapter *adapter = netdev_priv(netdev);
3083 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3085 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3086 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3087 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3088 return -EINVAL;
3091 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3092 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3093 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3094 return -EINVAL;
3097 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3098 msleep(1);
3099 /* igb_down has a dependency on max_frame_size */
3100 adapter->max_frame_size = max_frame;
3101 if (netif_running(netdev))
3102 igb_down(adapter);
3104 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3105 * means we reserve 2 more, this pushes us to allocate from the next
3106 * larger slab size.
3107 * i.e. RXBUFFER_2048 --> size-4096 slab
3110 if (max_frame <= IGB_RXBUFFER_256)
3111 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3112 else if (max_frame <= IGB_RXBUFFER_512)
3113 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3114 else if (max_frame <= IGB_RXBUFFER_1024)
3115 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3116 else if (max_frame <= IGB_RXBUFFER_2048)
3117 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3118 else
3119 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3120 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3121 #else
3122 adapter->rx_buffer_len = PAGE_SIZE / 2;
3123 #endif
3124 /* adjust allocation if LPE protects us, and we aren't using SBP */
3125 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3126 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3127 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3129 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3130 netdev->mtu, new_mtu);
3131 netdev->mtu = new_mtu;
3133 if (netif_running(netdev))
3134 igb_up(adapter);
3135 else
3136 igb_reset(adapter);
3138 clear_bit(__IGB_RESETTING, &adapter->state);
3140 return 0;
3144 * igb_update_stats - Update the board statistics counters
3145 * @adapter: board private structure
3148 void igb_update_stats(struct igb_adapter *adapter)
3150 struct e1000_hw *hw = &adapter->hw;
3151 struct pci_dev *pdev = adapter->pdev;
3152 u16 phy_tmp;
3154 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3157 * Prevent stats update while adapter is being reset, or if the pci
3158 * connection is down.
3160 if (adapter->link_speed == 0)
3161 return;
3162 if (pci_channel_offline(pdev))
3163 return;
3165 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3166 adapter->stats.gprc += rd32(E1000_GPRC);
3167 adapter->stats.gorc += rd32(E1000_GORCL);
3168 rd32(E1000_GORCH); /* clear GORCL */
3169 adapter->stats.bprc += rd32(E1000_BPRC);
3170 adapter->stats.mprc += rd32(E1000_MPRC);
3171 adapter->stats.roc += rd32(E1000_ROC);
3173 adapter->stats.prc64 += rd32(E1000_PRC64);
3174 adapter->stats.prc127 += rd32(E1000_PRC127);
3175 adapter->stats.prc255 += rd32(E1000_PRC255);
3176 adapter->stats.prc511 += rd32(E1000_PRC511);
3177 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3178 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3179 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3180 adapter->stats.sec += rd32(E1000_SEC);
3182 adapter->stats.mpc += rd32(E1000_MPC);
3183 adapter->stats.scc += rd32(E1000_SCC);
3184 adapter->stats.ecol += rd32(E1000_ECOL);
3185 adapter->stats.mcc += rd32(E1000_MCC);
3186 adapter->stats.latecol += rd32(E1000_LATECOL);
3187 adapter->stats.dc += rd32(E1000_DC);
3188 adapter->stats.rlec += rd32(E1000_RLEC);
3189 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3190 adapter->stats.xontxc += rd32(E1000_XONTXC);
3191 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3192 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3193 adapter->stats.fcruc += rd32(E1000_FCRUC);
3194 adapter->stats.gptc += rd32(E1000_GPTC);
3195 adapter->stats.gotc += rd32(E1000_GOTCL);
3196 rd32(E1000_GOTCH); /* clear GOTCL */
3197 adapter->stats.rnbc += rd32(E1000_RNBC);
3198 adapter->stats.ruc += rd32(E1000_RUC);
3199 adapter->stats.rfc += rd32(E1000_RFC);
3200 adapter->stats.rjc += rd32(E1000_RJC);
3201 adapter->stats.tor += rd32(E1000_TORH);
3202 adapter->stats.tot += rd32(E1000_TOTH);
3203 adapter->stats.tpr += rd32(E1000_TPR);
3205 adapter->stats.ptc64 += rd32(E1000_PTC64);
3206 adapter->stats.ptc127 += rd32(E1000_PTC127);
3207 adapter->stats.ptc255 += rd32(E1000_PTC255);
3208 adapter->stats.ptc511 += rd32(E1000_PTC511);
3209 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3210 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3212 adapter->stats.mptc += rd32(E1000_MPTC);
3213 adapter->stats.bptc += rd32(E1000_BPTC);
3215 /* used for adaptive IFS */
3217 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3218 adapter->stats.tpt += hw->mac.tx_packet_delta;
3219 hw->mac.collision_delta = rd32(E1000_COLC);
3220 adapter->stats.colc += hw->mac.collision_delta;
3222 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3223 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3224 adapter->stats.tncrs += rd32(E1000_TNCRS);
3225 adapter->stats.tsctc += rd32(E1000_TSCTC);
3226 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3228 adapter->stats.iac += rd32(E1000_IAC);
3229 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3230 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3231 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3232 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3233 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3234 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3235 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3236 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3238 /* Fill out the OS statistics structure */
3239 adapter->net_stats.multicast = adapter->stats.mprc;
3240 adapter->net_stats.collisions = adapter->stats.colc;
3242 /* Rx Errors */
3244 /* RLEC on some newer hardware can be incorrect so build
3245 * our own version based on RUC and ROC */
3246 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3247 adapter->stats.crcerrs + adapter->stats.algnerrc +
3248 adapter->stats.ruc + adapter->stats.roc +
3249 adapter->stats.cexterr;
3250 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3251 adapter->stats.roc;
3252 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3253 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3254 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3256 /* Tx Errors */
3257 adapter->net_stats.tx_errors = adapter->stats.ecol +
3258 adapter->stats.latecol;
3259 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3260 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3261 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3263 /* Tx Dropped needs to be maintained elsewhere */
3265 /* Phy Stats */
3266 if (hw->phy.media_type == e1000_media_type_copper) {
3267 if ((adapter->link_speed == SPEED_1000) &&
3268 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3269 &phy_tmp))) {
3270 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3271 adapter->phy_stats.idle_errors += phy_tmp;
3275 /* Management Stats */
3276 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3277 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3278 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3282 static irqreturn_t igb_msix_other(int irq, void *data)
3284 struct net_device *netdev = data;
3285 struct igb_adapter *adapter = netdev_priv(netdev);
3286 struct e1000_hw *hw = &adapter->hw;
3287 u32 icr = rd32(E1000_ICR);
3289 /* reading ICR causes bit 31 of EICR to be cleared */
3291 if(icr & E1000_ICR_DOUTSYNC) {
3292 /* HW is reporting DMA is out of sync */
3293 adapter->stats.doosync++;
3295 if (!(icr & E1000_ICR_LSC))
3296 goto no_link_interrupt;
3297 hw->mac.get_link_status = 1;
3298 /* guard against interrupt when we're going down */
3299 if (!test_bit(__IGB_DOWN, &adapter->state))
3300 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3302 no_link_interrupt:
3303 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3304 wr32(E1000_EIMS, adapter->eims_other);
3306 return IRQ_HANDLED;
3309 static irqreturn_t igb_msix_tx(int irq, void *data)
3311 struct igb_ring *tx_ring = data;
3312 struct igb_adapter *adapter = tx_ring->adapter;
3313 struct e1000_hw *hw = &adapter->hw;
3315 #ifdef CONFIG_IGB_DCA
3316 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3317 igb_update_tx_dca(tx_ring);
3318 #endif
3319 tx_ring->total_bytes = 0;
3320 tx_ring->total_packets = 0;
3322 /* auto mask will automatically reenable the interrupt when we write
3323 * EICS */
3324 if (!igb_clean_tx_irq(tx_ring))
3325 /* Ring was not completely cleaned, so fire another interrupt */
3326 wr32(E1000_EICS, tx_ring->eims_value);
3327 else
3328 wr32(E1000_EIMS, tx_ring->eims_value);
3330 return IRQ_HANDLED;
3333 static void igb_write_itr(struct igb_ring *ring)
3335 struct e1000_hw *hw = &ring->adapter->hw;
3336 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3337 switch (hw->mac.type) {
3338 case e1000_82576:
3339 wr32(ring->itr_register,
3340 ring->itr_val |
3341 0x80000000);
3342 break;
3343 default:
3344 wr32(ring->itr_register,
3345 ring->itr_val |
3346 (ring->itr_val << 16));
3347 break;
3349 ring->set_itr = 0;
3353 static irqreturn_t igb_msix_rx(int irq, void *data)
3355 struct igb_ring *rx_ring = data;
3357 /* Write the ITR value calculated at the end of the
3358 * previous interrupt.
3361 igb_write_itr(rx_ring);
3363 if (napi_schedule_prep(&rx_ring->napi))
3364 __napi_schedule(&rx_ring->napi);
3366 #ifdef CONFIG_IGB_DCA
3367 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3368 igb_update_rx_dca(rx_ring);
3369 #endif
3370 return IRQ_HANDLED;
3373 #ifdef CONFIG_IGB_DCA
3374 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3376 u32 dca_rxctrl;
3377 struct igb_adapter *adapter = rx_ring->adapter;
3378 struct e1000_hw *hw = &adapter->hw;
3379 int cpu = get_cpu();
3380 int q = rx_ring->reg_idx;
3382 if (rx_ring->cpu != cpu) {
3383 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3384 if (hw->mac.type == e1000_82576) {
3385 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3386 dca_rxctrl |= dca_get_tag(cpu) <<
3387 E1000_DCA_RXCTRL_CPUID_SHIFT;
3388 } else {
3389 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3390 dca_rxctrl |= dca_get_tag(cpu);
3392 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3393 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3394 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3395 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3396 rx_ring->cpu = cpu;
3398 put_cpu();
3401 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3403 u32 dca_txctrl;
3404 struct igb_adapter *adapter = tx_ring->adapter;
3405 struct e1000_hw *hw = &adapter->hw;
3406 int cpu = get_cpu();
3407 int q = tx_ring->reg_idx;
3409 if (tx_ring->cpu != cpu) {
3410 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3411 if (hw->mac.type == e1000_82576) {
3412 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3413 dca_txctrl |= dca_get_tag(cpu) <<
3414 E1000_DCA_TXCTRL_CPUID_SHIFT;
3415 } else {
3416 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3417 dca_txctrl |= dca_get_tag(cpu);
3419 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3420 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3421 tx_ring->cpu = cpu;
3423 put_cpu();
3426 static void igb_setup_dca(struct igb_adapter *adapter)
3428 int i;
3430 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3431 return;
3433 for (i = 0; i < adapter->num_tx_queues; i++) {
3434 adapter->tx_ring[i].cpu = -1;
3435 igb_update_tx_dca(&adapter->tx_ring[i]);
3437 for (i = 0; i < adapter->num_rx_queues; i++) {
3438 adapter->rx_ring[i].cpu = -1;
3439 igb_update_rx_dca(&adapter->rx_ring[i]);
3443 static int __igb_notify_dca(struct device *dev, void *data)
3445 struct net_device *netdev = dev_get_drvdata(dev);
3446 struct igb_adapter *adapter = netdev_priv(netdev);
3447 struct e1000_hw *hw = &adapter->hw;
3448 unsigned long event = *(unsigned long *)data;
3450 switch (event) {
3451 case DCA_PROVIDER_ADD:
3452 /* if already enabled, don't do it again */
3453 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3454 break;
3455 /* Always use CB2 mode, difference is masked
3456 * in the CB driver. */
3457 wr32(E1000_DCA_CTRL, 2);
3458 if (dca_add_requester(dev) == 0) {
3459 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3460 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3461 igb_setup_dca(adapter);
3462 break;
3464 /* Fall Through since DCA is disabled. */
3465 case DCA_PROVIDER_REMOVE:
3466 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3467 /* without this a class_device is left
3468 * hanging around in the sysfs model */
3469 dca_remove_requester(dev);
3470 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3471 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3472 wr32(E1000_DCA_CTRL, 1);
3474 break;
3477 return 0;
3480 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3481 void *p)
3483 int ret_val;
3485 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3486 __igb_notify_dca);
3488 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3490 #endif /* CONFIG_IGB_DCA */
3493 * igb_intr_msi - Interrupt Handler
3494 * @irq: interrupt number
3495 * @data: pointer to a network interface device structure
3497 static irqreturn_t igb_intr_msi(int irq, void *data)
3499 struct net_device *netdev = data;
3500 struct igb_adapter *adapter = netdev_priv(netdev);
3501 struct e1000_hw *hw = &adapter->hw;
3502 /* read ICR disables interrupts using IAM */
3503 u32 icr = rd32(E1000_ICR);
3505 igb_write_itr(adapter->rx_ring);
3507 if(icr & E1000_ICR_DOUTSYNC) {
3508 /* HW is reporting DMA is out of sync */
3509 adapter->stats.doosync++;
3512 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3513 hw->mac.get_link_status = 1;
3514 if (!test_bit(__IGB_DOWN, &adapter->state))
3515 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3518 napi_schedule(&adapter->rx_ring[0].napi);
3520 return IRQ_HANDLED;
3524 * igb_intr - Interrupt Handler
3525 * @irq: interrupt number
3526 * @data: pointer to a network interface device structure
3528 static irqreturn_t igb_intr(int irq, void *data)
3530 struct net_device *netdev = data;
3531 struct igb_adapter *adapter = netdev_priv(netdev);
3532 struct e1000_hw *hw = &adapter->hw;
3533 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3534 * need for the IMC write */
3535 u32 icr = rd32(E1000_ICR);
3536 u32 eicr = 0;
3537 if (!icr)
3538 return IRQ_NONE; /* Not our interrupt */
3540 igb_write_itr(adapter->rx_ring);
3542 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3543 * not set, then the adapter didn't send an interrupt */
3544 if (!(icr & E1000_ICR_INT_ASSERTED))
3545 return IRQ_NONE;
3547 if(icr & E1000_ICR_DOUTSYNC) {
3548 /* HW is reporting DMA is out of sync */
3549 adapter->stats.doosync++;
3552 eicr = rd32(E1000_EICR);
3554 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3555 hw->mac.get_link_status = 1;
3556 /* guard against interrupt when we're going down */
3557 if (!test_bit(__IGB_DOWN, &adapter->state))
3558 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3561 napi_schedule(&adapter->rx_ring[0].napi);
3563 return IRQ_HANDLED;
3567 * igb_poll - NAPI Rx polling callback
3568 * @napi: napi polling structure
3569 * @budget: count of how many packets we should handle
3571 static int igb_poll(struct napi_struct *napi, int budget)
3573 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3574 struct igb_adapter *adapter = rx_ring->adapter;
3575 struct net_device *netdev = adapter->netdev;
3576 int tx_clean_complete, work_done = 0;
3578 /* this poll routine only supports one tx and one rx queue */
3579 #ifdef CONFIG_IGB_DCA
3580 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3581 igb_update_tx_dca(&adapter->tx_ring[0]);
3582 #endif
3583 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3585 #ifdef CONFIG_IGB_DCA
3586 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3587 igb_update_rx_dca(&adapter->rx_ring[0]);
3588 #endif
3589 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3591 /* If no Tx and not enough Rx work done, exit the polling mode */
3592 if ((tx_clean_complete && (work_done < budget)) ||
3593 !netif_running(netdev)) {
3594 if (adapter->itr_setting & 3)
3595 igb_set_itr(adapter);
3596 napi_complete(napi);
3597 if (!test_bit(__IGB_DOWN, &adapter->state))
3598 igb_irq_enable(adapter);
3599 return 0;
3602 return 1;
3605 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3607 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3608 struct igb_adapter *adapter = rx_ring->adapter;
3609 struct e1000_hw *hw = &adapter->hw;
3610 struct net_device *netdev = adapter->netdev;
3611 int work_done = 0;
3613 #ifdef CONFIG_IGB_DCA
3614 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3615 igb_update_rx_dca(rx_ring);
3616 #endif
3617 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3620 /* If not enough Rx work done, exit the polling mode */
3621 if ((work_done == 0) || !netif_running(netdev)) {
3622 napi_complete(napi);
3624 if (adapter->itr_setting & 3) {
3625 if (adapter->num_rx_queues == 1)
3626 igb_set_itr(adapter);
3627 else
3628 igb_update_ring_itr(rx_ring);
3631 if (!test_bit(__IGB_DOWN, &adapter->state))
3632 wr32(E1000_EIMS, rx_ring->eims_value);
3634 return 0;
3637 return 1;
3641 * igb_clean_tx_irq - Reclaim resources after transmit completes
3642 * @adapter: board private structure
3643 * returns true if ring is completely cleaned
3645 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3647 struct igb_adapter *adapter = tx_ring->adapter;
3648 struct net_device *netdev = adapter->netdev;
3649 struct e1000_hw *hw = &adapter->hw;
3650 struct igb_buffer *buffer_info;
3651 struct sk_buff *skb;
3652 union e1000_adv_tx_desc *tx_desc, *eop_desc;
3653 unsigned int total_bytes = 0, total_packets = 0;
3654 unsigned int i, eop, count = 0;
3655 bool cleaned = false;
3657 i = tx_ring->next_to_clean;
3658 eop = tx_ring->buffer_info[i].next_to_watch;
3659 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3661 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3662 (count < tx_ring->count)) {
3663 for (cleaned = false; !cleaned; count++) {
3664 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3665 buffer_info = &tx_ring->buffer_info[i];
3666 cleaned = (i == eop);
3667 skb = buffer_info->skb;
3669 if (skb) {
3670 unsigned int segs, bytecount;
3671 /* gso_segs is currently only valid for tcp */
3672 segs = skb_shinfo(skb)->gso_segs ?: 1;
3673 /* multiply data chunks by size of headers */
3674 bytecount = ((segs - 1) * skb_headlen(skb)) +
3675 skb->len;
3676 total_packets += segs;
3677 total_bytes += bytecount;
3680 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3681 tx_desc->wb.status = 0;
3683 i++;
3684 if (i == tx_ring->count)
3685 i = 0;
3688 eop = tx_ring->buffer_info[i].next_to_watch;
3689 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3692 tx_ring->next_to_clean = i;
3694 if (unlikely(count &&
3695 netif_carrier_ok(netdev) &&
3696 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3697 /* Make sure that anybody stopping the queue after this
3698 * sees the new next_to_clean.
3700 smp_mb();
3701 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3702 !(test_bit(__IGB_DOWN, &adapter->state))) {
3703 netif_wake_subqueue(netdev, tx_ring->queue_index);
3704 ++adapter->restart_queue;
3708 if (tx_ring->detect_tx_hung) {
3709 /* Detect a transmit hang in hardware, this serializes the
3710 * check with the clearing of time_stamp and movement of i */
3711 tx_ring->detect_tx_hung = false;
3712 if (tx_ring->buffer_info[i].time_stamp &&
3713 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3714 (adapter->tx_timeout_factor * HZ))
3715 && !(rd32(E1000_STATUS) &
3716 E1000_STATUS_TXOFF)) {
3718 /* detected Tx unit hang */
3719 dev_err(&adapter->pdev->dev,
3720 "Detected Tx Unit Hang\n"
3721 " Tx Queue <%d>\n"
3722 " TDH <%x>\n"
3723 " TDT <%x>\n"
3724 " next_to_use <%x>\n"
3725 " next_to_clean <%x>\n"
3726 "buffer_info[next_to_clean]\n"
3727 " time_stamp <%lx>\n"
3728 " next_to_watch <%x>\n"
3729 " jiffies <%lx>\n"
3730 " desc.status <%x>\n",
3731 tx_ring->queue_index,
3732 readl(adapter->hw.hw_addr + tx_ring->head),
3733 readl(adapter->hw.hw_addr + tx_ring->tail),
3734 tx_ring->next_to_use,
3735 tx_ring->next_to_clean,
3736 tx_ring->buffer_info[i].time_stamp,
3737 eop,
3738 jiffies,
3739 eop_desc->wb.status);
3740 netif_stop_subqueue(netdev, tx_ring->queue_index);
3743 tx_ring->total_bytes += total_bytes;
3744 tx_ring->total_packets += total_packets;
3745 tx_ring->tx_stats.bytes += total_bytes;
3746 tx_ring->tx_stats.packets += total_packets;
3747 adapter->net_stats.tx_bytes += total_bytes;
3748 adapter->net_stats.tx_packets += total_packets;
3749 return (count < tx_ring->count);
3753 * igb_receive_skb - helper function to handle rx indications
3754 * @ring: pointer to receive ring receving this packet
3755 * @status: descriptor status field as written by hardware
3756 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3757 * @skb: pointer to sk_buff to be indicated to stack
3759 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3760 union e1000_adv_rx_desc * rx_desc,
3761 struct sk_buff *skb)
3763 struct igb_adapter * adapter = ring->adapter;
3764 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3766 skb_record_rx_queue(skb, ring->queue_index);
3767 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3768 if (vlan_extracted)
3769 vlan_gro_receive(&ring->napi, adapter->vlgrp,
3770 le16_to_cpu(rx_desc->wb.upper.vlan),
3771 skb);
3772 else
3773 napi_gro_receive(&ring->napi, skb);
3774 } else {
3775 if (vlan_extracted)
3776 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3777 le16_to_cpu(rx_desc->wb.upper.vlan));
3778 else
3779 netif_receive_skb(skb);
3784 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3785 u32 status_err, struct sk_buff *skb)
3787 skb->ip_summed = CHECKSUM_NONE;
3789 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3790 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3791 return;
3792 /* TCP/UDP checksum error bit is set */
3793 if (status_err &
3794 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3795 /* let the stack verify checksum errors */
3796 adapter->hw_csum_err++;
3797 return;
3799 /* It must be a TCP or UDP packet with a valid checksum */
3800 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3801 skb->ip_summed = CHECKSUM_UNNECESSARY;
3803 adapter->hw_csum_good++;
3806 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3807 int *work_done, int budget)
3809 struct igb_adapter *adapter = rx_ring->adapter;
3810 struct net_device *netdev = adapter->netdev;
3811 struct pci_dev *pdev = adapter->pdev;
3812 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3813 struct igb_buffer *buffer_info , *next_buffer;
3814 struct sk_buff *skb;
3815 unsigned int i;
3816 u32 length, hlen, staterr;
3817 bool cleaned = false;
3818 int cleaned_count = 0;
3819 unsigned int total_bytes = 0, total_packets = 0;
3821 i = rx_ring->next_to_clean;
3822 buffer_info = &rx_ring->buffer_info[i];
3823 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3824 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3826 while (staterr & E1000_RXD_STAT_DD) {
3827 if (*work_done >= budget)
3828 break;
3829 (*work_done)++;
3831 skb = buffer_info->skb;
3832 prefetch(skb->data - NET_IP_ALIGN);
3833 buffer_info->skb = NULL;
3835 i++;
3836 if (i == rx_ring->count)
3837 i = 0;
3838 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3839 prefetch(next_rxd);
3840 next_buffer = &rx_ring->buffer_info[i];
3842 length = le16_to_cpu(rx_desc->wb.upper.length);
3843 cleaned = true;
3844 cleaned_count++;
3846 if (!adapter->rx_ps_hdr_size) {
3847 pci_unmap_single(pdev, buffer_info->dma,
3848 adapter->rx_buffer_len +
3849 NET_IP_ALIGN,
3850 PCI_DMA_FROMDEVICE);
3851 skb_put(skb, length);
3852 goto send_up;
3855 /* HW will not DMA in data larger than the given buffer, even
3856 * if it parses the (NFS, of course) header to be larger. In
3857 * that case, it fills the header buffer and spills the rest
3858 * into the page.
3860 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3861 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3862 if (hlen > adapter->rx_ps_hdr_size)
3863 hlen = adapter->rx_ps_hdr_size;
3865 if (!skb_shinfo(skb)->nr_frags) {
3866 pci_unmap_single(pdev, buffer_info->dma,
3867 adapter->rx_ps_hdr_size +
3868 NET_IP_ALIGN,
3869 PCI_DMA_FROMDEVICE);
3870 skb_put(skb, hlen);
3873 if (length) {
3874 pci_unmap_page(pdev, buffer_info->page_dma,
3875 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3876 buffer_info->page_dma = 0;
3878 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3879 buffer_info->page,
3880 buffer_info->page_offset,
3881 length);
3883 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3884 (page_count(buffer_info->page) != 1))
3885 buffer_info->page = NULL;
3886 else
3887 get_page(buffer_info->page);
3889 skb->len += length;
3890 skb->data_len += length;
3892 skb->truesize += length;
3895 if (!(staterr & E1000_RXD_STAT_EOP)) {
3896 buffer_info->skb = next_buffer->skb;
3897 buffer_info->dma = next_buffer->dma;
3898 next_buffer->skb = skb;
3899 next_buffer->dma = 0;
3900 goto next_desc;
3902 send_up:
3903 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3904 dev_kfree_skb_irq(skb);
3905 goto next_desc;
3908 total_bytes += skb->len;
3909 total_packets++;
3911 igb_rx_checksum_adv(adapter, staterr, skb);
3913 skb->protocol = eth_type_trans(skb, netdev);
3915 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3917 next_desc:
3918 rx_desc->wb.upper.status_error = 0;
3920 /* return some buffers to hardware, one at a time is too slow */
3921 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3922 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3923 cleaned_count = 0;
3926 /* use prefetched values */
3927 rx_desc = next_rxd;
3928 buffer_info = next_buffer;
3929 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3932 rx_ring->next_to_clean = i;
3933 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3935 if (cleaned_count)
3936 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3938 rx_ring->total_packets += total_packets;
3939 rx_ring->total_bytes += total_bytes;
3940 rx_ring->rx_stats.packets += total_packets;
3941 rx_ring->rx_stats.bytes += total_bytes;
3942 adapter->net_stats.rx_bytes += total_bytes;
3943 adapter->net_stats.rx_packets += total_packets;
3944 return cleaned;
3949 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3950 * @adapter: address of board private structure
3952 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3953 int cleaned_count)
3955 struct igb_adapter *adapter = rx_ring->adapter;
3956 struct net_device *netdev = adapter->netdev;
3957 struct pci_dev *pdev = adapter->pdev;
3958 union e1000_adv_rx_desc *rx_desc;
3959 struct igb_buffer *buffer_info;
3960 struct sk_buff *skb;
3961 unsigned int i;
3962 int bufsz;
3964 i = rx_ring->next_to_use;
3965 buffer_info = &rx_ring->buffer_info[i];
3967 if (adapter->rx_ps_hdr_size)
3968 bufsz = adapter->rx_ps_hdr_size;
3969 else
3970 bufsz = adapter->rx_buffer_len;
3971 bufsz += NET_IP_ALIGN;
3973 while (cleaned_count--) {
3974 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3976 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3977 if (!buffer_info->page) {
3978 buffer_info->page = alloc_page(GFP_ATOMIC);
3979 if (!buffer_info->page) {
3980 adapter->alloc_rx_buff_failed++;
3981 goto no_buffers;
3983 buffer_info->page_offset = 0;
3984 } else {
3985 buffer_info->page_offset ^= PAGE_SIZE / 2;
3987 buffer_info->page_dma =
3988 pci_map_page(pdev, buffer_info->page,
3989 buffer_info->page_offset,
3990 PAGE_SIZE / 2,
3991 PCI_DMA_FROMDEVICE);
3994 if (!buffer_info->skb) {
3995 skb = netdev_alloc_skb(netdev, bufsz);
3996 if (!skb) {
3997 adapter->alloc_rx_buff_failed++;
3998 goto no_buffers;
4001 /* Make buffer alignment 2 beyond a 16 byte boundary
4002 * this will result in a 16 byte aligned IP header after
4003 * the 14 byte MAC header is removed
4005 skb_reserve(skb, NET_IP_ALIGN);
4007 buffer_info->skb = skb;
4008 buffer_info->dma = pci_map_single(pdev, skb->data,
4009 bufsz,
4010 PCI_DMA_FROMDEVICE);
4012 /* Refresh the desc even if buffer_addrs didn't change because
4013 * each write-back erases this info. */
4014 if (adapter->rx_ps_hdr_size) {
4015 rx_desc->read.pkt_addr =
4016 cpu_to_le64(buffer_info->page_dma);
4017 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4018 } else {
4019 rx_desc->read.pkt_addr =
4020 cpu_to_le64(buffer_info->dma);
4021 rx_desc->read.hdr_addr = 0;
4024 i++;
4025 if (i == rx_ring->count)
4026 i = 0;
4027 buffer_info = &rx_ring->buffer_info[i];
4030 no_buffers:
4031 if (rx_ring->next_to_use != i) {
4032 rx_ring->next_to_use = i;
4033 if (i == 0)
4034 i = (rx_ring->count - 1);
4035 else
4036 i--;
4038 /* Force memory writes to complete before letting h/w
4039 * know there are new descriptors to fetch. (Only
4040 * applicable for weak-ordered memory model archs,
4041 * such as IA-64). */
4042 wmb();
4043 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4048 * igb_mii_ioctl -
4049 * @netdev:
4050 * @ifreq:
4051 * @cmd:
4053 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4055 struct igb_adapter *adapter = netdev_priv(netdev);
4056 struct mii_ioctl_data *data = if_mii(ifr);
4058 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4059 return -EOPNOTSUPP;
4061 switch (cmd) {
4062 case SIOCGMIIPHY:
4063 data->phy_id = adapter->hw.phy.addr;
4064 break;
4065 case SIOCGMIIREG:
4066 if (!capable(CAP_NET_ADMIN))
4067 return -EPERM;
4068 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4069 &data->val_out))
4070 return -EIO;
4071 break;
4072 case SIOCSMIIREG:
4073 default:
4074 return -EOPNOTSUPP;
4076 return 0;
4080 * igb_ioctl -
4081 * @netdev:
4082 * @ifreq:
4083 * @cmd:
4085 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4087 switch (cmd) {
4088 case SIOCGMIIPHY:
4089 case SIOCGMIIREG:
4090 case SIOCSMIIREG:
4091 return igb_mii_ioctl(netdev, ifr, cmd);
4092 default:
4093 return -EOPNOTSUPP;
4097 static void igb_vlan_rx_register(struct net_device *netdev,
4098 struct vlan_group *grp)
4100 struct igb_adapter *adapter = netdev_priv(netdev);
4101 struct e1000_hw *hw = &adapter->hw;
4102 u32 ctrl, rctl;
4104 igb_irq_disable(adapter);
4105 adapter->vlgrp = grp;
4107 if (grp) {
4108 /* enable VLAN tag insert/strip */
4109 ctrl = rd32(E1000_CTRL);
4110 ctrl |= E1000_CTRL_VME;
4111 wr32(E1000_CTRL, ctrl);
4113 /* enable VLAN receive filtering */
4114 rctl = rd32(E1000_RCTL);
4115 rctl &= ~E1000_RCTL_CFIEN;
4116 wr32(E1000_RCTL, rctl);
4117 igb_update_mng_vlan(adapter);
4118 wr32(E1000_RLPML,
4119 adapter->max_frame_size + VLAN_TAG_SIZE);
4120 } else {
4121 /* disable VLAN tag insert/strip */
4122 ctrl = rd32(E1000_CTRL);
4123 ctrl &= ~E1000_CTRL_VME;
4124 wr32(E1000_CTRL, ctrl);
4126 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4127 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4128 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4130 wr32(E1000_RLPML,
4131 adapter->max_frame_size);
4134 if (!test_bit(__IGB_DOWN, &adapter->state))
4135 igb_irq_enable(adapter);
4138 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4140 struct igb_adapter *adapter = netdev_priv(netdev);
4141 struct e1000_hw *hw = &adapter->hw;
4142 u32 vfta, index;
4144 if ((adapter->hw.mng_cookie.status &
4145 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4146 (vid == adapter->mng_vlan_id))
4147 return;
4148 /* add VID to filter table */
4149 index = (vid >> 5) & 0x7F;
4150 vfta = array_rd32(E1000_VFTA, index);
4151 vfta |= (1 << (vid & 0x1F));
4152 igb_write_vfta(&adapter->hw, index, vfta);
4155 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4157 struct igb_adapter *adapter = netdev_priv(netdev);
4158 struct e1000_hw *hw = &adapter->hw;
4159 u32 vfta, index;
4161 igb_irq_disable(adapter);
4162 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4164 if (!test_bit(__IGB_DOWN, &adapter->state))
4165 igb_irq_enable(adapter);
4167 if ((adapter->hw.mng_cookie.status &
4168 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4169 (vid == adapter->mng_vlan_id)) {
4170 /* release control to f/w */
4171 igb_release_hw_control(adapter);
4172 return;
4175 /* remove VID from filter table */
4176 index = (vid >> 5) & 0x7F;
4177 vfta = array_rd32(E1000_VFTA, index);
4178 vfta &= ~(1 << (vid & 0x1F));
4179 igb_write_vfta(&adapter->hw, index, vfta);
4182 static void igb_restore_vlan(struct igb_adapter *adapter)
4184 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4186 if (adapter->vlgrp) {
4187 u16 vid;
4188 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4189 if (!vlan_group_get_device(adapter->vlgrp, vid))
4190 continue;
4191 igb_vlan_rx_add_vid(adapter->netdev, vid);
4196 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4198 struct e1000_mac_info *mac = &adapter->hw.mac;
4200 mac->autoneg = 0;
4202 /* Fiber NICs only allow 1000 gbps Full duplex */
4203 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4204 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4205 dev_err(&adapter->pdev->dev,
4206 "Unsupported Speed/Duplex configuration\n");
4207 return -EINVAL;
4210 switch (spddplx) {
4211 case SPEED_10 + DUPLEX_HALF:
4212 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4213 break;
4214 case SPEED_10 + DUPLEX_FULL:
4215 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4216 break;
4217 case SPEED_100 + DUPLEX_HALF:
4218 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4219 break;
4220 case SPEED_100 + DUPLEX_FULL:
4221 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4222 break;
4223 case SPEED_1000 + DUPLEX_FULL:
4224 mac->autoneg = 1;
4225 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4226 break;
4227 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4228 default:
4229 dev_err(&adapter->pdev->dev,
4230 "Unsupported Speed/Duplex configuration\n");
4231 return -EINVAL;
4233 return 0;
4237 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4239 struct net_device *netdev = pci_get_drvdata(pdev);
4240 struct igb_adapter *adapter = netdev_priv(netdev);
4241 struct e1000_hw *hw = &adapter->hw;
4242 u32 ctrl, rctl, status;
4243 u32 wufc = adapter->wol;
4244 #ifdef CONFIG_PM
4245 int retval = 0;
4246 #endif
4248 netif_device_detach(netdev);
4250 if (netif_running(netdev))
4251 igb_close(netdev);
4253 igb_reset_interrupt_capability(adapter);
4255 igb_free_queues(adapter);
4257 #ifdef CONFIG_PM
4258 retval = pci_save_state(pdev);
4259 if (retval)
4260 return retval;
4261 #endif
4263 status = rd32(E1000_STATUS);
4264 if (status & E1000_STATUS_LU)
4265 wufc &= ~E1000_WUFC_LNKC;
4267 if (wufc) {
4268 igb_setup_rctl(adapter);
4269 igb_set_multi(netdev);
4271 /* turn on all-multi mode if wake on multicast is enabled */
4272 if (wufc & E1000_WUFC_MC) {
4273 rctl = rd32(E1000_RCTL);
4274 rctl |= E1000_RCTL_MPE;
4275 wr32(E1000_RCTL, rctl);
4278 ctrl = rd32(E1000_CTRL);
4279 /* advertise wake from D3Cold */
4280 #define E1000_CTRL_ADVD3WUC 0x00100000
4281 /* phy power management enable */
4282 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4283 ctrl |= E1000_CTRL_ADVD3WUC;
4284 wr32(E1000_CTRL, ctrl);
4286 /* Allow time for pending master requests to run */
4287 igb_disable_pcie_master(&adapter->hw);
4289 wr32(E1000_WUC, E1000_WUC_PME_EN);
4290 wr32(E1000_WUFC, wufc);
4291 } else {
4292 wr32(E1000_WUC, 0);
4293 wr32(E1000_WUFC, 0);
4296 /* make sure adapter isn't asleep if manageability/wol is enabled */
4297 if (wufc || adapter->en_mng_pt) {
4298 pci_enable_wake(pdev, PCI_D3hot, 1);
4299 pci_enable_wake(pdev, PCI_D3cold, 1);
4300 } else {
4301 igb_shutdown_fiber_serdes_link_82575(hw);
4302 pci_enable_wake(pdev, PCI_D3hot, 0);
4303 pci_enable_wake(pdev, PCI_D3cold, 0);
4306 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4307 * would have already happened in close and is redundant. */
4308 igb_release_hw_control(adapter);
4310 pci_disable_device(pdev);
4312 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4314 return 0;
4317 #ifdef CONFIG_PM
4318 static int igb_resume(struct pci_dev *pdev)
4320 struct net_device *netdev = pci_get_drvdata(pdev);
4321 struct igb_adapter *adapter = netdev_priv(netdev);
4322 struct e1000_hw *hw = &adapter->hw;
4323 u32 err;
4325 pci_set_power_state(pdev, PCI_D0);
4326 pci_restore_state(pdev);
4328 err = pci_enable_device_mem(pdev);
4329 if (err) {
4330 dev_err(&pdev->dev,
4331 "igb: Cannot enable PCI device from suspend\n");
4332 return err;
4334 pci_set_master(pdev);
4336 pci_enable_wake(pdev, PCI_D3hot, 0);
4337 pci_enable_wake(pdev, PCI_D3cold, 0);
4339 igb_set_interrupt_capability(adapter);
4341 if (igb_alloc_queues(adapter)) {
4342 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4343 return -ENOMEM;
4346 /* e1000_power_up_phy(adapter); */
4348 igb_reset(adapter);
4349 wr32(E1000_WUS, ~0);
4351 if (netif_running(netdev)) {
4352 err = igb_open(netdev);
4353 if (err)
4354 return err;
4357 netif_device_attach(netdev);
4359 /* let the f/w know that the h/w is now under the control of the
4360 * driver. */
4361 igb_get_hw_control(adapter);
4363 return 0;
4365 #endif
4367 static void igb_shutdown(struct pci_dev *pdev)
4369 igb_suspend(pdev, PMSG_SUSPEND);
4372 #ifdef CONFIG_NET_POLL_CONTROLLER
4374 * Polling 'interrupt' - used by things like netconsole to send skbs
4375 * without having to re-enable interrupts. It's not called while
4376 * the interrupt routine is executing.
4378 static void igb_netpoll(struct net_device *netdev)
4380 struct igb_adapter *adapter = netdev_priv(netdev);
4381 int i;
4382 int work_done = 0;
4384 igb_irq_disable(adapter);
4385 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4387 for (i = 0; i < adapter->num_tx_queues; i++)
4388 igb_clean_tx_irq(&adapter->tx_ring[i]);
4390 for (i = 0; i < adapter->num_rx_queues; i++)
4391 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4392 &work_done,
4393 adapter->rx_ring[i].napi.weight);
4395 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4396 igb_irq_enable(adapter);
4398 #endif /* CONFIG_NET_POLL_CONTROLLER */
4401 * igb_io_error_detected - called when PCI error is detected
4402 * @pdev: Pointer to PCI device
4403 * @state: The current pci connection state
4405 * This function is called after a PCI bus error affecting
4406 * this device has been detected.
4408 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4409 pci_channel_state_t state)
4411 struct net_device *netdev = pci_get_drvdata(pdev);
4412 struct igb_adapter *adapter = netdev_priv(netdev);
4414 netif_device_detach(netdev);
4416 if (netif_running(netdev))
4417 igb_down(adapter);
4418 pci_disable_device(pdev);
4420 /* Request a slot slot reset. */
4421 return PCI_ERS_RESULT_NEED_RESET;
4425 * igb_io_slot_reset - called after the pci bus has been reset.
4426 * @pdev: Pointer to PCI device
4428 * Restart the card from scratch, as if from a cold-boot. Implementation
4429 * resembles the first-half of the igb_resume routine.
4431 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4433 struct net_device *netdev = pci_get_drvdata(pdev);
4434 struct igb_adapter *adapter = netdev_priv(netdev);
4435 struct e1000_hw *hw = &adapter->hw;
4436 pci_ers_result_t result;
4437 int err;
4439 if (pci_enable_device_mem(pdev)) {
4440 dev_err(&pdev->dev,
4441 "Cannot re-enable PCI device after reset.\n");
4442 result = PCI_ERS_RESULT_DISCONNECT;
4443 } else {
4444 pci_set_master(pdev);
4445 pci_restore_state(pdev);
4447 pci_enable_wake(pdev, PCI_D3hot, 0);
4448 pci_enable_wake(pdev, PCI_D3cold, 0);
4450 igb_reset(adapter);
4451 wr32(E1000_WUS, ~0);
4452 result = PCI_ERS_RESULT_RECOVERED;
4455 err = pci_cleanup_aer_uncorrect_error_status(pdev);
4456 if (err) {
4457 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4458 "failed 0x%0x\n", err);
4459 /* non-fatal, continue */
4462 return result;
4466 * igb_io_resume - called when traffic can start flowing again.
4467 * @pdev: Pointer to PCI device
4469 * This callback is called when the error recovery driver tells us that
4470 * its OK to resume normal operation. Implementation resembles the
4471 * second-half of the igb_resume routine.
4473 static void igb_io_resume(struct pci_dev *pdev)
4475 struct net_device *netdev = pci_get_drvdata(pdev);
4476 struct igb_adapter *adapter = netdev_priv(netdev);
4478 if (netif_running(netdev)) {
4479 if (igb_up(adapter)) {
4480 dev_err(&pdev->dev, "igb_up failed after reset\n");
4481 return;
4485 netif_device_attach(netdev);
4487 /* let the f/w know that the h/w is now under the control of the
4488 * driver. */
4489 igb_get_hw_control(adapter);
4492 /* igb_main.c */