cgroup files: add write_string cgroup control file method
[linux-2.6/x86.git] / drivers / net / via-velocity.c
blob370ce30f2f4575ece370f9f08fa408f18e6516b1
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
10 * TODO
11 * rx_copybreak/alignment
12 * Scatter gather
13 * More testing
15 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@redhat.com>
16 * Additional fixes and clean up: Francois Romieu
18 * This source has not been verified for use in safety critical systems.
20 * Please direct queries about the revamped driver to the linux-kernel
21 * list not VIA.
23 * Original code:
25 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
26 * All rights reserved.
28 * This software may be redistributed and/or modified under
29 * the terms of the GNU General Public License as published by the Free
30 * Software Foundation; either version 2 of the License, or
31 * any later version.
33 * This program is distributed in the hope that it will be useful, but
34 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
35 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
36 * for more details.
38 * Author: Chuang Liang-Shing, AJ Jiang
40 * Date: Jan 24, 2003
42 * MODULE_LICENSE("GPL");
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/init.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <asm/io.h>
65 #include <linux/if.h>
66 #include <asm/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/inetdevice.h>
69 #include <linux/reboot.h>
70 #include <linux/ethtool.h>
71 #include <linux/mii.h>
72 #include <linux/in.h>
73 #include <linux/if_arp.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <linux/udp.h>
78 #include <linux/crc-ccitt.h>
79 #include <linux/crc32.h>
81 #include "via-velocity.h"
84 static int velocity_nics = 0;
85 static int msglevel = MSG_LEVEL_INFO;
87 /**
88 * mac_get_cam_mask - Read a CAM mask
89 * @regs: register block for this velocity
90 * @mask: buffer to store mask
92 * Fetch the mask bits of the selected CAM and store them into the
93 * provided mask buffer.
96 static void mac_get_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
98 int i;
100 /* Select CAM mask */
101 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
103 writeb(0, &regs->CAMADDR);
105 /* read mask */
106 for (i = 0; i < 8; i++)
107 *mask++ = readb(&(regs->MARCAM[i]));
109 /* disable CAMEN */
110 writeb(0, &regs->CAMADDR);
112 /* Select mar */
113 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119 * mac_set_cam_mask - Set a CAM mask
120 * @regs: register block for this velocity
121 * @mask: CAM mask to load
123 * Store a new mask into a CAM
126 static void mac_set_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
128 int i;
129 /* Select CAM mask */
130 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
132 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
134 for (i = 0; i < 8; i++) {
135 writeb(*mask++, &(regs->MARCAM[i]));
137 /* disable CAMEN */
138 writeb(0, &regs->CAMADDR);
140 /* Select mar */
141 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
144 static void mac_set_vlan_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
146 int i;
147 /* Select CAM mask */
148 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
150 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
152 for (i = 0; i < 8; i++) {
153 writeb(*mask++, &(regs->MARCAM[i]));
155 /* disable CAMEN */
156 writeb(0, &regs->CAMADDR);
158 /* Select mar */
159 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163 * mac_set_cam - set CAM data
164 * @regs: register block of this velocity
165 * @idx: Cam index
166 * @addr: 2 or 6 bytes of CAM data
168 * Load an address or vlan tag into a CAM
171 static void mac_set_cam(struct mac_regs __iomem * regs, int idx, const u8 *addr)
173 int i;
175 /* Select CAM mask */
176 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
178 idx &= (64 - 1);
180 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
182 for (i = 0; i < 6; i++) {
183 writeb(*addr++, &(regs->MARCAM[i]));
185 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
187 udelay(10);
189 writeb(0, &regs->CAMADDR);
191 /* Select mar */
192 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
195 static void mac_set_vlan_cam(struct mac_regs __iomem * regs, int idx,
196 const u8 *addr)
199 /* Select CAM mask */
200 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
202 idx &= (64 - 1);
204 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
205 writew(*((u16 *) addr), &regs->MARCAM[0]);
207 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
209 udelay(10);
211 writeb(0, &regs->CAMADDR);
213 /* Select mar */
214 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
219 * mac_wol_reset - reset WOL after exiting low power
220 * @regs: register block of this velocity
222 * Called after we drop out of wake on lan mode in order to
223 * reset the Wake on lan features. This function doesn't restore
224 * the rest of the logic from the result of sleep/wakeup
227 static void mac_wol_reset(struct mac_regs __iomem * regs)
230 /* Turn off SWPTAG right after leaving power mode */
231 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
232 /* clear sticky bits */
233 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
235 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
236 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
237 /* disable force PME-enable */
238 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
239 /* disable power-event config bit */
240 writew(0xFFFF, &regs->WOLCRClr);
241 /* clear power status */
242 writew(0xFFFF, &regs->WOLSRClr);
245 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
246 static const struct ethtool_ops velocity_ethtool_ops;
249 Define module options
252 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
253 MODULE_LICENSE("GPL");
254 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
256 #define VELOCITY_PARAM(N,D) \
257 static int N[MAX_UNITS]=OPTION_DEFAULT;\
258 module_param_array(N, int, NULL, 0); \
259 MODULE_PARM_DESC(N, D);
261 #define RX_DESC_MIN 64
262 #define RX_DESC_MAX 255
263 #define RX_DESC_DEF 64
264 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
266 #define TX_DESC_MIN 16
267 #define TX_DESC_MAX 256
268 #define TX_DESC_DEF 64
269 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
271 #define RX_THRESH_MIN 0
272 #define RX_THRESH_MAX 3
273 #define RX_THRESH_DEF 0
274 /* rx_thresh[] is used for controlling the receive fifo threshold.
275 0: indicate the rxfifo threshold is 128 bytes.
276 1: indicate the rxfifo threshold is 512 bytes.
277 2: indicate the rxfifo threshold is 1024 bytes.
278 3: indicate the rxfifo threshold is store & forward.
280 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
282 #define DMA_LENGTH_MIN 0
283 #define DMA_LENGTH_MAX 7
284 #define DMA_LENGTH_DEF 0
286 /* DMA_length[] is used for controlling the DMA length
287 0: 8 DWORDs
288 1: 16 DWORDs
289 2: 32 DWORDs
290 3: 64 DWORDs
291 4: 128 DWORDs
292 5: 256 DWORDs
293 6: SF(flush till emply)
294 7: SF(flush till emply)
296 VELOCITY_PARAM(DMA_length, "DMA length");
298 #define IP_ALIG_DEF 0
299 /* IP_byte_align[] is used for IP header DWORD byte aligned
300 0: indicate the IP header won't be DWORD byte aligned.(Default) .
301 1: indicate the IP header will be DWORD byte aligned.
302 In some enviroment, the IP header should be DWORD byte aligned,
303 or the packet will be droped when we receive it. (eg: IPVS)
305 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
307 #define TX_CSUM_DEF 1
308 /* txcsum_offload[] is used for setting the checksum offload ability of NIC.
309 (We only support RX checksum offload now)
310 0: disable csum_offload[checksum offload
311 1: enable checksum offload. (Default)
313 VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
315 #define FLOW_CNTL_DEF 1
316 #define FLOW_CNTL_MIN 1
317 #define FLOW_CNTL_MAX 5
319 /* flow_control[] is used for setting the flow control ability of NIC.
320 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
321 2: enable TX flow control.
322 3: enable RX flow control.
323 4: enable RX/TX flow control.
324 5: disable
326 VELOCITY_PARAM(flow_control, "Enable flow control ability");
328 #define MED_LNK_DEF 0
329 #define MED_LNK_MIN 0
330 #define MED_LNK_MAX 4
331 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
332 0: indicate autonegotiation for both speed and duplex mode
333 1: indicate 100Mbps half duplex mode
334 2: indicate 100Mbps full duplex mode
335 3: indicate 10Mbps half duplex mode
336 4: indicate 10Mbps full duplex mode
338 Note:
339 if EEPROM have been set to the force mode, this option is ignored
340 by driver.
342 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
344 #define VAL_PKT_LEN_DEF 0
345 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
346 0: Receive frame with invalid layer 2 length (Default)
347 1: Drop frame with invalid layer 2 length
349 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
351 #define WOL_OPT_DEF 0
352 #define WOL_OPT_MIN 0
353 #define WOL_OPT_MAX 7
354 /* wol_opts[] is used for controlling wake on lan behavior.
355 0: Wake up if recevied a magic packet. (Default)
356 1: Wake up if link status is on/off.
357 2: Wake up if recevied an arp packet.
358 4: Wake up if recevied any unicast packet.
359 Those value can be sumed up to support more than one option.
361 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
363 #define INT_WORKS_DEF 20
364 #define INT_WORKS_MIN 10
365 #define INT_WORKS_MAX 64
367 VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
369 static int rx_copybreak = 200;
370 module_param(rx_copybreak, int, 0644);
371 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
373 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
374 const struct velocity_info_tbl *info);
375 static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
376 static void velocity_print_info(struct velocity_info *vptr);
377 static int velocity_open(struct net_device *dev);
378 static int velocity_change_mtu(struct net_device *dev, int mtu);
379 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
380 static int velocity_intr(int irq, void *dev_instance);
381 static void velocity_set_multi(struct net_device *dev);
382 static struct net_device_stats *velocity_get_stats(struct net_device *dev);
383 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
384 static int velocity_close(struct net_device *dev);
385 static int velocity_receive_frame(struct velocity_info *, int idx);
386 static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
387 static void velocity_free_rd_ring(struct velocity_info *vptr);
388 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
389 static int velocity_soft_reset(struct velocity_info *vptr);
390 static void mii_init(struct velocity_info *vptr, u32 mii_status);
391 static u32 velocity_get_link(struct net_device *dev);
392 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
393 static void velocity_print_link_status(struct velocity_info *vptr);
394 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
395 static void velocity_shutdown(struct velocity_info *vptr);
396 static void enable_flow_control_ability(struct velocity_info *vptr);
397 static void enable_mii_autopoll(struct mac_regs __iomem * regs);
398 static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
399 static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
400 static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
401 static u32 check_connection_type(struct mac_regs __iomem * regs);
402 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
404 #ifdef CONFIG_PM
406 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
407 static int velocity_resume(struct pci_dev *pdev);
409 static DEFINE_SPINLOCK(velocity_dev_list_lock);
410 static LIST_HEAD(velocity_dev_list);
412 #endif
414 #if defined(CONFIG_PM) && defined(CONFIG_INET)
416 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
418 static struct notifier_block velocity_inetaddr_notifier = {
419 .notifier_call = velocity_netdev_event,
422 static void velocity_register_notifier(void)
424 register_inetaddr_notifier(&velocity_inetaddr_notifier);
427 static void velocity_unregister_notifier(void)
429 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
432 #else
434 #define velocity_register_notifier() do {} while (0)
435 #define velocity_unregister_notifier() do {} while (0)
437 #endif
440 * Internal board variants. At the moment we have only one
443 static struct velocity_info_tbl chip_info_table[] = {
444 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
449 * Describe the PCI device identifiers that we support in this
450 * device driver. Used for hotplug autoloading.
453 static const struct pci_device_id velocity_id_table[] __devinitdata = {
454 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
458 MODULE_DEVICE_TABLE(pci, velocity_id_table);
461 * get_chip_name - identifier to name
462 * @id: chip identifier
464 * Given a chip identifier return a suitable description. Returns
465 * a pointer a static string valid while the driver is loaded.
468 static const char __devinit *get_chip_name(enum chip_type chip_id)
470 int i;
471 for (i = 0; chip_info_table[i].name != NULL; i++)
472 if (chip_info_table[i].chip_id == chip_id)
473 break;
474 return chip_info_table[i].name;
478 * velocity_remove1 - device unplug
479 * @pdev: PCI device being removed
481 * Device unload callback. Called on an unplug or on module
482 * unload for each active device that is present. Disconnects
483 * the device from the network layer and frees all the resources
486 static void __devexit velocity_remove1(struct pci_dev *pdev)
488 struct net_device *dev = pci_get_drvdata(pdev);
489 struct velocity_info *vptr = netdev_priv(dev);
491 #ifdef CONFIG_PM
492 unsigned long flags;
494 spin_lock_irqsave(&velocity_dev_list_lock, flags);
495 if (!list_empty(&velocity_dev_list))
496 list_del(&vptr->list);
497 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
498 #endif
499 unregister_netdev(dev);
500 iounmap(vptr->mac_regs);
501 pci_release_regions(pdev);
502 pci_disable_device(pdev);
503 pci_set_drvdata(pdev, NULL);
504 free_netdev(dev);
506 velocity_nics--;
510 * velocity_set_int_opt - parser for integer options
511 * @opt: pointer to option value
512 * @val: value the user requested (or -1 for default)
513 * @min: lowest value allowed
514 * @max: highest value allowed
515 * @def: default value
516 * @name: property name
517 * @dev: device name
519 * Set an integer property in the module options. This function does
520 * all the verification and checking as well as reporting so that
521 * we don't duplicate code for each option.
524 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, char *devname)
526 if (val == -1)
527 *opt = def;
528 else if (val < min || val > max) {
529 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
530 devname, name, min, max);
531 *opt = def;
532 } else {
533 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
534 devname, name, val);
535 *opt = val;
540 * velocity_set_bool_opt - parser for boolean options
541 * @opt: pointer to option value
542 * @val: value the user requested (or -1 for default)
543 * @def: default value (yes/no)
544 * @flag: numeric value to set for true.
545 * @name: property name
546 * @dev: device name
548 * Set a boolean property in the module options. This function does
549 * all the verification and checking as well as reporting so that
550 * we don't duplicate code for each option.
553 static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, char *devname)
555 (*opt) &= (~flag);
556 if (val == -1)
557 *opt |= (def ? flag : 0);
558 else if (val < 0 || val > 1) {
559 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
560 devname, name);
561 *opt |= (def ? flag : 0);
562 } else {
563 printk(KERN_INFO "%s: set parameter %s to %s\n",
564 devname, name, val ? "TRUE" : "FALSE");
565 *opt |= (val ? flag : 0);
570 * velocity_get_options - set options on device
571 * @opts: option structure for the device
572 * @index: index of option to use in module options array
573 * @devname: device name
575 * Turn the module and command options into a single structure
576 * for the current device
579 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, char *devname)
582 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
583 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
584 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
585 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
587 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
588 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
589 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
590 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
591 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
592 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
593 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
594 opts->numrx = (opts->numrx & ~3);
598 * velocity_init_cam_filter - initialise CAM
599 * @vptr: velocity to program
601 * Initialize the content addressable memory used for filters. Load
602 * appropriately according to the presence of VLAN
605 static void velocity_init_cam_filter(struct velocity_info *vptr)
607 struct mac_regs __iomem * regs = vptr->mac_regs;
609 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
610 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
611 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
613 /* Disable all CAMs */
614 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
615 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
616 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
617 mac_set_cam_mask(regs, vptr->mCAMmask);
619 /* Enable VCAMs */
620 if (vptr->vlgrp) {
621 unsigned int vid, i = 0;
623 if (!vlan_group_get_device(vptr->vlgrp, 0))
624 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
626 for (vid = 1; (vid < VLAN_VID_MASK); vid++) {
627 if (vlan_group_get_device(vptr->vlgrp, vid)) {
628 mac_set_vlan_cam(regs, i, (u8 *) &vid);
629 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
630 if (++i >= VCAM_SIZE)
631 break;
634 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
638 static void velocity_vlan_rx_register(struct net_device *dev,
639 struct vlan_group *grp)
641 struct velocity_info *vptr = netdev_priv(dev);
643 vptr->vlgrp = grp;
646 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
648 struct velocity_info *vptr = netdev_priv(dev);
650 spin_lock_irq(&vptr->lock);
651 velocity_init_cam_filter(vptr);
652 spin_unlock_irq(&vptr->lock);
655 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
657 struct velocity_info *vptr = netdev_priv(dev);
659 spin_lock_irq(&vptr->lock);
660 vlan_group_set_device(vptr->vlgrp, vid, NULL);
661 velocity_init_cam_filter(vptr);
662 spin_unlock_irq(&vptr->lock);
667 * velocity_rx_reset - handle a receive reset
668 * @vptr: velocity we are resetting
670 * Reset the ownership and status for the receive ring side.
671 * Hand all the receive queue to the NIC.
674 static void velocity_rx_reset(struct velocity_info *vptr)
677 struct mac_regs __iomem * regs = vptr->mac_regs;
678 int i;
680 vptr->rd_dirty = vptr->rd_filled = vptr->rd_curr = 0;
683 * Init state, all RD entries belong to the NIC
685 for (i = 0; i < vptr->options.numrx; ++i)
686 vptr->rd_ring[i].rdesc0.len |= OWNED_BY_NIC;
688 writew(vptr->options.numrx, &regs->RBRDU);
689 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
690 writew(0, &regs->RDIdx);
691 writew(vptr->options.numrx - 1, &regs->RDCSize);
695 * velocity_init_registers - initialise MAC registers
696 * @vptr: velocity to init
697 * @type: type of initialisation (hot or cold)
699 * Initialise the MAC on a reset or on first set up on the
700 * hardware.
703 static void velocity_init_registers(struct velocity_info *vptr,
704 enum velocity_init_type type)
706 struct mac_regs __iomem * regs = vptr->mac_regs;
707 int i, mii_status;
709 mac_wol_reset(regs);
711 switch (type) {
712 case VELOCITY_INIT_RESET:
713 case VELOCITY_INIT_WOL:
715 netif_stop_queue(vptr->dev);
718 * Reset RX to prevent RX pointer not on the 4X location
720 velocity_rx_reset(vptr);
721 mac_rx_queue_run(regs);
722 mac_rx_queue_wake(regs);
724 mii_status = velocity_get_opt_media_mode(vptr);
725 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
726 velocity_print_link_status(vptr);
727 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
728 netif_wake_queue(vptr->dev);
731 enable_flow_control_ability(vptr);
733 mac_clear_isr(regs);
734 writel(CR0_STOP, &regs->CR0Clr);
735 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
736 &regs->CR0Set);
738 break;
740 case VELOCITY_INIT_COLD:
741 default:
743 * Do reset
745 velocity_soft_reset(vptr);
746 mdelay(5);
748 mac_eeprom_reload(regs);
749 for (i = 0; i < 6; i++) {
750 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
753 * clear Pre_ACPI bit.
755 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
756 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
757 mac_set_dma_length(regs, vptr->options.DMA_length);
759 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
761 * Back off algorithm use original IEEE standard
763 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
766 * Init CAM filter
768 velocity_init_cam_filter(vptr);
771 * Set packet filter: Receive directed and broadcast address
773 velocity_set_multi(vptr->dev);
776 * Enable MII auto-polling
778 enable_mii_autopoll(regs);
780 vptr->int_mask = INT_MASK_DEF;
782 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
783 writew(vptr->options.numrx - 1, &regs->RDCSize);
784 mac_rx_queue_run(regs);
785 mac_rx_queue_wake(regs);
787 writew(vptr->options.numtx - 1, &regs->TDCSize);
789 for (i = 0; i < vptr->num_txq; i++) {
790 writel(vptr->td_pool_dma[i], &regs->TDBaseLo[i]);
791 mac_tx_queue_run(regs, i);
794 init_flow_control_register(vptr);
796 writel(CR0_STOP, &regs->CR0Clr);
797 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
799 mii_status = velocity_get_opt_media_mode(vptr);
800 netif_stop_queue(vptr->dev);
802 mii_init(vptr, mii_status);
804 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
805 velocity_print_link_status(vptr);
806 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
807 netif_wake_queue(vptr->dev);
810 enable_flow_control_ability(vptr);
811 mac_hw_mibs_init(regs);
812 mac_write_int_mask(vptr->int_mask, regs);
813 mac_clear_isr(regs);
819 * velocity_soft_reset - soft reset
820 * @vptr: velocity to reset
822 * Kick off a soft reset of the velocity adapter and then poll
823 * until the reset sequence has completed before returning.
826 static int velocity_soft_reset(struct velocity_info *vptr)
828 struct mac_regs __iomem * regs = vptr->mac_regs;
829 int i = 0;
831 writel(CR0_SFRST, &regs->CR0Set);
833 for (i = 0; i < W_MAX_TIMEOUT; i++) {
834 udelay(5);
835 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
836 break;
839 if (i == W_MAX_TIMEOUT) {
840 writel(CR0_FORSRST, &regs->CR0Set);
841 /* FIXME: PCI POSTING */
842 /* delay 2ms */
843 mdelay(2);
845 return 0;
849 * velocity_found1 - set up discovered velocity card
850 * @pdev: PCI device
851 * @ent: PCI device table entry that matched
853 * Configure a discovered adapter from scratch. Return a negative
854 * errno error code on failure paths.
857 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
859 static int first = 1;
860 struct net_device *dev;
861 int i;
862 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
863 struct velocity_info *vptr;
864 struct mac_regs __iomem * regs;
865 int ret = -ENOMEM;
867 /* FIXME: this driver, like almost all other ethernet drivers,
868 * can support more than MAX_UNITS.
870 if (velocity_nics >= MAX_UNITS) {
871 dev_notice(&pdev->dev, "already found %d NICs.\n",
872 velocity_nics);
873 return -ENODEV;
876 dev = alloc_etherdev(sizeof(struct velocity_info));
877 if (!dev) {
878 dev_err(&pdev->dev, "allocate net device failed.\n");
879 goto out;
882 /* Chain it all together */
884 SET_NETDEV_DEV(dev, &pdev->dev);
885 vptr = netdev_priv(dev);
888 if (first) {
889 printk(KERN_INFO "%s Ver. %s\n",
890 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
891 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
892 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
893 first = 0;
896 velocity_init_info(pdev, vptr, info);
898 vptr->dev = dev;
900 dev->irq = pdev->irq;
902 ret = pci_enable_device(pdev);
903 if (ret < 0)
904 goto err_free_dev;
906 ret = velocity_get_pci_info(vptr, pdev);
907 if (ret < 0) {
908 /* error message already printed */
909 goto err_disable;
912 ret = pci_request_regions(pdev, VELOCITY_NAME);
913 if (ret < 0) {
914 dev_err(&pdev->dev, "No PCI resources.\n");
915 goto err_disable;
918 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
919 if (regs == NULL) {
920 ret = -EIO;
921 goto err_release_res;
924 vptr->mac_regs = regs;
926 mac_wol_reset(regs);
928 dev->base_addr = vptr->ioaddr;
930 for (i = 0; i < 6; i++)
931 dev->dev_addr[i] = readb(&regs->PAR[i]);
934 velocity_get_options(&vptr->options, velocity_nics, dev->name);
937 * Mask out the options cannot be set to the chip
940 vptr->options.flags &= info->flags;
943 * Enable the chip specified capbilities
946 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
948 vptr->wol_opts = vptr->options.wol_opts;
949 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
951 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
953 dev->irq = pdev->irq;
954 dev->open = velocity_open;
955 dev->hard_start_xmit = velocity_xmit;
956 dev->stop = velocity_close;
957 dev->get_stats = velocity_get_stats;
958 dev->set_multicast_list = velocity_set_multi;
959 dev->do_ioctl = velocity_ioctl;
960 dev->ethtool_ops = &velocity_ethtool_ops;
961 dev->change_mtu = velocity_change_mtu;
963 dev->vlan_rx_add_vid = velocity_vlan_rx_add_vid;
964 dev->vlan_rx_kill_vid = velocity_vlan_rx_kill_vid;
965 dev->vlan_rx_register = velocity_vlan_rx_register;
967 #ifdef VELOCITY_ZERO_COPY_SUPPORT
968 dev->features |= NETIF_F_SG;
969 #endif
970 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
971 NETIF_F_HW_VLAN_RX;
973 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM)
974 dev->features |= NETIF_F_IP_CSUM;
976 ret = register_netdev(dev);
977 if (ret < 0)
978 goto err_iounmap;
980 if (velocity_get_link(dev))
981 netif_carrier_off(dev);
983 velocity_print_info(vptr);
984 pci_set_drvdata(pdev, dev);
986 /* and leave the chip powered down */
988 pci_set_power_state(pdev, PCI_D3hot);
989 #ifdef CONFIG_PM
991 unsigned long flags;
993 spin_lock_irqsave(&velocity_dev_list_lock, flags);
994 list_add(&vptr->list, &velocity_dev_list);
995 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
997 #endif
998 velocity_nics++;
999 out:
1000 return ret;
1002 err_iounmap:
1003 iounmap(regs);
1004 err_release_res:
1005 pci_release_regions(pdev);
1006 err_disable:
1007 pci_disable_device(pdev);
1008 err_free_dev:
1009 free_netdev(dev);
1010 goto out;
1014 * velocity_print_info - per driver data
1015 * @vptr: velocity
1017 * Print per driver data as the kernel driver finds Velocity
1018 * hardware
1021 static void __devinit velocity_print_info(struct velocity_info *vptr)
1023 struct net_device *dev = vptr->dev;
1025 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
1026 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
1027 dev->name,
1028 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1029 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1033 * velocity_init_info - init private data
1034 * @pdev: PCI device
1035 * @vptr: Velocity info
1036 * @info: Board type
1038 * Set up the initial velocity_info struct for the device that has been
1039 * discovered.
1042 static void __devinit velocity_init_info(struct pci_dev *pdev,
1043 struct velocity_info *vptr,
1044 const struct velocity_info_tbl *info)
1046 memset(vptr, 0, sizeof(struct velocity_info));
1048 vptr->pdev = pdev;
1049 vptr->chip_id = info->chip_id;
1050 vptr->num_txq = info->txqueue;
1051 vptr->multicast_limit = MCAM_SIZE;
1052 spin_lock_init(&vptr->lock);
1053 INIT_LIST_HEAD(&vptr->list);
1057 * velocity_get_pci_info - retrieve PCI info for device
1058 * @vptr: velocity device
1059 * @pdev: PCI device it matches
1061 * Retrieve the PCI configuration space data that interests us from
1062 * the kernel PCI layer
1065 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
1067 vptr->rev_id = pdev->revision;
1069 pci_set_master(pdev);
1071 vptr->ioaddr = pci_resource_start(pdev, 0);
1072 vptr->memaddr = pci_resource_start(pdev, 1);
1074 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
1075 dev_err(&pdev->dev,
1076 "region #0 is not an I/O resource, aborting.\n");
1077 return -EINVAL;
1080 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
1081 dev_err(&pdev->dev,
1082 "region #1 is an I/O resource, aborting.\n");
1083 return -EINVAL;
1086 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
1087 dev_err(&pdev->dev, "region #1 is too small.\n");
1088 return -EINVAL;
1090 vptr->pdev = pdev;
1092 return 0;
1096 * velocity_init_rings - set up DMA rings
1097 * @vptr: Velocity to set up
1099 * Allocate PCI mapped DMA rings for the receive and transmit layer
1100 * to use.
1103 static int velocity_init_rings(struct velocity_info *vptr)
1105 struct velocity_opt *opt = &vptr->options;
1106 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1107 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1108 struct pci_dev *pdev = vptr->pdev;
1109 dma_addr_t pool_dma;
1110 void *pool;
1111 unsigned int i;
1114 * Allocate all RD/TD rings a single pool.
1116 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1117 * alignment
1119 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->num_txq +
1120 rx_ring_size, &pool_dma);
1121 if (!pool) {
1122 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1123 vptr->dev->name);
1124 return -ENOMEM;
1127 vptr->rd_ring = pool;
1128 vptr->rd_pool_dma = pool_dma;
1130 pool += rx_ring_size;
1131 pool_dma += rx_ring_size;
1133 for (i = 0; i < vptr->num_txq; i++) {
1134 vptr->td_rings[i] = pool;
1135 vptr->td_pool_dma[i] = pool_dma;
1136 pool += tx_ring_size;
1137 pool_dma += tx_ring_size;
1140 return 0;
1144 * velocity_free_rings - free PCI ring pointers
1145 * @vptr: Velocity to free from
1147 * Clean up the PCI ring buffers allocated to this velocity.
1150 static void velocity_free_rings(struct velocity_info *vptr)
1152 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1153 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
1155 pci_free_consistent(vptr->pdev, size, vptr->rd_ring, vptr->rd_pool_dma);
1158 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1160 struct mac_regs __iomem *regs = vptr->mac_regs;
1161 int avail, dirty, unusable;
1164 * RD number must be equal to 4X per hardware spec
1165 * (programming guide rev 1.20, p.13)
1167 if (vptr->rd_filled < 4)
1168 return;
1170 wmb();
1172 unusable = vptr->rd_filled & 0x0003;
1173 dirty = vptr->rd_dirty - unusable;
1174 for (avail = vptr->rd_filled & 0xfffc; avail; avail--) {
1175 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1176 vptr->rd_ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1179 writew(vptr->rd_filled & 0xfffc, &regs->RBRDU);
1180 vptr->rd_filled = unusable;
1183 static int velocity_rx_refill(struct velocity_info *vptr)
1185 int dirty = vptr->rd_dirty, done = 0;
1187 do {
1188 struct rx_desc *rd = vptr->rd_ring + dirty;
1190 /* Fine for an all zero Rx desc at init time as well */
1191 if (rd->rdesc0.len & OWNED_BY_NIC)
1192 break;
1194 if (!vptr->rd_info[dirty].skb) {
1195 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1196 break;
1198 done++;
1199 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1200 } while (dirty != vptr->rd_curr);
1202 if (done) {
1203 vptr->rd_dirty = dirty;
1204 vptr->rd_filled += done;
1207 return done;
1210 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1212 vptr->rx_buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1216 * velocity_init_rd_ring - set up receive ring
1217 * @vptr: velocity to configure
1219 * Allocate and set up the receive buffers for each ring slot and
1220 * assign them to the network adapter.
1223 static int velocity_init_rd_ring(struct velocity_info *vptr)
1225 int ret = -ENOMEM;
1227 vptr->rd_info = kcalloc(vptr->options.numrx,
1228 sizeof(struct velocity_rd_info), GFP_KERNEL);
1229 if (!vptr->rd_info)
1230 goto out;
1232 vptr->rd_filled = vptr->rd_dirty = vptr->rd_curr = 0;
1234 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1235 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1236 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1237 velocity_free_rd_ring(vptr);
1238 goto out;
1241 ret = 0;
1242 out:
1243 return ret;
1247 * velocity_free_rd_ring - free receive ring
1248 * @vptr: velocity to clean up
1250 * Free the receive buffers for each ring slot and any
1251 * attached socket buffers that need to go away.
1254 static void velocity_free_rd_ring(struct velocity_info *vptr)
1256 int i;
1258 if (vptr->rd_info == NULL)
1259 return;
1261 for (i = 0; i < vptr->options.numrx; i++) {
1262 struct velocity_rd_info *rd_info = &(vptr->rd_info[i]);
1263 struct rx_desc *rd = vptr->rd_ring + i;
1265 memset(rd, 0, sizeof(*rd));
1267 if (!rd_info->skb)
1268 continue;
1269 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1270 PCI_DMA_FROMDEVICE);
1271 rd_info->skb_dma = (dma_addr_t) NULL;
1273 dev_kfree_skb(rd_info->skb);
1274 rd_info->skb = NULL;
1277 kfree(vptr->rd_info);
1278 vptr->rd_info = NULL;
1282 * velocity_init_td_ring - set up transmit ring
1283 * @vptr: velocity
1285 * Set up the transmit ring and chain the ring pointers together.
1286 * Returns zero on success or a negative posix errno code for
1287 * failure.
1290 static int velocity_init_td_ring(struct velocity_info *vptr)
1292 dma_addr_t curr;
1293 unsigned int j;
1295 /* Init the TD ring entries */
1296 for (j = 0; j < vptr->num_txq; j++) {
1297 curr = vptr->td_pool_dma[j];
1299 vptr->td_infos[j] = kcalloc(vptr->options.numtx,
1300 sizeof(struct velocity_td_info),
1301 GFP_KERNEL);
1302 if (!vptr->td_infos[j]) {
1303 while(--j >= 0)
1304 kfree(vptr->td_infos[j]);
1305 return -ENOMEM;
1308 vptr->td_tail[j] = vptr->td_curr[j] = vptr->td_used[j] = 0;
1310 return 0;
1314 * FIXME: could we merge this with velocity_free_tx_buf ?
1317 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1318 int q, int n)
1320 struct velocity_td_info * td_info = &(vptr->td_infos[q][n]);
1321 int i;
1323 if (td_info == NULL)
1324 return;
1326 if (td_info->skb) {
1327 for (i = 0; i < td_info->nskb_dma; i++)
1329 if (td_info->skb_dma[i]) {
1330 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1331 td_info->skb->len, PCI_DMA_TODEVICE);
1332 td_info->skb_dma[i] = (dma_addr_t) NULL;
1335 dev_kfree_skb(td_info->skb);
1336 td_info->skb = NULL;
1341 * velocity_free_td_ring - free td ring
1342 * @vptr: velocity
1344 * Free up the transmit ring for this particular velocity adapter.
1345 * We free the ring contents but not the ring itself.
1348 static void velocity_free_td_ring(struct velocity_info *vptr)
1350 int i, j;
1352 for (j = 0; j < vptr->num_txq; j++) {
1353 if (vptr->td_infos[j] == NULL)
1354 continue;
1355 for (i = 0; i < vptr->options.numtx; i++) {
1356 velocity_free_td_ring_entry(vptr, j, i);
1359 kfree(vptr->td_infos[j]);
1360 vptr->td_infos[j] = NULL;
1365 * velocity_rx_srv - service RX interrupt
1366 * @vptr: velocity
1367 * @status: adapter status (unused)
1369 * Walk the receive ring of the velocity adapter and remove
1370 * any received packets from the receive queue. Hand the ring
1371 * slots back to the adapter for reuse.
1374 static int velocity_rx_srv(struct velocity_info *vptr, int status)
1376 struct net_device_stats *stats = &vptr->stats;
1377 int rd_curr = vptr->rd_curr;
1378 int works = 0;
1380 do {
1381 struct rx_desc *rd = vptr->rd_ring + rd_curr;
1383 if (!vptr->rd_info[rd_curr].skb)
1384 break;
1386 if (rd->rdesc0.len & OWNED_BY_NIC)
1387 break;
1389 rmb();
1392 * Don't drop CE or RL error frame although RXOK is off
1394 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
1395 if (velocity_receive_frame(vptr, rd_curr) < 0)
1396 stats->rx_dropped++;
1397 } else {
1398 if (rd->rdesc0.RSR & RSR_CRC)
1399 stats->rx_crc_errors++;
1400 if (rd->rdesc0.RSR & RSR_FAE)
1401 stats->rx_frame_errors++;
1403 stats->rx_dropped++;
1406 rd->size |= RX_INTEN;
1408 vptr->dev->last_rx = jiffies;
1410 rd_curr++;
1411 if (rd_curr >= vptr->options.numrx)
1412 rd_curr = 0;
1413 } while (++works <= 15);
1415 vptr->rd_curr = rd_curr;
1417 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
1418 velocity_give_many_rx_descs(vptr);
1420 VAR_USED(stats);
1421 return works;
1425 * velocity_rx_csum - checksum process
1426 * @rd: receive packet descriptor
1427 * @skb: network layer packet buffer
1429 * Process the status bits for the received packet and determine
1430 * if the checksum was computed and verified by the hardware
1433 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1435 skb->ip_summed = CHECKSUM_NONE;
1437 if (rd->rdesc1.CSM & CSM_IPKT) {
1438 if (rd->rdesc1.CSM & CSM_IPOK) {
1439 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1440 (rd->rdesc1.CSM & CSM_UDPKT)) {
1441 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1442 return;
1445 skb->ip_summed = CHECKSUM_UNNECESSARY;
1451 * velocity_rx_copy - in place Rx copy for small packets
1452 * @rx_skb: network layer packet buffer candidate
1453 * @pkt_size: received data size
1454 * @rd: receive packet descriptor
1455 * @dev: network device
1457 * Replace the current skb that is scheduled for Rx processing by a
1458 * shorter, immediatly allocated skb, if the received packet is small
1459 * enough. This function returns a negative value if the received
1460 * packet is too big or if memory is exhausted.
1462 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1463 struct velocity_info *vptr)
1465 int ret = -1;
1466 if (pkt_size < rx_copybreak) {
1467 struct sk_buff *new_skb;
1469 new_skb = netdev_alloc_skb(vptr->dev, pkt_size + 2);
1470 if (new_skb) {
1471 new_skb->ip_summed = rx_skb[0]->ip_summed;
1472 skb_reserve(new_skb, 2);
1473 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1474 *rx_skb = new_skb;
1475 ret = 0;
1479 return ret;
1483 * velocity_iph_realign - IP header alignment
1484 * @vptr: velocity we are handling
1485 * @skb: network layer packet buffer
1486 * @pkt_size: received data size
1488 * Align IP header on a 2 bytes boundary. This behavior can be
1489 * configured by the user.
1491 static inline void velocity_iph_realign(struct velocity_info *vptr,
1492 struct sk_buff *skb, int pkt_size)
1494 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1495 memmove(skb->data + 2, skb->data, pkt_size);
1496 skb_reserve(skb, 2);
1501 * velocity_receive_frame - received packet processor
1502 * @vptr: velocity we are handling
1503 * @idx: ring index
1505 * A packet has arrived. We process the packet and if appropriate
1506 * pass the frame up the network stack
1509 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1511 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1512 struct net_device_stats *stats = &vptr->stats;
1513 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1514 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1515 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
1516 struct sk_buff *skb;
1518 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1519 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1520 stats->rx_length_errors++;
1521 return -EINVAL;
1524 if (rd->rdesc0.RSR & RSR_MAR)
1525 vptr->stats.multicast++;
1527 skb = rd_info->skb;
1529 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1530 vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1533 * Drop frame not meeting IEEE 802.3
1536 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1537 if (rd->rdesc0.RSR & RSR_RL) {
1538 stats->rx_length_errors++;
1539 return -EINVAL;
1543 pci_action = pci_dma_sync_single_for_device;
1545 velocity_rx_csum(rd, skb);
1547 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1548 velocity_iph_realign(vptr, skb, pkt_len);
1549 pci_action = pci_unmap_single;
1550 rd_info->skb = NULL;
1553 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1554 PCI_DMA_FROMDEVICE);
1556 skb_put(skb, pkt_len - 4);
1557 skb->protocol = eth_type_trans(skb, vptr->dev);
1559 if (vptr->vlgrp && (rd->rdesc0.RSR & RSR_DETAG)) {
1560 vlan_hwaccel_rx(skb, vptr->vlgrp,
1561 swab16(le16_to_cpu(rd->rdesc1.PQTAG)));
1562 } else
1563 netif_rx(skb);
1565 stats->rx_bytes += pkt_len;
1567 return 0;
1571 * velocity_alloc_rx_buf - allocate aligned receive buffer
1572 * @vptr: velocity
1573 * @idx: ring index
1575 * Allocate a new full sized buffer for the reception of a frame and
1576 * map it into PCI space for the hardware to use. The hardware
1577 * requires *64* byte alignment of the buffer which makes life
1578 * less fun than would be ideal.
1581 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1583 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1584 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1586 rd_info->skb = netdev_alloc_skb(vptr->dev, vptr->rx_buf_sz + 64);
1587 if (rd_info->skb == NULL)
1588 return -ENOMEM;
1591 * Do the gymnastics to get the buffer head for data at
1592 * 64byte alignment.
1594 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1595 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data, vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1598 * Fill in the descriptor to match
1601 *((u32 *) & (rd->rdesc0)) = 0;
1602 rd->size = cpu_to_le16(vptr->rx_buf_sz) | RX_INTEN;
1603 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1604 rd->pa_high = 0;
1605 return 0;
1609 * tx_srv - transmit interrupt service
1610 * @vptr; Velocity
1611 * @status:
1613 * Scan the queues looking for transmitted packets that
1614 * we can complete and clean up. Update any statistics as
1615 * necessary/
1618 static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1620 struct tx_desc *td;
1621 int qnum;
1622 int full = 0;
1623 int idx;
1624 int works = 0;
1625 struct velocity_td_info *tdinfo;
1626 struct net_device_stats *stats = &vptr->stats;
1628 for (qnum = 0; qnum < vptr->num_txq; qnum++) {
1629 for (idx = vptr->td_tail[qnum]; vptr->td_used[qnum] > 0;
1630 idx = (idx + 1) % vptr->options.numtx) {
1633 * Get Tx Descriptor
1635 td = &(vptr->td_rings[qnum][idx]);
1636 tdinfo = &(vptr->td_infos[qnum][idx]);
1638 if (td->tdesc0.len & OWNED_BY_NIC)
1639 break;
1641 if ((works++ > 15))
1642 break;
1644 if (td->tdesc0.TSR & TSR0_TERR) {
1645 stats->tx_errors++;
1646 stats->tx_dropped++;
1647 if (td->tdesc0.TSR & TSR0_CDH)
1648 stats->tx_heartbeat_errors++;
1649 if (td->tdesc0.TSR & TSR0_CRS)
1650 stats->tx_carrier_errors++;
1651 if (td->tdesc0.TSR & TSR0_ABT)
1652 stats->tx_aborted_errors++;
1653 if (td->tdesc0.TSR & TSR0_OWC)
1654 stats->tx_window_errors++;
1655 } else {
1656 stats->tx_packets++;
1657 stats->tx_bytes += tdinfo->skb->len;
1659 velocity_free_tx_buf(vptr, tdinfo);
1660 vptr->td_used[qnum]--;
1662 vptr->td_tail[qnum] = idx;
1664 if (AVAIL_TD(vptr, qnum) < 1) {
1665 full = 1;
1669 * Look to see if we should kick the transmit network
1670 * layer for more work.
1672 if (netif_queue_stopped(vptr->dev) && (full == 0)
1673 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1674 netif_wake_queue(vptr->dev);
1676 return works;
1680 * velocity_print_link_status - link status reporting
1681 * @vptr: velocity to report on
1683 * Turn the link status of the velocity card into a kernel log
1684 * description of the new link state, detailing speed and duplex
1685 * status
1688 static void velocity_print_link_status(struct velocity_info *vptr)
1691 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1692 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1693 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1694 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1696 if (vptr->mii_status & VELOCITY_SPEED_1000)
1697 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1698 else if (vptr->mii_status & VELOCITY_SPEED_100)
1699 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1700 else
1701 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1703 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1704 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1705 else
1706 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1707 } else {
1708 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1709 switch (vptr->options.spd_dpx) {
1710 case SPD_DPX_100_HALF:
1711 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1712 break;
1713 case SPD_DPX_100_FULL:
1714 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1715 break;
1716 case SPD_DPX_10_HALF:
1717 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1718 break;
1719 case SPD_DPX_10_FULL:
1720 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1721 break;
1722 default:
1723 break;
1729 * velocity_error - handle error from controller
1730 * @vptr: velocity
1731 * @status: card status
1733 * Process an error report from the hardware and attempt to recover
1734 * the card itself. At the moment we cannot recover from some
1735 * theoretically impossible errors but this could be fixed using
1736 * the pci_device_failed logic to bounce the hardware
1740 static void velocity_error(struct velocity_info *vptr, int status)
1743 if (status & ISR_TXSTLI) {
1744 struct mac_regs __iomem * regs = vptr->mac_regs;
1746 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1747 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1748 writew(TRDCSR_RUN, &regs->TDCSRClr);
1749 netif_stop_queue(vptr->dev);
1751 /* FIXME: port over the pci_device_failed code and use it
1752 here */
1755 if (status & ISR_SRCI) {
1756 struct mac_regs __iomem * regs = vptr->mac_regs;
1757 int linked;
1759 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1760 vptr->mii_status = check_connection_type(regs);
1763 * If it is a 3119, disable frame bursting in
1764 * halfduplex mode and enable it in fullduplex
1765 * mode
1767 if (vptr->rev_id < REV_ID_VT3216_A0) {
1768 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1769 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1770 else
1771 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1774 * Only enable CD heart beat counter in 10HD mode
1776 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1777 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1778 } else {
1779 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1783 * Get link status from PHYSR0
1785 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1787 if (linked) {
1788 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1789 netif_carrier_on(vptr->dev);
1790 } else {
1791 vptr->mii_status |= VELOCITY_LINK_FAIL;
1792 netif_carrier_off(vptr->dev);
1795 velocity_print_link_status(vptr);
1796 enable_flow_control_ability(vptr);
1799 * Re-enable auto-polling because SRCI will disable
1800 * auto-polling
1803 enable_mii_autopoll(regs);
1805 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1806 netif_stop_queue(vptr->dev);
1807 else
1808 netif_wake_queue(vptr->dev);
1811 if (status & ISR_MIBFI)
1812 velocity_update_hw_mibs(vptr);
1813 if (status & ISR_LSTEI)
1814 mac_rx_queue_wake(vptr->mac_regs);
1818 * velocity_free_tx_buf - free transmit buffer
1819 * @vptr: velocity
1820 * @tdinfo: buffer
1822 * Release an transmit buffer. If the buffer was preallocated then
1823 * recycle it, if not then unmap the buffer.
1826 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1828 struct sk_buff *skb = tdinfo->skb;
1829 int i;
1832 * Don't unmap the pre-allocated tx_bufs
1834 if (tdinfo->skb_dma) {
1836 for (i = 0; i < tdinfo->nskb_dma; i++) {
1837 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1838 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], le16_to_cpu(td->tdesc1.len), PCI_DMA_TODEVICE);
1839 #else
1840 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1841 #endif
1842 tdinfo->skb_dma[i] = 0;
1845 dev_kfree_skb_irq(skb);
1846 tdinfo->skb = NULL;
1850 * velocity_open - interface activation callback
1851 * @dev: network layer device to open
1853 * Called when the network layer brings the interface up. Returns
1854 * a negative posix error code on failure, or zero on success.
1856 * All the ring allocation and set up is done on open for this
1857 * adapter to minimise memory usage when inactive
1860 static int velocity_open(struct net_device *dev)
1862 struct velocity_info *vptr = netdev_priv(dev);
1863 int ret;
1865 velocity_set_rxbufsize(vptr, dev->mtu);
1867 ret = velocity_init_rings(vptr);
1868 if (ret < 0)
1869 goto out;
1871 ret = velocity_init_rd_ring(vptr);
1872 if (ret < 0)
1873 goto err_free_desc_rings;
1875 ret = velocity_init_td_ring(vptr);
1876 if (ret < 0)
1877 goto err_free_rd_ring;
1879 /* Ensure chip is running */
1880 pci_set_power_state(vptr->pdev, PCI_D0);
1882 velocity_give_many_rx_descs(vptr);
1884 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1886 ret = request_irq(vptr->pdev->irq, &velocity_intr, IRQF_SHARED,
1887 dev->name, dev);
1888 if (ret < 0) {
1889 /* Power down the chip */
1890 pci_set_power_state(vptr->pdev, PCI_D3hot);
1891 goto err_free_td_ring;
1894 mac_enable_int(vptr->mac_regs);
1895 netif_start_queue(dev);
1896 vptr->flags |= VELOCITY_FLAGS_OPENED;
1897 out:
1898 return ret;
1900 err_free_td_ring:
1901 velocity_free_td_ring(vptr);
1902 err_free_rd_ring:
1903 velocity_free_rd_ring(vptr);
1904 err_free_desc_rings:
1905 velocity_free_rings(vptr);
1906 goto out;
1910 * velocity_change_mtu - MTU change callback
1911 * @dev: network device
1912 * @new_mtu: desired MTU
1914 * Handle requests from the networking layer for MTU change on
1915 * this interface. It gets called on a change by the network layer.
1916 * Return zero for success or negative posix error code.
1919 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1921 struct velocity_info *vptr = netdev_priv(dev);
1922 unsigned long flags;
1923 int oldmtu = dev->mtu;
1924 int ret = 0;
1926 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1927 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1928 vptr->dev->name);
1929 return -EINVAL;
1932 if (!netif_running(dev)) {
1933 dev->mtu = new_mtu;
1934 return 0;
1937 if (new_mtu != oldmtu) {
1938 spin_lock_irqsave(&vptr->lock, flags);
1940 netif_stop_queue(dev);
1941 velocity_shutdown(vptr);
1943 velocity_free_td_ring(vptr);
1944 velocity_free_rd_ring(vptr);
1946 dev->mtu = new_mtu;
1948 velocity_set_rxbufsize(vptr, new_mtu);
1950 ret = velocity_init_rd_ring(vptr);
1951 if (ret < 0)
1952 goto out_unlock;
1954 ret = velocity_init_td_ring(vptr);
1955 if (ret < 0)
1956 goto out_unlock;
1958 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1960 mac_enable_int(vptr->mac_regs);
1961 netif_start_queue(dev);
1962 out_unlock:
1963 spin_unlock_irqrestore(&vptr->lock, flags);
1966 return ret;
1970 * velocity_shutdown - shut down the chip
1971 * @vptr: velocity to deactivate
1973 * Shuts down the internal operations of the velocity and
1974 * disables interrupts, autopolling, transmit and receive
1977 static void velocity_shutdown(struct velocity_info *vptr)
1979 struct mac_regs __iomem * regs = vptr->mac_regs;
1980 mac_disable_int(regs);
1981 writel(CR0_STOP, &regs->CR0Set);
1982 writew(0xFFFF, &regs->TDCSRClr);
1983 writeb(0xFF, &regs->RDCSRClr);
1984 safe_disable_mii_autopoll(regs);
1985 mac_clear_isr(regs);
1989 * velocity_close - close adapter callback
1990 * @dev: network device
1992 * Callback from the network layer when the velocity is being
1993 * deactivated by the network layer
1996 static int velocity_close(struct net_device *dev)
1998 struct velocity_info *vptr = netdev_priv(dev);
2000 netif_stop_queue(dev);
2001 velocity_shutdown(vptr);
2003 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2004 velocity_get_ip(vptr);
2005 if (dev->irq != 0)
2006 free_irq(dev->irq, dev);
2008 /* Power down the chip */
2009 pci_set_power_state(vptr->pdev, PCI_D3hot);
2011 /* Free the resources */
2012 velocity_free_td_ring(vptr);
2013 velocity_free_rd_ring(vptr);
2014 velocity_free_rings(vptr);
2016 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2017 return 0;
2021 * velocity_xmit - transmit packet callback
2022 * @skb: buffer to transmit
2023 * @dev: network device
2025 * Called by the networ layer to request a packet is queued to
2026 * the velocity. Returns zero on success.
2029 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
2031 struct velocity_info *vptr = netdev_priv(dev);
2032 int qnum = 0;
2033 struct tx_desc *td_ptr;
2034 struct velocity_td_info *tdinfo;
2035 unsigned long flags;
2036 int pktlen = skb->len;
2037 __le16 len;
2038 int index;
2042 if (skb->len < ETH_ZLEN) {
2043 if (skb_padto(skb, ETH_ZLEN))
2044 goto out;
2045 pktlen = ETH_ZLEN;
2048 len = cpu_to_le16(pktlen);
2050 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2051 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2052 kfree_skb(skb);
2053 return 0;
2055 #endif
2057 spin_lock_irqsave(&vptr->lock, flags);
2059 index = vptr->td_curr[qnum];
2060 td_ptr = &(vptr->td_rings[qnum][index]);
2061 tdinfo = &(vptr->td_infos[qnum][index]);
2063 td_ptr->tdesc1.TCR = TCR0_TIC;
2064 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2066 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2067 if (skb_shinfo(skb)->nr_frags > 0) {
2068 int nfrags = skb_shinfo(skb)->nr_frags;
2069 tdinfo->skb = skb;
2070 if (nfrags > 6) {
2071 skb_copy_from_linear_data(skb, tdinfo->buf, skb->len);
2072 tdinfo->skb_dma[0] = tdinfo->buf_dma;
2073 td_ptr->tdesc0.len = len;
2074 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2075 td_ptr->td_buf[0].pa_high = 0;
2076 td_ptr->td_buf[0].size = len; /* queue is 0 anyway */
2077 tdinfo->nskb_dma = 1;
2078 } else {
2079 int i = 0;
2080 tdinfo->nskb_dma = 0;
2081 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data,
2082 skb_headlen(skb), PCI_DMA_TODEVICE);
2084 td_ptr->tdesc0.len = len;
2086 /* FIXME: support 48bit DMA later */
2087 td_ptr->td_buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
2088 td_ptr->td_buf[i].pa_high = 0;
2089 td_ptr->td_buf[i].size = cpu_to_le16(skb_headlen(skb));
2091 for (i = 0; i < nfrags; i++) {
2092 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2093 void *addr = (void *)page_address(frag->page) + frag->page_offset;
2095 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
2097 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2098 td_ptr->td_buf[i + 1].pa_high = 0;
2099 td_ptr->td_buf[i + 1].size = cpu_to_le16(frag->size);
2101 tdinfo->nskb_dma = i - 1;
2104 } else
2105 #endif
2108 * Map the linear network buffer into PCI space and
2109 * add it to the transmit ring.
2111 tdinfo->skb = skb;
2112 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2113 td_ptr->tdesc0.len = len;
2114 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2115 td_ptr->td_buf[0].pa_high = 0;
2116 td_ptr->td_buf[0].size = len;
2117 tdinfo->nskb_dma = 1;
2119 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2121 if (vptr->vlgrp && vlan_tx_tag_present(skb)) {
2122 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2123 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2127 * Handle hardware checksum
2129 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2130 && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2131 const struct iphdr *ip = ip_hdr(skb);
2132 if (ip->protocol == IPPROTO_TCP)
2133 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2134 else if (ip->protocol == IPPROTO_UDP)
2135 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2136 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2140 int prev = index - 1;
2142 if (prev < 0)
2143 prev = vptr->options.numtx - 1;
2144 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2145 vptr->td_used[qnum]++;
2146 vptr->td_curr[qnum] = (index + 1) % vptr->options.numtx;
2148 if (AVAIL_TD(vptr, qnum) < 1)
2149 netif_stop_queue(dev);
2151 td_ptr = &(vptr->td_rings[qnum][prev]);
2152 td_ptr->td_buf[0].size |= TD_QUEUE;
2153 mac_tx_queue_wake(vptr->mac_regs, qnum);
2155 dev->trans_start = jiffies;
2156 spin_unlock_irqrestore(&vptr->lock, flags);
2157 out:
2158 return NETDEV_TX_OK;
2162 * velocity_intr - interrupt callback
2163 * @irq: interrupt number
2164 * @dev_instance: interrupting device
2166 * Called whenever an interrupt is generated by the velocity
2167 * adapter IRQ line. We may not be the source of the interrupt
2168 * and need to identify initially if we are, and if not exit as
2169 * efficiently as possible.
2172 static int velocity_intr(int irq, void *dev_instance)
2174 struct net_device *dev = dev_instance;
2175 struct velocity_info *vptr = netdev_priv(dev);
2176 u32 isr_status;
2177 int max_count = 0;
2180 spin_lock(&vptr->lock);
2181 isr_status = mac_read_isr(vptr->mac_regs);
2183 /* Not us ? */
2184 if (isr_status == 0) {
2185 spin_unlock(&vptr->lock);
2186 return IRQ_NONE;
2189 mac_disable_int(vptr->mac_regs);
2192 * Keep processing the ISR until we have completed
2193 * processing and the isr_status becomes zero
2196 while (isr_status != 0) {
2197 mac_write_isr(vptr->mac_regs, isr_status);
2198 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2199 velocity_error(vptr, isr_status);
2200 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2201 max_count += velocity_rx_srv(vptr, isr_status);
2202 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2203 max_count += velocity_tx_srv(vptr, isr_status);
2204 isr_status = mac_read_isr(vptr->mac_regs);
2205 if (max_count > vptr->options.int_works)
2207 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2208 dev->name);
2209 max_count = 0;
2212 spin_unlock(&vptr->lock);
2213 mac_enable_int(vptr->mac_regs);
2214 return IRQ_HANDLED;
2220 * velocity_set_multi - filter list change callback
2221 * @dev: network device
2223 * Called by the network layer when the filter lists need to change
2224 * for a velocity adapter. Reload the CAMs with the new address
2225 * filter ruleset.
2228 static void velocity_set_multi(struct net_device *dev)
2230 struct velocity_info *vptr = netdev_priv(dev);
2231 struct mac_regs __iomem * regs = vptr->mac_regs;
2232 u8 rx_mode;
2233 int i;
2234 struct dev_mc_list *mclist;
2236 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2237 writel(0xffffffff, &regs->MARCAM[0]);
2238 writel(0xffffffff, &regs->MARCAM[4]);
2239 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2240 } else if ((dev->mc_count > vptr->multicast_limit)
2241 || (dev->flags & IFF_ALLMULTI)) {
2242 writel(0xffffffff, &regs->MARCAM[0]);
2243 writel(0xffffffff, &regs->MARCAM[4]);
2244 rx_mode = (RCR_AM | RCR_AB);
2245 } else {
2246 int offset = MCAM_SIZE - vptr->multicast_limit;
2247 mac_get_cam_mask(regs, vptr->mCAMmask);
2249 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2250 mac_set_cam(regs, i + offset, mclist->dmi_addr);
2251 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2254 mac_set_cam_mask(regs, vptr->mCAMmask);
2255 rx_mode = (RCR_AM | RCR_AB);
2257 if (dev->mtu > 1500)
2258 rx_mode |= RCR_AL;
2260 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2265 * velocity_get_status - statistics callback
2266 * @dev: network device
2268 * Callback from the network layer to allow driver statistics
2269 * to be resynchronized with hardware collected state. In the
2270 * case of the velocity we need to pull the MIB counters from
2271 * the hardware into the counters before letting the network
2272 * layer display them.
2275 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2277 struct velocity_info *vptr = netdev_priv(dev);
2279 /* If the hardware is down, don't touch MII */
2280 if(!netif_running(dev))
2281 return &vptr->stats;
2283 spin_lock_irq(&vptr->lock);
2284 velocity_update_hw_mibs(vptr);
2285 spin_unlock_irq(&vptr->lock);
2287 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2288 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2289 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2291 // unsigned long rx_dropped; /* no space in linux buffers */
2292 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2293 /* detailed rx_errors: */
2294 // unsigned long rx_length_errors;
2295 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2296 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2297 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2298 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2299 // unsigned long rx_missed_errors; /* receiver missed packet */
2301 /* detailed tx_errors */
2302 // unsigned long tx_fifo_errors;
2304 return &vptr->stats;
2309 * velocity_ioctl - ioctl entry point
2310 * @dev: network device
2311 * @rq: interface request ioctl
2312 * @cmd: command code
2314 * Called when the user issues an ioctl request to the network
2315 * device in question. The velocity interface supports MII.
2318 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2320 struct velocity_info *vptr = netdev_priv(dev);
2321 int ret;
2323 /* If we are asked for information and the device is power
2324 saving then we need to bring the device back up to talk to it */
2326 if (!netif_running(dev))
2327 pci_set_power_state(vptr->pdev, PCI_D0);
2329 switch (cmd) {
2330 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2331 case SIOCGMIIREG: /* Read MII PHY register. */
2332 case SIOCSMIIREG: /* Write to MII PHY register. */
2333 ret = velocity_mii_ioctl(dev, rq, cmd);
2334 break;
2336 default:
2337 ret = -EOPNOTSUPP;
2339 if (!netif_running(dev))
2340 pci_set_power_state(vptr->pdev, PCI_D3hot);
2343 return ret;
2347 * Definition for our device driver. The PCI layer interface
2348 * uses this to handle all our card discover and plugging
2351 static struct pci_driver velocity_driver = {
2352 .name = VELOCITY_NAME,
2353 .id_table = velocity_id_table,
2354 .probe = velocity_found1,
2355 .remove = __devexit_p(velocity_remove1),
2356 #ifdef CONFIG_PM
2357 .suspend = velocity_suspend,
2358 .resume = velocity_resume,
2359 #endif
2363 * velocity_init_module - load time function
2365 * Called when the velocity module is loaded. The PCI driver
2366 * is registered with the PCI layer, and in turn will call
2367 * the probe functions for each velocity adapter installed
2368 * in the system.
2371 static int __init velocity_init_module(void)
2373 int ret;
2375 velocity_register_notifier();
2376 ret = pci_register_driver(&velocity_driver);
2377 if (ret < 0)
2378 velocity_unregister_notifier();
2379 return ret;
2383 * velocity_cleanup - module unload
2385 * When the velocity hardware is unloaded this function is called.
2386 * It will clean up the notifiers and the unregister the PCI
2387 * driver interface for this hardware. This in turn cleans up
2388 * all discovered interfaces before returning from the function
2391 static void __exit velocity_cleanup_module(void)
2393 velocity_unregister_notifier();
2394 pci_unregister_driver(&velocity_driver);
2397 module_init(velocity_init_module);
2398 module_exit(velocity_cleanup_module);
2402 * MII access , media link mode setting functions
2407 * mii_init - set up MII
2408 * @vptr: velocity adapter
2409 * @mii_status: links tatus
2411 * Set up the PHY for the current link state.
2414 static void mii_init(struct velocity_info *vptr, u32 mii_status)
2416 u16 BMCR;
2418 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2419 case PHYID_CICADA_CS8201:
2421 * Reset to hardware default
2423 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2425 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2426 * off it in NWay-forced half mode for NWay-forced v.s.
2427 * legacy-forced issue.
2429 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2430 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2431 else
2432 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2434 * Turn on Link/Activity LED enable bit for CIS8201
2436 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2437 break;
2438 case PHYID_VT3216_32BIT:
2439 case PHYID_VT3216_64BIT:
2441 * Reset to hardware default
2443 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2445 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2446 * off it in NWay-forced half mode for NWay-forced v.s.
2447 * legacy-forced issue
2449 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2450 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2451 else
2452 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2453 break;
2455 case PHYID_MARVELL_1000:
2456 case PHYID_MARVELL_1000S:
2458 * Assert CRS on Transmit
2460 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2462 * Reset to hardware default
2464 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2465 break;
2466 default:
2469 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2470 if (BMCR & BMCR_ISO) {
2471 BMCR &= ~BMCR_ISO;
2472 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2477 * safe_disable_mii_autopoll - autopoll off
2478 * @regs: velocity registers
2480 * Turn off the autopoll and wait for it to disable on the chip
2483 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2485 u16 ww;
2487 /* turn off MAUTO */
2488 writeb(0, &regs->MIICR);
2489 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2490 udelay(1);
2491 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2492 break;
2497 * enable_mii_autopoll - turn on autopolling
2498 * @regs: velocity registers
2500 * Enable the MII link status autopoll feature on the Velocity
2501 * hardware. Wait for it to enable.
2504 static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2506 int ii;
2508 writeb(0, &(regs->MIICR));
2509 writeb(MIIADR_SWMPL, &regs->MIIADR);
2511 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2512 udelay(1);
2513 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2514 break;
2517 writeb(MIICR_MAUTO, &regs->MIICR);
2519 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2520 udelay(1);
2521 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2522 break;
2528 * velocity_mii_read - read MII data
2529 * @regs: velocity registers
2530 * @index: MII register index
2531 * @data: buffer for received data
2533 * Perform a single read of an MII 16bit register. Returns zero
2534 * on success or -ETIMEDOUT if the PHY did not respond.
2537 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2539 u16 ww;
2542 * Disable MIICR_MAUTO, so that mii addr can be set normally
2544 safe_disable_mii_autopoll(regs);
2546 writeb(index, &regs->MIIADR);
2548 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2550 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2551 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2552 break;
2555 *data = readw(&regs->MIIDATA);
2557 enable_mii_autopoll(regs);
2558 if (ww == W_MAX_TIMEOUT)
2559 return -ETIMEDOUT;
2560 return 0;
2564 * velocity_mii_write - write MII data
2565 * @regs: velocity registers
2566 * @index: MII register index
2567 * @data: 16bit data for the MII register
2569 * Perform a single write to an MII 16bit register. Returns zero
2570 * on success or -ETIMEDOUT if the PHY did not respond.
2573 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2575 u16 ww;
2578 * Disable MIICR_MAUTO, so that mii addr can be set normally
2580 safe_disable_mii_autopoll(regs);
2582 /* MII reg offset */
2583 writeb(mii_addr, &regs->MIIADR);
2584 /* set MII data */
2585 writew(data, &regs->MIIDATA);
2587 /* turn on MIICR_WCMD */
2588 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2590 /* W_MAX_TIMEOUT is the timeout period */
2591 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2592 udelay(5);
2593 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2594 break;
2596 enable_mii_autopoll(regs);
2598 if (ww == W_MAX_TIMEOUT)
2599 return -ETIMEDOUT;
2600 return 0;
2604 * velocity_get_opt_media_mode - get media selection
2605 * @vptr: velocity adapter
2607 * Get the media mode stored in EEPROM or module options and load
2608 * mii_status accordingly. The requested link state information
2609 * is also returned.
2612 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2614 u32 status = 0;
2616 switch (vptr->options.spd_dpx) {
2617 case SPD_DPX_AUTO:
2618 status = VELOCITY_AUTONEG_ENABLE;
2619 break;
2620 case SPD_DPX_100_FULL:
2621 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2622 break;
2623 case SPD_DPX_10_FULL:
2624 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2625 break;
2626 case SPD_DPX_100_HALF:
2627 status = VELOCITY_SPEED_100;
2628 break;
2629 case SPD_DPX_10_HALF:
2630 status = VELOCITY_SPEED_10;
2631 break;
2633 vptr->mii_status = status;
2634 return status;
2638 * mii_set_auto_on - autonegotiate on
2639 * @vptr: velocity
2641 * Enable autonegotation on this interface
2644 static void mii_set_auto_on(struct velocity_info *vptr)
2646 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2647 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2648 else
2649 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2654 static void mii_set_auto_off(struct velocity_info * vptr)
2656 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2661 * set_mii_flow_control - flow control setup
2662 * @vptr: velocity interface
2664 * Set up the flow control on this interface according to
2665 * the supplied user/eeprom options.
2668 static void set_mii_flow_control(struct velocity_info *vptr)
2670 /*Enable or Disable PAUSE in ANAR */
2671 switch (vptr->options.flow_cntl) {
2672 case FLOW_CNTL_TX:
2673 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2674 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2675 break;
2677 case FLOW_CNTL_RX:
2678 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2679 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2680 break;
2682 case FLOW_CNTL_TX_RX:
2683 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2684 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2685 break;
2687 case FLOW_CNTL_DISABLE:
2688 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2689 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2690 break;
2691 default:
2692 break;
2697 * velocity_set_media_mode - set media mode
2698 * @mii_status: old MII link state
2700 * Check the media link state and configure the flow control
2701 * PHY and also velocity hardware setup accordingly. In particular
2702 * we need to set up CD polling and frame bursting.
2705 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2707 u32 curr_status;
2708 struct mac_regs __iomem * regs = vptr->mac_regs;
2710 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2711 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2713 /* Set mii link status */
2714 set_mii_flow_control(vptr);
2717 Check if new status is consisent with current status
2718 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2719 || (mii_status==curr_status)) {
2720 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2721 vptr->mii_status=check_connection_type(vptr->mac_regs);
2722 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2723 return 0;
2727 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2728 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2732 * If connection type is AUTO
2734 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2735 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2736 /* clear force MAC mode bit */
2737 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2738 /* set duplex mode of MAC according to duplex mode of MII */
2739 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2740 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2741 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2743 /* enable AUTO-NEGO mode */
2744 mii_set_auto_on(vptr);
2745 } else {
2746 u16 ANAR;
2747 u8 CHIPGCR;
2750 * 1. if it's 3119, disable frame bursting in halfduplex mode
2751 * and enable it in fullduplex mode
2752 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2753 * 3. only enable CD heart beat counter in 10HD mode
2756 /* set force MAC mode bit */
2757 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2759 CHIPGCR = readb(&regs->CHIPGCR);
2760 CHIPGCR &= ~CHIPGCR_FCGMII;
2762 if (mii_status & VELOCITY_DUPLEX_FULL) {
2763 CHIPGCR |= CHIPGCR_FCFDX;
2764 writeb(CHIPGCR, &regs->CHIPGCR);
2765 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2766 if (vptr->rev_id < REV_ID_VT3216_A0)
2767 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2768 } else {
2769 CHIPGCR &= ~CHIPGCR_FCFDX;
2770 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2771 writeb(CHIPGCR, &regs->CHIPGCR);
2772 if (vptr->rev_id < REV_ID_VT3216_A0)
2773 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2776 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2778 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2779 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2780 } else {
2781 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2783 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2784 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2785 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2786 if (mii_status & VELOCITY_SPEED_100) {
2787 if (mii_status & VELOCITY_DUPLEX_FULL)
2788 ANAR |= ANAR_TXFD;
2789 else
2790 ANAR |= ANAR_TX;
2791 } else {
2792 if (mii_status & VELOCITY_DUPLEX_FULL)
2793 ANAR |= ANAR_10FD;
2794 else
2795 ANAR |= ANAR_10;
2797 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2798 /* enable AUTO-NEGO mode */
2799 mii_set_auto_on(vptr);
2800 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2802 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2803 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2804 return VELOCITY_LINK_CHANGE;
2808 * mii_check_media_mode - check media state
2809 * @regs: velocity registers
2811 * Check the current MII status and determine the link status
2812 * accordingly
2815 static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2817 u32 status = 0;
2818 u16 ANAR;
2820 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2821 status |= VELOCITY_LINK_FAIL;
2823 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2824 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2825 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2826 status |= (VELOCITY_SPEED_1000);
2827 else {
2828 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2829 if (ANAR & ANAR_TXFD)
2830 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2831 else if (ANAR & ANAR_TX)
2832 status |= VELOCITY_SPEED_100;
2833 else if (ANAR & ANAR_10FD)
2834 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2835 else
2836 status |= (VELOCITY_SPEED_10);
2839 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2840 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2841 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2842 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2843 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2844 status |= VELOCITY_AUTONEG_ENABLE;
2848 return status;
2851 static u32 check_connection_type(struct mac_regs __iomem * regs)
2853 u32 status = 0;
2854 u8 PHYSR0;
2855 u16 ANAR;
2856 PHYSR0 = readb(&regs->PHYSR0);
2859 if (!(PHYSR0 & PHYSR0_LINKGD))
2860 status|=VELOCITY_LINK_FAIL;
2863 if (PHYSR0 & PHYSR0_FDPX)
2864 status |= VELOCITY_DUPLEX_FULL;
2866 if (PHYSR0 & PHYSR0_SPDG)
2867 status |= VELOCITY_SPEED_1000;
2868 else if (PHYSR0 & PHYSR0_SPD10)
2869 status |= VELOCITY_SPEED_10;
2870 else
2871 status |= VELOCITY_SPEED_100;
2873 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2874 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2875 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2876 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2877 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2878 status |= VELOCITY_AUTONEG_ENABLE;
2882 return status;
2886 * enable_flow_control_ability - flow control
2887 * @vptr: veloity to configure
2889 * Set up flow control according to the flow control options
2890 * determined by the eeprom/configuration.
2893 static void enable_flow_control_ability(struct velocity_info *vptr)
2896 struct mac_regs __iomem * regs = vptr->mac_regs;
2898 switch (vptr->options.flow_cntl) {
2900 case FLOW_CNTL_DEFAULT:
2901 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2902 writel(CR0_FDXRFCEN, &regs->CR0Set);
2903 else
2904 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2906 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2907 writel(CR0_FDXTFCEN, &regs->CR0Set);
2908 else
2909 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2910 break;
2912 case FLOW_CNTL_TX:
2913 writel(CR0_FDXTFCEN, &regs->CR0Set);
2914 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2915 break;
2917 case FLOW_CNTL_RX:
2918 writel(CR0_FDXRFCEN, &regs->CR0Set);
2919 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2920 break;
2922 case FLOW_CNTL_TX_RX:
2923 writel(CR0_FDXTFCEN, &regs->CR0Set);
2924 writel(CR0_FDXRFCEN, &regs->CR0Set);
2925 break;
2927 case FLOW_CNTL_DISABLE:
2928 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2929 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2930 break;
2932 default:
2933 break;
2940 * velocity_ethtool_up - pre hook for ethtool
2941 * @dev: network device
2943 * Called before an ethtool operation. We need to make sure the
2944 * chip is out of D3 state before we poke at it.
2947 static int velocity_ethtool_up(struct net_device *dev)
2949 struct velocity_info *vptr = netdev_priv(dev);
2950 if (!netif_running(dev))
2951 pci_set_power_state(vptr->pdev, PCI_D0);
2952 return 0;
2956 * velocity_ethtool_down - post hook for ethtool
2957 * @dev: network device
2959 * Called after an ethtool operation. Restore the chip back to D3
2960 * state if it isn't running.
2963 static void velocity_ethtool_down(struct net_device *dev)
2965 struct velocity_info *vptr = netdev_priv(dev);
2966 if (!netif_running(dev))
2967 pci_set_power_state(vptr->pdev, PCI_D3hot);
2970 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2972 struct velocity_info *vptr = netdev_priv(dev);
2973 struct mac_regs __iomem * regs = vptr->mac_regs;
2974 u32 status;
2975 status = check_connection_type(vptr->mac_regs);
2977 cmd->supported = SUPPORTED_TP |
2978 SUPPORTED_Autoneg |
2979 SUPPORTED_10baseT_Half |
2980 SUPPORTED_10baseT_Full |
2981 SUPPORTED_100baseT_Half |
2982 SUPPORTED_100baseT_Full |
2983 SUPPORTED_1000baseT_Half |
2984 SUPPORTED_1000baseT_Full;
2985 if (status & VELOCITY_SPEED_1000)
2986 cmd->speed = SPEED_1000;
2987 else if (status & VELOCITY_SPEED_100)
2988 cmd->speed = SPEED_100;
2989 else
2990 cmd->speed = SPEED_10;
2991 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2992 cmd->port = PORT_TP;
2993 cmd->transceiver = XCVR_INTERNAL;
2994 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
2996 if (status & VELOCITY_DUPLEX_FULL)
2997 cmd->duplex = DUPLEX_FULL;
2998 else
2999 cmd->duplex = DUPLEX_HALF;
3001 return 0;
3004 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3006 struct velocity_info *vptr = netdev_priv(dev);
3007 u32 curr_status;
3008 u32 new_status = 0;
3009 int ret = 0;
3011 curr_status = check_connection_type(vptr->mac_regs);
3012 curr_status &= (~VELOCITY_LINK_FAIL);
3014 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3015 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3016 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3017 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3019 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
3020 ret = -EINVAL;
3021 else
3022 velocity_set_media_mode(vptr, new_status);
3024 return ret;
3027 static u32 velocity_get_link(struct net_device *dev)
3029 struct velocity_info *vptr = netdev_priv(dev);
3030 struct mac_regs __iomem * regs = vptr->mac_regs;
3031 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
3034 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3036 struct velocity_info *vptr = netdev_priv(dev);
3037 strcpy(info->driver, VELOCITY_NAME);
3038 strcpy(info->version, VELOCITY_VERSION);
3039 strcpy(info->bus_info, pci_name(vptr->pdev));
3042 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3044 struct velocity_info *vptr = netdev_priv(dev);
3045 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3046 wol->wolopts |= WAKE_MAGIC;
3048 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3049 wol.wolopts|=WAKE_PHY;
3051 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3052 wol->wolopts |= WAKE_UCAST;
3053 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3054 wol->wolopts |= WAKE_ARP;
3055 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3058 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3060 struct velocity_info *vptr = netdev_priv(dev);
3062 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3063 return -EFAULT;
3064 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3067 if (wol.wolopts & WAKE_PHY) {
3068 vptr->wol_opts|=VELOCITY_WOL_PHY;
3069 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3073 if (wol->wolopts & WAKE_MAGIC) {
3074 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3075 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3077 if (wol->wolopts & WAKE_UCAST) {
3078 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3079 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3081 if (wol->wolopts & WAKE_ARP) {
3082 vptr->wol_opts |= VELOCITY_WOL_ARP;
3083 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3085 memcpy(vptr->wol_passwd, wol->sopass, 6);
3086 return 0;
3089 static u32 velocity_get_msglevel(struct net_device *dev)
3091 return msglevel;
3094 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3096 msglevel = value;
3099 static const struct ethtool_ops velocity_ethtool_ops = {
3100 .get_settings = velocity_get_settings,
3101 .set_settings = velocity_set_settings,
3102 .get_drvinfo = velocity_get_drvinfo,
3103 .get_wol = velocity_ethtool_get_wol,
3104 .set_wol = velocity_ethtool_set_wol,
3105 .get_msglevel = velocity_get_msglevel,
3106 .set_msglevel = velocity_set_msglevel,
3107 .get_link = velocity_get_link,
3108 .begin = velocity_ethtool_up,
3109 .complete = velocity_ethtool_down
3113 * velocity_mii_ioctl - MII ioctl handler
3114 * @dev: network device
3115 * @ifr: the ifreq block for the ioctl
3116 * @cmd: the command
3118 * Process MII requests made via ioctl from the network layer. These
3119 * are used by tools like kudzu to interrogate the link state of the
3120 * hardware
3123 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3125 struct velocity_info *vptr = netdev_priv(dev);
3126 struct mac_regs __iomem * regs = vptr->mac_regs;
3127 unsigned long flags;
3128 struct mii_ioctl_data *miidata = if_mii(ifr);
3129 int err;
3131 switch (cmd) {
3132 case SIOCGMIIPHY:
3133 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3134 break;
3135 case SIOCGMIIREG:
3136 if (!capable(CAP_NET_ADMIN))
3137 return -EPERM;
3138 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3139 return -ETIMEDOUT;
3140 break;
3141 case SIOCSMIIREG:
3142 if (!capable(CAP_NET_ADMIN))
3143 return -EPERM;
3144 spin_lock_irqsave(&vptr->lock, flags);
3145 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3146 spin_unlock_irqrestore(&vptr->lock, flags);
3147 check_connection_type(vptr->mac_regs);
3148 if(err)
3149 return err;
3150 break;
3151 default:
3152 return -EOPNOTSUPP;
3154 return 0;
3157 #ifdef CONFIG_PM
3160 * velocity_save_context - save registers
3161 * @vptr: velocity
3162 * @context: buffer for stored context
3164 * Retrieve the current configuration from the velocity hardware
3165 * and stash it in the context structure, for use by the context
3166 * restore functions. This allows us to save things we need across
3167 * power down states
3170 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3172 struct mac_regs __iomem * regs = vptr->mac_regs;
3173 u16 i;
3174 u8 __iomem *ptr = (u8 __iomem *)regs;
3176 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3177 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3179 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3180 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3182 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3183 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3188 * velocity_restore_context - restore registers
3189 * @vptr: velocity
3190 * @context: buffer for stored context
3192 * Reload the register configuration from the velocity context
3193 * created by velocity_save_context.
3196 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3198 struct mac_regs __iomem * regs = vptr->mac_regs;
3199 int i;
3200 u8 __iomem *ptr = (u8 __iomem *)regs;
3202 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3203 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3206 /* Just skip cr0 */
3207 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3208 /* Clear */
3209 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3210 /* Set */
3211 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3214 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3215 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3218 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3219 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3222 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3223 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3229 * wol_calc_crc - WOL CRC
3230 * @pattern: data pattern
3231 * @mask_pattern: mask
3233 * Compute the wake on lan crc hashes for the packet header
3234 * we are interested in.
3237 static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3239 u16 crc = 0xFFFF;
3240 u8 mask;
3241 int i, j;
3243 for (i = 0; i < size; i++) {
3244 mask = mask_pattern[i];
3246 /* Skip this loop if the mask equals to zero */
3247 if (mask == 0x00)
3248 continue;
3250 for (j = 0; j < 8; j++) {
3251 if ((mask & 0x01) == 0) {
3252 mask >>= 1;
3253 continue;
3255 mask >>= 1;
3256 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3259 /* Finally, invert the result once to get the correct data */
3260 crc = ~crc;
3261 return bitrev32(crc) >> 16;
3265 * velocity_set_wol - set up for wake on lan
3266 * @vptr: velocity to set WOL status on
3268 * Set a card up for wake on lan either by unicast or by
3269 * ARP packet.
3271 * FIXME: check static buffer is safe here
3274 static int velocity_set_wol(struct velocity_info *vptr)
3276 struct mac_regs __iomem * regs = vptr->mac_regs;
3277 static u8 buf[256];
3278 int i;
3280 static u32 mask_pattern[2][4] = {
3281 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3282 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3285 writew(0xFFFF, &regs->WOLCRClr);
3286 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3287 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3290 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3291 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3294 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3295 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3298 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3299 struct arp_packet *arp = (struct arp_packet *) buf;
3300 u16 crc;
3301 memset(buf, 0, sizeof(struct arp_packet) + 7);
3303 for (i = 0; i < 4; i++)
3304 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3306 arp->type = htons(ETH_P_ARP);
3307 arp->ar_op = htons(1);
3309 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3311 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3312 (u8 *) & mask_pattern[0][0]);
3314 writew(crc, &regs->PatternCRC[0]);
3315 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3318 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3319 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3321 writew(0x0FFF, &regs->WOLSRClr);
3323 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3324 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3325 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3327 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3330 if (vptr->mii_status & VELOCITY_SPEED_1000)
3331 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3333 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3336 u8 GCR;
3337 GCR = readb(&regs->CHIPGCR);
3338 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3339 writeb(GCR, &regs->CHIPGCR);
3342 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3343 /* Turn on SWPTAG just before entering power mode */
3344 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3345 /* Go to bed ..... */
3346 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3348 return 0;
3351 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3353 struct net_device *dev = pci_get_drvdata(pdev);
3354 struct velocity_info *vptr = netdev_priv(dev);
3355 unsigned long flags;
3357 if(!netif_running(vptr->dev))
3358 return 0;
3360 netif_device_detach(vptr->dev);
3362 spin_lock_irqsave(&vptr->lock, flags);
3363 pci_save_state(pdev);
3364 #ifdef ETHTOOL_GWOL
3365 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3366 velocity_get_ip(vptr);
3367 velocity_save_context(vptr, &vptr->context);
3368 velocity_shutdown(vptr);
3369 velocity_set_wol(vptr);
3370 pci_enable_wake(pdev, PCI_D3hot, 1);
3371 pci_set_power_state(pdev, PCI_D3hot);
3372 } else {
3373 velocity_save_context(vptr, &vptr->context);
3374 velocity_shutdown(vptr);
3375 pci_disable_device(pdev);
3376 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3378 #else
3379 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3380 #endif
3381 spin_unlock_irqrestore(&vptr->lock, flags);
3382 return 0;
3385 static int velocity_resume(struct pci_dev *pdev)
3387 struct net_device *dev = pci_get_drvdata(pdev);
3388 struct velocity_info *vptr = netdev_priv(dev);
3389 unsigned long flags;
3390 int i;
3392 if(!netif_running(vptr->dev))
3393 return 0;
3395 pci_set_power_state(pdev, PCI_D0);
3396 pci_enable_wake(pdev, 0, 0);
3397 pci_restore_state(pdev);
3399 mac_wol_reset(vptr->mac_regs);
3401 spin_lock_irqsave(&vptr->lock, flags);
3402 velocity_restore_context(vptr, &vptr->context);
3403 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3404 mac_disable_int(vptr->mac_regs);
3406 velocity_tx_srv(vptr, 0);
3408 for (i = 0; i < vptr->num_txq; i++) {
3409 if (vptr->td_used[i]) {
3410 mac_tx_queue_wake(vptr->mac_regs, i);
3414 mac_enable_int(vptr->mac_regs);
3415 spin_unlock_irqrestore(&vptr->lock, flags);
3416 netif_device_attach(vptr->dev);
3418 return 0;
3421 #ifdef CONFIG_INET
3423 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3425 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3426 struct net_device *dev = ifa->ifa_dev->dev;
3427 struct velocity_info *vptr;
3428 unsigned long flags;
3430 if (dev_net(dev) != &init_net)
3431 return NOTIFY_DONE;
3433 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3434 list_for_each_entry(vptr, &velocity_dev_list, list) {
3435 if (vptr->dev == dev) {
3436 velocity_get_ip(vptr);
3437 break;
3440 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3442 return NOTIFY_DONE;
3445 #endif
3446 #endif