2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/nl80211.h>
40 #include <linux/platform_device.h>
41 #include <net/cfg80211.h>
47 #ifdef CONFIG_CFG80211_REG_DEBUG
48 #define REG_DBG_PRINT(format, args...) \
50 printk(KERN_DEBUG format , ## args); \
53 #define REG_DBG_PRINT(args...)
56 /* Receipt of information from last regulatory request */
57 static struct regulatory_request
*last_request
;
59 /* To trigger userspace events */
60 static struct platform_device
*reg_pdev
;
63 * Central wireless core regulatory domains, we only need two,
64 * the current one and a world regulatory domain in case we have no
65 * information to give us an alpha2
67 const struct ieee80211_regdomain
*cfg80211_regdomain
;
70 * Protects static reg.c components:
71 * - cfg80211_world_regdom
75 static DEFINE_MUTEX(reg_mutex
);
76 #define assert_reg_lock() WARN_ON(!mutex_is_locked(®_mutex))
78 /* Used to queue up regulatory hints */
79 static LIST_HEAD(reg_requests_list
);
80 static spinlock_t reg_requests_lock
;
82 /* Used to queue up beacon hints for review */
83 static LIST_HEAD(reg_pending_beacons
);
84 static spinlock_t reg_pending_beacons_lock
;
86 /* Used to keep track of processed beacon hints */
87 static LIST_HEAD(reg_beacon_list
);
90 struct list_head list
;
91 struct ieee80211_channel chan
;
94 /* We keep a static world regulatory domain in case of the absence of CRDA */
95 static const struct ieee80211_regdomain world_regdom
= {
99 /* IEEE 802.11b/g, channels 1..11 */
100 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
101 /* IEEE 802.11b/g, channels 12..13. No HT40
102 * channel fits here. */
103 REG_RULE(2467-10, 2472+10, 20, 6, 20,
104 NL80211_RRF_PASSIVE_SCAN
|
105 NL80211_RRF_NO_IBSS
),
106 /* IEEE 802.11 channel 14 - Only JP enables
107 * this and for 802.11b only */
108 REG_RULE(2484-10, 2484+10, 20, 6, 20,
109 NL80211_RRF_PASSIVE_SCAN
|
110 NL80211_RRF_NO_IBSS
|
111 NL80211_RRF_NO_OFDM
),
112 /* IEEE 802.11a, channel 36..48 */
113 REG_RULE(5180-10, 5240+10, 40, 6, 20,
114 NL80211_RRF_PASSIVE_SCAN
|
115 NL80211_RRF_NO_IBSS
),
117 /* NB: 5260 MHz - 5700 MHz requies DFS */
119 /* IEEE 802.11a, channel 149..165 */
120 REG_RULE(5745-10, 5825+10, 40, 6, 20,
121 NL80211_RRF_PASSIVE_SCAN
|
122 NL80211_RRF_NO_IBSS
),
126 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
129 static char *ieee80211_regdom
= "00";
130 static char user_alpha2
[2];
132 module_param(ieee80211_regdom
, charp
, 0444);
133 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
135 static void reset_regdomains(void)
137 /* avoid freeing static information or freeing something twice */
138 if (cfg80211_regdomain
== cfg80211_world_regdom
)
139 cfg80211_regdomain
= NULL
;
140 if (cfg80211_world_regdom
== &world_regdom
)
141 cfg80211_world_regdom
= NULL
;
142 if (cfg80211_regdomain
== &world_regdom
)
143 cfg80211_regdomain
= NULL
;
145 kfree(cfg80211_regdomain
);
146 kfree(cfg80211_world_regdom
);
148 cfg80211_world_regdom
= &world_regdom
;
149 cfg80211_regdomain
= NULL
;
153 * Dynamic world regulatory domain requested by the wireless
154 * core upon initialization
156 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
158 BUG_ON(!last_request
);
162 cfg80211_world_regdom
= rd
;
163 cfg80211_regdomain
= rd
;
166 bool is_world_regdom(const char *alpha2
)
170 if (alpha2
[0] == '0' && alpha2
[1] == '0')
175 static bool is_alpha2_set(const char *alpha2
)
179 if (alpha2
[0] != 0 && alpha2
[1] != 0)
184 static bool is_alpha_upper(char letter
)
187 if (letter
>= 65 && letter
<= 90)
192 static bool is_unknown_alpha2(const char *alpha2
)
197 * Special case where regulatory domain was built by driver
198 * but a specific alpha2 cannot be determined
200 if (alpha2
[0] == '9' && alpha2
[1] == '9')
205 static bool is_intersected_alpha2(const char *alpha2
)
210 * Special case where regulatory domain is the
211 * result of an intersection between two regulatory domain
214 if (alpha2
[0] == '9' && alpha2
[1] == '8')
219 static bool is_an_alpha2(const char *alpha2
)
223 if (is_alpha_upper(alpha2
[0]) && is_alpha_upper(alpha2
[1]))
228 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
230 if (!alpha2_x
|| !alpha2_y
)
232 if (alpha2_x
[0] == alpha2_y
[0] &&
233 alpha2_x
[1] == alpha2_y
[1])
238 static bool regdom_changes(const char *alpha2
)
240 assert_cfg80211_lock();
242 if (!cfg80211_regdomain
)
244 if (alpha2_equal(cfg80211_regdomain
->alpha2
, alpha2
))
250 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
251 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
252 * has ever been issued.
254 static bool is_user_regdom_saved(void)
256 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
259 /* This would indicate a mistake on the design */
260 if (WARN((!is_world_regdom(user_alpha2
) &&
261 !is_an_alpha2(user_alpha2
)),
262 "Unexpected user alpha2: %c%c\n",
270 static int reg_copy_regd(const struct ieee80211_regdomain
**dst_regd
,
271 const struct ieee80211_regdomain
*src_regd
)
273 struct ieee80211_regdomain
*regd
;
274 int size_of_regd
= 0;
277 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
278 ((src_regd
->n_reg_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
280 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
284 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
286 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
287 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
288 sizeof(struct ieee80211_reg_rule
));
294 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
295 struct reg_regdb_search_request
{
297 struct list_head list
;
300 static LIST_HEAD(reg_regdb_search_list
);
301 static DEFINE_MUTEX(reg_regdb_search_mutex
);
303 static void reg_regdb_search(struct work_struct
*work
)
305 struct reg_regdb_search_request
*request
;
306 const struct ieee80211_regdomain
*curdom
, *regdom
;
309 mutex_lock(®_regdb_search_mutex
);
310 while (!list_empty(®_regdb_search_list
)) {
311 request
= list_first_entry(®_regdb_search_list
,
312 struct reg_regdb_search_request
,
314 list_del(&request
->list
);
316 for (i
=0; i
<reg_regdb_size
; i
++) {
317 curdom
= reg_regdb
[i
];
319 if (!memcmp(request
->alpha2
, curdom
->alpha2
, 2)) {
320 r
= reg_copy_regd(®dom
, curdom
);
323 mutex_lock(&cfg80211_mutex
);
325 mutex_unlock(&cfg80211_mutex
);
332 mutex_unlock(®_regdb_search_mutex
);
335 static DECLARE_WORK(reg_regdb_work
, reg_regdb_search
);
337 static void reg_regdb_query(const char *alpha2
)
339 struct reg_regdb_search_request
*request
;
344 request
= kzalloc(sizeof(struct reg_regdb_search_request
), GFP_KERNEL
);
348 memcpy(request
->alpha2
, alpha2
, 2);
350 mutex_lock(®_regdb_search_mutex
);
351 list_add_tail(&request
->list
, ®_regdb_search_list
);
352 mutex_unlock(®_regdb_search_mutex
);
354 schedule_work(®_regdb_work
);
357 static inline void reg_regdb_query(const char *alpha2
) {}
358 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
361 * This lets us keep regulatory code which is updated on a regulatory
362 * basis in userspace.
364 static int call_crda(const char *alpha2
)
366 char country_env
[9 + 2] = "COUNTRY=";
372 if (!is_world_regdom((char *) alpha2
))
373 printk(KERN_INFO
"cfg80211: Calling CRDA for country: %c%c\n",
374 alpha2
[0], alpha2
[1]);
376 printk(KERN_INFO
"cfg80211: Calling CRDA to update world "
377 "regulatory domain\n");
379 /* query internal regulatory database (if it exists) */
380 reg_regdb_query(alpha2
);
382 country_env
[8] = alpha2
[0];
383 country_env
[9] = alpha2
[1];
385 return kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, envp
);
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2
)
391 assert_cfg80211_lock();
396 return alpha2_equal(last_request
->alpha2
, alpha2
);
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
402 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
405 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
408 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
411 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
413 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
414 freq_range
->max_bandwidth_khz
> freq_diff
)
420 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
422 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
425 if (!rd
->n_reg_rules
)
428 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
431 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
432 reg_rule
= &rd
->reg_rules
[i
];
433 if (!is_valid_reg_rule(reg_rule
))
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
444 u32 start_freq_khz
, end_freq_khz
;
446 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
447 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
449 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
450 end_freq_khz
<= freq_range
->end_freq_khz
)
457 * freq_in_rule_band - tells us if a frequency is in a frequency band
458 * @freq_range: frequency rule we want to query
459 * @freq_khz: frequency we are inquiring about
461 * This lets us know if a specific frequency rule is or is not relevant to
462 * a specific frequency's band. Bands are device specific and artificial
463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464 * safe for now to assume that a frequency rule should not be part of a
465 * frequency's band if the start freq or end freq are off by more than 2 GHz.
466 * This resolution can be lowered and should be considered as we add
467 * regulatory rule support for other "bands".
469 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
472 #define ONE_GHZ_IN_KHZ 1000000
473 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
475 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
478 #undef ONE_GHZ_IN_KHZ
482 * Helper for regdom_intersect(), this does the real
483 * mathematical intersection fun
485 static int reg_rules_intersect(
486 const struct ieee80211_reg_rule
*rule1
,
487 const struct ieee80211_reg_rule
*rule2
,
488 struct ieee80211_reg_rule
*intersected_rule
)
490 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
491 struct ieee80211_freq_range
*freq_range
;
492 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
493 struct ieee80211_power_rule
*power_rule
;
496 freq_range1
= &rule1
->freq_range
;
497 freq_range2
= &rule2
->freq_range
;
498 freq_range
= &intersected_rule
->freq_range
;
500 power_rule1
= &rule1
->power_rule
;
501 power_rule2
= &rule2
->power_rule
;
502 power_rule
= &intersected_rule
->power_rule
;
504 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
505 freq_range2
->start_freq_khz
);
506 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
507 freq_range2
->end_freq_khz
);
508 freq_range
->max_bandwidth_khz
= min(freq_range1
->max_bandwidth_khz
,
509 freq_range2
->max_bandwidth_khz
);
511 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
512 if (freq_range
->max_bandwidth_khz
> freq_diff
)
513 freq_range
->max_bandwidth_khz
= freq_diff
;
515 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
516 power_rule2
->max_eirp
);
517 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
518 power_rule2
->max_antenna_gain
);
520 intersected_rule
->flags
= (rule1
->flags
| rule2
->flags
);
522 if (!is_valid_reg_rule(intersected_rule
))
529 * regdom_intersect - do the intersection between two regulatory domains
530 * @rd1: first regulatory domain
531 * @rd2: second regulatory domain
533 * Use this function to get the intersection between two regulatory domains.
534 * Once completed we will mark the alpha2 for the rd as intersected, "98",
535 * as no one single alpha2 can represent this regulatory domain.
537 * Returns a pointer to the regulatory domain structure which will hold the
538 * resulting intersection of rules between rd1 and rd2. We will
539 * kzalloc() this structure for you.
541 static struct ieee80211_regdomain
*regdom_intersect(
542 const struct ieee80211_regdomain
*rd1
,
543 const struct ieee80211_regdomain
*rd2
)
547 unsigned int num_rules
= 0, rule_idx
= 0;
548 const struct ieee80211_reg_rule
*rule1
, *rule2
;
549 struct ieee80211_reg_rule
*intersected_rule
;
550 struct ieee80211_regdomain
*rd
;
551 /* This is just a dummy holder to help us count */
552 struct ieee80211_reg_rule irule
;
554 /* Uses the stack temporarily for counter arithmetic */
555 intersected_rule
= &irule
;
557 memset(intersected_rule
, 0, sizeof(struct ieee80211_reg_rule
));
563 * First we get a count of the rules we'll need, then we actually
564 * build them. This is to so we can malloc() and free() a
565 * regdomain once. The reason we use reg_rules_intersect() here
566 * is it will return -EINVAL if the rule computed makes no sense.
567 * All rules that do check out OK are valid.
570 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
571 rule1
= &rd1
->reg_rules
[x
];
572 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
573 rule2
= &rd2
->reg_rules
[y
];
574 if (!reg_rules_intersect(rule1
, rule2
,
577 memset(intersected_rule
, 0,
578 sizeof(struct ieee80211_reg_rule
));
585 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
586 ((num_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
588 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
592 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
593 rule1
= &rd1
->reg_rules
[x
];
594 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
595 rule2
= &rd2
->reg_rules
[y
];
597 * This time around instead of using the stack lets
598 * write to the target rule directly saving ourselves
601 intersected_rule
= &rd
->reg_rules
[rule_idx
];
602 r
= reg_rules_intersect(rule1
, rule2
,
605 * No need to memset here the intersected rule here as
606 * we're not using the stack anymore
614 if (rule_idx
!= num_rules
) {
619 rd
->n_reg_rules
= num_rules
;
627 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
628 * want to just have the channel structure use these
630 static u32
map_regdom_flags(u32 rd_flags
)
632 u32 channel_flags
= 0;
633 if (rd_flags
& NL80211_RRF_PASSIVE_SCAN
)
634 channel_flags
|= IEEE80211_CHAN_PASSIVE_SCAN
;
635 if (rd_flags
& NL80211_RRF_NO_IBSS
)
636 channel_flags
|= IEEE80211_CHAN_NO_IBSS
;
637 if (rd_flags
& NL80211_RRF_DFS
)
638 channel_flags
|= IEEE80211_CHAN_RADAR
;
639 return channel_flags
;
642 static int freq_reg_info_regd(struct wiphy
*wiphy
,
645 const struct ieee80211_reg_rule
**reg_rule
,
646 const struct ieee80211_regdomain
*custom_regd
)
649 bool band_rule_found
= false;
650 const struct ieee80211_regdomain
*regd
;
651 bool bw_fits
= false;
654 desired_bw_khz
= MHZ_TO_KHZ(20);
656 regd
= custom_regd
? custom_regd
: cfg80211_regdomain
;
659 * Follow the driver's regulatory domain, if present, unless a country
660 * IE has been processed or a user wants to help complaince further
662 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
663 last_request
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
670 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
671 const struct ieee80211_reg_rule
*rr
;
672 const struct ieee80211_freq_range
*fr
= NULL
;
673 const struct ieee80211_power_rule
*pr
= NULL
;
675 rr
= ®d
->reg_rules
[i
];
676 fr
= &rr
->freq_range
;
677 pr
= &rr
->power_rule
;
680 * We only need to know if one frequency rule was
681 * was in center_freq's band, that's enough, so lets
682 * not overwrite it once found
684 if (!band_rule_found
)
685 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
687 bw_fits
= reg_does_bw_fit(fr
,
691 if (band_rule_found
&& bw_fits
) {
697 if (!band_rule_found
)
703 int freq_reg_info(struct wiphy
*wiphy
,
706 const struct ieee80211_reg_rule
**reg_rule
)
708 assert_cfg80211_lock();
709 return freq_reg_info_regd(wiphy
,
715 EXPORT_SYMBOL(freq_reg_info
);
718 * Note that right now we assume the desired channel bandwidth
719 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
720 * per channel, the primary and the extension channel). To support
721 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
722 * new ieee80211_channel.target_bw and re run the regulatory check
723 * on the wiphy with the target_bw specified. Then we can simply use
724 * that below for the desired_bw_khz below.
726 static void handle_channel(struct wiphy
*wiphy
, enum ieee80211_band band
,
727 unsigned int chan_idx
)
730 u32 flags
, bw_flags
= 0;
731 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
732 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
733 const struct ieee80211_power_rule
*power_rule
= NULL
;
734 const struct ieee80211_freq_range
*freq_range
= NULL
;
735 struct ieee80211_supported_band
*sband
;
736 struct ieee80211_channel
*chan
;
737 struct wiphy
*request_wiphy
= NULL
;
739 assert_cfg80211_lock();
741 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
743 sband
= wiphy
->bands
[band
];
744 BUG_ON(chan_idx
>= sband
->n_channels
);
745 chan
= &sband
->channels
[chan_idx
];
747 flags
= chan
->orig_flags
;
749 r
= freq_reg_info(wiphy
,
750 MHZ_TO_KHZ(chan
->center_freq
),
757 power_rule
= ®_rule
->power_rule
;
758 freq_range
= ®_rule
->freq_range
;
760 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
761 bw_flags
= IEEE80211_CHAN_NO_HT40
;
763 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
764 request_wiphy
&& request_wiphy
== wiphy
&&
765 request_wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
767 * This gaurantees the driver's requested regulatory domain
768 * will always be used as a base for further regulatory
771 chan
->flags
= chan
->orig_flags
=
772 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
773 chan
->max_antenna_gain
= chan
->orig_mag
=
774 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
775 chan
->max_power
= chan
->orig_mpwr
=
776 (int) MBM_TO_DBM(power_rule
->max_eirp
);
780 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
781 chan
->max_antenna_gain
= min(chan
->orig_mag
,
782 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
));
784 chan
->max_power
= min(chan
->orig_mpwr
,
785 (int) MBM_TO_DBM(power_rule
->max_eirp
));
787 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
790 static void handle_band(struct wiphy
*wiphy
, enum ieee80211_band band
)
793 struct ieee80211_supported_band
*sband
;
795 BUG_ON(!wiphy
->bands
[band
]);
796 sband
= wiphy
->bands
[band
];
798 for (i
= 0; i
< sband
->n_channels
; i
++)
799 handle_channel(wiphy
, band
, i
);
802 static bool ignore_reg_update(struct wiphy
*wiphy
,
803 enum nl80211_reg_initiator initiator
)
807 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
808 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
811 * wiphy->regd will be set once the device has its own
812 * desired regulatory domain set
814 if (wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
&& !wiphy
->regd
&&
815 !is_world_regdom(last_request
->alpha2
))
820 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
822 struct cfg80211_registered_device
*rdev
;
824 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
825 wiphy_update_regulatory(&rdev
->wiphy
, initiator
);
828 static void handle_reg_beacon(struct wiphy
*wiphy
,
829 unsigned int chan_idx
,
830 struct reg_beacon
*reg_beacon
)
832 struct ieee80211_supported_band
*sband
;
833 struct ieee80211_channel
*chan
;
834 bool channel_changed
= false;
835 struct ieee80211_channel chan_before
;
837 assert_cfg80211_lock();
839 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
840 chan
= &sband
->channels
[chan_idx
];
842 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
845 if (chan
->beacon_found
)
848 chan
->beacon_found
= true;
850 if (wiphy
->flags
& WIPHY_FLAG_DISABLE_BEACON_HINTS
)
853 chan_before
.center_freq
= chan
->center_freq
;
854 chan_before
.flags
= chan
->flags
;
856 if (chan
->flags
& IEEE80211_CHAN_PASSIVE_SCAN
) {
857 chan
->flags
&= ~IEEE80211_CHAN_PASSIVE_SCAN
;
858 channel_changed
= true;
861 if (chan
->flags
& IEEE80211_CHAN_NO_IBSS
) {
862 chan
->flags
&= ~IEEE80211_CHAN_NO_IBSS
;
863 channel_changed
= true;
867 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
871 * Called when a scan on a wiphy finds a beacon on
874 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
875 struct reg_beacon
*reg_beacon
)
878 struct ieee80211_supported_band
*sband
;
880 assert_cfg80211_lock();
882 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
885 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
887 for (i
= 0; i
< sband
->n_channels
; i
++)
888 handle_reg_beacon(wiphy
, i
, reg_beacon
);
892 * Called upon reg changes or a new wiphy is added
894 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
897 struct ieee80211_supported_band
*sband
;
898 struct reg_beacon
*reg_beacon
;
900 assert_cfg80211_lock();
902 if (list_empty(®_beacon_list
))
905 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
906 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
908 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
909 for (i
= 0; i
< sband
->n_channels
; i
++)
910 handle_reg_beacon(wiphy
, i
, reg_beacon
);
914 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
916 if (is_world_regdom(cfg80211_regdomain
->alpha2
) ||
917 (wiphy
->regd
&& is_world_regdom(wiphy
->regd
->alpha2
)))
920 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
921 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
926 /* Reap the advantages of previously found beacons */
927 static void reg_process_beacons(struct wiphy
*wiphy
)
930 * Means we are just firing up cfg80211, so no beacons would
931 * have been processed yet.
935 if (!reg_is_world_roaming(wiphy
))
937 wiphy_update_beacon_reg(wiphy
);
940 static bool is_ht40_not_allowed(struct ieee80211_channel
*chan
)
944 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
946 /* This would happen when regulatory rules disallow HT40 completely */
947 if (IEEE80211_CHAN_NO_HT40
== (chan
->flags
& (IEEE80211_CHAN_NO_HT40
)))
952 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
953 enum ieee80211_band band
,
954 unsigned int chan_idx
)
956 struct ieee80211_supported_band
*sband
;
957 struct ieee80211_channel
*channel
;
958 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
961 assert_cfg80211_lock();
963 sband
= wiphy
->bands
[band
];
964 BUG_ON(chan_idx
>= sband
->n_channels
);
965 channel
= &sband
->channels
[chan_idx
];
967 if (is_ht40_not_allowed(channel
)) {
968 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
973 * We need to ensure the extension channels exist to
974 * be able to use HT40- or HT40+, this finds them (or not)
976 for (i
= 0; i
< sband
->n_channels
; i
++) {
977 struct ieee80211_channel
*c
= &sband
->channels
[i
];
978 if (c
->center_freq
== (channel
->center_freq
- 20))
980 if (c
->center_freq
== (channel
->center_freq
+ 20))
985 * Please note that this assumes target bandwidth is 20 MHz,
986 * if that ever changes we also need to change the below logic
987 * to include that as well.
989 if (is_ht40_not_allowed(channel_before
))
990 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
992 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
994 if (is_ht40_not_allowed(channel_after
))
995 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
997 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1000 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1001 enum ieee80211_band band
)
1004 struct ieee80211_supported_band
*sband
;
1006 BUG_ON(!wiphy
->bands
[band
]);
1007 sband
= wiphy
->bands
[band
];
1009 for (i
= 0; i
< sband
->n_channels
; i
++)
1010 reg_process_ht_flags_channel(wiphy
, band
, i
);
1013 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1015 enum ieee80211_band band
;
1020 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1021 if (wiphy
->bands
[band
])
1022 reg_process_ht_flags_band(wiphy
, band
);
1027 void wiphy_update_regulatory(struct wiphy
*wiphy
,
1028 enum nl80211_reg_initiator initiator
)
1030 enum ieee80211_band band
;
1032 if (ignore_reg_update(wiphy
, initiator
))
1034 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1035 if (wiphy
->bands
[band
])
1036 handle_band(wiphy
, band
);
1039 reg_process_beacons(wiphy
);
1040 reg_process_ht_flags(wiphy
);
1041 if (wiphy
->reg_notifier
)
1042 wiphy
->reg_notifier(wiphy
, last_request
);
1045 static void handle_channel_custom(struct wiphy
*wiphy
,
1046 enum ieee80211_band band
,
1047 unsigned int chan_idx
,
1048 const struct ieee80211_regdomain
*regd
)
1051 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
1053 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1054 const struct ieee80211_power_rule
*power_rule
= NULL
;
1055 const struct ieee80211_freq_range
*freq_range
= NULL
;
1056 struct ieee80211_supported_band
*sband
;
1057 struct ieee80211_channel
*chan
;
1061 sband
= wiphy
->bands
[band
];
1062 BUG_ON(chan_idx
>= sband
->n_channels
);
1063 chan
= &sband
->channels
[chan_idx
];
1065 r
= freq_reg_info_regd(wiphy
,
1066 MHZ_TO_KHZ(chan
->center_freq
),
1072 chan
->flags
= IEEE80211_CHAN_DISABLED
;
1076 power_rule
= ®_rule
->power_rule
;
1077 freq_range
= ®_rule
->freq_range
;
1079 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
1080 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1082 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1083 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1084 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1087 static void handle_band_custom(struct wiphy
*wiphy
, enum ieee80211_band band
,
1088 const struct ieee80211_regdomain
*regd
)
1091 struct ieee80211_supported_band
*sband
;
1093 BUG_ON(!wiphy
->bands
[band
]);
1094 sband
= wiphy
->bands
[band
];
1096 for (i
= 0; i
< sband
->n_channels
; i
++)
1097 handle_channel_custom(wiphy
, band
, i
, regd
);
1100 /* Used by drivers prior to wiphy registration */
1101 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1102 const struct ieee80211_regdomain
*regd
)
1104 enum ieee80211_band band
;
1105 unsigned int bands_set
= 0;
1107 mutex_lock(®_mutex
);
1108 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1109 if (!wiphy
->bands
[band
])
1111 handle_band_custom(wiphy
, band
, regd
);
1114 mutex_unlock(®_mutex
);
1117 * no point in calling this if it won't have any effect
1118 * on your device's supportd bands.
1120 WARN_ON(!bands_set
);
1122 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1125 * Return value which can be used by ignore_request() to indicate
1126 * it has been determined we should intersect two regulatory domains
1128 #define REG_INTERSECT 1
1130 /* This has the logic which determines when a new request
1131 * should be ignored. */
1132 static int ignore_request(struct wiphy
*wiphy
,
1133 struct regulatory_request
*pending_request
)
1135 struct wiphy
*last_wiphy
= NULL
;
1137 assert_cfg80211_lock();
1139 /* All initial requests are respected */
1143 switch (pending_request
->initiator
) {
1144 case NL80211_REGDOM_SET_BY_CORE
:
1146 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1148 last_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1150 if (unlikely(!is_an_alpha2(pending_request
->alpha2
)))
1152 if (last_request
->initiator
==
1153 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1154 if (last_wiphy
!= wiphy
) {
1156 * Two cards with two APs claiming different
1157 * Country IE alpha2s. We could
1158 * intersect them, but that seems unlikely
1159 * to be correct. Reject second one for now.
1161 if (regdom_changes(pending_request
->alpha2
))
1166 * Two consecutive Country IE hints on the same wiphy.
1167 * This should be picked up early by the driver/stack
1169 if (WARN_ON(regdom_changes(pending_request
->alpha2
)))
1173 return REG_INTERSECT
;
1174 case NL80211_REGDOM_SET_BY_DRIVER
:
1175 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1176 if (regdom_changes(pending_request
->alpha2
))
1182 * This would happen if you unplug and plug your card
1183 * back in or if you add a new device for which the previously
1184 * loaded card also agrees on the regulatory domain.
1186 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1187 !regdom_changes(pending_request
->alpha2
))
1190 return REG_INTERSECT
;
1191 case NL80211_REGDOM_SET_BY_USER
:
1192 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1193 return REG_INTERSECT
;
1195 * If the user knows better the user should set the regdom
1196 * to their country before the IE is picked up
1198 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1199 last_request
->intersect
)
1202 * Process user requests only after previous user/driver/core
1203 * requests have been processed
1205 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1206 last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1207 last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1208 if (regdom_changes(last_request
->alpha2
))
1212 if (!regdom_changes(pending_request
->alpha2
))
1222 * __regulatory_hint - hint to the wireless core a regulatory domain
1223 * @wiphy: if the hint comes from country information from an AP, this
1224 * is required to be set to the wiphy that received the information
1225 * @pending_request: the regulatory request currently being processed
1227 * The Wireless subsystem can use this function to hint to the wireless core
1228 * what it believes should be the current regulatory domain.
1230 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1231 * already been set or other standard error codes.
1233 * Caller must hold &cfg80211_mutex and ®_mutex
1235 static int __regulatory_hint(struct wiphy
*wiphy
,
1236 struct regulatory_request
*pending_request
)
1238 bool intersect
= false;
1241 assert_cfg80211_lock();
1243 r
= ignore_request(wiphy
, pending_request
);
1245 if (r
== REG_INTERSECT
) {
1246 if (pending_request
->initiator
==
1247 NL80211_REGDOM_SET_BY_DRIVER
) {
1248 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1250 kfree(pending_request
);
1257 * If the regulatory domain being requested by the
1258 * driver has already been set just copy it to the
1261 if (r
== -EALREADY
&&
1262 pending_request
->initiator
==
1263 NL80211_REGDOM_SET_BY_DRIVER
) {
1264 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1266 kfree(pending_request
);
1272 kfree(pending_request
);
1277 kfree(last_request
);
1279 last_request
= pending_request
;
1280 last_request
->intersect
= intersect
;
1282 pending_request
= NULL
;
1284 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1285 user_alpha2
[0] = last_request
->alpha2
[0];
1286 user_alpha2
[1] = last_request
->alpha2
[1];
1289 /* When r == REG_INTERSECT we do need to call CRDA */
1292 * Since CRDA will not be called in this case as we already
1293 * have applied the requested regulatory domain before we just
1294 * inform userspace we have processed the request
1297 nl80211_send_reg_change_event(last_request
);
1301 return call_crda(last_request
->alpha2
);
1304 /* This processes *all* regulatory hints */
1305 static void reg_process_hint(struct regulatory_request
*reg_request
)
1308 struct wiphy
*wiphy
= NULL
;
1309 enum nl80211_reg_initiator initiator
= reg_request
->initiator
;
1311 BUG_ON(!reg_request
->alpha2
);
1313 mutex_lock(&cfg80211_mutex
);
1314 mutex_lock(®_mutex
);
1316 if (wiphy_idx_valid(reg_request
->wiphy_idx
))
1317 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
1319 if (reg_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1325 r
= __regulatory_hint(wiphy
, reg_request
);
1326 /* This is required so that the orig_* parameters are saved */
1327 if (r
== -EALREADY
&& wiphy
&&
1328 wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
)
1329 wiphy_update_regulatory(wiphy
, initiator
);
1331 mutex_unlock(®_mutex
);
1332 mutex_unlock(&cfg80211_mutex
);
1335 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1336 static void reg_process_pending_hints(void)
1338 struct regulatory_request
*reg_request
;
1340 spin_lock(®_requests_lock
);
1341 while (!list_empty(®_requests_list
)) {
1342 reg_request
= list_first_entry(®_requests_list
,
1343 struct regulatory_request
,
1345 list_del_init(®_request
->list
);
1347 spin_unlock(®_requests_lock
);
1348 reg_process_hint(reg_request
);
1349 spin_lock(®_requests_lock
);
1351 spin_unlock(®_requests_lock
);
1354 /* Processes beacon hints -- this has nothing to do with country IEs */
1355 static void reg_process_pending_beacon_hints(void)
1357 struct cfg80211_registered_device
*rdev
;
1358 struct reg_beacon
*pending_beacon
, *tmp
;
1361 * No need to hold the reg_mutex here as we just touch wiphys
1362 * and do not read or access regulatory variables.
1364 mutex_lock(&cfg80211_mutex
);
1366 /* This goes through the _pending_ beacon list */
1367 spin_lock_bh(®_pending_beacons_lock
);
1369 if (list_empty(®_pending_beacons
)) {
1370 spin_unlock_bh(®_pending_beacons_lock
);
1374 list_for_each_entry_safe(pending_beacon
, tmp
,
1375 ®_pending_beacons
, list
) {
1377 list_del_init(&pending_beacon
->list
);
1379 /* Applies the beacon hint to current wiphys */
1380 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1381 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
1383 /* Remembers the beacon hint for new wiphys or reg changes */
1384 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
1387 spin_unlock_bh(®_pending_beacons_lock
);
1389 mutex_unlock(&cfg80211_mutex
);
1392 static void reg_todo(struct work_struct
*work
)
1394 reg_process_pending_hints();
1395 reg_process_pending_beacon_hints();
1398 static DECLARE_WORK(reg_work
, reg_todo
);
1400 static void queue_regulatory_request(struct regulatory_request
*request
)
1402 spin_lock(®_requests_lock
);
1403 list_add_tail(&request
->list
, ®_requests_list
);
1404 spin_unlock(®_requests_lock
);
1406 schedule_work(®_work
);
1410 * Core regulatory hint -- happens during cfg80211_init()
1411 * and when we restore regulatory settings.
1413 static int regulatory_hint_core(const char *alpha2
)
1415 struct regulatory_request
*request
;
1417 kfree(last_request
);
1418 last_request
= NULL
;
1420 request
= kzalloc(sizeof(struct regulatory_request
),
1425 request
->alpha2
[0] = alpha2
[0];
1426 request
->alpha2
[1] = alpha2
[1];
1427 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1430 * This ensures last_request is populated once modules
1431 * come swinging in and calling regulatory hints and
1432 * wiphy_apply_custom_regulatory().
1434 reg_process_hint(request
);
1440 int regulatory_hint_user(const char *alpha2
)
1442 struct regulatory_request
*request
;
1446 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1450 request
->wiphy_idx
= WIPHY_IDX_STALE
;
1451 request
->alpha2
[0] = alpha2
[0];
1452 request
->alpha2
[1] = alpha2
[1];
1453 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
1455 queue_regulatory_request(request
);
1461 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
1463 struct regulatory_request
*request
;
1468 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1472 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1474 /* Must have registered wiphy first */
1475 BUG_ON(!wiphy_idx_valid(request
->wiphy_idx
));
1477 request
->alpha2
[0] = alpha2
[0];
1478 request
->alpha2
[1] = alpha2
[1];
1479 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
1481 queue_regulatory_request(request
);
1485 EXPORT_SYMBOL(regulatory_hint
);
1488 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1489 * therefore cannot iterate over the rdev list here.
1491 void regulatory_hint_11d(struct wiphy
*wiphy
,
1492 enum ieee80211_band band
,
1497 enum environment_cap env
= ENVIRON_ANY
;
1498 struct regulatory_request
*request
;
1500 mutex_lock(®_mutex
);
1502 if (unlikely(!last_request
))
1505 /* IE len must be evenly divisible by 2 */
1506 if (country_ie_len
& 0x01)
1509 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
1512 alpha2
[0] = country_ie
[0];
1513 alpha2
[1] = country_ie
[1];
1515 if (country_ie
[2] == 'I')
1516 env
= ENVIRON_INDOOR
;
1517 else if (country_ie
[2] == 'O')
1518 env
= ENVIRON_OUTDOOR
;
1521 * We will run this only upon a successful connection on cfg80211.
1522 * We leave conflict resolution to the workqueue, where can hold
1525 if (likely(last_request
->initiator
==
1526 NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1527 wiphy_idx_valid(last_request
->wiphy_idx
)))
1530 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1534 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1535 request
->alpha2
[0] = alpha2
[0];
1536 request
->alpha2
[1] = alpha2
[1];
1537 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
1538 request
->country_ie_env
= env
;
1540 mutex_unlock(®_mutex
);
1542 queue_regulatory_request(request
);
1547 mutex_unlock(®_mutex
);
1550 static void restore_alpha2(char *alpha2
, bool reset_user
)
1552 /* indicates there is no alpha2 to consider for restoration */
1556 /* The user setting has precedence over the module parameter */
1557 if (is_user_regdom_saved()) {
1558 /* Unless we're asked to ignore it and reset it */
1560 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1561 "including user preference\n");
1562 user_alpha2
[0] = '9';
1563 user_alpha2
[1] = '7';
1566 * If we're ignoring user settings, we still need to
1567 * check the module parameter to ensure we put things
1568 * back as they were for a full restore.
1570 if (!is_world_regdom(ieee80211_regdom
)) {
1571 REG_DBG_PRINT("cfg80211: Keeping preference on "
1572 "module parameter ieee80211_regdom: %c%c\n",
1573 ieee80211_regdom
[0],
1574 ieee80211_regdom
[1]);
1575 alpha2
[0] = ieee80211_regdom
[0];
1576 alpha2
[1] = ieee80211_regdom
[1];
1579 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1580 "while preserving user preference for: %c%c\n",
1583 alpha2
[0] = user_alpha2
[0];
1584 alpha2
[1] = user_alpha2
[1];
1586 } else if (!is_world_regdom(ieee80211_regdom
)) {
1587 REG_DBG_PRINT("cfg80211: Keeping preference on "
1588 "module parameter ieee80211_regdom: %c%c\n",
1589 ieee80211_regdom
[0],
1590 ieee80211_regdom
[1]);
1591 alpha2
[0] = ieee80211_regdom
[0];
1592 alpha2
[1] = ieee80211_regdom
[1];
1594 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1598 * Restoring regulatory settings involves ingoring any
1599 * possibly stale country IE information and user regulatory
1600 * settings if so desired, this includes any beacon hints
1601 * learned as we could have traveled outside to another country
1602 * after disconnection. To restore regulatory settings we do
1603 * exactly what we did at bootup:
1605 * - send a core regulatory hint
1606 * - send a user regulatory hint if applicable
1608 * Device drivers that send a regulatory hint for a specific country
1609 * keep their own regulatory domain on wiphy->regd so that does does
1610 * not need to be remembered.
1612 static void restore_regulatory_settings(bool reset_user
)
1615 struct reg_beacon
*reg_beacon
, *btmp
;
1617 mutex_lock(&cfg80211_mutex
);
1618 mutex_lock(®_mutex
);
1621 restore_alpha2(alpha2
, reset_user
);
1623 /* Clear beacon hints */
1624 spin_lock_bh(®_pending_beacons_lock
);
1625 if (!list_empty(®_pending_beacons
)) {
1626 list_for_each_entry_safe(reg_beacon
, btmp
,
1627 ®_pending_beacons
, list
) {
1628 list_del(®_beacon
->list
);
1632 spin_unlock_bh(®_pending_beacons_lock
);
1634 if (!list_empty(®_beacon_list
)) {
1635 list_for_each_entry_safe(reg_beacon
, btmp
,
1636 ®_beacon_list
, list
) {
1637 list_del(®_beacon
->list
);
1642 /* First restore to the basic regulatory settings */
1643 cfg80211_regdomain
= cfg80211_world_regdom
;
1645 mutex_unlock(®_mutex
);
1646 mutex_unlock(&cfg80211_mutex
);
1648 regulatory_hint_core(cfg80211_regdomain
->alpha2
);
1651 * This restores the ieee80211_regdom module parameter
1652 * preference or the last user requested regulatory
1653 * settings, user regulatory settings takes precedence.
1655 if (is_an_alpha2(alpha2
))
1656 regulatory_hint_user(user_alpha2
);
1660 void regulatory_hint_disconnect(void)
1662 REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1663 "restore regulatory settings\n");
1664 restore_regulatory_settings(false);
1667 static bool freq_is_chan_12_13_14(u16 freq
)
1669 if (freq
== ieee80211_channel_to_frequency(12) ||
1670 freq
== ieee80211_channel_to_frequency(13) ||
1671 freq
== ieee80211_channel_to_frequency(14))
1676 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
1677 struct ieee80211_channel
*beacon_chan
,
1680 struct reg_beacon
*reg_beacon
;
1682 if (likely((beacon_chan
->beacon_found
||
1683 (beacon_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
1684 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
1685 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))))
1688 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
1692 REG_DBG_PRINT("cfg80211: Found new beacon on "
1693 "frequency: %d MHz (Ch %d) on %s\n",
1694 beacon_chan
->center_freq
,
1695 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
1698 memcpy(®_beacon
->chan
, beacon_chan
,
1699 sizeof(struct ieee80211_channel
));
1703 * Since we can be called from BH or and non-BH context
1704 * we must use spin_lock_bh()
1706 spin_lock_bh(®_pending_beacons_lock
);
1707 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
1708 spin_unlock_bh(®_pending_beacons_lock
);
1710 schedule_work(®_work
);
1715 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
1718 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1719 const struct ieee80211_freq_range
*freq_range
= NULL
;
1720 const struct ieee80211_power_rule
*power_rule
= NULL
;
1722 printk(KERN_INFO
" (start_freq - end_freq @ bandwidth), "
1723 "(max_antenna_gain, max_eirp)\n");
1725 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1726 reg_rule
= &rd
->reg_rules
[i
];
1727 freq_range
= ®_rule
->freq_range
;
1728 power_rule
= ®_rule
->power_rule
;
1731 * There may not be documentation for max antenna gain
1732 * in certain regions
1734 if (power_rule
->max_antenna_gain
)
1735 printk(KERN_INFO
" (%d KHz - %d KHz @ %d KHz), "
1736 "(%d mBi, %d mBm)\n",
1737 freq_range
->start_freq_khz
,
1738 freq_range
->end_freq_khz
,
1739 freq_range
->max_bandwidth_khz
,
1740 power_rule
->max_antenna_gain
,
1741 power_rule
->max_eirp
);
1743 printk(KERN_INFO
" (%d KHz - %d KHz @ %d KHz), "
1745 freq_range
->start_freq_khz
,
1746 freq_range
->end_freq_khz
,
1747 freq_range
->max_bandwidth_khz
,
1748 power_rule
->max_eirp
);
1752 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
1755 if (is_intersected_alpha2(rd
->alpha2
)) {
1757 if (last_request
->initiator
==
1758 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1759 struct cfg80211_registered_device
*rdev
;
1760 rdev
= cfg80211_rdev_by_wiphy_idx(
1761 last_request
->wiphy_idx
);
1763 printk(KERN_INFO
"cfg80211: Current regulatory "
1764 "domain updated by AP to: %c%c\n",
1765 rdev
->country_ie_alpha2
[0],
1766 rdev
->country_ie_alpha2
[1]);
1768 printk(KERN_INFO
"cfg80211: Current regulatory "
1769 "domain intersected:\n");
1771 printk(KERN_INFO
"cfg80211: Current regulatory "
1772 "domain intersected:\n");
1773 } else if (is_world_regdom(rd
->alpha2
))
1774 printk(KERN_INFO
"cfg80211: World regulatory "
1775 "domain updated:\n");
1777 if (is_unknown_alpha2(rd
->alpha2
))
1778 printk(KERN_INFO
"cfg80211: Regulatory domain "
1779 "changed to driver built-in settings "
1780 "(unknown country)\n");
1782 printk(KERN_INFO
"cfg80211: Regulatory domain "
1783 "changed to country: %c%c\n",
1784 rd
->alpha2
[0], rd
->alpha2
[1]);
1789 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
1791 printk(KERN_INFO
"cfg80211: Regulatory domain: %c%c\n",
1792 rd
->alpha2
[0], rd
->alpha2
[1]);
1796 /* Takes ownership of rd only if it doesn't fail */
1797 static int __set_regdom(const struct ieee80211_regdomain
*rd
)
1799 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
1800 struct cfg80211_registered_device
*rdev
= NULL
;
1801 struct wiphy
*request_wiphy
;
1802 /* Some basic sanity checks first */
1804 if (is_world_regdom(rd
->alpha2
)) {
1805 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
1807 update_world_regdomain(rd
);
1811 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
1812 !is_unknown_alpha2(rd
->alpha2
))
1819 * Lets only bother proceeding on the same alpha2 if the current
1820 * rd is non static (it means CRDA was present and was used last)
1821 * and the pending request came in from a country IE
1823 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1825 * If someone else asked us to change the rd lets only bother
1826 * checking if the alpha2 changes if CRDA was already called
1828 if (!regdom_changes(rd
->alpha2
))
1833 * Now lets set the regulatory domain, update all driver channels
1834 * and finally inform them of what we have done, in case they want
1835 * to review or adjust their own settings based on their own
1836 * internal EEPROM data
1839 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
1842 if (!is_valid_rd(rd
)) {
1843 printk(KERN_ERR
"cfg80211: Invalid "
1844 "regulatory domain detected:\n");
1845 print_regdomain_info(rd
);
1849 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1851 if (!last_request
->intersect
) {
1854 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_DRIVER
) {
1856 cfg80211_regdomain
= rd
;
1861 * For a driver hint, lets copy the regulatory domain the
1862 * driver wanted to the wiphy to deal with conflicts
1866 * Userspace could have sent two replies with only
1867 * one kernel request.
1869 if (request_wiphy
->regd
)
1872 r
= reg_copy_regd(&request_wiphy
->regd
, rd
);
1877 cfg80211_regdomain
= rd
;
1881 /* Intersection requires a bit more work */
1883 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1885 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
1886 if (!intersected_rd
)
1890 * We can trash what CRDA provided now.
1891 * However if a driver requested this specific regulatory
1892 * domain we keep it for its private use
1894 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
)
1895 request_wiphy
->regd
= rd
;
1902 cfg80211_regdomain
= intersected_rd
;
1907 if (!intersected_rd
)
1910 rdev
= wiphy_to_dev(request_wiphy
);
1912 rdev
->country_ie_alpha2
[0] = rd
->alpha2
[0];
1913 rdev
->country_ie_alpha2
[1] = rd
->alpha2
[1];
1914 rdev
->env
= last_request
->country_ie_env
;
1916 BUG_ON(intersected_rd
== rd
);
1922 cfg80211_regdomain
= intersected_rd
;
1929 * Use this call to set the current regulatory domain. Conflicts with
1930 * multiple drivers can be ironed out later. Caller must've already
1931 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1933 int set_regdom(const struct ieee80211_regdomain
*rd
)
1937 assert_cfg80211_lock();
1939 mutex_lock(®_mutex
);
1941 /* Note that this doesn't update the wiphys, this is done below */
1942 r
= __set_regdom(rd
);
1945 mutex_unlock(®_mutex
);
1949 /* This would make this whole thing pointless */
1950 if (!last_request
->intersect
)
1951 BUG_ON(rd
!= cfg80211_regdomain
);
1953 /* update all wiphys now with the new established regulatory domain */
1954 update_all_wiphy_regulatory(last_request
->initiator
);
1956 print_regdomain(cfg80211_regdomain
);
1958 nl80211_send_reg_change_event(last_request
);
1960 mutex_unlock(®_mutex
);
1965 /* Caller must hold cfg80211_mutex */
1966 void reg_device_remove(struct wiphy
*wiphy
)
1968 struct wiphy
*request_wiphy
= NULL
;
1970 assert_cfg80211_lock();
1972 mutex_lock(®_mutex
);
1977 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1979 if (!request_wiphy
|| request_wiphy
!= wiphy
)
1982 last_request
->wiphy_idx
= WIPHY_IDX_STALE
;
1983 last_request
->country_ie_env
= ENVIRON_ANY
;
1985 mutex_unlock(®_mutex
);
1988 int __init
regulatory_init(void)
1992 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
1993 if (IS_ERR(reg_pdev
))
1994 return PTR_ERR(reg_pdev
);
1996 spin_lock_init(®_requests_lock
);
1997 spin_lock_init(®_pending_beacons_lock
);
1999 cfg80211_regdomain
= cfg80211_world_regdom
;
2001 user_alpha2
[0] = '9';
2002 user_alpha2
[1] = '7';
2004 /* We always try to get an update for the static regdomain */
2005 err
= regulatory_hint_core(cfg80211_regdomain
->alpha2
);
2010 * N.B. kobject_uevent_env() can fail mainly for when we're out
2011 * memory which is handled and propagated appropriately above
2012 * but it can also fail during a netlink_broadcast() or during
2013 * early boot for call_usermodehelper(). For now treat these
2014 * errors as non-fatal.
2016 printk(KERN_ERR
"cfg80211: kobject_uevent_env() was unable "
2017 "to call CRDA during init");
2018 #ifdef CONFIG_CFG80211_REG_DEBUG
2019 /* We want to find out exactly why when debugging */
2025 * Finally, if the user set the module parameter treat it
2028 if (!is_world_regdom(ieee80211_regdom
))
2029 regulatory_hint_user(ieee80211_regdom
);
2034 void /* __init_or_exit */ regulatory_exit(void)
2036 struct regulatory_request
*reg_request
, *tmp
;
2037 struct reg_beacon
*reg_beacon
, *btmp
;
2039 cancel_work_sync(®_work
);
2041 mutex_lock(&cfg80211_mutex
);
2042 mutex_lock(®_mutex
);
2046 kfree(last_request
);
2048 platform_device_unregister(reg_pdev
);
2050 spin_lock_bh(®_pending_beacons_lock
);
2051 if (!list_empty(®_pending_beacons
)) {
2052 list_for_each_entry_safe(reg_beacon
, btmp
,
2053 ®_pending_beacons
, list
) {
2054 list_del(®_beacon
->list
);
2058 spin_unlock_bh(®_pending_beacons_lock
);
2060 if (!list_empty(®_beacon_list
)) {
2061 list_for_each_entry_safe(reg_beacon
, btmp
,
2062 ®_beacon_list
, list
) {
2063 list_del(®_beacon
->list
);
2068 spin_lock(®_requests_lock
);
2069 if (!list_empty(®_requests_list
)) {
2070 list_for_each_entry_safe(reg_request
, tmp
,
2071 ®_requests_list
, list
) {
2072 list_del(®_request
->list
);
2076 spin_unlock(®_requests_lock
);
2078 mutex_unlock(®_mutex
);
2079 mutex_unlock(&cfg80211_mutex
);