Merge branch 'linus' into core/urgent
[linux-2.6/x86.git] / fs / dcache.c
blob2347cdb15abbc18b43e7254059aab2b50aeb6962
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include "internal.h"
42 * Usage:
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
55 * - d_count
56 * - d_unhashed()
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
59 * - d_alias, d_inode
61 * Ordering:
62 * dentry->d_inode->i_lock
63 * dentry->d_lock
64 * dcache_lru_lock
65 * dcache_hash_bucket lock
66 * s_anon lock
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
79 int sysctl_vfs_cache_pressure __read_mostly = 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
85 EXPORT_SYMBOL(rename_lock);
87 static struct kmem_cache *dentry_cache __read_mostly;
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
105 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
106 unsigned long hash)
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
118 static DEFINE_PER_CPU(unsigned int, nr_dentry);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
130 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
133 dentry_stat.nr_dentry = get_nr_dentry();
134 return proc_dointvec(table, write, buffer, lenp, ppos);
136 #endif
138 static void __d_free(struct rcu_head *head)
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
142 WARN_ON(!list_empty(&dentry->d_alias));
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
149 * no locks, please.
151 static void d_free(struct dentry *dentry)
153 BUG_ON(dentry->d_count);
154 this_cpu_dec(nr_dentry);
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
160 __d_free(&dentry->d_u.d_rcu);
161 else
162 call_rcu(&dentry->d_u.d_rcu, __d_free);
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
172 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
184 static void dentry_iput(struct dentry * dentry)
185 __releases(dentry->d_lock)
186 __releases(dentry->d_inode->i_lock)
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
193 spin_unlock(&inode->i_lock);
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
209 static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
211 __releases(dentry->d_inode->i_lock)
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
218 spin_unlock(&inode->i_lock);
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
230 static void dentry_lru_add(struct dentry *dentry)
232 if (list_empty(&dentry->d_lru)) {
233 spin_lock(&dcache_lru_lock);
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
236 dentry_stat.nr_unused++;
237 spin_unlock(&dcache_lru_lock);
241 static void __dentry_lru_del(struct dentry *dentry)
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
248 static void dentry_lru_del(struct dentry *dentry)
250 if (!list_empty(&dentry->d_lru)) {
251 spin_lock(&dcache_lru_lock);
252 __dentry_lru_del(dentry);
253 spin_unlock(&dcache_lru_lock);
257 static void dentry_lru_move_tail(struct dentry *dentry)
259 spin_lock(&dcache_lru_lock);
260 if (list_empty(&dentry->d_lru)) {
261 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 dentry->d_sb->s_nr_dentry_unused++;
263 dentry_stat.nr_unused++;
264 } else {
265 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
267 spin_unlock(&dcache_lru_lock);
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
273 * @parent: parent dentry
275 * The dentry must already be unhashed and removed from the LRU.
277 * If this is the root of the dentry tree, return NULL.
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280 * d_kill.
282 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
283 __releases(dentry->d_lock)
284 __releases(parent->d_lock)
285 __releases(dentry->d_inode->i_lock)
287 list_del(&dentry->d_u.d_child);
289 * Inform try_to_ascend() that we are no longer attached to the
290 * dentry tree
292 dentry->d_flags |= DCACHE_DISCONNECTED;
293 if (parent)
294 spin_unlock(&parent->d_lock);
295 dentry_iput(dentry);
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
300 d_free(dentry);
301 return parent;
305 * Unhash a dentry without inserting an RCU walk barrier or checking that
306 * dentry->d_lock is locked. The caller must take care of that, if
307 * appropriate.
309 static void __d_shrink(struct dentry *dentry)
311 if (!d_unhashed(dentry)) {
312 struct hlist_bl_head *b;
313 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
314 b = &dentry->d_sb->s_anon;
315 else
316 b = d_hash(dentry->d_parent, dentry->d_name.hash);
318 hlist_bl_lock(b);
319 __hlist_bl_del(&dentry->d_hash);
320 dentry->d_hash.pprev = NULL;
321 hlist_bl_unlock(b);
326 * d_drop - drop a dentry
327 * @dentry: dentry to drop
329 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
330 * be found through a VFS lookup any more. Note that this is different from
331 * deleting the dentry - d_delete will try to mark the dentry negative if
332 * possible, giving a successful _negative_ lookup, while d_drop will
333 * just make the cache lookup fail.
335 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
336 * reason (NFS timeouts or autofs deletes).
338 * __d_drop requires dentry->d_lock.
340 void __d_drop(struct dentry *dentry)
342 if (!d_unhashed(dentry)) {
343 __d_shrink(dentry);
344 dentry_rcuwalk_barrier(dentry);
347 EXPORT_SYMBOL(__d_drop);
349 void d_drop(struct dentry *dentry)
351 spin_lock(&dentry->d_lock);
352 __d_drop(dentry);
353 spin_unlock(&dentry->d_lock);
355 EXPORT_SYMBOL(d_drop);
358 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
359 * @dentry: dentry to drop
361 * This is called when we do a lookup on a placeholder dentry that needed to be
362 * looked up. The dentry should have been hashed in order for it to be found by
363 * the lookup code, but now needs to be unhashed while we do the actual lookup
364 * and clear the DCACHE_NEED_LOOKUP flag.
366 void d_clear_need_lookup(struct dentry *dentry)
368 spin_lock(&dentry->d_lock);
369 __d_drop(dentry);
370 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
371 spin_unlock(&dentry->d_lock);
373 EXPORT_SYMBOL(d_clear_need_lookup);
376 * Finish off a dentry we've decided to kill.
377 * dentry->d_lock must be held, returns with it unlocked.
378 * If ref is non-zero, then decrement the refcount too.
379 * Returns dentry requiring refcount drop, or NULL if we're done.
381 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
382 __releases(dentry->d_lock)
384 struct inode *inode;
385 struct dentry *parent;
387 inode = dentry->d_inode;
388 if (inode && !spin_trylock(&inode->i_lock)) {
389 relock:
390 spin_unlock(&dentry->d_lock);
391 cpu_relax();
392 return dentry; /* try again with same dentry */
394 if (IS_ROOT(dentry))
395 parent = NULL;
396 else
397 parent = dentry->d_parent;
398 if (parent && !spin_trylock(&parent->d_lock)) {
399 if (inode)
400 spin_unlock(&inode->i_lock);
401 goto relock;
404 if (ref)
405 dentry->d_count--;
406 /* if dentry was on the d_lru list delete it from there */
407 dentry_lru_del(dentry);
408 /* if it was on the hash then remove it */
409 __d_drop(dentry);
410 return d_kill(dentry, parent);
414 * This is dput
416 * This is complicated by the fact that we do not want to put
417 * dentries that are no longer on any hash chain on the unused
418 * list: we'd much rather just get rid of them immediately.
420 * However, that implies that we have to traverse the dentry
421 * tree upwards to the parents which might _also_ now be
422 * scheduled for deletion (it may have been only waiting for
423 * its last child to go away).
425 * This tail recursion is done by hand as we don't want to depend
426 * on the compiler to always get this right (gcc generally doesn't).
427 * Real recursion would eat up our stack space.
431 * dput - release a dentry
432 * @dentry: dentry to release
434 * Release a dentry. This will drop the usage count and if appropriate
435 * call the dentry unlink method as well as removing it from the queues and
436 * releasing its resources. If the parent dentries were scheduled for release
437 * they too may now get deleted.
439 void dput(struct dentry *dentry)
441 if (!dentry)
442 return;
444 repeat:
445 if (dentry->d_count == 1)
446 might_sleep();
447 spin_lock(&dentry->d_lock);
448 BUG_ON(!dentry->d_count);
449 if (dentry->d_count > 1) {
450 dentry->d_count--;
451 spin_unlock(&dentry->d_lock);
452 return;
455 if (dentry->d_flags & DCACHE_OP_DELETE) {
456 if (dentry->d_op->d_delete(dentry))
457 goto kill_it;
460 /* Unreachable? Get rid of it */
461 if (d_unhashed(dentry))
462 goto kill_it;
465 * If this dentry needs lookup, don't set the referenced flag so that it
466 * is more likely to be cleaned up by the dcache shrinker in case of
467 * memory pressure.
469 if (!d_need_lookup(dentry))
470 dentry->d_flags |= DCACHE_REFERENCED;
471 dentry_lru_add(dentry);
473 dentry->d_count--;
474 spin_unlock(&dentry->d_lock);
475 return;
477 kill_it:
478 dentry = dentry_kill(dentry, 1);
479 if (dentry)
480 goto repeat;
482 EXPORT_SYMBOL(dput);
485 * d_invalidate - invalidate a dentry
486 * @dentry: dentry to invalidate
488 * Try to invalidate the dentry if it turns out to be
489 * possible. If there are other dentries that can be
490 * reached through this one we can't delete it and we
491 * return -EBUSY. On success we return 0.
493 * no dcache lock.
496 int d_invalidate(struct dentry * dentry)
499 * If it's already been dropped, return OK.
501 spin_lock(&dentry->d_lock);
502 if (d_unhashed(dentry)) {
503 spin_unlock(&dentry->d_lock);
504 return 0;
507 * Check whether to do a partial shrink_dcache
508 * to get rid of unused child entries.
510 if (!list_empty(&dentry->d_subdirs)) {
511 spin_unlock(&dentry->d_lock);
512 shrink_dcache_parent(dentry);
513 spin_lock(&dentry->d_lock);
517 * Somebody else still using it?
519 * If it's a directory, we can't drop it
520 * for fear of somebody re-populating it
521 * with children (even though dropping it
522 * would make it unreachable from the root,
523 * we might still populate it if it was a
524 * working directory or similar).
526 if (dentry->d_count > 1) {
527 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
528 spin_unlock(&dentry->d_lock);
529 return -EBUSY;
533 __d_drop(dentry);
534 spin_unlock(&dentry->d_lock);
535 return 0;
537 EXPORT_SYMBOL(d_invalidate);
539 /* This must be called with d_lock held */
540 static inline void __dget_dlock(struct dentry *dentry)
542 dentry->d_count++;
545 static inline void __dget(struct dentry *dentry)
547 spin_lock(&dentry->d_lock);
548 __dget_dlock(dentry);
549 spin_unlock(&dentry->d_lock);
552 struct dentry *dget_parent(struct dentry *dentry)
554 struct dentry *ret;
556 repeat:
558 * Don't need rcu_dereference because we re-check it was correct under
559 * the lock.
561 rcu_read_lock();
562 ret = dentry->d_parent;
563 spin_lock(&ret->d_lock);
564 if (unlikely(ret != dentry->d_parent)) {
565 spin_unlock(&ret->d_lock);
566 rcu_read_unlock();
567 goto repeat;
569 rcu_read_unlock();
570 BUG_ON(!ret->d_count);
571 ret->d_count++;
572 spin_unlock(&ret->d_lock);
573 return ret;
575 EXPORT_SYMBOL(dget_parent);
578 * d_find_alias - grab a hashed alias of inode
579 * @inode: inode in question
580 * @want_discon: flag, used by d_splice_alias, to request
581 * that only a DISCONNECTED alias be returned.
583 * If inode has a hashed alias, or is a directory and has any alias,
584 * acquire the reference to alias and return it. Otherwise return NULL.
585 * Notice that if inode is a directory there can be only one alias and
586 * it can be unhashed only if it has no children, or if it is the root
587 * of a filesystem.
589 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
590 * any other hashed alias over that one unless @want_discon is set,
591 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
593 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
595 struct dentry *alias, *discon_alias;
597 again:
598 discon_alias = NULL;
599 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
600 spin_lock(&alias->d_lock);
601 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
602 if (IS_ROOT(alias) &&
603 (alias->d_flags & DCACHE_DISCONNECTED)) {
604 discon_alias = alias;
605 } else if (!want_discon) {
606 __dget_dlock(alias);
607 spin_unlock(&alias->d_lock);
608 return alias;
611 spin_unlock(&alias->d_lock);
613 if (discon_alias) {
614 alias = discon_alias;
615 spin_lock(&alias->d_lock);
616 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
617 if (IS_ROOT(alias) &&
618 (alias->d_flags & DCACHE_DISCONNECTED)) {
619 __dget_dlock(alias);
620 spin_unlock(&alias->d_lock);
621 return alias;
624 spin_unlock(&alias->d_lock);
625 goto again;
627 return NULL;
630 struct dentry *d_find_alias(struct inode *inode)
632 struct dentry *de = NULL;
634 if (!list_empty(&inode->i_dentry)) {
635 spin_lock(&inode->i_lock);
636 de = __d_find_alias(inode, 0);
637 spin_unlock(&inode->i_lock);
639 return de;
641 EXPORT_SYMBOL(d_find_alias);
644 * Try to kill dentries associated with this inode.
645 * WARNING: you must own a reference to inode.
647 void d_prune_aliases(struct inode *inode)
649 struct dentry *dentry;
650 restart:
651 spin_lock(&inode->i_lock);
652 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
653 spin_lock(&dentry->d_lock);
654 if (!dentry->d_count) {
655 __dget_dlock(dentry);
656 __d_drop(dentry);
657 spin_unlock(&dentry->d_lock);
658 spin_unlock(&inode->i_lock);
659 dput(dentry);
660 goto restart;
662 spin_unlock(&dentry->d_lock);
664 spin_unlock(&inode->i_lock);
666 EXPORT_SYMBOL(d_prune_aliases);
669 * Try to throw away a dentry - free the inode, dput the parent.
670 * Requires dentry->d_lock is held, and dentry->d_count == 0.
671 * Releases dentry->d_lock.
673 * This may fail if locks cannot be acquired no problem, just try again.
675 static void try_prune_one_dentry(struct dentry *dentry)
676 __releases(dentry->d_lock)
678 struct dentry *parent;
680 parent = dentry_kill(dentry, 0);
682 * If dentry_kill returns NULL, we have nothing more to do.
683 * if it returns the same dentry, trylocks failed. In either
684 * case, just loop again.
686 * Otherwise, we need to prune ancestors too. This is necessary
687 * to prevent quadratic behavior of shrink_dcache_parent(), but
688 * is also expected to be beneficial in reducing dentry cache
689 * fragmentation.
691 if (!parent)
692 return;
693 if (parent == dentry)
694 return;
696 /* Prune ancestors. */
697 dentry = parent;
698 while (dentry) {
699 spin_lock(&dentry->d_lock);
700 if (dentry->d_count > 1) {
701 dentry->d_count--;
702 spin_unlock(&dentry->d_lock);
703 return;
705 dentry = dentry_kill(dentry, 1);
709 static void shrink_dentry_list(struct list_head *list)
711 struct dentry *dentry;
713 rcu_read_lock();
714 for (;;) {
715 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
716 if (&dentry->d_lru == list)
717 break; /* empty */
718 spin_lock(&dentry->d_lock);
719 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
720 spin_unlock(&dentry->d_lock);
721 continue;
725 * We found an inuse dentry which was not removed from
726 * the LRU because of laziness during lookup. Do not free
727 * it - just keep it off the LRU list.
729 if (dentry->d_count) {
730 dentry_lru_del(dentry);
731 spin_unlock(&dentry->d_lock);
732 continue;
735 rcu_read_unlock();
737 try_prune_one_dentry(dentry);
739 rcu_read_lock();
741 rcu_read_unlock();
745 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
746 * @sb: superblock to shrink dentry LRU.
747 * @count: number of entries to prune
748 * @flags: flags to control the dentry processing
750 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
752 static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
754 struct dentry *dentry;
755 LIST_HEAD(referenced);
756 LIST_HEAD(tmp);
758 relock:
759 spin_lock(&dcache_lru_lock);
760 while (!list_empty(&sb->s_dentry_lru)) {
761 dentry = list_entry(sb->s_dentry_lru.prev,
762 struct dentry, d_lru);
763 BUG_ON(dentry->d_sb != sb);
765 if (!spin_trylock(&dentry->d_lock)) {
766 spin_unlock(&dcache_lru_lock);
767 cpu_relax();
768 goto relock;
772 * If we are honouring the DCACHE_REFERENCED flag and the
773 * dentry has this flag set, don't free it. Clear the flag
774 * and put it back on the LRU.
776 if (flags & DCACHE_REFERENCED &&
777 dentry->d_flags & DCACHE_REFERENCED) {
778 dentry->d_flags &= ~DCACHE_REFERENCED;
779 list_move(&dentry->d_lru, &referenced);
780 spin_unlock(&dentry->d_lock);
781 } else {
782 list_move_tail(&dentry->d_lru, &tmp);
783 spin_unlock(&dentry->d_lock);
784 if (!--count)
785 break;
787 cond_resched_lock(&dcache_lru_lock);
789 if (!list_empty(&referenced))
790 list_splice(&referenced, &sb->s_dentry_lru);
791 spin_unlock(&dcache_lru_lock);
793 shrink_dentry_list(&tmp);
797 * prune_dcache_sb - shrink the dcache
798 * @nr_to_scan: number of entries to try to free
800 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
801 * done when we need more memory an called from the superblock shrinker
802 * function.
804 * This function may fail to free any resources if all the dentries are in
805 * use.
807 void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
809 __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
813 * shrink_dcache_sb - shrink dcache for a superblock
814 * @sb: superblock
816 * Shrink the dcache for the specified super block. This is used to free
817 * the dcache before unmounting a file system.
819 void shrink_dcache_sb(struct super_block *sb)
821 LIST_HEAD(tmp);
823 spin_lock(&dcache_lru_lock);
824 while (!list_empty(&sb->s_dentry_lru)) {
825 list_splice_init(&sb->s_dentry_lru, &tmp);
826 spin_unlock(&dcache_lru_lock);
827 shrink_dentry_list(&tmp);
828 spin_lock(&dcache_lru_lock);
830 spin_unlock(&dcache_lru_lock);
832 EXPORT_SYMBOL(shrink_dcache_sb);
835 * destroy a single subtree of dentries for unmount
836 * - see the comments on shrink_dcache_for_umount() for a description of the
837 * locking
839 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
841 struct dentry *parent;
843 BUG_ON(!IS_ROOT(dentry));
845 for (;;) {
846 /* descend to the first leaf in the current subtree */
847 while (!list_empty(&dentry->d_subdirs))
848 dentry = list_entry(dentry->d_subdirs.next,
849 struct dentry, d_u.d_child);
851 /* consume the dentries from this leaf up through its parents
852 * until we find one with children or run out altogether */
853 do {
854 struct inode *inode;
856 /* detach from the system */
857 dentry_lru_del(dentry);
858 __d_shrink(dentry);
860 if (dentry->d_count != 0) {
861 printk(KERN_ERR
862 "BUG: Dentry %p{i=%lx,n=%s}"
863 " still in use (%d)"
864 " [unmount of %s %s]\n",
865 dentry,
866 dentry->d_inode ?
867 dentry->d_inode->i_ino : 0UL,
868 dentry->d_name.name,
869 dentry->d_count,
870 dentry->d_sb->s_type->name,
871 dentry->d_sb->s_id);
872 BUG();
875 if (IS_ROOT(dentry)) {
876 parent = NULL;
877 list_del(&dentry->d_u.d_child);
878 } else {
879 parent = dentry->d_parent;
880 parent->d_count--;
881 list_del(&dentry->d_u.d_child);
884 inode = dentry->d_inode;
885 if (inode) {
886 dentry->d_inode = NULL;
887 list_del_init(&dentry->d_alias);
888 if (dentry->d_op && dentry->d_op->d_iput)
889 dentry->d_op->d_iput(dentry, inode);
890 else
891 iput(inode);
894 d_free(dentry);
896 /* finished when we fall off the top of the tree,
897 * otherwise we ascend to the parent and move to the
898 * next sibling if there is one */
899 if (!parent)
900 return;
901 dentry = parent;
902 } while (list_empty(&dentry->d_subdirs));
904 dentry = list_entry(dentry->d_subdirs.next,
905 struct dentry, d_u.d_child);
910 * destroy the dentries attached to a superblock on unmounting
911 * - we don't need to use dentry->d_lock because:
912 * - the superblock is detached from all mountings and open files, so the
913 * dentry trees will not be rearranged by the VFS
914 * - s_umount is write-locked, so the memory pressure shrinker will ignore
915 * any dentries belonging to this superblock that it comes across
916 * - the filesystem itself is no longer permitted to rearrange the dentries
917 * in this superblock
919 void shrink_dcache_for_umount(struct super_block *sb)
921 struct dentry *dentry;
923 if (down_read_trylock(&sb->s_umount))
924 BUG();
926 dentry = sb->s_root;
927 sb->s_root = NULL;
928 dentry->d_count--;
929 shrink_dcache_for_umount_subtree(dentry);
931 while (!hlist_bl_empty(&sb->s_anon)) {
932 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
933 shrink_dcache_for_umount_subtree(dentry);
938 * This tries to ascend one level of parenthood, but
939 * we can race with renaming, so we need to re-check
940 * the parenthood after dropping the lock and check
941 * that the sequence number still matches.
943 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
945 struct dentry *new = old->d_parent;
947 rcu_read_lock();
948 spin_unlock(&old->d_lock);
949 spin_lock(&new->d_lock);
952 * might go back up the wrong parent if we have had a rename
953 * or deletion
955 if (new != old->d_parent ||
956 (old->d_flags & DCACHE_DISCONNECTED) ||
957 (!locked && read_seqretry(&rename_lock, seq))) {
958 spin_unlock(&new->d_lock);
959 new = NULL;
961 rcu_read_unlock();
962 return new;
967 * Search for at least 1 mount point in the dentry's subdirs.
968 * We descend to the next level whenever the d_subdirs
969 * list is non-empty and continue searching.
973 * have_submounts - check for mounts over a dentry
974 * @parent: dentry to check.
976 * Return true if the parent or its subdirectories contain
977 * a mount point
979 int have_submounts(struct dentry *parent)
981 struct dentry *this_parent;
982 struct list_head *next;
983 unsigned seq;
984 int locked = 0;
986 seq = read_seqbegin(&rename_lock);
987 again:
988 this_parent = parent;
990 if (d_mountpoint(parent))
991 goto positive;
992 spin_lock(&this_parent->d_lock);
993 repeat:
994 next = this_parent->d_subdirs.next;
995 resume:
996 while (next != &this_parent->d_subdirs) {
997 struct list_head *tmp = next;
998 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
999 next = tmp->next;
1001 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1002 /* Have we found a mount point ? */
1003 if (d_mountpoint(dentry)) {
1004 spin_unlock(&dentry->d_lock);
1005 spin_unlock(&this_parent->d_lock);
1006 goto positive;
1008 if (!list_empty(&dentry->d_subdirs)) {
1009 spin_unlock(&this_parent->d_lock);
1010 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1011 this_parent = dentry;
1012 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1013 goto repeat;
1015 spin_unlock(&dentry->d_lock);
1018 * All done at this level ... ascend and resume the search.
1020 if (this_parent != parent) {
1021 struct dentry *child = this_parent;
1022 this_parent = try_to_ascend(this_parent, locked, seq);
1023 if (!this_parent)
1024 goto rename_retry;
1025 next = child->d_u.d_child.next;
1026 goto resume;
1028 spin_unlock(&this_parent->d_lock);
1029 if (!locked && read_seqretry(&rename_lock, seq))
1030 goto rename_retry;
1031 if (locked)
1032 write_sequnlock(&rename_lock);
1033 return 0; /* No mount points found in tree */
1034 positive:
1035 if (!locked && read_seqretry(&rename_lock, seq))
1036 goto rename_retry;
1037 if (locked)
1038 write_sequnlock(&rename_lock);
1039 return 1;
1041 rename_retry:
1042 locked = 1;
1043 write_seqlock(&rename_lock);
1044 goto again;
1046 EXPORT_SYMBOL(have_submounts);
1049 * Search the dentry child list for the specified parent,
1050 * and move any unused dentries to the end of the unused
1051 * list for prune_dcache(). We descend to the next level
1052 * whenever the d_subdirs list is non-empty and continue
1053 * searching.
1055 * It returns zero iff there are no unused children,
1056 * otherwise it returns the number of children moved to
1057 * the end of the unused list. This may not be the total
1058 * number of unused children, because select_parent can
1059 * drop the lock and return early due to latency
1060 * constraints.
1062 static int select_parent(struct dentry * parent)
1064 struct dentry *this_parent;
1065 struct list_head *next;
1066 unsigned seq;
1067 int found = 0;
1068 int locked = 0;
1070 seq = read_seqbegin(&rename_lock);
1071 again:
1072 this_parent = parent;
1073 spin_lock(&this_parent->d_lock);
1074 repeat:
1075 next = this_parent->d_subdirs.next;
1076 resume:
1077 while (next != &this_parent->d_subdirs) {
1078 struct list_head *tmp = next;
1079 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1080 next = tmp->next;
1082 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1085 * move only zero ref count dentries to the end
1086 * of the unused list for prune_dcache
1088 if (!dentry->d_count) {
1089 dentry_lru_move_tail(dentry);
1090 found++;
1091 } else {
1092 dentry_lru_del(dentry);
1096 * We can return to the caller if we have found some (this
1097 * ensures forward progress). We'll be coming back to find
1098 * the rest.
1100 if (found && need_resched()) {
1101 spin_unlock(&dentry->d_lock);
1102 goto out;
1106 * Descend a level if the d_subdirs list is non-empty.
1108 if (!list_empty(&dentry->d_subdirs)) {
1109 spin_unlock(&this_parent->d_lock);
1110 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1111 this_parent = dentry;
1112 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1113 goto repeat;
1116 spin_unlock(&dentry->d_lock);
1119 * All done at this level ... ascend and resume the search.
1121 if (this_parent != parent) {
1122 struct dentry *child = this_parent;
1123 this_parent = try_to_ascend(this_parent, locked, seq);
1124 if (!this_parent)
1125 goto rename_retry;
1126 next = child->d_u.d_child.next;
1127 goto resume;
1129 out:
1130 spin_unlock(&this_parent->d_lock);
1131 if (!locked && read_seqretry(&rename_lock, seq))
1132 goto rename_retry;
1133 if (locked)
1134 write_sequnlock(&rename_lock);
1135 return found;
1137 rename_retry:
1138 if (found)
1139 return found;
1140 locked = 1;
1141 write_seqlock(&rename_lock);
1142 goto again;
1146 * shrink_dcache_parent - prune dcache
1147 * @parent: parent of entries to prune
1149 * Prune the dcache to remove unused children of the parent dentry.
1152 void shrink_dcache_parent(struct dentry * parent)
1154 struct super_block *sb = parent->d_sb;
1155 int found;
1157 while ((found = select_parent(parent)) != 0)
1158 __shrink_dcache_sb(sb, found, 0);
1160 EXPORT_SYMBOL(shrink_dcache_parent);
1163 * __d_alloc - allocate a dcache entry
1164 * @sb: filesystem it will belong to
1165 * @name: qstr of the name
1167 * Allocates a dentry. It returns %NULL if there is insufficient memory
1168 * available. On a success the dentry is returned. The name passed in is
1169 * copied and the copy passed in may be reused after this call.
1172 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1174 struct dentry *dentry;
1175 char *dname;
1177 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1178 if (!dentry)
1179 return NULL;
1181 if (name->len > DNAME_INLINE_LEN-1) {
1182 dname = kmalloc(name->len + 1, GFP_KERNEL);
1183 if (!dname) {
1184 kmem_cache_free(dentry_cache, dentry);
1185 return NULL;
1187 } else {
1188 dname = dentry->d_iname;
1190 dentry->d_name.name = dname;
1192 dentry->d_name.len = name->len;
1193 dentry->d_name.hash = name->hash;
1194 memcpy(dname, name->name, name->len);
1195 dname[name->len] = 0;
1197 dentry->d_count = 1;
1198 dentry->d_flags = 0;
1199 spin_lock_init(&dentry->d_lock);
1200 seqcount_init(&dentry->d_seq);
1201 dentry->d_inode = NULL;
1202 dentry->d_parent = dentry;
1203 dentry->d_sb = sb;
1204 dentry->d_op = NULL;
1205 dentry->d_fsdata = NULL;
1206 INIT_HLIST_BL_NODE(&dentry->d_hash);
1207 INIT_LIST_HEAD(&dentry->d_lru);
1208 INIT_LIST_HEAD(&dentry->d_subdirs);
1209 INIT_LIST_HEAD(&dentry->d_alias);
1210 INIT_LIST_HEAD(&dentry->d_u.d_child);
1211 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1213 this_cpu_inc(nr_dentry);
1215 return dentry;
1219 * d_alloc - allocate a dcache entry
1220 * @parent: parent of entry to allocate
1221 * @name: qstr of the name
1223 * Allocates a dentry. It returns %NULL if there is insufficient memory
1224 * available. On a success the dentry is returned. The name passed in is
1225 * copied and the copy passed in may be reused after this call.
1227 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1229 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1230 if (!dentry)
1231 return NULL;
1233 spin_lock(&parent->d_lock);
1235 * don't need child lock because it is not subject
1236 * to concurrency here
1238 __dget_dlock(parent);
1239 dentry->d_parent = parent;
1240 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1241 spin_unlock(&parent->d_lock);
1243 return dentry;
1245 EXPORT_SYMBOL(d_alloc);
1247 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1249 struct dentry *dentry = __d_alloc(sb, name);
1250 if (dentry)
1251 dentry->d_flags |= DCACHE_DISCONNECTED;
1252 return dentry;
1254 EXPORT_SYMBOL(d_alloc_pseudo);
1256 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1258 struct qstr q;
1260 q.name = name;
1261 q.len = strlen(name);
1262 q.hash = full_name_hash(q.name, q.len);
1263 return d_alloc(parent, &q);
1265 EXPORT_SYMBOL(d_alloc_name);
1267 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1269 WARN_ON_ONCE(dentry->d_op);
1270 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1271 DCACHE_OP_COMPARE |
1272 DCACHE_OP_REVALIDATE |
1273 DCACHE_OP_DELETE ));
1274 dentry->d_op = op;
1275 if (!op)
1276 return;
1277 if (op->d_hash)
1278 dentry->d_flags |= DCACHE_OP_HASH;
1279 if (op->d_compare)
1280 dentry->d_flags |= DCACHE_OP_COMPARE;
1281 if (op->d_revalidate)
1282 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1283 if (op->d_delete)
1284 dentry->d_flags |= DCACHE_OP_DELETE;
1287 EXPORT_SYMBOL(d_set_d_op);
1289 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1291 spin_lock(&dentry->d_lock);
1292 if (inode) {
1293 if (unlikely(IS_AUTOMOUNT(inode)))
1294 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1295 list_add(&dentry->d_alias, &inode->i_dentry);
1297 dentry->d_inode = inode;
1298 dentry_rcuwalk_barrier(dentry);
1299 spin_unlock(&dentry->d_lock);
1300 fsnotify_d_instantiate(dentry, inode);
1304 * d_instantiate - fill in inode information for a dentry
1305 * @entry: dentry to complete
1306 * @inode: inode to attach to this dentry
1308 * Fill in inode information in the entry.
1310 * This turns negative dentries into productive full members
1311 * of society.
1313 * NOTE! This assumes that the inode count has been incremented
1314 * (or otherwise set) by the caller to indicate that it is now
1315 * in use by the dcache.
1318 void d_instantiate(struct dentry *entry, struct inode * inode)
1320 BUG_ON(!list_empty(&entry->d_alias));
1321 if (inode)
1322 spin_lock(&inode->i_lock);
1323 __d_instantiate(entry, inode);
1324 if (inode)
1325 spin_unlock(&inode->i_lock);
1326 security_d_instantiate(entry, inode);
1328 EXPORT_SYMBOL(d_instantiate);
1331 * d_instantiate_unique - instantiate a non-aliased dentry
1332 * @entry: dentry to instantiate
1333 * @inode: inode to attach to this dentry
1335 * Fill in inode information in the entry. On success, it returns NULL.
1336 * If an unhashed alias of "entry" already exists, then we return the
1337 * aliased dentry instead and drop one reference to inode.
1339 * Note that in order to avoid conflicts with rename() etc, the caller
1340 * had better be holding the parent directory semaphore.
1342 * This also assumes that the inode count has been incremented
1343 * (or otherwise set) by the caller to indicate that it is now
1344 * in use by the dcache.
1346 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1347 struct inode *inode)
1349 struct dentry *alias;
1350 int len = entry->d_name.len;
1351 const char *name = entry->d_name.name;
1352 unsigned int hash = entry->d_name.hash;
1354 if (!inode) {
1355 __d_instantiate(entry, NULL);
1356 return NULL;
1359 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1360 struct qstr *qstr = &alias->d_name;
1363 * Don't need alias->d_lock here, because aliases with
1364 * d_parent == entry->d_parent are not subject to name or
1365 * parent changes, because the parent inode i_mutex is held.
1367 if (qstr->hash != hash)
1368 continue;
1369 if (alias->d_parent != entry->d_parent)
1370 continue;
1371 if (dentry_cmp(qstr->name, qstr->len, name, len))
1372 continue;
1373 __dget(alias);
1374 return alias;
1377 __d_instantiate(entry, inode);
1378 return NULL;
1381 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1383 struct dentry *result;
1385 BUG_ON(!list_empty(&entry->d_alias));
1387 if (inode)
1388 spin_lock(&inode->i_lock);
1389 result = __d_instantiate_unique(entry, inode);
1390 if (inode)
1391 spin_unlock(&inode->i_lock);
1393 if (!result) {
1394 security_d_instantiate(entry, inode);
1395 return NULL;
1398 BUG_ON(!d_unhashed(result));
1399 iput(inode);
1400 return result;
1403 EXPORT_SYMBOL(d_instantiate_unique);
1406 * d_alloc_root - allocate root dentry
1407 * @root_inode: inode to allocate the root for
1409 * Allocate a root ("/") dentry for the inode given. The inode is
1410 * instantiated and returned. %NULL is returned if there is insufficient
1411 * memory or the inode passed is %NULL.
1414 struct dentry * d_alloc_root(struct inode * root_inode)
1416 struct dentry *res = NULL;
1418 if (root_inode) {
1419 static const struct qstr name = { .name = "/", .len = 1 };
1421 res = __d_alloc(root_inode->i_sb, &name);
1422 if (res)
1423 d_instantiate(res, root_inode);
1425 return res;
1427 EXPORT_SYMBOL(d_alloc_root);
1429 static struct dentry * __d_find_any_alias(struct inode *inode)
1431 struct dentry *alias;
1433 if (list_empty(&inode->i_dentry))
1434 return NULL;
1435 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1436 __dget(alias);
1437 return alias;
1440 static struct dentry * d_find_any_alias(struct inode *inode)
1442 struct dentry *de;
1444 spin_lock(&inode->i_lock);
1445 de = __d_find_any_alias(inode);
1446 spin_unlock(&inode->i_lock);
1447 return de;
1452 * d_obtain_alias - find or allocate a dentry for a given inode
1453 * @inode: inode to allocate the dentry for
1455 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1456 * similar open by handle operations. The returned dentry may be anonymous,
1457 * or may have a full name (if the inode was already in the cache).
1459 * When called on a directory inode, we must ensure that the inode only ever
1460 * has one dentry. If a dentry is found, that is returned instead of
1461 * allocating a new one.
1463 * On successful return, the reference to the inode has been transferred
1464 * to the dentry. In case of an error the reference on the inode is released.
1465 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1466 * be passed in and will be the error will be propagate to the return value,
1467 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1469 struct dentry *d_obtain_alias(struct inode *inode)
1471 static const struct qstr anonstring = { .name = "" };
1472 struct dentry *tmp;
1473 struct dentry *res;
1475 if (!inode)
1476 return ERR_PTR(-ESTALE);
1477 if (IS_ERR(inode))
1478 return ERR_CAST(inode);
1480 res = d_find_any_alias(inode);
1481 if (res)
1482 goto out_iput;
1484 tmp = __d_alloc(inode->i_sb, &anonstring);
1485 if (!tmp) {
1486 res = ERR_PTR(-ENOMEM);
1487 goto out_iput;
1490 spin_lock(&inode->i_lock);
1491 res = __d_find_any_alias(inode);
1492 if (res) {
1493 spin_unlock(&inode->i_lock);
1494 dput(tmp);
1495 goto out_iput;
1498 /* attach a disconnected dentry */
1499 spin_lock(&tmp->d_lock);
1500 tmp->d_inode = inode;
1501 tmp->d_flags |= DCACHE_DISCONNECTED;
1502 list_add(&tmp->d_alias, &inode->i_dentry);
1503 hlist_bl_lock(&tmp->d_sb->s_anon);
1504 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1505 hlist_bl_unlock(&tmp->d_sb->s_anon);
1506 spin_unlock(&tmp->d_lock);
1507 spin_unlock(&inode->i_lock);
1508 security_d_instantiate(tmp, inode);
1510 return tmp;
1512 out_iput:
1513 if (res && !IS_ERR(res))
1514 security_d_instantiate(res, inode);
1515 iput(inode);
1516 return res;
1518 EXPORT_SYMBOL(d_obtain_alias);
1521 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1522 * @inode: the inode which may have a disconnected dentry
1523 * @dentry: a negative dentry which we want to point to the inode.
1525 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1526 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1527 * and return it, else simply d_add the inode to the dentry and return NULL.
1529 * This is needed in the lookup routine of any filesystem that is exportable
1530 * (via knfsd) so that we can build dcache paths to directories effectively.
1532 * If a dentry was found and moved, then it is returned. Otherwise NULL
1533 * is returned. This matches the expected return value of ->lookup.
1536 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1538 struct dentry *new = NULL;
1540 if (IS_ERR(inode))
1541 return ERR_CAST(inode);
1543 if (inode && S_ISDIR(inode->i_mode)) {
1544 spin_lock(&inode->i_lock);
1545 new = __d_find_alias(inode, 1);
1546 if (new) {
1547 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1548 spin_unlock(&inode->i_lock);
1549 security_d_instantiate(new, inode);
1550 d_move(new, dentry);
1551 iput(inode);
1552 } else {
1553 /* already taking inode->i_lock, so d_add() by hand */
1554 __d_instantiate(dentry, inode);
1555 spin_unlock(&inode->i_lock);
1556 security_d_instantiate(dentry, inode);
1557 d_rehash(dentry);
1559 } else
1560 d_add(dentry, inode);
1561 return new;
1563 EXPORT_SYMBOL(d_splice_alias);
1566 * d_add_ci - lookup or allocate new dentry with case-exact name
1567 * @inode: the inode case-insensitive lookup has found
1568 * @dentry: the negative dentry that was passed to the parent's lookup func
1569 * @name: the case-exact name to be associated with the returned dentry
1571 * This is to avoid filling the dcache with case-insensitive names to the
1572 * same inode, only the actual correct case is stored in the dcache for
1573 * case-insensitive filesystems.
1575 * For a case-insensitive lookup match and if the the case-exact dentry
1576 * already exists in in the dcache, use it and return it.
1578 * If no entry exists with the exact case name, allocate new dentry with
1579 * the exact case, and return the spliced entry.
1581 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1582 struct qstr *name)
1584 int error;
1585 struct dentry *found;
1586 struct dentry *new;
1589 * First check if a dentry matching the name already exists,
1590 * if not go ahead and create it now.
1592 found = d_hash_and_lookup(dentry->d_parent, name);
1593 if (!found) {
1594 new = d_alloc(dentry->d_parent, name);
1595 if (!new) {
1596 error = -ENOMEM;
1597 goto err_out;
1600 found = d_splice_alias(inode, new);
1601 if (found) {
1602 dput(new);
1603 return found;
1605 return new;
1609 * If a matching dentry exists, and it's not negative use it.
1611 * Decrement the reference count to balance the iget() done
1612 * earlier on.
1614 if (found->d_inode) {
1615 if (unlikely(found->d_inode != inode)) {
1616 /* This can't happen because bad inodes are unhashed. */
1617 BUG_ON(!is_bad_inode(inode));
1618 BUG_ON(!is_bad_inode(found->d_inode));
1620 iput(inode);
1621 return found;
1625 * We are going to instantiate this dentry, unhash it and clear the
1626 * lookup flag so we can do that.
1628 if (unlikely(d_need_lookup(found)))
1629 d_clear_need_lookup(found);
1632 * Negative dentry: instantiate it unless the inode is a directory and
1633 * already has a dentry.
1635 new = d_splice_alias(inode, found);
1636 if (new) {
1637 dput(found);
1638 found = new;
1640 return found;
1642 err_out:
1643 iput(inode);
1644 return ERR_PTR(error);
1646 EXPORT_SYMBOL(d_add_ci);
1649 * __d_lookup_rcu - search for a dentry (racy, store-free)
1650 * @parent: parent dentry
1651 * @name: qstr of name we wish to find
1652 * @seq: returns d_seq value at the point where the dentry was found
1653 * @inode: returns dentry->d_inode when the inode was found valid.
1654 * Returns: dentry, or NULL
1656 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1657 * resolution (store-free path walking) design described in
1658 * Documentation/filesystems/path-lookup.txt.
1660 * This is not to be used outside core vfs.
1662 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1663 * held, and rcu_read_lock held. The returned dentry must not be stored into
1664 * without taking d_lock and checking d_seq sequence count against @seq
1665 * returned here.
1667 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1668 * function.
1670 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1671 * the returned dentry, so long as its parent's seqlock is checked after the
1672 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1673 * is formed, giving integrity down the path walk.
1675 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1676 unsigned *seq, struct inode **inode)
1678 unsigned int len = name->len;
1679 unsigned int hash = name->hash;
1680 const unsigned char *str = name->name;
1681 struct hlist_bl_head *b = d_hash(parent, hash);
1682 struct hlist_bl_node *node;
1683 struct dentry *dentry;
1686 * Note: There is significant duplication with __d_lookup_rcu which is
1687 * required to prevent single threaded performance regressions
1688 * especially on architectures where smp_rmb (in seqcounts) are costly.
1689 * Keep the two functions in sync.
1693 * The hash list is protected using RCU.
1695 * Carefully use d_seq when comparing a candidate dentry, to avoid
1696 * races with d_move().
1698 * It is possible that concurrent renames can mess up our list
1699 * walk here and result in missing our dentry, resulting in the
1700 * false-negative result. d_lookup() protects against concurrent
1701 * renames using rename_lock seqlock.
1703 * See Documentation/filesystems/path-lookup.txt for more details.
1705 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1706 struct inode *i;
1707 const char *tname;
1708 int tlen;
1710 if (dentry->d_name.hash != hash)
1711 continue;
1713 seqretry:
1714 *seq = read_seqcount_begin(&dentry->d_seq);
1715 if (dentry->d_parent != parent)
1716 continue;
1717 if (d_unhashed(dentry))
1718 continue;
1719 tlen = dentry->d_name.len;
1720 tname = dentry->d_name.name;
1721 i = dentry->d_inode;
1722 prefetch(tname);
1724 * This seqcount check is required to ensure name and
1725 * len are loaded atomically, so as not to walk off the
1726 * edge of memory when walking. If we could load this
1727 * atomically some other way, we could drop this check.
1729 if (read_seqcount_retry(&dentry->d_seq, *seq))
1730 goto seqretry;
1731 if (parent->d_flags & DCACHE_OP_COMPARE) {
1732 if (parent->d_op->d_compare(parent, *inode,
1733 dentry, i,
1734 tlen, tname, name))
1735 continue;
1736 } else {
1737 if (dentry_cmp(tname, tlen, str, len))
1738 continue;
1741 * No extra seqcount check is required after the name
1742 * compare. The caller must perform a seqcount check in
1743 * order to do anything useful with the returned dentry
1744 * anyway.
1746 *inode = i;
1747 return dentry;
1749 return NULL;
1753 * d_lookup - search for a dentry
1754 * @parent: parent dentry
1755 * @name: qstr of name we wish to find
1756 * Returns: dentry, or NULL
1758 * d_lookup searches the children of the parent dentry for the name in
1759 * question. If the dentry is found its reference count is incremented and the
1760 * dentry is returned. The caller must use dput to free the entry when it has
1761 * finished using it. %NULL is returned if the dentry does not exist.
1763 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1765 struct dentry *dentry;
1766 unsigned seq;
1768 do {
1769 seq = read_seqbegin(&rename_lock);
1770 dentry = __d_lookup(parent, name);
1771 if (dentry)
1772 break;
1773 } while (read_seqretry(&rename_lock, seq));
1774 return dentry;
1776 EXPORT_SYMBOL(d_lookup);
1779 * __d_lookup - search for a dentry (racy)
1780 * @parent: parent dentry
1781 * @name: qstr of name we wish to find
1782 * Returns: dentry, or NULL
1784 * __d_lookup is like d_lookup, however it may (rarely) return a
1785 * false-negative result due to unrelated rename activity.
1787 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1788 * however it must be used carefully, eg. with a following d_lookup in
1789 * the case of failure.
1791 * __d_lookup callers must be commented.
1793 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1795 unsigned int len = name->len;
1796 unsigned int hash = name->hash;
1797 const unsigned char *str = name->name;
1798 struct hlist_bl_head *b = d_hash(parent, hash);
1799 struct hlist_bl_node *node;
1800 struct dentry *found = NULL;
1801 struct dentry *dentry;
1804 * Note: There is significant duplication with __d_lookup_rcu which is
1805 * required to prevent single threaded performance regressions
1806 * especially on architectures where smp_rmb (in seqcounts) are costly.
1807 * Keep the two functions in sync.
1811 * The hash list is protected using RCU.
1813 * Take d_lock when comparing a candidate dentry, to avoid races
1814 * with d_move().
1816 * It is possible that concurrent renames can mess up our list
1817 * walk here and result in missing our dentry, resulting in the
1818 * false-negative result. d_lookup() protects against concurrent
1819 * renames using rename_lock seqlock.
1821 * See Documentation/filesystems/path-lookup.txt for more details.
1823 rcu_read_lock();
1825 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1826 const char *tname;
1827 int tlen;
1829 if (dentry->d_name.hash != hash)
1830 continue;
1832 spin_lock(&dentry->d_lock);
1833 if (dentry->d_parent != parent)
1834 goto next;
1835 if (d_unhashed(dentry))
1836 goto next;
1839 * It is safe to compare names since d_move() cannot
1840 * change the qstr (protected by d_lock).
1842 tlen = dentry->d_name.len;
1843 tname = dentry->d_name.name;
1844 if (parent->d_flags & DCACHE_OP_COMPARE) {
1845 if (parent->d_op->d_compare(parent, parent->d_inode,
1846 dentry, dentry->d_inode,
1847 tlen, tname, name))
1848 goto next;
1849 } else {
1850 if (dentry_cmp(tname, tlen, str, len))
1851 goto next;
1854 dentry->d_count++;
1855 found = dentry;
1856 spin_unlock(&dentry->d_lock);
1857 break;
1858 next:
1859 spin_unlock(&dentry->d_lock);
1861 rcu_read_unlock();
1863 return found;
1867 * d_hash_and_lookup - hash the qstr then search for a dentry
1868 * @dir: Directory to search in
1869 * @name: qstr of name we wish to find
1871 * On hash failure or on lookup failure NULL is returned.
1873 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1875 struct dentry *dentry = NULL;
1878 * Check for a fs-specific hash function. Note that we must
1879 * calculate the standard hash first, as the d_op->d_hash()
1880 * routine may choose to leave the hash value unchanged.
1882 name->hash = full_name_hash(name->name, name->len);
1883 if (dir->d_flags & DCACHE_OP_HASH) {
1884 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1885 goto out;
1887 dentry = d_lookup(dir, name);
1888 out:
1889 return dentry;
1893 * d_validate - verify dentry provided from insecure source (deprecated)
1894 * @dentry: The dentry alleged to be valid child of @dparent
1895 * @dparent: The parent dentry (known to be valid)
1897 * An insecure source has sent us a dentry, here we verify it and dget() it.
1898 * This is used by ncpfs in its readdir implementation.
1899 * Zero is returned in the dentry is invalid.
1901 * This function is slow for big directories, and deprecated, do not use it.
1903 int d_validate(struct dentry *dentry, struct dentry *dparent)
1905 struct dentry *child;
1907 spin_lock(&dparent->d_lock);
1908 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1909 if (dentry == child) {
1910 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1911 __dget_dlock(dentry);
1912 spin_unlock(&dentry->d_lock);
1913 spin_unlock(&dparent->d_lock);
1914 return 1;
1917 spin_unlock(&dparent->d_lock);
1919 return 0;
1921 EXPORT_SYMBOL(d_validate);
1924 * When a file is deleted, we have two options:
1925 * - turn this dentry into a negative dentry
1926 * - unhash this dentry and free it.
1928 * Usually, we want to just turn this into
1929 * a negative dentry, but if anybody else is
1930 * currently using the dentry or the inode
1931 * we can't do that and we fall back on removing
1932 * it from the hash queues and waiting for
1933 * it to be deleted later when it has no users
1937 * d_delete - delete a dentry
1938 * @dentry: The dentry to delete
1940 * Turn the dentry into a negative dentry if possible, otherwise
1941 * remove it from the hash queues so it can be deleted later
1944 void d_delete(struct dentry * dentry)
1946 struct inode *inode;
1947 int isdir = 0;
1949 * Are we the only user?
1951 again:
1952 spin_lock(&dentry->d_lock);
1953 inode = dentry->d_inode;
1954 isdir = S_ISDIR(inode->i_mode);
1955 if (dentry->d_count == 1) {
1956 if (inode && !spin_trylock(&inode->i_lock)) {
1957 spin_unlock(&dentry->d_lock);
1958 cpu_relax();
1959 goto again;
1961 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1962 dentry_unlink_inode(dentry);
1963 fsnotify_nameremove(dentry, isdir);
1964 return;
1967 if (!d_unhashed(dentry))
1968 __d_drop(dentry);
1970 spin_unlock(&dentry->d_lock);
1972 fsnotify_nameremove(dentry, isdir);
1974 EXPORT_SYMBOL(d_delete);
1976 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1978 BUG_ON(!d_unhashed(entry));
1979 hlist_bl_lock(b);
1980 entry->d_flags |= DCACHE_RCUACCESS;
1981 hlist_bl_add_head_rcu(&entry->d_hash, b);
1982 hlist_bl_unlock(b);
1985 static void _d_rehash(struct dentry * entry)
1987 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1991 * d_rehash - add an entry back to the hash
1992 * @entry: dentry to add to the hash
1994 * Adds a dentry to the hash according to its name.
1997 void d_rehash(struct dentry * entry)
1999 spin_lock(&entry->d_lock);
2000 _d_rehash(entry);
2001 spin_unlock(&entry->d_lock);
2003 EXPORT_SYMBOL(d_rehash);
2006 * dentry_update_name_case - update case insensitive dentry with a new name
2007 * @dentry: dentry to be updated
2008 * @name: new name
2010 * Update a case insensitive dentry with new case of name.
2012 * dentry must have been returned by d_lookup with name @name. Old and new
2013 * name lengths must match (ie. no d_compare which allows mismatched name
2014 * lengths).
2016 * Parent inode i_mutex must be held over d_lookup and into this call (to
2017 * keep renames and concurrent inserts, and readdir(2) away).
2019 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2021 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2022 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2024 spin_lock(&dentry->d_lock);
2025 write_seqcount_begin(&dentry->d_seq);
2026 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2027 write_seqcount_end(&dentry->d_seq);
2028 spin_unlock(&dentry->d_lock);
2030 EXPORT_SYMBOL(dentry_update_name_case);
2032 static void switch_names(struct dentry *dentry, struct dentry *target)
2034 if (dname_external(target)) {
2035 if (dname_external(dentry)) {
2037 * Both external: swap the pointers
2039 swap(target->d_name.name, dentry->d_name.name);
2040 } else {
2042 * dentry:internal, target:external. Steal target's
2043 * storage and make target internal.
2045 memcpy(target->d_iname, dentry->d_name.name,
2046 dentry->d_name.len + 1);
2047 dentry->d_name.name = target->d_name.name;
2048 target->d_name.name = target->d_iname;
2050 } else {
2051 if (dname_external(dentry)) {
2053 * dentry:external, target:internal. Give dentry's
2054 * storage to target and make dentry internal
2056 memcpy(dentry->d_iname, target->d_name.name,
2057 target->d_name.len + 1);
2058 target->d_name.name = dentry->d_name.name;
2059 dentry->d_name.name = dentry->d_iname;
2060 } else {
2062 * Both are internal. Just copy target to dentry
2064 memcpy(dentry->d_iname, target->d_name.name,
2065 target->d_name.len + 1);
2066 dentry->d_name.len = target->d_name.len;
2067 return;
2070 swap(dentry->d_name.len, target->d_name.len);
2073 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2076 * XXXX: do we really need to take target->d_lock?
2078 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2079 spin_lock(&target->d_parent->d_lock);
2080 else {
2081 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2082 spin_lock(&dentry->d_parent->d_lock);
2083 spin_lock_nested(&target->d_parent->d_lock,
2084 DENTRY_D_LOCK_NESTED);
2085 } else {
2086 spin_lock(&target->d_parent->d_lock);
2087 spin_lock_nested(&dentry->d_parent->d_lock,
2088 DENTRY_D_LOCK_NESTED);
2091 if (target < dentry) {
2092 spin_lock_nested(&target->d_lock, 2);
2093 spin_lock_nested(&dentry->d_lock, 3);
2094 } else {
2095 spin_lock_nested(&dentry->d_lock, 2);
2096 spin_lock_nested(&target->d_lock, 3);
2100 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2101 struct dentry *target)
2103 if (target->d_parent != dentry->d_parent)
2104 spin_unlock(&dentry->d_parent->d_lock);
2105 if (target->d_parent != target)
2106 spin_unlock(&target->d_parent->d_lock);
2110 * When switching names, the actual string doesn't strictly have to
2111 * be preserved in the target - because we're dropping the target
2112 * anyway. As such, we can just do a simple memcpy() to copy over
2113 * the new name before we switch.
2115 * Note that we have to be a lot more careful about getting the hash
2116 * switched - we have to switch the hash value properly even if it
2117 * then no longer matches the actual (corrupted) string of the target.
2118 * The hash value has to match the hash queue that the dentry is on..
2121 * __d_move - move a dentry
2122 * @dentry: entry to move
2123 * @target: new dentry
2125 * Update the dcache to reflect the move of a file name. Negative
2126 * dcache entries should not be moved in this way. Caller must hold
2127 * rename_lock, the i_mutex of the source and target directories,
2128 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2130 static void __d_move(struct dentry * dentry, struct dentry * target)
2132 if (!dentry->d_inode)
2133 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2135 BUG_ON(d_ancestor(dentry, target));
2136 BUG_ON(d_ancestor(target, dentry));
2138 dentry_lock_for_move(dentry, target);
2140 write_seqcount_begin(&dentry->d_seq);
2141 write_seqcount_begin(&target->d_seq);
2143 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2146 * Move the dentry to the target hash queue. Don't bother checking
2147 * for the same hash queue because of how unlikely it is.
2149 __d_drop(dentry);
2150 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2152 /* Unhash the target: dput() will then get rid of it */
2153 __d_drop(target);
2155 list_del(&dentry->d_u.d_child);
2156 list_del(&target->d_u.d_child);
2158 /* Switch the names.. */
2159 switch_names(dentry, target);
2160 swap(dentry->d_name.hash, target->d_name.hash);
2162 /* ... and switch the parents */
2163 if (IS_ROOT(dentry)) {
2164 dentry->d_parent = target->d_parent;
2165 target->d_parent = target;
2166 INIT_LIST_HEAD(&target->d_u.d_child);
2167 } else {
2168 swap(dentry->d_parent, target->d_parent);
2170 /* And add them back to the (new) parent lists */
2171 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2174 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2176 write_seqcount_end(&target->d_seq);
2177 write_seqcount_end(&dentry->d_seq);
2179 dentry_unlock_parents_for_move(dentry, target);
2180 spin_unlock(&target->d_lock);
2181 fsnotify_d_move(dentry);
2182 spin_unlock(&dentry->d_lock);
2186 * d_move - move a dentry
2187 * @dentry: entry to move
2188 * @target: new dentry
2190 * Update the dcache to reflect the move of a file name. Negative
2191 * dcache entries should not be moved in this way. See the locking
2192 * requirements for __d_move.
2194 void d_move(struct dentry *dentry, struct dentry *target)
2196 write_seqlock(&rename_lock);
2197 __d_move(dentry, target);
2198 write_sequnlock(&rename_lock);
2200 EXPORT_SYMBOL(d_move);
2203 * d_ancestor - search for an ancestor
2204 * @p1: ancestor dentry
2205 * @p2: child dentry
2207 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2208 * an ancestor of p2, else NULL.
2210 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2212 struct dentry *p;
2214 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2215 if (p->d_parent == p1)
2216 return p;
2218 return NULL;
2222 * This helper attempts to cope with remotely renamed directories
2224 * It assumes that the caller is already holding
2225 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2227 * Note: If ever the locking in lock_rename() changes, then please
2228 * remember to update this too...
2230 static struct dentry *__d_unalias(struct inode *inode,
2231 struct dentry *dentry, struct dentry *alias)
2233 struct mutex *m1 = NULL, *m2 = NULL;
2234 struct dentry *ret;
2236 /* If alias and dentry share a parent, then no extra locks required */
2237 if (alias->d_parent == dentry->d_parent)
2238 goto out_unalias;
2240 /* See lock_rename() */
2241 ret = ERR_PTR(-EBUSY);
2242 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2243 goto out_err;
2244 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2245 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2246 goto out_err;
2247 m2 = &alias->d_parent->d_inode->i_mutex;
2248 out_unalias:
2249 __d_move(alias, dentry);
2250 ret = alias;
2251 out_err:
2252 spin_unlock(&inode->i_lock);
2253 if (m2)
2254 mutex_unlock(m2);
2255 if (m1)
2256 mutex_unlock(m1);
2257 return ret;
2261 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2262 * named dentry in place of the dentry to be replaced.
2263 * returns with anon->d_lock held!
2265 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2267 struct dentry *dparent, *aparent;
2269 dentry_lock_for_move(anon, dentry);
2271 write_seqcount_begin(&dentry->d_seq);
2272 write_seqcount_begin(&anon->d_seq);
2274 dparent = dentry->d_parent;
2275 aparent = anon->d_parent;
2277 switch_names(dentry, anon);
2278 swap(dentry->d_name.hash, anon->d_name.hash);
2280 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2281 list_del(&dentry->d_u.d_child);
2282 if (!IS_ROOT(dentry))
2283 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2284 else
2285 INIT_LIST_HEAD(&dentry->d_u.d_child);
2287 anon->d_parent = (dparent == dentry) ? anon : dparent;
2288 list_del(&anon->d_u.d_child);
2289 if (!IS_ROOT(anon))
2290 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2291 else
2292 INIT_LIST_HEAD(&anon->d_u.d_child);
2294 write_seqcount_end(&dentry->d_seq);
2295 write_seqcount_end(&anon->d_seq);
2297 dentry_unlock_parents_for_move(anon, dentry);
2298 spin_unlock(&dentry->d_lock);
2300 /* anon->d_lock still locked, returns locked */
2301 anon->d_flags &= ~DCACHE_DISCONNECTED;
2305 * d_materialise_unique - introduce an inode into the tree
2306 * @dentry: candidate dentry
2307 * @inode: inode to bind to the dentry, to which aliases may be attached
2309 * Introduces an dentry into the tree, substituting an extant disconnected
2310 * root directory alias in its place if there is one. Caller must hold the
2311 * i_mutex of the parent directory.
2313 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2315 struct dentry *actual;
2317 BUG_ON(!d_unhashed(dentry));
2319 if (!inode) {
2320 actual = dentry;
2321 __d_instantiate(dentry, NULL);
2322 d_rehash(actual);
2323 goto out_nolock;
2326 spin_lock(&inode->i_lock);
2328 if (S_ISDIR(inode->i_mode)) {
2329 struct dentry *alias;
2331 /* Does an aliased dentry already exist? */
2332 alias = __d_find_alias(inode, 0);
2333 if (alias) {
2334 actual = alias;
2335 write_seqlock(&rename_lock);
2337 if (d_ancestor(alias, dentry)) {
2338 /* Check for loops */
2339 actual = ERR_PTR(-ELOOP);
2340 } else if (IS_ROOT(alias)) {
2341 /* Is this an anonymous mountpoint that we
2342 * could splice into our tree? */
2343 __d_materialise_dentry(dentry, alias);
2344 write_sequnlock(&rename_lock);
2345 __d_drop(alias);
2346 goto found;
2347 } else {
2348 /* Nope, but we must(!) avoid directory
2349 * aliasing */
2350 actual = __d_unalias(inode, dentry, alias);
2352 write_sequnlock(&rename_lock);
2353 if (IS_ERR(actual))
2354 dput(alias);
2355 goto out_nolock;
2359 /* Add a unique reference */
2360 actual = __d_instantiate_unique(dentry, inode);
2361 if (!actual)
2362 actual = dentry;
2363 else
2364 BUG_ON(!d_unhashed(actual));
2366 spin_lock(&actual->d_lock);
2367 found:
2368 _d_rehash(actual);
2369 spin_unlock(&actual->d_lock);
2370 spin_unlock(&inode->i_lock);
2371 out_nolock:
2372 if (actual == dentry) {
2373 security_d_instantiate(dentry, inode);
2374 return NULL;
2377 iput(inode);
2378 return actual;
2380 EXPORT_SYMBOL_GPL(d_materialise_unique);
2382 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2384 *buflen -= namelen;
2385 if (*buflen < 0)
2386 return -ENAMETOOLONG;
2387 *buffer -= namelen;
2388 memcpy(*buffer, str, namelen);
2389 return 0;
2392 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2394 return prepend(buffer, buflen, name->name, name->len);
2398 * prepend_path - Prepend path string to a buffer
2399 * @path: the dentry/vfsmount to report
2400 * @root: root vfsmnt/dentry (may be modified by this function)
2401 * @buffer: pointer to the end of the buffer
2402 * @buflen: pointer to buffer length
2404 * Caller holds the rename_lock.
2406 * If path is not reachable from the supplied root, then the value of
2407 * root is changed (without modifying refcounts).
2409 static int prepend_path(const struct path *path, struct path *root,
2410 char **buffer, int *buflen)
2412 struct dentry *dentry = path->dentry;
2413 struct vfsmount *vfsmnt = path->mnt;
2414 bool slash = false;
2415 int error = 0;
2417 br_read_lock(vfsmount_lock);
2418 while (dentry != root->dentry || vfsmnt != root->mnt) {
2419 struct dentry * parent;
2421 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2422 /* Global root? */
2423 if (vfsmnt->mnt_parent == vfsmnt) {
2424 goto global_root;
2426 dentry = vfsmnt->mnt_mountpoint;
2427 vfsmnt = vfsmnt->mnt_parent;
2428 continue;
2430 parent = dentry->d_parent;
2431 prefetch(parent);
2432 spin_lock(&dentry->d_lock);
2433 error = prepend_name(buffer, buflen, &dentry->d_name);
2434 spin_unlock(&dentry->d_lock);
2435 if (!error)
2436 error = prepend(buffer, buflen, "/", 1);
2437 if (error)
2438 break;
2440 slash = true;
2441 dentry = parent;
2444 out:
2445 if (!error && !slash)
2446 error = prepend(buffer, buflen, "/", 1);
2448 br_read_unlock(vfsmount_lock);
2449 return error;
2451 global_root:
2453 * Filesystems needing to implement special "root names"
2454 * should do so with ->d_dname()
2456 if (IS_ROOT(dentry) &&
2457 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2458 WARN(1, "Root dentry has weird name <%.*s>\n",
2459 (int) dentry->d_name.len, dentry->d_name.name);
2461 root->mnt = vfsmnt;
2462 root->dentry = dentry;
2463 goto out;
2467 * __d_path - return the path of a dentry
2468 * @path: the dentry/vfsmount to report
2469 * @root: root vfsmnt/dentry (may be modified by this function)
2470 * @buf: buffer to return value in
2471 * @buflen: buffer length
2473 * Convert a dentry into an ASCII path name.
2475 * Returns a pointer into the buffer or an error code if the
2476 * path was too long.
2478 * "buflen" should be positive.
2480 * If path is not reachable from the supplied root, then the value of
2481 * root is changed (without modifying refcounts).
2483 char *__d_path(const struct path *path, struct path *root,
2484 char *buf, int buflen)
2486 char *res = buf + buflen;
2487 int error;
2489 prepend(&res, &buflen, "\0", 1);
2490 write_seqlock(&rename_lock);
2491 error = prepend_path(path, root, &res, &buflen);
2492 write_sequnlock(&rename_lock);
2494 if (error)
2495 return ERR_PTR(error);
2496 return res;
2500 * same as __d_path but appends "(deleted)" for unlinked files.
2502 static int path_with_deleted(const struct path *path, struct path *root,
2503 char **buf, int *buflen)
2505 prepend(buf, buflen, "\0", 1);
2506 if (d_unlinked(path->dentry)) {
2507 int error = prepend(buf, buflen, " (deleted)", 10);
2508 if (error)
2509 return error;
2512 return prepend_path(path, root, buf, buflen);
2515 static int prepend_unreachable(char **buffer, int *buflen)
2517 return prepend(buffer, buflen, "(unreachable)", 13);
2521 * d_path - return the path of a dentry
2522 * @path: path to report
2523 * @buf: buffer to return value in
2524 * @buflen: buffer length
2526 * Convert a dentry into an ASCII path name. If the entry has been deleted
2527 * the string " (deleted)" is appended. Note that this is ambiguous.
2529 * Returns a pointer into the buffer or an error code if the path was
2530 * too long. Note: Callers should use the returned pointer, not the passed
2531 * in buffer, to use the name! The implementation often starts at an offset
2532 * into the buffer, and may leave 0 bytes at the start.
2534 * "buflen" should be positive.
2536 char *d_path(const struct path *path, char *buf, int buflen)
2538 char *res = buf + buflen;
2539 struct path root;
2540 struct path tmp;
2541 int error;
2544 * We have various synthetic filesystems that never get mounted. On
2545 * these filesystems dentries are never used for lookup purposes, and
2546 * thus don't need to be hashed. They also don't need a name until a
2547 * user wants to identify the object in /proc/pid/fd/. The little hack
2548 * below allows us to generate a name for these objects on demand:
2550 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2551 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2553 get_fs_root(current->fs, &root);
2554 write_seqlock(&rename_lock);
2555 tmp = root;
2556 error = path_with_deleted(path, &tmp, &res, &buflen);
2557 if (error)
2558 res = ERR_PTR(error);
2559 write_sequnlock(&rename_lock);
2560 path_put(&root);
2561 return res;
2563 EXPORT_SYMBOL(d_path);
2566 * d_path_with_unreachable - return the path of a dentry
2567 * @path: path to report
2568 * @buf: buffer to return value in
2569 * @buflen: buffer length
2571 * The difference from d_path() is that this prepends "(unreachable)"
2572 * to paths which are unreachable from the current process' root.
2574 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2576 char *res = buf + buflen;
2577 struct path root;
2578 struct path tmp;
2579 int error;
2581 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2582 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2584 get_fs_root(current->fs, &root);
2585 write_seqlock(&rename_lock);
2586 tmp = root;
2587 error = path_with_deleted(path, &tmp, &res, &buflen);
2588 if (!error && !path_equal(&tmp, &root))
2589 error = prepend_unreachable(&res, &buflen);
2590 write_sequnlock(&rename_lock);
2591 path_put(&root);
2592 if (error)
2593 res = ERR_PTR(error);
2595 return res;
2599 * Helper function for dentry_operations.d_dname() members
2601 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2602 const char *fmt, ...)
2604 va_list args;
2605 char temp[64];
2606 int sz;
2608 va_start(args, fmt);
2609 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2610 va_end(args);
2612 if (sz > sizeof(temp) || sz > buflen)
2613 return ERR_PTR(-ENAMETOOLONG);
2615 buffer += buflen - sz;
2616 return memcpy(buffer, temp, sz);
2620 * Write full pathname from the root of the filesystem into the buffer.
2622 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2624 char *end = buf + buflen;
2625 char *retval;
2627 prepend(&end, &buflen, "\0", 1);
2628 if (buflen < 1)
2629 goto Elong;
2630 /* Get '/' right */
2631 retval = end-1;
2632 *retval = '/';
2634 while (!IS_ROOT(dentry)) {
2635 struct dentry *parent = dentry->d_parent;
2636 int error;
2638 prefetch(parent);
2639 spin_lock(&dentry->d_lock);
2640 error = prepend_name(&end, &buflen, &dentry->d_name);
2641 spin_unlock(&dentry->d_lock);
2642 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2643 goto Elong;
2645 retval = end;
2646 dentry = parent;
2648 return retval;
2649 Elong:
2650 return ERR_PTR(-ENAMETOOLONG);
2653 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2655 char *retval;
2657 write_seqlock(&rename_lock);
2658 retval = __dentry_path(dentry, buf, buflen);
2659 write_sequnlock(&rename_lock);
2661 return retval;
2663 EXPORT_SYMBOL(dentry_path_raw);
2665 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2667 char *p = NULL;
2668 char *retval;
2670 write_seqlock(&rename_lock);
2671 if (d_unlinked(dentry)) {
2672 p = buf + buflen;
2673 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2674 goto Elong;
2675 buflen++;
2677 retval = __dentry_path(dentry, buf, buflen);
2678 write_sequnlock(&rename_lock);
2679 if (!IS_ERR(retval) && p)
2680 *p = '/'; /* restore '/' overriden with '\0' */
2681 return retval;
2682 Elong:
2683 return ERR_PTR(-ENAMETOOLONG);
2687 * NOTE! The user-level library version returns a
2688 * character pointer. The kernel system call just
2689 * returns the length of the buffer filled (which
2690 * includes the ending '\0' character), or a negative
2691 * error value. So libc would do something like
2693 * char *getcwd(char * buf, size_t size)
2695 * int retval;
2697 * retval = sys_getcwd(buf, size);
2698 * if (retval >= 0)
2699 * return buf;
2700 * errno = -retval;
2701 * return NULL;
2704 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2706 int error;
2707 struct path pwd, root;
2708 char *page = (char *) __get_free_page(GFP_USER);
2710 if (!page)
2711 return -ENOMEM;
2713 get_fs_root_and_pwd(current->fs, &root, &pwd);
2715 error = -ENOENT;
2716 write_seqlock(&rename_lock);
2717 if (!d_unlinked(pwd.dentry)) {
2718 unsigned long len;
2719 struct path tmp = root;
2720 char *cwd = page + PAGE_SIZE;
2721 int buflen = PAGE_SIZE;
2723 prepend(&cwd, &buflen, "\0", 1);
2724 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2725 write_sequnlock(&rename_lock);
2727 if (error)
2728 goto out;
2730 /* Unreachable from current root */
2731 if (!path_equal(&tmp, &root)) {
2732 error = prepend_unreachable(&cwd, &buflen);
2733 if (error)
2734 goto out;
2737 error = -ERANGE;
2738 len = PAGE_SIZE + page - cwd;
2739 if (len <= size) {
2740 error = len;
2741 if (copy_to_user(buf, cwd, len))
2742 error = -EFAULT;
2744 } else {
2745 write_sequnlock(&rename_lock);
2748 out:
2749 path_put(&pwd);
2750 path_put(&root);
2751 free_page((unsigned long) page);
2752 return error;
2756 * Test whether new_dentry is a subdirectory of old_dentry.
2758 * Trivially implemented using the dcache structure
2762 * is_subdir - is new dentry a subdirectory of old_dentry
2763 * @new_dentry: new dentry
2764 * @old_dentry: old dentry
2766 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2767 * Returns 0 otherwise.
2768 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2771 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2773 int result;
2774 unsigned seq;
2776 if (new_dentry == old_dentry)
2777 return 1;
2779 do {
2780 /* for restarting inner loop in case of seq retry */
2781 seq = read_seqbegin(&rename_lock);
2783 * Need rcu_readlock to protect against the d_parent trashing
2784 * due to d_move
2786 rcu_read_lock();
2787 if (d_ancestor(old_dentry, new_dentry))
2788 result = 1;
2789 else
2790 result = 0;
2791 rcu_read_unlock();
2792 } while (read_seqretry(&rename_lock, seq));
2794 return result;
2797 int path_is_under(struct path *path1, struct path *path2)
2799 struct vfsmount *mnt = path1->mnt;
2800 struct dentry *dentry = path1->dentry;
2801 int res;
2803 br_read_lock(vfsmount_lock);
2804 if (mnt != path2->mnt) {
2805 for (;;) {
2806 if (mnt->mnt_parent == mnt) {
2807 br_read_unlock(vfsmount_lock);
2808 return 0;
2810 if (mnt->mnt_parent == path2->mnt)
2811 break;
2812 mnt = mnt->mnt_parent;
2814 dentry = mnt->mnt_mountpoint;
2816 res = is_subdir(dentry, path2->dentry);
2817 br_read_unlock(vfsmount_lock);
2818 return res;
2820 EXPORT_SYMBOL(path_is_under);
2822 void d_genocide(struct dentry *root)
2824 struct dentry *this_parent;
2825 struct list_head *next;
2826 unsigned seq;
2827 int locked = 0;
2829 seq = read_seqbegin(&rename_lock);
2830 again:
2831 this_parent = root;
2832 spin_lock(&this_parent->d_lock);
2833 repeat:
2834 next = this_parent->d_subdirs.next;
2835 resume:
2836 while (next != &this_parent->d_subdirs) {
2837 struct list_head *tmp = next;
2838 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2839 next = tmp->next;
2841 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2842 if (d_unhashed(dentry) || !dentry->d_inode) {
2843 spin_unlock(&dentry->d_lock);
2844 continue;
2846 if (!list_empty(&dentry->d_subdirs)) {
2847 spin_unlock(&this_parent->d_lock);
2848 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2849 this_parent = dentry;
2850 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2851 goto repeat;
2853 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2854 dentry->d_flags |= DCACHE_GENOCIDE;
2855 dentry->d_count--;
2857 spin_unlock(&dentry->d_lock);
2859 if (this_parent != root) {
2860 struct dentry *child = this_parent;
2861 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2862 this_parent->d_flags |= DCACHE_GENOCIDE;
2863 this_parent->d_count--;
2865 this_parent = try_to_ascend(this_parent, locked, seq);
2866 if (!this_parent)
2867 goto rename_retry;
2868 next = child->d_u.d_child.next;
2869 goto resume;
2871 spin_unlock(&this_parent->d_lock);
2872 if (!locked && read_seqretry(&rename_lock, seq))
2873 goto rename_retry;
2874 if (locked)
2875 write_sequnlock(&rename_lock);
2876 return;
2878 rename_retry:
2879 locked = 1;
2880 write_seqlock(&rename_lock);
2881 goto again;
2885 * find_inode_number - check for dentry with name
2886 * @dir: directory to check
2887 * @name: Name to find.
2889 * Check whether a dentry already exists for the given name,
2890 * and return the inode number if it has an inode. Otherwise
2891 * 0 is returned.
2893 * This routine is used to post-process directory listings for
2894 * filesystems using synthetic inode numbers, and is necessary
2895 * to keep getcwd() working.
2898 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2900 struct dentry * dentry;
2901 ino_t ino = 0;
2903 dentry = d_hash_and_lookup(dir, name);
2904 if (dentry) {
2905 if (dentry->d_inode)
2906 ino = dentry->d_inode->i_ino;
2907 dput(dentry);
2909 return ino;
2911 EXPORT_SYMBOL(find_inode_number);
2913 static __initdata unsigned long dhash_entries;
2914 static int __init set_dhash_entries(char *str)
2916 if (!str)
2917 return 0;
2918 dhash_entries = simple_strtoul(str, &str, 0);
2919 return 1;
2921 __setup("dhash_entries=", set_dhash_entries);
2923 static void __init dcache_init_early(void)
2925 int loop;
2927 /* If hashes are distributed across NUMA nodes, defer
2928 * hash allocation until vmalloc space is available.
2930 if (hashdist)
2931 return;
2933 dentry_hashtable =
2934 alloc_large_system_hash("Dentry cache",
2935 sizeof(struct hlist_bl_head),
2936 dhash_entries,
2938 HASH_EARLY,
2939 &d_hash_shift,
2940 &d_hash_mask,
2943 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2944 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2947 static void __init dcache_init(void)
2949 int loop;
2952 * A constructor could be added for stable state like the lists,
2953 * but it is probably not worth it because of the cache nature
2954 * of the dcache.
2956 dentry_cache = KMEM_CACHE(dentry,
2957 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2959 /* Hash may have been set up in dcache_init_early */
2960 if (!hashdist)
2961 return;
2963 dentry_hashtable =
2964 alloc_large_system_hash("Dentry cache",
2965 sizeof(struct hlist_bl_head),
2966 dhash_entries,
2969 &d_hash_shift,
2970 &d_hash_mask,
2973 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2974 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2977 /* SLAB cache for __getname() consumers */
2978 struct kmem_cache *names_cachep __read_mostly;
2979 EXPORT_SYMBOL(names_cachep);
2981 EXPORT_SYMBOL(d_genocide);
2983 void __init vfs_caches_init_early(void)
2985 dcache_init_early();
2986 inode_init_early();
2989 void __init vfs_caches_init(unsigned long mempages)
2991 unsigned long reserve;
2993 /* Base hash sizes on available memory, with a reserve equal to
2994 150% of current kernel size */
2996 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2997 mempages -= reserve;
2999 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3000 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3002 dcache_init();
3003 inode_init();
3004 files_init(mempages);
3005 mnt_init();
3006 bdev_cache_init();
3007 chrdev_init();