2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
39 unsigned int sysctl_sched_latency
= 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG
;
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 unsigned int sysctl_sched_min_granularity
= 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
64 static unsigned int sched_nr_latency
= 8;
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
70 unsigned int sysctl_sched_child_runs_first __read_mostly
;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
83 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
86 * The exponential sliding window over which load is averaged for shares
90 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
92 static const struct sched_class fair_sched_class
;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct
*task_of(struct sched_entity
*se
)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se
));
114 return container_of(se
, struct task_struct
, se
);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
138 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
140 if (!cfs_rq
->on_list
) {
142 * Ensure we either appear before our parent (if already
143 * enqueued) or force our parent to appear after us when it is
144 * enqueued. The fact that we always enqueue bottom-up
145 * reduces this to two cases.
147 if (cfs_rq
->tg
->parent
&&
148 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
149 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
150 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
152 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
153 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
160 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
162 if (cfs_rq
->on_list
) {
163 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
168 /* Iterate thr' all leaf cfs_rq's on a runqueue */
169 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
170 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
172 /* Do the two (enqueued) entities belong to the same group ? */
174 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
176 if (se
->cfs_rq
== pse
->cfs_rq
)
182 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
187 /* return depth at which a sched entity is present in the hierarchy */
188 static inline int depth_se(struct sched_entity
*se
)
192 for_each_sched_entity(se
)
199 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
201 int se_depth
, pse_depth
;
204 * preemption test can be made between sibling entities who are in the
205 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
206 * both tasks until we find their ancestors who are siblings of common
210 /* First walk up until both entities are at same depth */
211 se_depth
= depth_se(*se
);
212 pse_depth
= depth_se(*pse
);
214 while (se_depth
> pse_depth
) {
216 *se
= parent_entity(*se
);
219 while (pse_depth
> se_depth
) {
221 *pse
= parent_entity(*pse
);
224 while (!is_same_group(*se
, *pse
)) {
225 *se
= parent_entity(*se
);
226 *pse
= parent_entity(*pse
);
230 #else /* !CONFIG_FAIR_GROUP_SCHED */
232 static inline struct task_struct
*task_of(struct sched_entity
*se
)
234 return container_of(se
, struct task_struct
, se
);
237 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
239 return container_of(cfs_rq
, struct rq
, cfs
);
242 #define entity_is_task(se) 1
244 #define for_each_sched_entity(se) \
245 for (; se; se = NULL)
247 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
249 return &task_rq(p
)->cfs
;
252 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
254 struct task_struct
*p
= task_of(se
);
255 struct rq
*rq
= task_rq(p
);
260 /* runqueue "owned" by this group */
261 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
266 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
270 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
274 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
275 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
278 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
283 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
289 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
293 #endif /* CONFIG_FAIR_GROUP_SCHED */
296 /**************************************************************
297 * Scheduling class tree data structure manipulation methods:
300 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
302 s64 delta
= (s64
)(vruntime
- min_vruntime
);
304 min_vruntime
= vruntime
;
309 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
311 s64 delta
= (s64
)(vruntime
- min_vruntime
);
313 min_vruntime
= vruntime
;
318 static inline int entity_before(struct sched_entity
*a
,
319 struct sched_entity
*b
)
321 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
324 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
326 u64 vruntime
= cfs_rq
->min_vruntime
;
329 vruntime
= cfs_rq
->curr
->vruntime
;
331 if (cfs_rq
->rb_leftmost
) {
332 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
337 vruntime
= se
->vruntime
;
339 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
342 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
345 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
350 * Enqueue an entity into the rb-tree:
352 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
354 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
355 struct rb_node
*parent
= NULL
;
356 struct sched_entity
*entry
;
360 * Find the right place in the rbtree:
364 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
366 * We dont care about collisions. Nodes with
367 * the same key stay together.
369 if (entity_before(se
, entry
)) {
370 link
= &parent
->rb_left
;
372 link
= &parent
->rb_right
;
378 * Maintain a cache of leftmost tree entries (it is frequently
382 cfs_rq
->rb_leftmost
= &se
->run_node
;
384 rb_link_node(&se
->run_node
, parent
, link
);
385 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
388 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
390 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
391 struct rb_node
*next_node
;
393 next_node
= rb_next(&se
->run_node
);
394 cfs_rq
->rb_leftmost
= next_node
;
397 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
400 static struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
402 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
407 return rb_entry(left
, struct sched_entity
, run_node
);
410 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
412 struct rb_node
*next
= rb_next(&se
->run_node
);
417 return rb_entry(next
, struct sched_entity
, run_node
);
420 #ifdef CONFIG_SCHED_DEBUG
421 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
423 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
428 return rb_entry(last
, struct sched_entity
, run_node
);
431 /**************************************************************
432 * Scheduling class statistics methods:
435 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
436 void __user
*buffer
, size_t *lenp
,
439 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
440 int factor
= get_update_sysctl_factor();
445 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
446 sysctl_sched_min_granularity
);
448 #define WRT_SYSCTL(name) \
449 (normalized_sysctl_##name = sysctl_##name / (factor))
450 WRT_SYSCTL(sched_min_granularity
);
451 WRT_SYSCTL(sched_latency
);
452 WRT_SYSCTL(sched_wakeup_granularity
);
462 static inline unsigned long
463 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
465 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
466 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
472 * The idea is to set a period in which each task runs once.
474 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
475 * this period because otherwise the slices get too small.
477 * p = (nr <= nl) ? l : l*nr/nl
479 static u64
__sched_period(unsigned long nr_running
)
481 u64 period
= sysctl_sched_latency
;
482 unsigned long nr_latency
= sched_nr_latency
;
484 if (unlikely(nr_running
> nr_latency
)) {
485 period
= sysctl_sched_min_granularity
;
486 period
*= nr_running
;
493 * We calculate the wall-time slice from the period by taking a part
494 * proportional to the weight.
498 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
500 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
502 for_each_sched_entity(se
) {
503 struct load_weight
*load
;
504 struct load_weight lw
;
506 cfs_rq
= cfs_rq_of(se
);
507 load
= &cfs_rq
->load
;
509 if (unlikely(!se
->on_rq
)) {
512 update_load_add(&lw
, se
->load
.weight
);
515 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
521 * We calculate the vruntime slice of a to be inserted task
525 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
527 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
530 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
);
531 static void update_cfs_shares(struct cfs_rq
*cfs_rq
);
534 * Update the current task's runtime statistics. Skip current tasks that
535 * are not in our scheduling class.
538 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
539 unsigned long delta_exec
)
541 unsigned long delta_exec_weighted
;
543 schedstat_set(curr
->statistics
.exec_max
,
544 max((u64
)delta_exec
, curr
->statistics
.exec_max
));
546 curr
->sum_exec_runtime
+= delta_exec
;
547 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
548 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
550 curr
->vruntime
+= delta_exec_weighted
;
551 update_min_vruntime(cfs_rq
);
553 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
554 cfs_rq
->load_unacc_exec_time
+= delta_exec
;
558 static void update_curr(struct cfs_rq
*cfs_rq
)
560 struct sched_entity
*curr
= cfs_rq
->curr
;
561 u64 now
= rq_of(cfs_rq
)->clock_task
;
562 unsigned long delta_exec
;
568 * Get the amount of time the current task was running
569 * since the last time we changed load (this cannot
570 * overflow on 32 bits):
572 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
576 __update_curr(cfs_rq
, curr
, delta_exec
);
577 curr
->exec_start
= now
;
579 if (entity_is_task(curr
)) {
580 struct task_struct
*curtask
= task_of(curr
);
582 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
583 cpuacct_charge(curtask
, delta_exec
);
584 account_group_exec_runtime(curtask
, delta_exec
);
589 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
591 schedstat_set(se
->statistics
.wait_start
, rq_of(cfs_rq
)->clock
);
595 * Task is being enqueued - update stats:
597 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
600 * Are we enqueueing a waiting task? (for current tasks
601 * a dequeue/enqueue event is a NOP)
603 if (se
!= cfs_rq
->curr
)
604 update_stats_wait_start(cfs_rq
, se
);
608 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
610 schedstat_set(se
->statistics
.wait_max
, max(se
->statistics
.wait_max
,
611 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
));
612 schedstat_set(se
->statistics
.wait_count
, se
->statistics
.wait_count
+ 1);
613 schedstat_set(se
->statistics
.wait_sum
, se
->statistics
.wait_sum
+
614 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
615 #ifdef CONFIG_SCHEDSTATS
616 if (entity_is_task(se
)) {
617 trace_sched_stat_wait(task_of(se
),
618 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
621 schedstat_set(se
->statistics
.wait_start
, 0);
625 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
628 * Mark the end of the wait period if dequeueing a
631 if (se
!= cfs_rq
->curr
)
632 update_stats_wait_end(cfs_rq
, se
);
636 * We are picking a new current task - update its stats:
639 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
642 * We are starting a new run period:
644 se
->exec_start
= rq_of(cfs_rq
)->clock_task
;
647 /**************************************************
648 * Scheduling class queueing methods:
651 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
653 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
655 cfs_rq
->task_weight
+= weight
;
659 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
665 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
667 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
668 if (!parent_entity(se
))
669 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
670 if (entity_is_task(se
)) {
671 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
672 list_add(&se
->group_node
, &cfs_rq
->tasks
);
674 cfs_rq
->nr_running
++;
678 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
680 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
681 if (!parent_entity(se
))
682 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
683 if (entity_is_task(se
)) {
684 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
685 list_del_init(&se
->group_node
);
687 cfs_rq
->nr_running
--;
690 #ifdef CONFIG_FAIR_GROUP_SCHED
692 static void update_cfs_rq_load_contribution(struct cfs_rq
*cfs_rq
,
695 struct task_group
*tg
= cfs_rq
->tg
;
698 load_avg
= div64_u64(cfs_rq
->load_avg
, cfs_rq
->load_period
+1);
699 load_avg
-= cfs_rq
->load_contribution
;
701 if (global_update
|| abs(load_avg
) > cfs_rq
->load_contribution
/ 8) {
702 atomic_add(load_avg
, &tg
->load_weight
);
703 cfs_rq
->load_contribution
+= load_avg
;
707 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
709 u64 period
= sysctl_sched_shares_window
;
711 unsigned long load
= cfs_rq
->load
.weight
;
713 if (cfs_rq
->tg
== &root_task_group
)
716 now
= rq_of(cfs_rq
)->clock_task
;
717 delta
= now
- cfs_rq
->load_stamp
;
719 /* truncate load history at 4 idle periods */
720 if (cfs_rq
->load_stamp
> cfs_rq
->load_last
&&
721 now
- cfs_rq
->load_last
> 4 * period
) {
722 cfs_rq
->load_period
= 0;
723 cfs_rq
->load_avg
= 0;
727 cfs_rq
->load_stamp
= now
;
728 cfs_rq
->load_unacc_exec_time
= 0;
729 cfs_rq
->load_period
+= delta
;
731 cfs_rq
->load_last
= now
;
732 cfs_rq
->load_avg
+= delta
* load
;
735 /* consider updating load contribution on each fold or truncate */
736 if (global_update
|| cfs_rq
->load_period
> period
737 || !cfs_rq
->load_period
)
738 update_cfs_rq_load_contribution(cfs_rq
, global_update
);
740 while (cfs_rq
->load_period
> period
) {
742 * Inline assembly required to prevent the compiler
743 * optimising this loop into a divmod call.
744 * See __iter_div_u64_rem() for another example of this.
746 asm("" : "+rm" (cfs_rq
->load_period
));
747 cfs_rq
->load_period
/= 2;
748 cfs_rq
->load_avg
/= 2;
751 if (!cfs_rq
->curr
&& !cfs_rq
->nr_running
&& !cfs_rq
->load_avg
)
752 list_del_leaf_cfs_rq(cfs_rq
);
755 static long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
757 long load_weight
, load
, shares
;
759 load
= cfs_rq
->load
.weight
;
761 load_weight
= atomic_read(&tg
->load_weight
);
763 load_weight
-= cfs_rq
->load_contribution
;
765 shares
= (tg
->shares
* load
);
767 shares
/= load_weight
;
769 if (shares
< MIN_SHARES
)
771 if (shares
> tg
->shares
)
777 static void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
779 if (cfs_rq
->load_unacc_exec_time
> sysctl_sched_shares_window
) {
780 update_cfs_load(cfs_rq
, 0);
781 update_cfs_shares(cfs_rq
);
784 # else /* CONFIG_SMP */
785 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
789 static inline long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
794 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
797 # endif /* CONFIG_SMP */
798 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
799 unsigned long weight
)
802 /* commit outstanding execution time */
803 if (cfs_rq
->curr
== se
)
805 account_entity_dequeue(cfs_rq
, se
);
808 update_load_set(&se
->load
, weight
);
811 account_entity_enqueue(cfs_rq
, se
);
814 static void update_cfs_shares(struct cfs_rq
*cfs_rq
)
816 struct task_group
*tg
;
817 struct sched_entity
*se
;
821 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
825 if (likely(se
->load
.weight
== tg
->shares
))
828 shares
= calc_cfs_shares(cfs_rq
, tg
);
830 reweight_entity(cfs_rq_of(se
), se
, shares
);
832 #else /* CONFIG_FAIR_GROUP_SCHED */
833 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
837 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
)
841 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
844 #endif /* CONFIG_FAIR_GROUP_SCHED */
846 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
848 #ifdef CONFIG_SCHEDSTATS
849 struct task_struct
*tsk
= NULL
;
851 if (entity_is_task(se
))
854 if (se
->statistics
.sleep_start
) {
855 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.sleep_start
;
860 if (unlikely(delta
> se
->statistics
.sleep_max
))
861 se
->statistics
.sleep_max
= delta
;
863 se
->statistics
.sleep_start
= 0;
864 se
->statistics
.sum_sleep_runtime
+= delta
;
867 account_scheduler_latency(tsk
, delta
>> 10, 1);
868 trace_sched_stat_sleep(tsk
, delta
);
871 if (se
->statistics
.block_start
) {
872 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.block_start
;
877 if (unlikely(delta
> se
->statistics
.block_max
))
878 se
->statistics
.block_max
= delta
;
880 se
->statistics
.block_start
= 0;
881 se
->statistics
.sum_sleep_runtime
+= delta
;
884 if (tsk
->in_iowait
) {
885 se
->statistics
.iowait_sum
+= delta
;
886 se
->statistics
.iowait_count
++;
887 trace_sched_stat_iowait(tsk
, delta
);
891 * Blocking time is in units of nanosecs, so shift by
892 * 20 to get a milliseconds-range estimation of the
893 * amount of time that the task spent sleeping:
895 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
896 profile_hits(SLEEP_PROFILING
,
897 (void *)get_wchan(tsk
),
900 account_scheduler_latency(tsk
, delta
>> 10, 0);
906 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
908 #ifdef CONFIG_SCHED_DEBUG
909 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
914 if (d
> 3*sysctl_sched_latency
)
915 schedstat_inc(cfs_rq
, nr_spread_over
);
920 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
922 u64 vruntime
= cfs_rq
->min_vruntime
;
925 * The 'current' period is already promised to the current tasks,
926 * however the extra weight of the new task will slow them down a
927 * little, place the new task so that it fits in the slot that
928 * stays open at the end.
930 if (initial
&& sched_feat(START_DEBIT
))
931 vruntime
+= sched_vslice(cfs_rq
, se
);
933 /* sleeps up to a single latency don't count. */
935 unsigned long thresh
= sysctl_sched_latency
;
938 * Halve their sleep time's effect, to allow
939 * for a gentler effect of sleepers:
941 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
947 /* ensure we never gain time by being placed backwards. */
948 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
950 se
->vruntime
= vruntime
;
954 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
957 * Update the normalized vruntime before updating min_vruntime
958 * through callig update_curr().
960 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_WAKING
))
961 se
->vruntime
+= cfs_rq
->min_vruntime
;
964 * Update run-time statistics of the 'current'.
967 update_cfs_load(cfs_rq
, 0);
968 account_entity_enqueue(cfs_rq
, se
);
969 update_cfs_shares(cfs_rq
);
971 if (flags
& ENQUEUE_WAKEUP
) {
972 place_entity(cfs_rq
, se
, 0);
973 enqueue_sleeper(cfs_rq
, se
);
976 update_stats_enqueue(cfs_rq
, se
);
977 check_spread(cfs_rq
, se
);
978 if (se
!= cfs_rq
->curr
)
979 __enqueue_entity(cfs_rq
, se
);
982 if (cfs_rq
->nr_running
== 1)
983 list_add_leaf_cfs_rq(cfs_rq
);
986 static void __clear_buddies_last(struct sched_entity
*se
)
988 for_each_sched_entity(se
) {
989 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
990 if (cfs_rq
->last
== se
)
997 static void __clear_buddies_next(struct sched_entity
*se
)
999 for_each_sched_entity(se
) {
1000 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1001 if (cfs_rq
->next
== se
)
1002 cfs_rq
->next
= NULL
;
1008 static void __clear_buddies_skip(struct sched_entity
*se
)
1010 for_each_sched_entity(se
) {
1011 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1012 if (cfs_rq
->skip
== se
)
1013 cfs_rq
->skip
= NULL
;
1019 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1021 if (cfs_rq
->last
== se
)
1022 __clear_buddies_last(se
);
1024 if (cfs_rq
->next
== se
)
1025 __clear_buddies_next(se
);
1027 if (cfs_rq
->skip
== se
)
1028 __clear_buddies_skip(se
);
1032 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1035 * Update run-time statistics of the 'current'.
1037 update_curr(cfs_rq
);
1039 update_stats_dequeue(cfs_rq
, se
);
1040 if (flags
& DEQUEUE_SLEEP
) {
1041 #ifdef CONFIG_SCHEDSTATS
1042 if (entity_is_task(se
)) {
1043 struct task_struct
*tsk
= task_of(se
);
1045 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1046 se
->statistics
.sleep_start
= rq_of(cfs_rq
)->clock
;
1047 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1048 se
->statistics
.block_start
= rq_of(cfs_rq
)->clock
;
1053 clear_buddies(cfs_rq
, se
);
1055 if (se
!= cfs_rq
->curr
)
1056 __dequeue_entity(cfs_rq
, se
);
1058 update_cfs_load(cfs_rq
, 0);
1059 account_entity_dequeue(cfs_rq
, se
);
1062 * Normalize the entity after updating the min_vruntime because the
1063 * update can refer to the ->curr item and we need to reflect this
1064 * movement in our normalized position.
1066 if (!(flags
& DEQUEUE_SLEEP
))
1067 se
->vruntime
-= cfs_rq
->min_vruntime
;
1069 update_min_vruntime(cfs_rq
);
1070 update_cfs_shares(cfs_rq
);
1074 * Preempt the current task with a newly woken task if needed:
1077 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
1079 unsigned long ideal_runtime
, delta_exec
;
1081 ideal_runtime
= sched_slice(cfs_rq
, curr
);
1082 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1083 if (delta_exec
> ideal_runtime
) {
1084 resched_task(rq_of(cfs_rq
)->curr
);
1086 * The current task ran long enough, ensure it doesn't get
1087 * re-elected due to buddy favours.
1089 clear_buddies(cfs_rq
, curr
);
1094 * Ensure that a task that missed wakeup preemption by a
1095 * narrow margin doesn't have to wait for a full slice.
1096 * This also mitigates buddy induced latencies under load.
1098 if (!sched_feat(WAKEUP_PREEMPT
))
1101 if (delta_exec
< sysctl_sched_min_granularity
)
1104 if (cfs_rq
->nr_running
> 1) {
1105 struct sched_entity
*se
= __pick_first_entity(cfs_rq
);
1106 s64 delta
= curr
->vruntime
- se
->vruntime
;
1111 if (delta
> ideal_runtime
)
1112 resched_task(rq_of(cfs_rq
)->curr
);
1117 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1119 /* 'current' is not kept within the tree. */
1122 * Any task has to be enqueued before it get to execute on
1123 * a CPU. So account for the time it spent waiting on the
1126 update_stats_wait_end(cfs_rq
, se
);
1127 __dequeue_entity(cfs_rq
, se
);
1130 update_stats_curr_start(cfs_rq
, se
);
1132 #ifdef CONFIG_SCHEDSTATS
1134 * Track our maximum slice length, if the CPU's load is at
1135 * least twice that of our own weight (i.e. dont track it
1136 * when there are only lesser-weight tasks around):
1138 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
1139 se
->statistics
.slice_max
= max(se
->statistics
.slice_max
,
1140 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
1143 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
1147 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
1150 * Pick the next process, keeping these things in mind, in this order:
1151 * 1) keep things fair between processes/task groups
1152 * 2) pick the "next" process, since someone really wants that to run
1153 * 3) pick the "last" process, for cache locality
1154 * 4) do not run the "skip" process, if something else is available
1156 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
1158 struct sched_entity
*se
= __pick_first_entity(cfs_rq
);
1159 struct sched_entity
*left
= se
;
1162 * Avoid running the skip buddy, if running something else can
1163 * be done without getting too unfair.
1165 if (cfs_rq
->skip
== se
) {
1166 struct sched_entity
*second
= __pick_next_entity(se
);
1167 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
1172 * Prefer last buddy, try to return the CPU to a preempted task.
1174 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
1178 * Someone really wants this to run. If it's not unfair, run it.
1180 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
1183 clear_buddies(cfs_rq
, se
);
1188 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
1191 * If still on the runqueue then deactivate_task()
1192 * was not called and update_curr() has to be done:
1195 update_curr(cfs_rq
);
1197 check_spread(cfs_rq
, prev
);
1199 update_stats_wait_start(cfs_rq
, prev
);
1200 /* Put 'current' back into the tree. */
1201 __enqueue_entity(cfs_rq
, prev
);
1203 cfs_rq
->curr
= NULL
;
1207 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
1210 * Update run-time statistics of the 'current'.
1212 update_curr(cfs_rq
);
1215 * Update share accounting for long-running entities.
1217 update_entity_shares_tick(cfs_rq
);
1219 #ifdef CONFIG_SCHED_HRTICK
1221 * queued ticks are scheduled to match the slice, so don't bother
1222 * validating it and just reschedule.
1225 resched_task(rq_of(cfs_rq
)->curr
);
1229 * don't let the period tick interfere with the hrtick preemption
1231 if (!sched_feat(DOUBLE_TICK
) &&
1232 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
1236 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
1237 check_preempt_tick(cfs_rq
, curr
);
1240 /**************************************************
1241 * CFS operations on tasks:
1244 #ifdef CONFIG_SCHED_HRTICK
1245 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1247 struct sched_entity
*se
= &p
->se
;
1248 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1250 WARN_ON(task_rq(p
) != rq
);
1252 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
1253 u64 slice
= sched_slice(cfs_rq
, se
);
1254 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
1255 s64 delta
= slice
- ran
;
1264 * Don't schedule slices shorter than 10000ns, that just
1265 * doesn't make sense. Rely on vruntime for fairness.
1268 delta
= max_t(s64
, 10000LL, delta
);
1270 hrtick_start(rq
, delta
);
1275 * called from enqueue/dequeue and updates the hrtick when the
1276 * current task is from our class and nr_running is low enough
1279 static void hrtick_update(struct rq
*rq
)
1281 struct task_struct
*curr
= rq
->curr
;
1283 if (curr
->sched_class
!= &fair_sched_class
)
1286 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
1287 hrtick_start_fair(rq
, curr
);
1289 #else /* !CONFIG_SCHED_HRTICK */
1291 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1295 static inline void hrtick_update(struct rq
*rq
)
1301 * The enqueue_task method is called before nr_running is
1302 * increased. Here we update the fair scheduling stats and
1303 * then put the task into the rbtree:
1306 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1308 struct cfs_rq
*cfs_rq
;
1309 struct sched_entity
*se
= &p
->se
;
1311 for_each_sched_entity(se
) {
1314 cfs_rq
= cfs_rq_of(se
);
1315 enqueue_entity(cfs_rq
, se
, flags
);
1316 flags
= ENQUEUE_WAKEUP
;
1319 for_each_sched_entity(se
) {
1320 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1322 update_cfs_load(cfs_rq
, 0);
1323 update_cfs_shares(cfs_rq
);
1329 static void set_next_buddy(struct sched_entity
*se
);
1332 * The dequeue_task method is called before nr_running is
1333 * decreased. We remove the task from the rbtree and
1334 * update the fair scheduling stats:
1336 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1338 struct cfs_rq
*cfs_rq
;
1339 struct sched_entity
*se
= &p
->se
;
1340 int task_sleep
= flags
& DEQUEUE_SLEEP
;
1342 for_each_sched_entity(se
) {
1343 cfs_rq
= cfs_rq_of(se
);
1344 dequeue_entity(cfs_rq
, se
, flags
);
1346 /* Don't dequeue parent if it has other entities besides us */
1347 if (cfs_rq
->load
.weight
) {
1349 * Bias pick_next to pick a task from this cfs_rq, as
1350 * p is sleeping when it is within its sched_slice.
1352 if (task_sleep
&& parent_entity(se
))
1353 set_next_buddy(parent_entity(se
));
1355 /* avoid re-evaluating load for this entity */
1356 se
= parent_entity(se
);
1359 flags
|= DEQUEUE_SLEEP
;
1362 for_each_sched_entity(se
) {
1363 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1365 update_cfs_load(cfs_rq
, 0);
1366 update_cfs_shares(cfs_rq
);
1374 static void task_waking_fair(struct task_struct
*p
)
1376 struct sched_entity
*se
= &p
->se
;
1377 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1380 #ifndef CONFIG_64BIT
1381 u64 min_vruntime_copy
;
1384 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
1386 min_vruntime
= cfs_rq
->min_vruntime
;
1387 } while (min_vruntime
!= min_vruntime_copy
);
1389 min_vruntime
= cfs_rq
->min_vruntime
;
1392 se
->vruntime
-= min_vruntime
;
1395 #ifdef CONFIG_FAIR_GROUP_SCHED
1397 * effective_load() calculates the load change as seen from the root_task_group
1399 * Adding load to a group doesn't make a group heavier, but can cause movement
1400 * of group shares between cpus. Assuming the shares were perfectly aligned one
1401 * can calculate the shift in shares.
1403 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
1405 struct sched_entity
*se
= tg
->se
[cpu
];
1410 for_each_sched_entity(se
) {
1414 w
= se
->my_q
->load
.weight
;
1416 /* use this cpu's instantaneous contribution */
1417 lw
= atomic_read(&tg
->load_weight
);
1418 lw
-= se
->my_q
->load_contribution
;
1423 if (lw
> 0 && wl
< lw
)
1424 wl
= (wl
* tg
->shares
) / lw
;
1428 /* zero point is MIN_SHARES */
1429 if (wl
< MIN_SHARES
)
1431 wl
-= se
->load
.weight
;
1440 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
1441 unsigned long wl
, unsigned long wg
)
1448 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
1450 s64 this_load
, load
;
1451 int idx
, this_cpu
, prev_cpu
;
1452 unsigned long tl_per_task
;
1453 struct task_group
*tg
;
1454 unsigned long weight
;
1458 this_cpu
= smp_processor_id();
1459 prev_cpu
= task_cpu(p
);
1460 load
= source_load(prev_cpu
, idx
);
1461 this_load
= target_load(this_cpu
, idx
);
1464 * If sync wakeup then subtract the (maximum possible)
1465 * effect of the currently running task from the load
1466 * of the current CPU:
1469 tg
= task_group(current
);
1470 weight
= current
->se
.load
.weight
;
1472 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
1473 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
1477 weight
= p
->se
.load
.weight
;
1480 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1481 * due to the sync cause above having dropped this_load to 0, we'll
1482 * always have an imbalance, but there's really nothing you can do
1483 * about that, so that's good too.
1485 * Otherwise check if either cpus are near enough in load to allow this
1486 * task to be woken on this_cpu.
1488 if (this_load
> 0) {
1489 s64 this_eff_load
, prev_eff_load
;
1491 this_eff_load
= 100;
1492 this_eff_load
*= power_of(prev_cpu
);
1493 this_eff_load
*= this_load
+
1494 effective_load(tg
, this_cpu
, weight
, weight
);
1496 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
1497 prev_eff_load
*= power_of(this_cpu
);
1498 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
1500 balanced
= this_eff_load
<= prev_eff_load
;
1505 * If the currently running task will sleep within
1506 * a reasonable amount of time then attract this newly
1509 if (sync
&& balanced
)
1512 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine_attempts
);
1513 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1516 (this_load
<= load
&&
1517 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
1519 * This domain has SD_WAKE_AFFINE and
1520 * p is cache cold in this domain, and
1521 * there is no bad imbalance.
1523 schedstat_inc(sd
, ttwu_move_affine
);
1524 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine
);
1532 * find_idlest_group finds and returns the least busy CPU group within the
1535 static struct sched_group
*
1536 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
1537 int this_cpu
, int load_idx
)
1539 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
1540 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1541 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1544 unsigned long load
, avg_load
;
1548 /* Skip over this group if it has no CPUs allowed */
1549 if (!cpumask_intersects(sched_group_cpus(group
),
1553 local_group
= cpumask_test_cpu(this_cpu
,
1554 sched_group_cpus(group
));
1556 /* Tally up the load of all CPUs in the group */
1559 for_each_cpu(i
, sched_group_cpus(group
)) {
1560 /* Bias balancing toward cpus of our domain */
1562 load
= source_load(i
, load_idx
);
1564 load
= target_load(i
, load_idx
);
1569 /* Adjust by relative CPU power of the group */
1570 avg_load
= (avg_load
* SCHED_POWER_SCALE
) / group
->sgp
->power
;
1573 this_load
= avg_load
;
1574 } else if (avg_load
< min_load
) {
1575 min_load
= avg_load
;
1578 } while (group
= group
->next
, group
!= sd
->groups
);
1580 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1586 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1589 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1591 unsigned long load
, min_load
= ULONG_MAX
;
1595 /* Traverse only the allowed CPUs */
1596 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
1597 load
= weighted_cpuload(i
);
1599 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1609 * Try and locate an idle CPU in the sched_domain.
1611 static int select_idle_sibling(struct task_struct
*p
, int target
)
1613 int cpu
= smp_processor_id();
1614 int prev_cpu
= task_cpu(p
);
1615 struct sched_domain
*sd
;
1619 * If the task is going to be woken-up on this cpu and if it is
1620 * already idle, then it is the right target.
1622 if (target
== cpu
&& idle_cpu(cpu
))
1626 * If the task is going to be woken-up on the cpu where it previously
1627 * ran and if it is currently idle, then it the right target.
1629 if (target
== prev_cpu
&& idle_cpu(prev_cpu
))
1633 * Otherwise, iterate the domains and find an elegible idle cpu.
1636 for_each_domain(target
, sd
) {
1637 if (!(sd
->flags
& SD_SHARE_PKG_RESOURCES
))
1640 for_each_cpu_and(i
, sched_domain_span(sd
), &p
->cpus_allowed
) {
1648 * Lets stop looking for an idle sibling when we reached
1649 * the domain that spans the current cpu and prev_cpu.
1651 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
)) &&
1652 cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
1661 * sched_balance_self: balance the current task (running on cpu) in domains
1662 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1665 * Balance, ie. select the least loaded group.
1667 * Returns the target CPU number, or the same CPU if no balancing is needed.
1669 * preempt must be disabled.
1672 select_task_rq_fair(struct task_struct
*p
, int sd_flag
, int wake_flags
)
1674 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
1675 int cpu
= smp_processor_id();
1676 int prev_cpu
= task_cpu(p
);
1678 int want_affine
= 0;
1680 int sync
= wake_flags
& WF_SYNC
;
1682 if (sd_flag
& SD_BALANCE_WAKE
) {
1683 if (cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1689 for_each_domain(cpu
, tmp
) {
1690 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
1694 * If power savings logic is enabled for a domain, see if we
1695 * are not overloaded, if so, don't balance wider.
1697 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
1698 unsigned long power
= 0;
1699 unsigned long nr_running
= 0;
1700 unsigned long capacity
;
1703 for_each_cpu(i
, sched_domain_span(tmp
)) {
1704 power
+= power_of(i
);
1705 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
1708 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_POWER_SCALE
);
1710 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1713 if (nr_running
< capacity
)
1718 * If both cpu and prev_cpu are part of this domain,
1719 * cpu is a valid SD_WAKE_AFFINE target.
1721 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
1722 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
1727 if (!want_sd
&& !want_affine
)
1730 if (!(tmp
->flags
& sd_flag
))
1738 if (cpu
== prev_cpu
|| wake_affine(affine_sd
, p
, sync
))
1741 new_cpu
= select_idle_sibling(p
, prev_cpu
);
1746 int load_idx
= sd
->forkexec_idx
;
1747 struct sched_group
*group
;
1750 if (!(sd
->flags
& sd_flag
)) {
1755 if (sd_flag
& SD_BALANCE_WAKE
)
1756 load_idx
= sd
->wake_idx
;
1758 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
1764 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
1765 if (new_cpu
== -1 || new_cpu
== cpu
) {
1766 /* Now try balancing at a lower domain level of cpu */
1771 /* Now try balancing at a lower domain level of new_cpu */
1773 weight
= sd
->span_weight
;
1775 for_each_domain(cpu
, tmp
) {
1776 if (weight
<= tmp
->span_weight
)
1778 if (tmp
->flags
& sd_flag
)
1781 /* while loop will break here if sd == NULL */
1788 #endif /* CONFIG_SMP */
1790 static unsigned long
1791 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1793 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1796 * Since its curr running now, convert the gran from real-time
1797 * to virtual-time in his units.
1799 * By using 'se' instead of 'curr' we penalize light tasks, so
1800 * they get preempted easier. That is, if 'se' < 'curr' then
1801 * the resulting gran will be larger, therefore penalizing the
1802 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1803 * be smaller, again penalizing the lighter task.
1805 * This is especially important for buddies when the leftmost
1806 * task is higher priority than the buddy.
1808 return calc_delta_fair(gran
, se
);
1812 * Should 'se' preempt 'curr'.
1826 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1828 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1833 gran
= wakeup_gran(curr
, se
);
1840 static void set_last_buddy(struct sched_entity
*se
)
1842 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
1845 for_each_sched_entity(se
)
1846 cfs_rq_of(se
)->last
= se
;
1849 static void set_next_buddy(struct sched_entity
*se
)
1851 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
1854 for_each_sched_entity(se
)
1855 cfs_rq_of(se
)->next
= se
;
1858 static void set_skip_buddy(struct sched_entity
*se
)
1860 for_each_sched_entity(se
)
1861 cfs_rq_of(se
)->skip
= se
;
1865 * Preempt the current task with a newly woken task if needed:
1867 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1869 struct task_struct
*curr
= rq
->curr
;
1870 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1871 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1872 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
1873 int next_buddy_marked
= 0;
1875 if (unlikely(se
== pse
))
1878 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
1879 set_next_buddy(pse
);
1880 next_buddy_marked
= 1;
1884 * We can come here with TIF_NEED_RESCHED already set from new task
1887 if (test_tsk_need_resched(curr
))
1890 /* Idle tasks are by definition preempted by non-idle tasks. */
1891 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
1892 likely(p
->policy
!= SCHED_IDLE
))
1896 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1897 * is driven by the tick):
1899 if (unlikely(p
->policy
!= SCHED_NORMAL
))
1903 if (!sched_feat(WAKEUP_PREEMPT
))
1906 find_matching_se(&se
, &pse
);
1907 update_curr(cfs_rq_of(se
));
1909 if (wakeup_preempt_entity(se
, pse
) == 1) {
1911 * Bias pick_next to pick the sched entity that is
1912 * triggering this preemption.
1914 if (!next_buddy_marked
)
1915 set_next_buddy(pse
);
1924 * Only set the backward buddy when the current task is still
1925 * on the rq. This can happen when a wakeup gets interleaved
1926 * with schedule on the ->pre_schedule() or idle_balance()
1927 * point, either of which can * drop the rq lock.
1929 * Also, during early boot the idle thread is in the fair class,
1930 * for obvious reasons its a bad idea to schedule back to it.
1932 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
1935 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
1939 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1941 struct task_struct
*p
;
1942 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1943 struct sched_entity
*se
;
1945 if (!cfs_rq
->nr_running
)
1949 se
= pick_next_entity(cfs_rq
);
1950 set_next_entity(cfs_rq
, se
);
1951 cfs_rq
= group_cfs_rq(se
);
1955 hrtick_start_fair(rq
, p
);
1961 * Account for a descheduled task:
1963 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1965 struct sched_entity
*se
= &prev
->se
;
1966 struct cfs_rq
*cfs_rq
;
1968 for_each_sched_entity(se
) {
1969 cfs_rq
= cfs_rq_of(se
);
1970 put_prev_entity(cfs_rq
, se
);
1975 * sched_yield() is very simple
1977 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1979 static void yield_task_fair(struct rq
*rq
)
1981 struct task_struct
*curr
= rq
->curr
;
1982 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1983 struct sched_entity
*se
= &curr
->se
;
1986 * Are we the only task in the tree?
1988 if (unlikely(rq
->nr_running
== 1))
1991 clear_buddies(cfs_rq
, se
);
1993 if (curr
->policy
!= SCHED_BATCH
) {
1994 update_rq_clock(rq
);
1996 * Update run-time statistics of the 'current'.
1998 update_curr(cfs_rq
);
2004 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
2006 struct sched_entity
*se
= &p
->se
;
2011 /* Tell the scheduler that we'd really like pse to run next. */
2014 yield_task_fair(rq
);
2020 /**************************************************
2021 * Fair scheduling class load-balancing methods:
2025 * pull_task - move a task from a remote runqueue to the local runqueue.
2026 * Both runqueues must be locked.
2028 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2029 struct rq
*this_rq
, int this_cpu
)
2031 deactivate_task(src_rq
, p
, 0);
2032 set_task_cpu(p
, this_cpu
);
2033 activate_task(this_rq
, p
, 0);
2034 check_preempt_curr(this_rq
, p
, 0);
2038 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2041 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2042 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2045 int tsk_cache_hot
= 0;
2047 * We do not migrate tasks that are:
2048 * 1) running (obviously), or
2049 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2050 * 3) are cache-hot on their current CPU.
2052 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
2053 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_affine
);
2058 if (task_running(rq
, p
)) {
2059 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_running
);
2064 * Aggressive migration if:
2065 * 1) task is cache cold, or
2066 * 2) too many balance attempts have failed.
2069 tsk_cache_hot
= task_hot(p
, rq
->clock_task
, sd
);
2070 if (!tsk_cache_hot
||
2071 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2072 #ifdef CONFIG_SCHEDSTATS
2073 if (tsk_cache_hot
) {
2074 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2075 schedstat_inc(p
, se
.statistics
.nr_forced_migrations
);
2081 if (tsk_cache_hot
) {
2082 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_hot
);
2089 * move_one_task tries to move exactly one task from busiest to this_rq, as
2090 * part of active balancing operations within "domain".
2091 * Returns 1 if successful and 0 otherwise.
2093 * Called with both runqueues locked.
2096 move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2097 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2099 struct task_struct
*p
, *n
;
2100 struct cfs_rq
*cfs_rq
;
2103 for_each_leaf_cfs_rq(busiest
, cfs_rq
) {
2104 list_for_each_entry_safe(p
, n
, &cfs_rq
->tasks
, se
.group_node
) {
2106 if (!can_migrate_task(p
, busiest
, this_cpu
,
2110 pull_task(busiest
, p
, this_rq
, this_cpu
);
2112 * Right now, this is only the second place pull_task()
2113 * is called, so we can safely collect pull_task()
2114 * stats here rather than inside pull_task().
2116 schedstat_inc(sd
, lb_gained
[idle
]);
2124 static unsigned long
2125 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2126 unsigned long max_load_move
, struct sched_domain
*sd
,
2127 enum cpu_idle_type idle
, int *all_pinned
,
2128 struct cfs_rq
*busiest_cfs_rq
)
2130 int loops
= 0, pulled
= 0;
2131 long rem_load_move
= max_load_move
;
2132 struct task_struct
*p
, *n
;
2134 if (max_load_move
== 0)
2137 list_for_each_entry_safe(p
, n
, &busiest_cfs_rq
->tasks
, se
.group_node
) {
2138 if (loops
++ > sysctl_sched_nr_migrate
)
2141 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2142 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
,
2146 pull_task(busiest
, p
, this_rq
, this_cpu
);
2148 rem_load_move
-= p
->se
.load
.weight
;
2150 #ifdef CONFIG_PREEMPT
2152 * NEWIDLE balancing is a source of latency, so preemptible
2153 * kernels will stop after the first task is pulled to minimize
2154 * the critical section.
2156 if (idle
== CPU_NEWLY_IDLE
)
2161 * We only want to steal up to the prescribed amount of
2164 if (rem_load_move
<= 0)
2169 * Right now, this is one of only two places pull_task() is called,
2170 * so we can safely collect pull_task() stats here rather than
2171 * inside pull_task().
2173 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2175 return max_load_move
- rem_load_move
;
2178 #ifdef CONFIG_FAIR_GROUP_SCHED
2180 * update tg->load_weight by folding this cpu's load_avg
2182 static int update_shares_cpu(struct task_group
*tg
, int cpu
)
2184 struct cfs_rq
*cfs_rq
;
2185 unsigned long flags
;
2192 cfs_rq
= tg
->cfs_rq
[cpu
];
2194 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2196 update_rq_clock(rq
);
2197 update_cfs_load(cfs_rq
, 1);
2200 * We need to update shares after updating tg->load_weight in
2201 * order to adjust the weight of groups with long running tasks.
2203 update_cfs_shares(cfs_rq
);
2205 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2210 static void update_shares(int cpu
)
2212 struct cfs_rq
*cfs_rq
;
2213 struct rq
*rq
= cpu_rq(cpu
);
2217 * Iterates the task_group tree in a bottom up fashion, see
2218 * list_add_leaf_cfs_rq() for details.
2220 for_each_leaf_cfs_rq(rq
, cfs_rq
)
2221 update_shares_cpu(cfs_rq
->tg
, cpu
);
2226 * Compute the cpu's hierarchical load factor for each task group.
2227 * This needs to be done in a top-down fashion because the load of a child
2228 * group is a fraction of its parents load.
2230 static int tg_load_down(struct task_group
*tg
, void *data
)
2233 long cpu
= (long)data
;
2236 load
= cpu_rq(cpu
)->load
.weight
;
2238 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
2239 load
*= tg
->se
[cpu
]->load
.weight
;
2240 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
2243 tg
->cfs_rq
[cpu
]->h_load
= load
;
2248 static void update_h_load(long cpu
)
2250 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
2253 static unsigned long
2254 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2255 unsigned long max_load_move
,
2256 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2259 long rem_load_move
= max_load_move
;
2260 struct cfs_rq
*busiest_cfs_rq
;
2263 update_h_load(cpu_of(busiest
));
2265 for_each_leaf_cfs_rq(busiest
, busiest_cfs_rq
) {
2266 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
2267 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
2268 u64 rem_load
, moved_load
;
2273 if (!busiest_cfs_rq
->task_weight
)
2276 rem_load
= (u64
)rem_load_move
* busiest_weight
;
2277 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
2279 moved_load
= balance_tasks(this_rq
, this_cpu
, busiest
,
2280 rem_load
, sd
, idle
, all_pinned
,
2286 moved_load
*= busiest_h_load
;
2287 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
2289 rem_load_move
-= moved_load
;
2290 if (rem_load_move
< 0)
2295 return max_load_move
- rem_load_move
;
2298 static inline void update_shares(int cpu
)
2302 static unsigned long
2303 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2304 unsigned long max_load_move
,
2305 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2308 return balance_tasks(this_rq
, this_cpu
, busiest
,
2309 max_load_move
, sd
, idle
, all_pinned
,
2315 * move_tasks tries to move up to max_load_move weighted load from busiest to
2316 * this_rq, as part of a balancing operation within domain "sd".
2317 * Returns 1 if successful and 0 otherwise.
2319 * Called with both runqueues locked.
2321 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2322 unsigned long max_load_move
,
2323 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2326 unsigned long total_load_moved
= 0, load_moved
;
2329 load_moved
= load_balance_fair(this_rq
, this_cpu
, busiest
,
2330 max_load_move
- total_load_moved
,
2331 sd
, idle
, all_pinned
);
2333 total_load_moved
+= load_moved
;
2335 #ifdef CONFIG_PREEMPT
2337 * NEWIDLE balancing is a source of latency, so preemptible
2338 * kernels will stop after the first task is pulled to minimize
2339 * the critical section.
2341 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
2344 if (raw_spin_is_contended(&this_rq
->lock
) ||
2345 raw_spin_is_contended(&busiest
->lock
))
2348 } while (load_moved
&& max_load_move
> total_load_moved
);
2350 return total_load_moved
> 0;
2353 /********** Helpers for find_busiest_group ************************/
2355 * sd_lb_stats - Structure to store the statistics of a sched_domain
2356 * during load balancing.
2358 struct sd_lb_stats
{
2359 struct sched_group
*busiest
; /* Busiest group in this sd */
2360 struct sched_group
*this; /* Local group in this sd */
2361 unsigned long total_load
; /* Total load of all groups in sd */
2362 unsigned long total_pwr
; /* Total power of all groups in sd */
2363 unsigned long avg_load
; /* Average load across all groups in sd */
2365 /** Statistics of this group */
2366 unsigned long this_load
;
2367 unsigned long this_load_per_task
;
2368 unsigned long this_nr_running
;
2369 unsigned long this_has_capacity
;
2370 unsigned int this_idle_cpus
;
2372 /* Statistics of the busiest group */
2373 unsigned int busiest_idle_cpus
;
2374 unsigned long max_load
;
2375 unsigned long busiest_load_per_task
;
2376 unsigned long busiest_nr_running
;
2377 unsigned long busiest_group_capacity
;
2378 unsigned long busiest_has_capacity
;
2379 unsigned int busiest_group_weight
;
2381 int group_imb
; /* Is there imbalance in this sd */
2382 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2383 int power_savings_balance
; /* Is powersave balance needed for this sd */
2384 struct sched_group
*group_min
; /* Least loaded group in sd */
2385 struct sched_group
*group_leader
; /* Group which relieves group_min */
2386 unsigned long min_load_per_task
; /* load_per_task in group_min */
2387 unsigned long leader_nr_running
; /* Nr running of group_leader */
2388 unsigned long min_nr_running
; /* Nr running of group_min */
2393 * sg_lb_stats - stats of a sched_group required for load_balancing
2395 struct sg_lb_stats
{
2396 unsigned long avg_load
; /*Avg load across the CPUs of the group */
2397 unsigned long group_load
; /* Total load over the CPUs of the group */
2398 unsigned long sum_nr_running
; /* Nr tasks running in the group */
2399 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
2400 unsigned long group_capacity
;
2401 unsigned long idle_cpus
;
2402 unsigned long group_weight
;
2403 int group_imb
; /* Is there an imbalance in the group ? */
2404 int group_has_capacity
; /* Is there extra capacity in the group? */
2408 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2409 * @group: The group whose first cpu is to be returned.
2411 static inline unsigned int group_first_cpu(struct sched_group
*group
)
2413 return cpumask_first(sched_group_cpus(group
));
2417 * get_sd_load_idx - Obtain the load index for a given sched domain.
2418 * @sd: The sched_domain whose load_idx is to be obtained.
2419 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2421 static inline int get_sd_load_idx(struct sched_domain
*sd
,
2422 enum cpu_idle_type idle
)
2428 load_idx
= sd
->busy_idx
;
2431 case CPU_NEWLY_IDLE
:
2432 load_idx
= sd
->newidle_idx
;
2435 load_idx
= sd
->idle_idx
;
2443 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2445 * init_sd_power_savings_stats - Initialize power savings statistics for
2446 * the given sched_domain, during load balancing.
2448 * @sd: Sched domain whose power-savings statistics are to be initialized.
2449 * @sds: Variable containing the statistics for sd.
2450 * @idle: Idle status of the CPU at which we're performing load-balancing.
2452 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2453 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2456 * Busy processors will not participate in power savings
2459 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2460 sds
->power_savings_balance
= 0;
2462 sds
->power_savings_balance
= 1;
2463 sds
->min_nr_running
= ULONG_MAX
;
2464 sds
->leader_nr_running
= 0;
2469 * update_sd_power_savings_stats - Update the power saving stats for a
2470 * sched_domain while performing load balancing.
2472 * @group: sched_group belonging to the sched_domain under consideration.
2473 * @sds: Variable containing the statistics of the sched_domain
2474 * @local_group: Does group contain the CPU for which we're performing
2476 * @sgs: Variable containing the statistics of the group.
2478 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2479 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2482 if (!sds
->power_savings_balance
)
2486 * If the local group is idle or completely loaded
2487 * no need to do power savings balance at this domain
2489 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
2490 !sds
->this_nr_running
))
2491 sds
->power_savings_balance
= 0;
2494 * If a group is already running at full capacity or idle,
2495 * don't include that group in power savings calculations
2497 if (!sds
->power_savings_balance
||
2498 sgs
->sum_nr_running
>= sgs
->group_capacity
||
2499 !sgs
->sum_nr_running
)
2503 * Calculate the group which has the least non-idle load.
2504 * This is the group from where we need to pick up the load
2507 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
2508 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
2509 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
2510 sds
->group_min
= group
;
2511 sds
->min_nr_running
= sgs
->sum_nr_running
;
2512 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
2513 sgs
->sum_nr_running
;
2517 * Calculate the group which is almost near its
2518 * capacity but still has some space to pick up some load
2519 * from other group and save more power
2521 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
2524 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
2525 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
2526 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
2527 sds
->group_leader
= group
;
2528 sds
->leader_nr_running
= sgs
->sum_nr_running
;
2533 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2534 * @sds: Variable containing the statistics of the sched_domain
2535 * under consideration.
2536 * @this_cpu: Cpu at which we're currently performing load-balancing.
2537 * @imbalance: Variable to store the imbalance.
2540 * Check if we have potential to perform some power-savings balance.
2541 * If yes, set the busiest group to be the least loaded group in the
2542 * sched_domain, so that it's CPUs can be put to idle.
2544 * Returns 1 if there is potential to perform power-savings balance.
2547 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2548 int this_cpu
, unsigned long *imbalance
)
2550 if (!sds
->power_savings_balance
)
2553 if (sds
->this != sds
->group_leader
||
2554 sds
->group_leader
== sds
->group_min
)
2557 *imbalance
= sds
->min_load_per_task
;
2558 sds
->busiest
= sds
->group_min
;
2563 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2564 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2565 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2570 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2571 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2576 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2577 int this_cpu
, unsigned long *imbalance
)
2581 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2584 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2586 return SCHED_POWER_SCALE
;
2589 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2591 return default_scale_freq_power(sd
, cpu
);
2594 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2596 unsigned long weight
= sd
->span_weight
;
2597 unsigned long smt_gain
= sd
->smt_gain
;
2604 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2606 return default_scale_smt_power(sd
, cpu
);
2609 unsigned long scale_rt_power(int cpu
)
2611 struct rq
*rq
= cpu_rq(cpu
);
2612 u64 total
, available
;
2614 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
2616 if (unlikely(total
< rq
->rt_avg
)) {
2617 /* Ensures that power won't end up being negative */
2620 available
= total
- rq
->rt_avg
;
2623 if (unlikely((s64
)total
< SCHED_POWER_SCALE
))
2624 total
= SCHED_POWER_SCALE
;
2626 total
>>= SCHED_POWER_SHIFT
;
2628 return div_u64(available
, total
);
2631 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
2633 unsigned long weight
= sd
->span_weight
;
2634 unsigned long power
= SCHED_POWER_SCALE
;
2635 struct sched_group
*sdg
= sd
->groups
;
2637 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
2638 if (sched_feat(ARCH_POWER
))
2639 power
*= arch_scale_smt_power(sd
, cpu
);
2641 power
*= default_scale_smt_power(sd
, cpu
);
2643 power
>>= SCHED_POWER_SHIFT
;
2646 sdg
->sgp
->power_orig
= power
;
2648 if (sched_feat(ARCH_POWER
))
2649 power
*= arch_scale_freq_power(sd
, cpu
);
2651 power
*= default_scale_freq_power(sd
, cpu
);
2653 power
>>= SCHED_POWER_SHIFT
;
2655 power
*= scale_rt_power(cpu
);
2656 power
>>= SCHED_POWER_SHIFT
;
2661 cpu_rq(cpu
)->cpu_power
= power
;
2662 sdg
->sgp
->power
= power
;
2665 static void update_group_power(struct sched_domain
*sd
, int cpu
)
2667 struct sched_domain
*child
= sd
->child
;
2668 struct sched_group
*group
, *sdg
= sd
->groups
;
2669 unsigned long power
;
2672 update_cpu_power(sd
, cpu
);
2678 group
= child
->groups
;
2680 power
+= group
->sgp
->power
;
2681 group
= group
->next
;
2682 } while (group
!= child
->groups
);
2684 sdg
->sgp
->power
= power
;
2688 * Try and fix up capacity for tiny siblings, this is needed when
2689 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2690 * which on its own isn't powerful enough.
2692 * See update_sd_pick_busiest() and check_asym_packing().
2695 fix_small_capacity(struct sched_domain
*sd
, struct sched_group
*group
)
2698 * Only siblings can have significantly less than SCHED_POWER_SCALE
2700 if (!(sd
->flags
& SD_SHARE_CPUPOWER
))
2704 * If ~90% of the cpu_power is still there, we're good.
2706 if (group
->sgp
->power
* 32 > group
->sgp
->power_orig
* 29)
2713 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2714 * @sd: The sched_domain whose statistics are to be updated.
2715 * @group: sched_group whose statistics are to be updated.
2716 * @this_cpu: Cpu for which load balance is currently performed.
2717 * @idle: Idle status of this_cpu
2718 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2719 * @local_group: Does group contain this_cpu.
2720 * @cpus: Set of cpus considered for load balancing.
2721 * @balance: Should we balance.
2722 * @sgs: variable to hold the statistics for this group.
2724 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
2725 struct sched_group
*group
, int this_cpu
,
2726 enum cpu_idle_type idle
, int load_idx
,
2727 int local_group
, const struct cpumask
*cpus
,
2728 int *balance
, struct sg_lb_stats
*sgs
)
2730 unsigned long load
, max_cpu_load
, min_cpu_load
, max_nr_running
;
2732 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2733 unsigned long avg_load_per_task
= 0;
2736 balance_cpu
= group_first_cpu(group
);
2738 /* Tally up the load of all CPUs in the group */
2740 min_cpu_load
= ~0UL;
2743 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
2744 struct rq
*rq
= cpu_rq(i
);
2746 /* Bias balancing toward cpus of our domain */
2748 if (idle_cpu(i
) && !first_idle_cpu
) {
2753 load
= target_load(i
, load_idx
);
2755 load
= source_load(i
, load_idx
);
2756 if (load
> max_cpu_load
) {
2757 max_cpu_load
= load
;
2758 max_nr_running
= rq
->nr_running
;
2760 if (min_cpu_load
> load
)
2761 min_cpu_load
= load
;
2764 sgs
->group_load
+= load
;
2765 sgs
->sum_nr_running
+= rq
->nr_running
;
2766 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
2772 * First idle cpu or the first cpu(busiest) in this sched group
2773 * is eligible for doing load balancing at this and above
2774 * domains. In the newly idle case, we will allow all the cpu's
2775 * to do the newly idle load balance.
2777 if (idle
!= CPU_NEWLY_IDLE
&& local_group
) {
2778 if (balance_cpu
!= this_cpu
) {
2782 update_group_power(sd
, this_cpu
);
2785 /* Adjust by relative CPU power of the group */
2786 sgs
->avg_load
= (sgs
->group_load
*SCHED_POWER_SCALE
) / group
->sgp
->power
;
2789 * Consider the group unbalanced when the imbalance is larger
2790 * than the average weight of a task.
2792 * APZ: with cgroup the avg task weight can vary wildly and
2793 * might not be a suitable number - should we keep a
2794 * normalized nr_running number somewhere that negates
2797 if (sgs
->sum_nr_running
)
2798 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
2800 if ((max_cpu_load
- min_cpu_load
) >= avg_load_per_task
&& max_nr_running
> 1)
2803 sgs
->group_capacity
= DIV_ROUND_CLOSEST(group
->sgp
->power
,
2805 if (!sgs
->group_capacity
)
2806 sgs
->group_capacity
= fix_small_capacity(sd
, group
);
2807 sgs
->group_weight
= group
->group_weight
;
2809 if (sgs
->group_capacity
> sgs
->sum_nr_running
)
2810 sgs
->group_has_capacity
= 1;
2814 * update_sd_pick_busiest - return 1 on busiest group
2815 * @sd: sched_domain whose statistics are to be checked
2816 * @sds: sched_domain statistics
2817 * @sg: sched_group candidate to be checked for being the busiest
2818 * @sgs: sched_group statistics
2819 * @this_cpu: the current cpu
2821 * Determine if @sg is a busier group than the previously selected
2824 static bool update_sd_pick_busiest(struct sched_domain
*sd
,
2825 struct sd_lb_stats
*sds
,
2826 struct sched_group
*sg
,
2827 struct sg_lb_stats
*sgs
,
2830 if (sgs
->avg_load
<= sds
->max_load
)
2833 if (sgs
->sum_nr_running
> sgs
->group_capacity
)
2840 * ASYM_PACKING needs to move all the work to the lowest
2841 * numbered CPUs in the group, therefore mark all groups
2842 * higher than ourself as busy.
2844 if ((sd
->flags
& SD_ASYM_PACKING
) && sgs
->sum_nr_running
&&
2845 this_cpu
< group_first_cpu(sg
)) {
2849 if (group_first_cpu(sds
->busiest
) > group_first_cpu(sg
))
2857 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2858 * @sd: sched_domain whose statistics are to be updated.
2859 * @this_cpu: Cpu for which load balance is currently performed.
2860 * @idle: Idle status of this_cpu
2861 * @cpus: Set of cpus considered for load balancing.
2862 * @balance: Should we balance.
2863 * @sds: variable to hold the statistics for this sched_domain.
2865 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
2866 enum cpu_idle_type idle
, const struct cpumask
*cpus
,
2867 int *balance
, struct sd_lb_stats
*sds
)
2869 struct sched_domain
*child
= sd
->child
;
2870 struct sched_group
*sg
= sd
->groups
;
2871 struct sg_lb_stats sgs
;
2872 int load_idx
, prefer_sibling
= 0;
2874 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
2877 init_sd_power_savings_stats(sd
, sds
, idle
);
2878 load_idx
= get_sd_load_idx(sd
, idle
);
2883 local_group
= cpumask_test_cpu(this_cpu
, sched_group_cpus(sg
));
2884 memset(&sgs
, 0, sizeof(sgs
));
2885 update_sg_lb_stats(sd
, sg
, this_cpu
, idle
, load_idx
,
2886 local_group
, cpus
, balance
, &sgs
);
2888 if (local_group
&& !(*balance
))
2891 sds
->total_load
+= sgs
.group_load
;
2892 sds
->total_pwr
+= sg
->sgp
->power
;
2895 * In case the child domain prefers tasks go to siblings
2896 * first, lower the sg capacity to one so that we'll try
2897 * and move all the excess tasks away. We lower the capacity
2898 * of a group only if the local group has the capacity to fit
2899 * these excess tasks, i.e. nr_running < group_capacity. The
2900 * extra check prevents the case where you always pull from the
2901 * heaviest group when it is already under-utilized (possible
2902 * with a large weight task outweighs the tasks on the system).
2904 if (prefer_sibling
&& !local_group
&& sds
->this_has_capacity
)
2905 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
2908 sds
->this_load
= sgs
.avg_load
;
2910 sds
->this_nr_running
= sgs
.sum_nr_running
;
2911 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
2912 sds
->this_has_capacity
= sgs
.group_has_capacity
;
2913 sds
->this_idle_cpus
= sgs
.idle_cpus
;
2914 } else if (update_sd_pick_busiest(sd
, sds
, sg
, &sgs
, this_cpu
)) {
2915 sds
->max_load
= sgs
.avg_load
;
2917 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
2918 sds
->busiest_idle_cpus
= sgs
.idle_cpus
;
2919 sds
->busiest_group_capacity
= sgs
.group_capacity
;
2920 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
2921 sds
->busiest_has_capacity
= sgs
.group_has_capacity
;
2922 sds
->busiest_group_weight
= sgs
.group_weight
;
2923 sds
->group_imb
= sgs
.group_imb
;
2926 update_sd_power_savings_stats(sg
, sds
, local_group
, &sgs
);
2928 } while (sg
!= sd
->groups
);
2931 int __weak
arch_sd_sibling_asym_packing(void)
2933 return 0*SD_ASYM_PACKING
;
2937 * check_asym_packing - Check to see if the group is packed into the
2940 * This is primarily intended to used at the sibling level. Some
2941 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2942 * case of POWER7, it can move to lower SMT modes only when higher
2943 * threads are idle. When in lower SMT modes, the threads will
2944 * perform better since they share less core resources. Hence when we
2945 * have idle threads, we want them to be the higher ones.
2947 * This packing function is run on idle threads. It checks to see if
2948 * the busiest CPU in this domain (core in the P7 case) has a higher
2949 * CPU number than the packing function is being run on. Here we are
2950 * assuming lower CPU number will be equivalent to lower a SMT thread
2953 * Returns 1 when packing is required and a task should be moved to
2954 * this CPU. The amount of the imbalance is returned in *imbalance.
2956 * @sd: The sched_domain whose packing is to be checked.
2957 * @sds: Statistics of the sched_domain which is to be packed
2958 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2959 * @imbalance: returns amount of imbalanced due to packing.
2961 static int check_asym_packing(struct sched_domain
*sd
,
2962 struct sd_lb_stats
*sds
,
2963 int this_cpu
, unsigned long *imbalance
)
2967 if (!(sd
->flags
& SD_ASYM_PACKING
))
2973 busiest_cpu
= group_first_cpu(sds
->busiest
);
2974 if (this_cpu
> busiest_cpu
)
2977 *imbalance
= DIV_ROUND_CLOSEST(sds
->max_load
* sds
->busiest
->sgp
->power
,
2983 * fix_small_imbalance - Calculate the minor imbalance that exists
2984 * amongst the groups of a sched_domain, during
2986 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2987 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2988 * @imbalance: Variable to store the imbalance.
2990 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
2991 int this_cpu
, unsigned long *imbalance
)
2993 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
2994 unsigned int imbn
= 2;
2995 unsigned long scaled_busy_load_per_task
;
2997 if (sds
->this_nr_running
) {
2998 sds
->this_load_per_task
/= sds
->this_nr_running
;
2999 if (sds
->busiest_load_per_task
>
3000 sds
->this_load_per_task
)
3003 sds
->this_load_per_task
=
3004 cpu_avg_load_per_task(this_cpu
);
3006 scaled_busy_load_per_task
= sds
->busiest_load_per_task
3007 * SCHED_POWER_SCALE
;
3008 scaled_busy_load_per_task
/= sds
->busiest
->sgp
->power
;
3010 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
3011 (scaled_busy_load_per_task
* imbn
)) {
3012 *imbalance
= sds
->busiest_load_per_task
;
3017 * OK, we don't have enough imbalance to justify moving tasks,
3018 * however we may be able to increase total CPU power used by
3022 pwr_now
+= sds
->busiest
->sgp
->power
*
3023 min(sds
->busiest_load_per_task
, sds
->max_load
);
3024 pwr_now
+= sds
->this->sgp
->power
*
3025 min(sds
->this_load_per_task
, sds
->this_load
);
3026 pwr_now
/= SCHED_POWER_SCALE
;
3028 /* Amount of load we'd subtract */
3029 tmp
= (sds
->busiest_load_per_task
* SCHED_POWER_SCALE
) /
3030 sds
->busiest
->sgp
->power
;
3031 if (sds
->max_load
> tmp
)
3032 pwr_move
+= sds
->busiest
->sgp
->power
*
3033 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3035 /* Amount of load we'd add */
3036 if (sds
->max_load
* sds
->busiest
->sgp
->power
<
3037 sds
->busiest_load_per_task
* SCHED_POWER_SCALE
)
3038 tmp
= (sds
->max_load
* sds
->busiest
->sgp
->power
) /
3039 sds
->this->sgp
->power
;
3041 tmp
= (sds
->busiest_load_per_task
* SCHED_POWER_SCALE
) /
3042 sds
->this->sgp
->power
;
3043 pwr_move
+= sds
->this->sgp
->power
*
3044 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3045 pwr_move
/= SCHED_POWER_SCALE
;
3047 /* Move if we gain throughput */
3048 if (pwr_move
> pwr_now
)
3049 *imbalance
= sds
->busiest_load_per_task
;
3053 * calculate_imbalance - Calculate the amount of imbalance present within the
3054 * groups of a given sched_domain during load balance.
3055 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3056 * @this_cpu: Cpu for which currently load balance is being performed.
3057 * @imbalance: The variable to store the imbalance.
3059 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3060 unsigned long *imbalance
)
3062 unsigned long max_pull
, load_above_capacity
= ~0UL;
3064 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
3065 if (sds
->group_imb
) {
3066 sds
->busiest_load_per_task
=
3067 min(sds
->busiest_load_per_task
, sds
->avg_load
);
3071 * In the presence of smp nice balancing, certain scenarios can have
3072 * max load less than avg load(as we skip the groups at or below
3073 * its cpu_power, while calculating max_load..)
3075 if (sds
->max_load
< sds
->avg_load
) {
3077 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3080 if (!sds
->group_imb
) {
3082 * Don't want to pull so many tasks that a group would go idle.
3084 load_above_capacity
= (sds
->busiest_nr_running
-
3085 sds
->busiest_group_capacity
);
3087 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_POWER_SCALE
);
3089 load_above_capacity
/= sds
->busiest
->sgp
->power
;
3093 * We're trying to get all the cpus to the average_load, so we don't
3094 * want to push ourselves above the average load, nor do we wish to
3095 * reduce the max loaded cpu below the average load. At the same time,
3096 * we also don't want to reduce the group load below the group capacity
3097 * (so that we can implement power-savings policies etc). Thus we look
3098 * for the minimum possible imbalance.
3099 * Be careful of negative numbers as they'll appear as very large values
3100 * with unsigned longs.
3102 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
3104 /* How much load to actually move to equalise the imbalance */
3105 *imbalance
= min(max_pull
* sds
->busiest
->sgp
->power
,
3106 (sds
->avg_load
- sds
->this_load
) * sds
->this->sgp
->power
)
3107 / SCHED_POWER_SCALE
;
3110 * if *imbalance is less than the average load per runnable task
3111 * there is no guarantee that any tasks will be moved so we'll have
3112 * a think about bumping its value to force at least one task to be
3115 if (*imbalance
< sds
->busiest_load_per_task
)
3116 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3120 /******* find_busiest_group() helpers end here *********************/
3123 * find_busiest_group - Returns the busiest group within the sched_domain
3124 * if there is an imbalance. If there isn't an imbalance, and
3125 * the user has opted for power-savings, it returns a group whose
3126 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3127 * such a group exists.
3129 * Also calculates the amount of weighted load which should be moved
3130 * to restore balance.
3132 * @sd: The sched_domain whose busiest group is to be returned.
3133 * @this_cpu: The cpu for which load balancing is currently being performed.
3134 * @imbalance: Variable which stores amount of weighted load which should
3135 * be moved to restore balance/put a group to idle.
3136 * @idle: The idle status of this_cpu.
3137 * @cpus: The set of CPUs under consideration for load-balancing.
3138 * @balance: Pointer to a variable indicating if this_cpu
3139 * is the appropriate cpu to perform load balancing at this_level.
3141 * Returns: - the busiest group if imbalance exists.
3142 * - If no imbalance and user has opted for power-savings balance,
3143 * return the least loaded group whose CPUs can be
3144 * put to idle by rebalancing its tasks onto our group.
3146 static struct sched_group
*
3147 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3148 unsigned long *imbalance
, enum cpu_idle_type idle
,
3149 const struct cpumask
*cpus
, int *balance
)
3151 struct sd_lb_stats sds
;
3153 memset(&sds
, 0, sizeof(sds
));
3156 * Compute the various statistics relavent for load balancing at
3159 update_sd_lb_stats(sd
, this_cpu
, idle
, cpus
, balance
, &sds
);
3162 * this_cpu is not the appropriate cpu to perform load balancing at
3168 if ((idle
== CPU_IDLE
|| idle
== CPU_NEWLY_IDLE
) &&
3169 check_asym_packing(sd
, &sds
, this_cpu
, imbalance
))
3172 /* There is no busy sibling group to pull tasks from */
3173 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
3176 sds
.avg_load
= (SCHED_POWER_SCALE
* sds
.total_load
) / sds
.total_pwr
;
3179 * If the busiest group is imbalanced the below checks don't
3180 * work because they assumes all things are equal, which typically
3181 * isn't true due to cpus_allowed constraints and the like.
3186 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3187 if (idle
== CPU_NEWLY_IDLE
&& sds
.this_has_capacity
&&
3188 !sds
.busiest_has_capacity
)
3192 * If the local group is more busy than the selected busiest group
3193 * don't try and pull any tasks.
3195 if (sds
.this_load
>= sds
.max_load
)
3199 * Don't pull any tasks if this group is already above the domain
3202 if (sds
.this_load
>= sds
.avg_load
)
3205 if (idle
== CPU_IDLE
) {
3207 * This cpu is idle. If the busiest group load doesn't
3208 * have more tasks than the number of available cpu's and
3209 * there is no imbalance between this and busiest group
3210 * wrt to idle cpu's, it is balanced.
3212 if ((sds
.this_idle_cpus
<= sds
.busiest_idle_cpus
+ 1) &&
3213 sds
.busiest_nr_running
<= sds
.busiest_group_weight
)
3217 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3218 * imbalance_pct to be conservative.
3220 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
3225 /* Looks like there is an imbalance. Compute it */
3226 calculate_imbalance(&sds
, this_cpu
, imbalance
);
3231 * There is no obvious imbalance. But check if we can do some balancing
3234 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
3242 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3245 find_busiest_queue(struct sched_domain
*sd
, struct sched_group
*group
,
3246 enum cpu_idle_type idle
, unsigned long imbalance
,
3247 const struct cpumask
*cpus
)
3249 struct rq
*busiest
= NULL
, *rq
;
3250 unsigned long max_load
= 0;
3253 for_each_cpu(i
, sched_group_cpus(group
)) {
3254 unsigned long power
= power_of(i
);
3255 unsigned long capacity
= DIV_ROUND_CLOSEST(power
,
3260 capacity
= fix_small_capacity(sd
, group
);
3262 if (!cpumask_test_cpu(i
, cpus
))
3266 wl
= weighted_cpuload(i
);
3269 * When comparing with imbalance, use weighted_cpuload()
3270 * which is not scaled with the cpu power.
3272 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
3276 * For the load comparisons with the other cpu's, consider
3277 * the weighted_cpuload() scaled with the cpu power, so that
3278 * the load can be moved away from the cpu that is potentially
3279 * running at a lower capacity.
3281 wl
= (wl
* SCHED_POWER_SCALE
) / power
;
3283 if (wl
> max_load
) {
3293 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3294 * so long as it is large enough.
3296 #define MAX_PINNED_INTERVAL 512
3298 /* Working cpumask for load_balance and load_balance_newidle. */
3299 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
3301 static int need_active_balance(struct sched_domain
*sd
, int idle
,
3302 int busiest_cpu
, int this_cpu
)
3304 if (idle
== CPU_NEWLY_IDLE
) {
3307 * ASYM_PACKING needs to force migrate tasks from busy but
3308 * higher numbered CPUs in order to pack all tasks in the
3309 * lowest numbered CPUs.
3311 if ((sd
->flags
& SD_ASYM_PACKING
) && busiest_cpu
> this_cpu
)
3315 * The only task running in a non-idle cpu can be moved to this
3316 * cpu in an attempt to completely freeup the other CPU
3319 * The package power saving logic comes from
3320 * find_busiest_group(). If there are no imbalance, then
3321 * f_b_g() will return NULL. However when sched_mc={1,2} then
3322 * f_b_g() will select a group from which a running task may be
3323 * pulled to this cpu in order to make the other package idle.
3324 * If there is no opportunity to make a package idle and if
3325 * there are no imbalance, then f_b_g() will return NULL and no
3326 * action will be taken in load_balance_newidle().
3328 * Under normal task pull operation due to imbalance, there
3329 * will be more than one task in the source run queue and
3330 * move_tasks() will succeed. ld_moved will be true and this
3331 * active balance code will not be triggered.
3333 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3337 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
3340 static int active_load_balance_cpu_stop(void *data
);
3343 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3344 * tasks if there is an imbalance.
3346 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3347 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3350 int ld_moved
, all_pinned
= 0, active_balance
= 0;
3351 struct sched_group
*group
;
3352 unsigned long imbalance
;
3354 unsigned long flags
;
3355 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
3357 cpumask_copy(cpus
, cpu_active_mask
);
3359 schedstat_inc(sd
, lb_count
[idle
]);
3362 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
,
3369 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3373 busiest
= find_busiest_queue(sd
, group
, idle
, imbalance
, cpus
);
3375 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3379 BUG_ON(busiest
== this_rq
);
3381 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3384 if (busiest
->nr_running
> 1) {
3386 * Attempt to move tasks. If find_busiest_group has found
3387 * an imbalance but busiest->nr_running <= 1, the group is
3388 * still unbalanced. ld_moved simply stays zero, so it is
3389 * correctly treated as an imbalance.
3392 local_irq_save(flags
);
3393 double_rq_lock(this_rq
, busiest
);
3394 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3395 imbalance
, sd
, idle
, &all_pinned
);
3396 double_rq_unlock(this_rq
, busiest
);
3397 local_irq_restore(flags
);
3400 * some other cpu did the load balance for us.
3402 if (ld_moved
&& this_cpu
!= smp_processor_id())
3403 resched_cpu(this_cpu
);
3405 /* All tasks on this runqueue were pinned by CPU affinity */
3406 if (unlikely(all_pinned
)) {
3407 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3408 if (!cpumask_empty(cpus
))
3415 schedstat_inc(sd
, lb_failed
[idle
]);
3417 * Increment the failure counter only on periodic balance.
3418 * We do not want newidle balance, which can be very
3419 * frequent, pollute the failure counter causing
3420 * excessive cache_hot migrations and active balances.
3422 if (idle
!= CPU_NEWLY_IDLE
)
3423 sd
->nr_balance_failed
++;
3425 if (need_active_balance(sd
, idle
, cpu_of(busiest
), this_cpu
)) {
3426 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
3428 /* don't kick the active_load_balance_cpu_stop,
3429 * if the curr task on busiest cpu can't be
3432 if (!cpumask_test_cpu(this_cpu
,
3433 &busiest
->curr
->cpus_allowed
)) {
3434 raw_spin_unlock_irqrestore(&busiest
->lock
,
3437 goto out_one_pinned
;
3441 * ->active_balance synchronizes accesses to
3442 * ->active_balance_work. Once set, it's cleared
3443 * only after active load balance is finished.
3445 if (!busiest
->active_balance
) {
3446 busiest
->active_balance
= 1;
3447 busiest
->push_cpu
= this_cpu
;
3450 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
3453 stop_one_cpu_nowait(cpu_of(busiest
),
3454 active_load_balance_cpu_stop
, busiest
,
3455 &busiest
->active_balance_work
);
3458 * We've kicked active balancing, reset the failure
3461 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3464 sd
->nr_balance_failed
= 0;
3466 if (likely(!active_balance
)) {
3467 /* We were unbalanced, so reset the balancing interval */
3468 sd
->balance_interval
= sd
->min_interval
;
3471 * If we've begun active balancing, start to back off. This
3472 * case may not be covered by the all_pinned logic if there
3473 * is only 1 task on the busy runqueue (because we don't call
3476 if (sd
->balance_interval
< sd
->max_interval
)
3477 sd
->balance_interval
*= 2;
3483 schedstat_inc(sd
, lb_balanced
[idle
]);
3485 sd
->nr_balance_failed
= 0;
3488 /* tune up the balancing interval */
3489 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3490 (sd
->balance_interval
< sd
->max_interval
))
3491 sd
->balance_interval
*= 2;
3499 * idle_balance is called by schedule() if this_cpu is about to become
3500 * idle. Attempts to pull tasks from other CPUs.
3502 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3504 struct sched_domain
*sd
;
3505 int pulled_task
= 0;
3506 unsigned long next_balance
= jiffies
+ HZ
;
3508 this_rq
->idle_stamp
= this_rq
->clock
;
3510 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
3514 * Drop the rq->lock, but keep IRQ/preempt disabled.
3516 raw_spin_unlock(&this_rq
->lock
);
3518 update_shares(this_cpu
);
3520 for_each_domain(this_cpu
, sd
) {
3521 unsigned long interval
;
3524 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3527 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
3528 /* If we've pulled tasks over stop searching: */
3529 pulled_task
= load_balance(this_cpu
, this_rq
,
3530 sd
, CPU_NEWLY_IDLE
, &balance
);
3533 interval
= msecs_to_jiffies(sd
->balance_interval
);
3534 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3535 next_balance
= sd
->last_balance
+ interval
;
3537 this_rq
->idle_stamp
= 0;
3543 raw_spin_lock(&this_rq
->lock
);
3545 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3547 * We are going idle. next_balance may be set based on
3548 * a busy processor. So reset next_balance.
3550 this_rq
->next_balance
= next_balance
;
3555 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3556 * running tasks off the busiest CPU onto idle CPUs. It requires at
3557 * least 1 task to be running on each physical CPU where possible, and
3558 * avoids physical / logical imbalances.
3560 static int active_load_balance_cpu_stop(void *data
)
3562 struct rq
*busiest_rq
= data
;
3563 int busiest_cpu
= cpu_of(busiest_rq
);
3564 int target_cpu
= busiest_rq
->push_cpu
;
3565 struct rq
*target_rq
= cpu_rq(target_cpu
);
3566 struct sched_domain
*sd
;
3568 raw_spin_lock_irq(&busiest_rq
->lock
);
3570 /* make sure the requested cpu hasn't gone down in the meantime */
3571 if (unlikely(busiest_cpu
!= smp_processor_id() ||
3572 !busiest_rq
->active_balance
))
3575 /* Is there any task to move? */
3576 if (busiest_rq
->nr_running
<= 1)
3580 * This condition is "impossible", if it occurs
3581 * we need to fix it. Originally reported by
3582 * Bjorn Helgaas on a 128-cpu setup.
3584 BUG_ON(busiest_rq
== target_rq
);
3586 /* move a task from busiest_rq to target_rq */
3587 double_lock_balance(busiest_rq
, target_rq
);
3589 /* Search for an sd spanning us and the target CPU. */
3591 for_each_domain(target_cpu
, sd
) {
3592 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3593 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3598 schedstat_inc(sd
, alb_count
);
3600 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3602 schedstat_inc(sd
, alb_pushed
);
3604 schedstat_inc(sd
, alb_failed
);
3607 double_unlock_balance(busiest_rq
, target_rq
);
3609 busiest_rq
->active_balance
= 0;
3610 raw_spin_unlock_irq(&busiest_rq
->lock
);
3616 static DEFINE_PER_CPU(struct call_single_data
, remote_sched_softirq_cb
);
3618 static void trigger_sched_softirq(void *data
)
3620 raise_softirq_irqoff(SCHED_SOFTIRQ
);
3623 static inline void init_sched_softirq_csd(struct call_single_data
*csd
)
3625 csd
->func
= trigger_sched_softirq
;
3632 * idle load balancing details
3633 * - One of the idle CPUs nominates itself as idle load_balancer, while
3635 * - This idle load balancer CPU will also go into tickless mode when
3636 * it is idle, just like all other idle CPUs
3637 * - When one of the busy CPUs notice that there may be an idle rebalancing
3638 * needed, they will kick the idle load balancer, which then does idle
3639 * load balancing for all the idle CPUs.
3642 atomic_t load_balancer
;
3643 atomic_t first_pick_cpu
;
3644 atomic_t second_pick_cpu
;
3645 cpumask_var_t idle_cpus_mask
;
3646 cpumask_var_t grp_idle_mask
;
3647 unsigned long next_balance
; /* in jiffy units */
3648 } nohz ____cacheline_aligned
;
3650 int get_nohz_load_balancer(void)
3652 return atomic_read(&nohz
.load_balancer
);
3655 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3657 * lowest_flag_domain - Return lowest sched_domain containing flag.
3658 * @cpu: The cpu whose lowest level of sched domain is to
3660 * @flag: The flag to check for the lowest sched_domain
3661 * for the given cpu.
3663 * Returns the lowest sched_domain of a cpu which contains the given flag.
3665 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
3667 struct sched_domain
*sd
;
3669 for_each_domain(cpu
, sd
)
3670 if (sd
&& (sd
->flags
& flag
))
3677 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3678 * @cpu: The cpu whose domains we're iterating over.
3679 * @sd: variable holding the value of the power_savings_sd
3681 * @flag: The flag to filter the sched_domains to be iterated.
3683 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3684 * set, starting from the lowest sched_domain to the highest.
3686 #define for_each_flag_domain(cpu, sd, flag) \
3687 for (sd = lowest_flag_domain(cpu, flag); \
3688 (sd && (sd->flags & flag)); sd = sd->parent)
3691 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3692 * @ilb_group: group to be checked for semi-idleness
3694 * Returns: 1 if the group is semi-idle. 0 otherwise.
3696 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3697 * and atleast one non-idle CPU. This helper function checks if the given
3698 * sched_group is semi-idle or not.
3700 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
3702 cpumask_and(nohz
.grp_idle_mask
, nohz
.idle_cpus_mask
,
3703 sched_group_cpus(ilb_group
));
3706 * A sched_group is semi-idle when it has atleast one busy cpu
3707 * and atleast one idle cpu.
3709 if (cpumask_empty(nohz
.grp_idle_mask
))
3712 if (cpumask_equal(nohz
.grp_idle_mask
, sched_group_cpus(ilb_group
)))
3718 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3719 * @cpu: The cpu which is nominating a new idle_load_balancer.
3721 * Returns: Returns the id of the idle load balancer if it exists,
3722 * Else, returns >= nr_cpu_ids.
3724 * This algorithm picks the idle load balancer such that it belongs to a
3725 * semi-idle powersavings sched_domain. The idea is to try and avoid
3726 * completely idle packages/cores just for the purpose of idle load balancing
3727 * when there are other idle cpu's which are better suited for that job.
3729 static int find_new_ilb(int cpu
)
3731 struct sched_domain
*sd
;
3732 struct sched_group
*ilb_group
;
3733 int ilb
= nr_cpu_ids
;
3736 * Have idle load balancer selection from semi-idle packages only
3737 * when power-aware load balancing is enabled
3739 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
3743 * Optimize for the case when we have no idle CPUs or only one
3744 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3746 if (cpumask_weight(nohz
.idle_cpus_mask
) < 2)
3750 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
3751 ilb_group
= sd
->groups
;
3754 if (is_semi_idle_group(ilb_group
)) {
3755 ilb
= cpumask_first(nohz
.grp_idle_mask
);
3759 ilb_group
= ilb_group
->next
;
3761 } while (ilb_group
!= sd
->groups
);
3769 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3770 static inline int find_new_ilb(int call_cpu
)
3777 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3778 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3779 * CPU (if there is one).
3781 static void nohz_balancer_kick(int cpu
)
3785 nohz
.next_balance
++;
3787 ilb_cpu
= get_nohz_load_balancer();
3789 if (ilb_cpu
>= nr_cpu_ids
) {
3790 ilb_cpu
= cpumask_first(nohz
.idle_cpus_mask
);
3791 if (ilb_cpu
>= nr_cpu_ids
)
3795 if (!cpu_rq(ilb_cpu
)->nohz_balance_kick
) {
3796 struct call_single_data
*cp
;
3798 cpu_rq(ilb_cpu
)->nohz_balance_kick
= 1;
3799 cp
= &per_cpu(remote_sched_softirq_cb
, cpu
);
3800 __smp_call_function_single(ilb_cpu
, cp
, 0);
3806 * This routine will try to nominate the ilb (idle load balancing)
3807 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3808 * load balancing on behalf of all those cpus.
3810 * When the ilb owner becomes busy, we will not have new ilb owner until some
3811 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3812 * idle load balancing by kicking one of the idle CPUs.
3814 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3815 * ilb owner CPU in future (when there is a need for idle load balancing on
3816 * behalf of all idle CPUs).
3818 void select_nohz_load_balancer(int stop_tick
)
3820 int cpu
= smp_processor_id();
3823 if (!cpu_active(cpu
)) {
3824 if (atomic_read(&nohz
.load_balancer
) != cpu
)
3828 * If we are going offline and still the leader,
3831 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
3838 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
3840 if (atomic_read(&nohz
.first_pick_cpu
) == cpu
)
3841 atomic_cmpxchg(&nohz
.first_pick_cpu
, cpu
, nr_cpu_ids
);
3842 if (atomic_read(&nohz
.second_pick_cpu
) == cpu
)
3843 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
3845 if (atomic_read(&nohz
.load_balancer
) >= nr_cpu_ids
) {
3848 /* make me the ilb owner */
3849 if (atomic_cmpxchg(&nohz
.load_balancer
, nr_cpu_ids
,
3854 * Check to see if there is a more power-efficient
3857 new_ilb
= find_new_ilb(cpu
);
3858 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
3859 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
3860 resched_cpu(new_ilb
);
3866 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
3869 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
3871 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3872 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
3880 static DEFINE_SPINLOCK(balancing
);
3882 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
3885 * Scale the max load_balance interval with the number of CPUs in the system.
3886 * This trades load-balance latency on larger machines for less cross talk.
3888 static void update_max_interval(void)
3890 max_load_balance_interval
= HZ
*num_online_cpus()/10;
3894 * It checks each scheduling domain to see if it is due to be balanced,
3895 * and initiates a balancing operation if so.
3897 * Balancing parameters are set up in arch_init_sched_domains.
3899 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3902 struct rq
*rq
= cpu_rq(cpu
);
3903 unsigned long interval
;
3904 struct sched_domain
*sd
;
3905 /* Earliest time when we have to do rebalance again */
3906 unsigned long next_balance
= jiffies
+ 60*HZ
;
3907 int update_next_balance
= 0;
3913 for_each_domain(cpu
, sd
) {
3914 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3917 interval
= sd
->balance_interval
;
3918 if (idle
!= CPU_IDLE
)
3919 interval
*= sd
->busy_factor
;
3921 /* scale ms to jiffies */
3922 interval
= msecs_to_jiffies(interval
);
3923 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
3925 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3927 if (need_serialize
) {
3928 if (!spin_trylock(&balancing
))
3932 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3933 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3935 * We've pulled tasks over so either we're no
3938 idle
= CPU_NOT_IDLE
;
3940 sd
->last_balance
= jiffies
;
3943 spin_unlock(&balancing
);
3945 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3946 next_balance
= sd
->last_balance
+ interval
;
3947 update_next_balance
= 1;
3951 * Stop the load balance at this level. There is another
3952 * CPU in our sched group which is doing load balancing more
3961 * next_balance will be updated only when there is a need.
3962 * When the cpu is attached to null domain for ex, it will not be
3965 if (likely(update_next_balance
))
3966 rq
->next_balance
= next_balance
;
3971 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3972 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3974 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
)
3976 struct rq
*this_rq
= cpu_rq(this_cpu
);
3980 if (idle
!= CPU_IDLE
|| !this_rq
->nohz_balance_kick
)
3983 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
3984 if (balance_cpu
== this_cpu
)
3988 * If this cpu gets work to do, stop the load balancing
3989 * work being done for other cpus. Next load
3990 * balancing owner will pick it up.
3992 if (need_resched()) {
3993 this_rq
->nohz_balance_kick
= 0;
3997 raw_spin_lock_irq(&this_rq
->lock
);
3998 update_rq_clock(this_rq
);
3999 update_cpu_load(this_rq
);
4000 raw_spin_unlock_irq(&this_rq
->lock
);
4002 rebalance_domains(balance_cpu
, CPU_IDLE
);
4004 rq
= cpu_rq(balance_cpu
);
4005 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4006 this_rq
->next_balance
= rq
->next_balance
;
4008 nohz
.next_balance
= this_rq
->next_balance
;
4009 this_rq
->nohz_balance_kick
= 0;
4013 * Current heuristic for kicking the idle load balancer
4014 * - first_pick_cpu is the one of the busy CPUs. It will kick
4015 * idle load balancer when it has more than one process active. This
4016 * eliminates the need for idle load balancing altogether when we have
4017 * only one running process in the system (common case).
4018 * - If there are more than one busy CPU, idle load balancer may have
4019 * to run for active_load_balance to happen (i.e., two busy CPUs are
4020 * SMT or core siblings and can run better if they move to different
4021 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4022 * which will kick idle load balancer as soon as it has any load.
4024 static inline int nohz_kick_needed(struct rq
*rq
, int cpu
)
4026 unsigned long now
= jiffies
;
4028 int first_pick_cpu
, second_pick_cpu
;
4030 if (time_before(now
, nohz
.next_balance
))
4033 if (rq
->idle_at_tick
)
4036 first_pick_cpu
= atomic_read(&nohz
.first_pick_cpu
);
4037 second_pick_cpu
= atomic_read(&nohz
.second_pick_cpu
);
4039 if (first_pick_cpu
< nr_cpu_ids
&& first_pick_cpu
!= cpu
&&
4040 second_pick_cpu
< nr_cpu_ids
&& second_pick_cpu
!= cpu
)
4043 ret
= atomic_cmpxchg(&nohz
.first_pick_cpu
, nr_cpu_ids
, cpu
);
4044 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
4045 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
4046 if (rq
->nr_running
> 1)
4049 ret
= atomic_cmpxchg(&nohz
.second_pick_cpu
, nr_cpu_ids
, cpu
);
4050 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
4058 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
) { }
4062 * run_rebalance_domains is triggered when needed from the scheduler tick.
4063 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4065 static void run_rebalance_domains(struct softirq_action
*h
)
4067 int this_cpu
= smp_processor_id();
4068 struct rq
*this_rq
= cpu_rq(this_cpu
);
4069 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4070 CPU_IDLE
: CPU_NOT_IDLE
;
4072 rebalance_domains(this_cpu
, idle
);
4075 * If this cpu has a pending nohz_balance_kick, then do the
4076 * balancing on behalf of the other idle cpus whose ticks are
4079 nohz_idle_balance(this_cpu
, idle
);
4082 static inline int on_null_domain(int cpu
)
4084 return !rcu_dereference_sched(cpu_rq(cpu
)->sd
);
4088 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4090 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4092 /* Don't need to rebalance while attached to NULL domain */
4093 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4094 likely(!on_null_domain(cpu
)))
4095 raise_softirq(SCHED_SOFTIRQ
);
4097 else if (nohz_kick_needed(rq
, cpu
) && likely(!on_null_domain(cpu
)))
4098 nohz_balancer_kick(cpu
);
4102 static void rq_online_fair(struct rq
*rq
)
4107 static void rq_offline_fair(struct rq
*rq
)
4112 #else /* CONFIG_SMP */
4115 * on UP we do not need to balance between CPUs:
4117 static inline void idle_balance(int cpu
, struct rq
*rq
)
4121 #endif /* CONFIG_SMP */
4124 * scheduler tick hitting a task of our scheduling class:
4126 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
4128 struct cfs_rq
*cfs_rq
;
4129 struct sched_entity
*se
= &curr
->se
;
4131 for_each_sched_entity(se
) {
4132 cfs_rq
= cfs_rq_of(se
);
4133 entity_tick(cfs_rq
, se
, queued
);
4138 * called on fork with the child task as argument from the parent's context
4139 * - child not yet on the tasklist
4140 * - preemption disabled
4142 static void task_fork_fair(struct task_struct
*p
)
4144 struct cfs_rq
*cfs_rq
= task_cfs_rq(current
);
4145 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
4146 int this_cpu
= smp_processor_id();
4147 struct rq
*rq
= this_rq();
4148 unsigned long flags
;
4150 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4152 update_rq_clock(rq
);
4154 if (unlikely(task_cpu(p
) != this_cpu
)) {
4156 __set_task_cpu(p
, this_cpu
);
4160 update_curr(cfs_rq
);
4163 se
->vruntime
= curr
->vruntime
;
4164 place_entity(cfs_rq
, se
, 1);
4166 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
4168 * Upon rescheduling, sched_class::put_prev_task() will place
4169 * 'current' within the tree based on its new key value.
4171 swap(curr
->vruntime
, se
->vruntime
);
4172 resched_task(rq
->curr
);
4175 se
->vruntime
-= cfs_rq
->min_vruntime
;
4177 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4181 * Priority of the task has changed. Check to see if we preempt
4185 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
4191 * Reschedule if we are currently running on this runqueue and
4192 * our priority decreased, or if we are not currently running on
4193 * this runqueue and our priority is higher than the current's
4195 if (rq
->curr
== p
) {
4196 if (p
->prio
> oldprio
)
4197 resched_task(rq
->curr
);
4199 check_preempt_curr(rq
, p
, 0);
4202 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
4204 struct sched_entity
*se
= &p
->se
;
4205 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4208 * Ensure the task's vruntime is normalized, so that when its
4209 * switched back to the fair class the enqueue_entity(.flags=0) will
4210 * do the right thing.
4212 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4213 * have normalized the vruntime, if it was !on_rq, then only when
4214 * the task is sleeping will it still have non-normalized vruntime.
4216 if (!se
->on_rq
&& p
->state
!= TASK_RUNNING
) {
4218 * Fix up our vruntime so that the current sleep doesn't
4219 * cause 'unlimited' sleep bonus.
4221 place_entity(cfs_rq
, se
, 0);
4222 se
->vruntime
-= cfs_rq
->min_vruntime
;
4227 * We switched to the sched_fair class.
4229 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
4235 * We were most likely switched from sched_rt, so
4236 * kick off the schedule if running, otherwise just see
4237 * if we can still preempt the current task.
4240 resched_task(rq
->curr
);
4242 check_preempt_curr(rq
, p
, 0);
4245 /* Account for a task changing its policy or group.
4247 * This routine is mostly called to set cfs_rq->curr field when a task
4248 * migrates between groups/classes.
4250 static void set_curr_task_fair(struct rq
*rq
)
4252 struct sched_entity
*se
= &rq
->curr
->se
;
4254 for_each_sched_entity(se
)
4255 set_next_entity(cfs_rq_of(se
), se
);
4258 #ifdef CONFIG_FAIR_GROUP_SCHED
4259 static void task_move_group_fair(struct task_struct
*p
, int on_rq
)
4262 * If the task was not on the rq at the time of this cgroup movement
4263 * it must have been asleep, sleeping tasks keep their ->vruntime
4264 * absolute on their old rq until wakeup (needed for the fair sleeper
4265 * bonus in place_entity()).
4267 * If it was on the rq, we've just 'preempted' it, which does convert
4268 * ->vruntime to a relative base.
4270 * Make sure both cases convert their relative position when migrating
4271 * to another cgroup's rq. This does somewhat interfere with the
4272 * fair sleeper stuff for the first placement, but who cares.
4275 p
->se
.vruntime
-= cfs_rq_of(&p
->se
)->min_vruntime
;
4276 set_task_rq(p
, task_cpu(p
));
4278 p
->se
.vruntime
+= cfs_rq_of(&p
->se
)->min_vruntime
;
4282 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
4284 struct sched_entity
*se
= &task
->se
;
4285 unsigned int rr_interval
= 0;
4288 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4291 if (rq
->cfs
.load
.weight
)
4292 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
4298 * All the scheduling class methods:
4300 static const struct sched_class fair_sched_class
= {
4301 .next
= &idle_sched_class
,
4302 .enqueue_task
= enqueue_task_fair
,
4303 .dequeue_task
= dequeue_task_fair
,
4304 .yield_task
= yield_task_fair
,
4305 .yield_to_task
= yield_to_task_fair
,
4307 .check_preempt_curr
= check_preempt_wakeup
,
4309 .pick_next_task
= pick_next_task_fair
,
4310 .put_prev_task
= put_prev_task_fair
,
4313 .select_task_rq
= select_task_rq_fair
,
4315 .rq_online
= rq_online_fair
,
4316 .rq_offline
= rq_offline_fair
,
4318 .task_waking
= task_waking_fair
,
4321 .set_curr_task
= set_curr_task_fair
,
4322 .task_tick
= task_tick_fair
,
4323 .task_fork
= task_fork_fair
,
4325 .prio_changed
= prio_changed_fair
,
4326 .switched_from
= switched_from_fair
,
4327 .switched_to
= switched_to_fair
,
4329 .get_rr_interval
= get_rr_interval_fair
,
4331 #ifdef CONFIG_FAIR_GROUP_SCHED
4332 .task_move_group
= task_move_group_fair
,
4336 #ifdef CONFIG_SCHED_DEBUG
4337 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
4339 struct cfs_rq
*cfs_rq
;
4342 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
4343 print_cfs_rq(m
, cpu
, cfs_rq
);