2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 #include "scu_completion_codes.h"
60 #include "scu_event_codes.h"
63 static struct scu_sgl_element_pair
*to_sgl_element_pair(struct isci_request
*ireq
,
67 return &ireq
->tc
->sgl_pair_ab
;
69 return &ireq
->tc
->sgl_pair_cd
;
73 return &ireq
->sg_table
[idx
- 2];
76 static dma_addr_t
to_sgl_element_pair_dma(struct isci_host
*ihost
,
77 struct isci_request
*ireq
, u32 idx
)
82 offset
= (void *) &ireq
->tc
->sgl_pair_ab
-
83 (void *) &ihost
->task_context_table
[0];
84 return ihost
->task_context_dma
+ offset
;
85 } else if (idx
== 1) {
86 offset
= (void *) &ireq
->tc
->sgl_pair_cd
-
87 (void *) &ihost
->task_context_table
[0];
88 return ihost
->task_context_dma
+ offset
;
91 return sci_io_request_get_dma_addr(ireq
, &ireq
->sg_table
[idx
- 2]);
94 static void init_sgl_element(struct scu_sgl_element
*e
, struct scatterlist
*sg
)
96 e
->length
= sg_dma_len(sg
);
97 e
->address_upper
= upper_32_bits(sg_dma_address(sg
));
98 e
->address_lower
= lower_32_bits(sg_dma_address(sg
));
99 e
->address_modifier
= 0;
102 static void sci_request_build_sgl(struct isci_request
*ireq
)
104 struct isci_host
*ihost
= ireq
->isci_host
;
105 struct sas_task
*task
= isci_request_access_task(ireq
);
106 struct scatterlist
*sg
= NULL
;
109 struct scu_sgl_element_pair
*scu_sg
= NULL
;
110 struct scu_sgl_element_pair
*prev_sg
= NULL
;
112 if (task
->num_scatter
> 0) {
116 scu_sg
= to_sgl_element_pair(ireq
, sg_idx
);
117 init_sgl_element(&scu_sg
->A
, sg
);
120 init_sgl_element(&scu_sg
->B
, sg
);
123 memset(&scu_sg
->B
, 0, sizeof(scu_sg
->B
));
126 dma_addr
= to_sgl_element_pair_dma(ihost
,
130 prev_sg
->next_pair_upper
=
131 upper_32_bits(dma_addr
);
132 prev_sg
->next_pair_lower
=
133 lower_32_bits(dma_addr
);
139 } else { /* handle when no sg */
140 scu_sg
= to_sgl_element_pair(ireq
, sg_idx
);
142 dma_addr
= dma_map_single(&ihost
->pdev
->dev
,
144 task
->total_xfer_len
,
147 ireq
->zero_scatter_daddr
= dma_addr
;
149 scu_sg
->A
.length
= task
->total_xfer_len
;
150 scu_sg
->A
.address_upper
= upper_32_bits(dma_addr
);
151 scu_sg
->A
.address_lower
= lower_32_bits(dma_addr
);
155 scu_sg
->next_pair_upper
= 0;
156 scu_sg
->next_pair_lower
= 0;
160 static void sci_io_request_build_ssp_command_iu(struct isci_request
*ireq
)
162 struct ssp_cmd_iu
*cmd_iu
;
163 struct sas_task
*task
= isci_request_access_task(ireq
);
165 cmd_iu
= &ireq
->ssp
.cmd
;
167 memcpy(cmd_iu
->LUN
, task
->ssp_task
.LUN
, 8);
168 cmd_iu
->add_cdb_len
= 0;
171 cmd_iu
->en_fburst
= 0; /* unsupported */
172 cmd_iu
->task_prio
= task
->ssp_task
.task_prio
;
173 cmd_iu
->task_attr
= task
->ssp_task
.task_attr
;
176 sci_swab32_cpy(&cmd_iu
->cdb
, task
->ssp_task
.cdb
,
177 sizeof(task
->ssp_task
.cdb
) / sizeof(u32
));
180 static void sci_task_request_build_ssp_task_iu(struct isci_request
*ireq
)
182 struct ssp_task_iu
*task_iu
;
183 struct sas_task
*task
= isci_request_access_task(ireq
);
184 struct isci_tmf
*isci_tmf
= isci_request_access_tmf(ireq
);
186 task_iu
= &ireq
->ssp
.tmf
;
188 memset(task_iu
, 0, sizeof(struct ssp_task_iu
));
190 memcpy(task_iu
->LUN
, task
->ssp_task
.LUN
, 8);
192 task_iu
->task_func
= isci_tmf
->tmf_code
;
194 (ireq
->ttype
== tmf_task
) ?
196 SCI_CONTROLLER_INVALID_IO_TAG
;
200 * This method is will fill in the SCU Task Context for any type of SSP request.
205 static void scu_ssp_reqeust_construct_task_context(
206 struct isci_request
*ireq
,
207 struct scu_task_context
*task_context
)
210 struct isci_remote_device
*idev
;
211 struct isci_port
*iport
;
213 idev
= ireq
->target_device
;
214 iport
= idev
->owning_port
;
216 /* Fill in the TC with the its required data */
217 task_context
->abort
= 0;
218 task_context
->priority
= 0;
219 task_context
->initiator_request
= 1;
220 task_context
->connection_rate
= idev
->connection_rate
;
221 task_context
->protocol_engine_index
= ISCI_PEG
;
222 task_context
->logical_port_index
= iport
->physical_port_index
;
223 task_context
->protocol_type
= SCU_TASK_CONTEXT_PROTOCOL_SSP
;
224 task_context
->valid
= SCU_TASK_CONTEXT_VALID
;
225 task_context
->context_type
= SCU_TASK_CONTEXT_TYPE
;
227 task_context
->remote_node_index
= idev
->rnc
.remote_node_index
;
228 task_context
->command_code
= 0;
230 task_context
->link_layer_control
= 0;
231 task_context
->do_not_dma_ssp_good_response
= 1;
232 task_context
->strict_ordering
= 0;
233 task_context
->control_frame
= 0;
234 task_context
->timeout_enable
= 0;
235 task_context
->block_guard_enable
= 0;
237 task_context
->address_modifier
= 0;
239 /* task_context->type.ssp.tag = ireq->io_tag; */
240 task_context
->task_phase
= 0x01;
242 ireq
->post_context
= (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
|
243 (ISCI_PEG
<< SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT
) |
244 (iport
->physical_port_index
<<
245 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT
) |
246 ISCI_TAG_TCI(ireq
->io_tag
));
249 * Copy the physical address for the command buffer to the
252 dma_addr
= sci_io_request_get_dma_addr(ireq
, &ireq
->ssp
.cmd
);
254 task_context
->command_iu_upper
= upper_32_bits(dma_addr
);
255 task_context
->command_iu_lower
= lower_32_bits(dma_addr
);
258 * Copy the physical address for the response buffer to the
261 dma_addr
= sci_io_request_get_dma_addr(ireq
, &ireq
->ssp
.rsp
);
263 task_context
->response_iu_upper
= upper_32_bits(dma_addr
);
264 task_context
->response_iu_lower
= lower_32_bits(dma_addr
);
268 * This method is will fill in the SCU Task Context for a SSP IO request.
272 static void scu_ssp_io_request_construct_task_context(struct isci_request
*ireq
,
273 enum dma_data_direction dir
,
276 struct scu_task_context
*task_context
= ireq
->tc
;
278 scu_ssp_reqeust_construct_task_context(ireq
, task_context
);
280 task_context
->ssp_command_iu_length
=
281 sizeof(struct ssp_cmd_iu
) / sizeof(u32
);
282 task_context
->type
.ssp
.frame_type
= SSP_COMMAND
;
285 case DMA_FROM_DEVICE
:
288 task_context
->task_type
= SCU_TASK_TYPE_IOREAD
;
291 task_context
->task_type
= SCU_TASK_TYPE_IOWRITE
;
295 task_context
->transfer_length_bytes
= len
;
297 if (task_context
->transfer_length_bytes
> 0)
298 sci_request_build_sgl(ireq
);
302 * This method will fill in the SCU Task Context for a SSP Task request. The
303 * following important settings are utilized: -# priority ==
304 * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
305 * ahead of other task destined for the same Remote Node. -# task_type ==
306 * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
307 * (i.e. non-raw frame) is being utilized to perform task management. -#
308 * control_frame == 1. This ensures that the proper endianess is set so
309 * that the bytes are transmitted in the right order for a task frame.
310 * @sci_req: This parameter specifies the task request object being
314 static void scu_ssp_task_request_construct_task_context(struct isci_request
*ireq
)
316 struct scu_task_context
*task_context
= ireq
->tc
;
318 scu_ssp_reqeust_construct_task_context(ireq
, task_context
);
320 task_context
->control_frame
= 1;
321 task_context
->priority
= SCU_TASK_PRIORITY_HIGH
;
322 task_context
->task_type
= SCU_TASK_TYPE_RAW_FRAME
;
323 task_context
->transfer_length_bytes
= 0;
324 task_context
->type
.ssp
.frame_type
= SSP_TASK
;
325 task_context
->ssp_command_iu_length
=
326 sizeof(struct ssp_task_iu
) / sizeof(u32
);
330 * This method is will fill in the SCU Task Context for any type of SATA
331 * request. This is called from the various SATA constructors.
332 * @sci_req: The general IO request object which is to be used in
333 * constructing the SCU task context.
334 * @task_context: The buffer pointer for the SCU task context which is being
337 * The general io request construction is complete. The buffer assignment for
338 * the command buffer is complete. none Revisit task context construction to
339 * determine what is common for SSP/SMP/STP task context structures.
341 static void scu_sata_reqeust_construct_task_context(
342 struct isci_request
*ireq
,
343 struct scu_task_context
*task_context
)
346 struct isci_remote_device
*idev
;
347 struct isci_port
*iport
;
349 idev
= ireq
->target_device
;
350 iport
= idev
->owning_port
;
352 /* Fill in the TC with the its required data */
353 task_context
->abort
= 0;
354 task_context
->priority
= SCU_TASK_PRIORITY_NORMAL
;
355 task_context
->initiator_request
= 1;
356 task_context
->connection_rate
= idev
->connection_rate
;
357 task_context
->protocol_engine_index
= ISCI_PEG
;
358 task_context
->logical_port_index
= iport
->physical_port_index
;
359 task_context
->protocol_type
= SCU_TASK_CONTEXT_PROTOCOL_STP
;
360 task_context
->valid
= SCU_TASK_CONTEXT_VALID
;
361 task_context
->context_type
= SCU_TASK_CONTEXT_TYPE
;
363 task_context
->remote_node_index
= idev
->rnc
.remote_node_index
;
364 task_context
->command_code
= 0;
366 task_context
->link_layer_control
= 0;
367 task_context
->do_not_dma_ssp_good_response
= 1;
368 task_context
->strict_ordering
= 0;
369 task_context
->control_frame
= 0;
370 task_context
->timeout_enable
= 0;
371 task_context
->block_guard_enable
= 0;
373 task_context
->address_modifier
= 0;
374 task_context
->task_phase
= 0x01;
376 task_context
->ssp_command_iu_length
=
377 (sizeof(struct host_to_dev_fis
) - sizeof(u32
)) / sizeof(u32
);
379 /* Set the first word of the H2D REG FIS */
380 task_context
->type
.words
[0] = *(u32
*)&ireq
->stp
.cmd
;
382 ireq
->post_context
= (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
|
383 (ISCI_PEG
<< SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT
) |
384 (iport
->physical_port_index
<<
385 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT
) |
386 ISCI_TAG_TCI(ireq
->io_tag
));
388 * Copy the physical address for the command buffer to the SCU Task
389 * Context. We must offset the command buffer by 4 bytes because the
390 * first 4 bytes are transfered in the body of the TC.
392 dma_addr
= sci_io_request_get_dma_addr(ireq
,
393 ((char *) &ireq
->stp
.cmd
) +
396 task_context
->command_iu_upper
= upper_32_bits(dma_addr
);
397 task_context
->command_iu_lower
= lower_32_bits(dma_addr
);
399 /* SATA Requests do not have a response buffer */
400 task_context
->response_iu_upper
= 0;
401 task_context
->response_iu_lower
= 0;
404 static void scu_stp_raw_request_construct_task_context(struct isci_request
*ireq
)
406 struct scu_task_context
*task_context
= ireq
->tc
;
408 scu_sata_reqeust_construct_task_context(ireq
, task_context
);
410 task_context
->control_frame
= 0;
411 task_context
->priority
= SCU_TASK_PRIORITY_NORMAL
;
412 task_context
->task_type
= SCU_TASK_TYPE_SATA_RAW_FRAME
;
413 task_context
->type
.stp
.fis_type
= FIS_REGH2D
;
414 task_context
->transfer_length_bytes
= sizeof(struct host_to_dev_fis
) - sizeof(u32
);
417 static enum sci_status
sci_stp_pio_request_construct(struct isci_request
*ireq
,
420 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
422 scu_stp_raw_request_construct_task_context(ireq
);
425 stp_req
->sgl
.offset
= 0;
426 stp_req
->sgl
.set
= SCU_SGL_ELEMENT_PAIR_A
;
429 sci_request_build_sgl(ireq
);
430 stp_req
->sgl
.index
= 0;
432 /* The user does not want the data copied to the SGL buffer location */
433 stp_req
->sgl
.index
= -1;
441 * @sci_req: This parameter specifies the request to be constructed as an
443 * @optimized_task_type: This parameter specifies whether the request is to be
444 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
445 * value of 1 indicates NCQ.
447 * This method will perform request construction common to all types of STP
448 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
449 * returns an indication as to whether the construction was successful.
451 static void sci_stp_optimized_request_construct(struct isci_request
*ireq
,
452 u8 optimized_task_type
,
454 enum dma_data_direction dir
)
456 struct scu_task_context
*task_context
= ireq
->tc
;
458 /* Build the STP task context structure */
459 scu_sata_reqeust_construct_task_context(ireq
, task_context
);
461 /* Copy over the SGL elements */
462 sci_request_build_sgl(ireq
);
464 /* Copy over the number of bytes to be transfered */
465 task_context
->transfer_length_bytes
= len
;
467 if (dir
== DMA_TO_DEVICE
) {
469 * The difference between the DMA IN and DMA OUT request task type
470 * values are consistent with the difference between FPDMA READ
471 * and FPDMA WRITE values. Add the supplied task type parameter
472 * to this difference to set the task type properly for this
473 * DATA OUT (WRITE) case. */
474 task_context
->task_type
= optimized_task_type
+ (SCU_TASK_TYPE_DMA_OUT
475 - SCU_TASK_TYPE_DMA_IN
);
478 * For the DATA IN (READ) case, simply save the supplied
479 * optimized task type. */
480 task_context
->task_type
= optimized_task_type
;
486 static enum sci_status
487 sci_io_request_construct_sata(struct isci_request
*ireq
,
489 enum dma_data_direction dir
,
492 enum sci_status status
= SCI_SUCCESS
;
493 struct sas_task
*task
= isci_request_access_task(ireq
);
495 /* check for management protocols */
496 if (ireq
->ttype
== tmf_task
) {
497 struct isci_tmf
*tmf
= isci_request_access_tmf(ireq
);
499 if (tmf
->tmf_code
== isci_tmf_sata_srst_high
||
500 tmf
->tmf_code
== isci_tmf_sata_srst_low
) {
501 scu_stp_raw_request_construct_task_context(ireq
);
504 dev_err(&ireq
->owning_controller
->pdev
->dev
,
505 "%s: Request 0x%p received un-handled SAT "
506 "management protocol 0x%x.\n",
507 __func__
, ireq
, tmf
->tmf_code
);
513 if (!sas_protocol_ata(task
->task_proto
)) {
514 dev_err(&ireq
->owning_controller
->pdev
->dev
,
515 "%s: Non-ATA protocol in SATA path: 0x%x\n",
523 if (task
->data_dir
== DMA_NONE
) {
524 scu_stp_raw_request_construct_task_context(ireq
);
529 if (task
->ata_task
.use_ncq
) {
530 sci_stp_optimized_request_construct(ireq
,
531 SCU_TASK_TYPE_FPDMAQ_READ
,
537 if (task
->ata_task
.dma_xfer
) {
538 sci_stp_optimized_request_construct(ireq
,
539 SCU_TASK_TYPE_DMA_IN
,
543 return sci_stp_pio_request_construct(ireq
, copy
);
548 static enum sci_status
sci_io_request_construct_basic_ssp(struct isci_request
*ireq
)
550 struct sas_task
*task
= isci_request_access_task(ireq
);
552 ireq
->protocol
= SCIC_SSP_PROTOCOL
;
554 scu_ssp_io_request_construct_task_context(ireq
,
556 task
->total_xfer_len
);
558 sci_io_request_build_ssp_command_iu(ireq
);
560 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
565 enum sci_status
sci_task_request_construct_ssp(
566 struct isci_request
*ireq
)
568 /* Construct the SSP Task SCU Task Context */
569 scu_ssp_task_request_construct_task_context(ireq
);
571 /* Fill in the SSP Task IU */
572 sci_task_request_build_ssp_task_iu(ireq
);
574 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
579 static enum sci_status
sci_io_request_construct_basic_sata(struct isci_request
*ireq
)
581 enum sci_status status
;
583 struct sas_task
*task
= isci_request_access_task(ireq
);
585 ireq
->protocol
= SCIC_STP_PROTOCOL
;
587 copy
= (task
->data_dir
== DMA_NONE
) ? false : true;
589 status
= sci_io_request_construct_sata(ireq
,
590 task
->total_xfer_len
,
594 if (status
== SCI_SUCCESS
)
595 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
600 enum sci_status
sci_task_request_construct_sata(struct isci_request
*ireq
)
602 enum sci_status status
= SCI_SUCCESS
;
604 /* check for management protocols */
605 if (ireq
->ttype
== tmf_task
) {
606 struct isci_tmf
*tmf
= isci_request_access_tmf(ireq
);
608 if (tmf
->tmf_code
== isci_tmf_sata_srst_high
||
609 tmf
->tmf_code
== isci_tmf_sata_srst_low
) {
610 scu_stp_raw_request_construct_task_context(ireq
);
612 dev_err(&ireq
->owning_controller
->pdev
->dev
,
613 "%s: Request 0x%p received un-handled SAT "
615 __func__
, ireq
, tmf
->tmf_code
);
621 if (status
!= SCI_SUCCESS
)
623 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
629 * sci_req_tx_bytes - bytes transferred when reply underruns request
630 * @sci_req: request that was terminated early
632 #define SCU_TASK_CONTEXT_SRAM 0x200000
633 static u32
sci_req_tx_bytes(struct isci_request
*ireq
)
635 struct isci_host
*ihost
= ireq
->owning_controller
;
638 if (readl(&ihost
->smu_registers
->address_modifier
) == 0) {
639 void __iomem
*scu_reg_base
= ihost
->scu_registers
;
641 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
642 * BAR1 is the scu_registers
643 * 0x20002C = 0x200000 + 0x2c
644 * = start of task context SRAM + offset of (type.ssp.data_offset)
645 * TCi is the io_tag of struct sci_request
647 ret_val
= readl(scu_reg_base
+
648 (SCU_TASK_CONTEXT_SRAM
+ offsetof(struct scu_task_context
, type
.ssp
.data_offset
)) +
649 ((sizeof(struct scu_task_context
)) * ISCI_TAG_TCI(ireq
->io_tag
)));
655 enum sci_status
sci_request_start(struct isci_request
*ireq
)
657 enum sci_base_request_states state
;
658 struct scu_task_context
*tc
= ireq
->tc
;
659 struct isci_host
*ihost
= ireq
->owning_controller
;
661 state
= ireq
->sm
.current_state_id
;
662 if (state
!= SCI_REQ_CONSTRUCTED
) {
663 dev_warn(&ihost
->pdev
->dev
,
664 "%s: SCIC IO Request requested to start while in wrong "
665 "state %d\n", __func__
, state
);
666 return SCI_FAILURE_INVALID_STATE
;
669 tc
->task_index
= ISCI_TAG_TCI(ireq
->io_tag
);
671 switch (tc
->protocol_type
) {
672 case SCU_TASK_CONTEXT_PROTOCOL_SMP
:
673 case SCU_TASK_CONTEXT_PROTOCOL_SSP
:
675 tc
->type
.ssp
.tag
= ireq
->io_tag
;
676 tc
->type
.ssp
.target_port_transfer_tag
= 0xFFFF;
679 case SCU_TASK_CONTEXT_PROTOCOL_STP
:
681 * tc->type.stp.ncq_tag = ireq->ncq_tag;
685 case SCU_TASK_CONTEXT_PROTOCOL_NONE
:
686 /* / @todo When do we set no protocol type? */
690 /* This should never happen since we build the IO
695 /* Add to the post_context the io tag value */
696 ireq
->post_context
|= ISCI_TAG_TCI(ireq
->io_tag
);
698 /* Everything is good go ahead and change state */
699 sci_change_state(&ireq
->sm
, SCI_REQ_STARTED
);
705 sci_io_request_terminate(struct isci_request
*ireq
)
707 enum sci_base_request_states state
;
709 state
= ireq
->sm
.current_state_id
;
712 case SCI_REQ_CONSTRUCTED
:
713 ireq
->scu_status
= SCU_TASK_DONE_TASK_ABORT
;
714 ireq
->sci_status
= SCI_FAILURE_IO_TERMINATED
;
715 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
717 case SCI_REQ_STARTED
:
718 case SCI_REQ_TASK_WAIT_TC_COMP
:
719 case SCI_REQ_SMP_WAIT_RESP
:
720 case SCI_REQ_SMP_WAIT_TC_COMP
:
721 case SCI_REQ_STP_UDMA_WAIT_TC_COMP
:
722 case SCI_REQ_STP_UDMA_WAIT_D2H
:
723 case SCI_REQ_STP_NON_DATA_WAIT_H2D
:
724 case SCI_REQ_STP_NON_DATA_WAIT_D2H
:
725 case SCI_REQ_STP_PIO_WAIT_H2D
:
726 case SCI_REQ_STP_PIO_WAIT_FRAME
:
727 case SCI_REQ_STP_PIO_DATA_IN
:
728 case SCI_REQ_STP_PIO_DATA_OUT
:
729 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED
:
730 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG
:
731 case SCI_REQ_STP_SOFT_RESET_WAIT_D2H
:
732 sci_change_state(&ireq
->sm
, SCI_REQ_ABORTING
);
734 case SCI_REQ_TASK_WAIT_TC_RESP
:
735 sci_change_state(&ireq
->sm
, SCI_REQ_ABORTING
);
736 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
738 case SCI_REQ_ABORTING
:
739 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
741 case SCI_REQ_COMPLETED
:
743 dev_warn(&ireq
->owning_controller
->pdev
->dev
,
744 "%s: SCIC IO Request requested to abort while in wrong "
747 ireq
->sm
.current_state_id
);
751 return SCI_FAILURE_INVALID_STATE
;
754 enum sci_status
sci_request_complete(struct isci_request
*ireq
)
756 enum sci_base_request_states state
;
757 struct isci_host
*ihost
= ireq
->owning_controller
;
759 state
= ireq
->sm
.current_state_id
;
760 if (WARN_ONCE(state
!= SCI_REQ_COMPLETED
,
761 "isci: request completion from wrong state (%d)\n", state
))
762 return SCI_FAILURE_INVALID_STATE
;
764 if (ireq
->saved_rx_frame_index
!= SCU_INVALID_FRAME_INDEX
)
765 sci_controller_release_frame(ihost
,
766 ireq
->saved_rx_frame_index
);
768 /* XXX can we just stop the machine and remove the 'final' state? */
769 sci_change_state(&ireq
->sm
, SCI_REQ_FINAL
);
773 enum sci_status
sci_io_request_event_handler(struct isci_request
*ireq
,
776 enum sci_base_request_states state
;
777 struct isci_host
*ihost
= ireq
->owning_controller
;
779 state
= ireq
->sm
.current_state_id
;
781 if (state
!= SCI_REQ_STP_PIO_DATA_IN
) {
782 dev_warn(&ihost
->pdev
->dev
, "%s: (%x) in wrong state %d\n",
783 __func__
, event_code
, state
);
785 return SCI_FAILURE_INVALID_STATE
;
788 switch (scu_get_event_specifier(event_code
)) {
789 case SCU_TASK_DONE_CRC_ERR
<< SCU_EVENT_SPECIFIC_CODE_SHIFT
:
790 /* We are waiting for data and the SCU has R_ERR the data frame.
791 * Go back to waiting for the D2H Register FIS
793 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
796 dev_err(&ihost
->pdev
->dev
,
797 "%s: pio request unexpected event %#x\n",
798 __func__
, event_code
);
800 /* TODO Should we fail the PIO request when we get an
808 * This function copies response data for requests returning response data
809 * instead of sense data.
810 * @sci_req: This parameter specifies the request object for which to copy
813 static void sci_io_request_copy_response(struct isci_request
*ireq
)
817 struct ssp_response_iu
*ssp_response
;
818 struct isci_tmf
*isci_tmf
= isci_request_access_tmf(ireq
);
820 ssp_response
= &ireq
->ssp
.rsp
;
822 resp_buf
= &isci_tmf
->resp
.resp_iu
;
825 SSP_RESP_IU_MAX_SIZE
,
826 be32_to_cpu(ssp_response
->response_data_len
));
828 memcpy(resp_buf
, ssp_response
->resp_data
, len
);
831 static enum sci_status
832 request_started_state_tc_event(struct isci_request
*ireq
,
835 struct ssp_response_iu
*resp_iu
;
838 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
839 * to determine SDMA status
841 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
842 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
843 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
844 ireq
->sci_status
= SCI_SUCCESS
;
846 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP
): {
847 /* There are times when the SCU hardware will return an early
848 * response because the io request specified more data than is
849 * returned by the target device (mode pages, inquiry data,
850 * etc.). We must check the response stats to see if this is
851 * truly a failed request or a good request that just got
854 struct ssp_response_iu
*resp
= &ireq
->ssp
.rsp
;
855 ssize_t word_cnt
= SSP_RESP_IU_MAX_SIZE
/ sizeof(u32
);
857 sci_swab32_cpy(&ireq
->ssp
.rsp
,
861 if (resp
->status
== 0) {
862 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
863 ireq
->sci_status
= SCI_SUCCESS_IO_DONE_EARLY
;
865 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
866 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
870 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE
): {
871 ssize_t word_cnt
= SSP_RESP_IU_MAX_SIZE
/ sizeof(u32
);
873 sci_swab32_cpy(&ireq
->ssp
.rsp
,
877 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
878 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
882 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR
):
883 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
884 * guaranteed to be received before this completion status is
887 resp_iu
= &ireq
->ssp
.rsp
;
888 datapres
= resp_iu
->datapres
;
890 if (datapres
== 1 || datapres
== 2) {
891 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
892 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
894 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
895 ireq
->sci_status
= SCI_SUCCESS
;
898 /* only stp device gets suspended. */
899 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO
):
900 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR
):
901 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR
):
902 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR
):
903 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR
):
904 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN
):
905 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR
):
906 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP
):
907 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS
):
908 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR
):
909 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR
):
910 if (ireq
->protocol
== SCIC_STP_PROTOCOL
) {
911 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
912 SCU_COMPLETION_TL_STATUS_SHIFT
;
913 ireq
->sci_status
= SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
;
915 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
916 SCU_COMPLETION_TL_STATUS_SHIFT
;
917 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
921 /* both stp/ssp device gets suspended */
922 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR
):
923 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION
):
924 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1
):
925 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2
):
926 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3
):
927 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION
):
928 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION
):
929 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY
):
930 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED
):
931 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED
):
932 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
933 SCU_COMPLETION_TL_STATUS_SHIFT
;
934 ireq
->sci_status
= SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
;
937 /* neither ssp nor stp gets suspended. */
938 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR
):
939 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR
):
940 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR
):
941 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR
):
942 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR
):
943 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA
):
944 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR
):
945 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR
):
946 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR
):
947 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR
):
948 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA
):
949 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL
):
950 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV
):
951 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV
):
952 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND
):
954 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
955 SCU_COMPLETION_TL_STATUS_SHIFT
;
956 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
961 * TODO: This is probably wrong for ACK/NAK timeout conditions
964 /* In all cases we will treat this as the completion of the IO req. */
965 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
969 static enum sci_status
970 request_aborting_state_tc_event(struct isci_request
*ireq
,
973 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
974 case (SCU_TASK_DONE_GOOD
<< SCU_COMPLETION_TL_STATUS_SHIFT
):
975 case (SCU_TASK_DONE_TASK_ABORT
<< SCU_COMPLETION_TL_STATUS_SHIFT
):
976 ireq
->scu_status
= SCU_TASK_DONE_TASK_ABORT
;
977 ireq
->sci_status
= SCI_FAILURE_IO_TERMINATED
;
978 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
982 /* Unless we get some strange error wait for the task abort to complete
983 * TODO: Should there be a state change for this completion?
991 static enum sci_status
ssp_task_request_await_tc_event(struct isci_request
*ireq
,
994 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
995 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
996 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
997 ireq
->sci_status
= SCI_SUCCESS
;
998 sci_change_state(&ireq
->sm
, SCI_REQ_TASK_WAIT_TC_RESP
);
1000 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO
):
1001 /* Currently, the decision is to simply allow the task request
1002 * to timeout if the task IU wasn't received successfully.
1003 * There is a potential for receiving multiple task responses if
1004 * we decide to send the task IU again.
1006 dev_warn(&ireq
->owning_controller
->pdev
->dev
,
1007 "%s: TaskRequest:0x%p CompletionCode:%x - "
1008 "ACK/NAK timeout\n", __func__
, ireq
,
1011 sci_change_state(&ireq
->sm
, SCI_REQ_TASK_WAIT_TC_RESP
);
1015 * All other completion status cause the IO to be complete.
1016 * If a NAK was received, then it is up to the user to retry
1019 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1020 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1021 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1028 static enum sci_status
1029 smp_request_await_response_tc_event(struct isci_request
*ireq
,
1030 u32 completion_code
)
1032 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1033 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1034 /* In the AWAIT RESPONSE state, any TC completion is
1035 * unexpected. but if the TC has success status, we
1036 * complete the IO anyway.
1038 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1039 ireq
->sci_status
= SCI_SUCCESS
;
1040 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1042 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR
):
1043 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR
):
1044 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR
):
1045 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR
):
1046 /* These status has been seen in a specific LSI
1047 * expander, which sometimes is not able to send smp
1048 * response within 2 ms. This causes our hardware break
1049 * the connection and set TC completion with one of
1050 * these SMP_XXX_XX_ERR status. For these type of error,
1051 * we ask ihost user to retry the request.
1053 ireq
->scu_status
= SCU_TASK_DONE_SMP_RESP_TO_ERR
;
1054 ireq
->sci_status
= SCI_FAILURE_RETRY_REQUIRED
;
1055 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1058 /* All other completion status cause the IO to be complete. If a NAK
1059 * was received, then it is up to the user to retry the request
1061 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1062 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1063 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1070 static enum sci_status
1071 smp_request_await_tc_event(struct isci_request
*ireq
,
1072 u32 completion_code
)
1074 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1075 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1076 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1077 ireq
->sci_status
= SCI_SUCCESS
;
1078 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1081 /* All other completion status cause the IO to be
1082 * complete. If a NAK was received, then it is up to
1083 * the user to retry the request.
1085 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1086 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1087 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1094 static struct scu_sgl_element
*pio_sgl_next(struct isci_stp_request
*stp_req
)
1096 struct scu_sgl_element
*sgl
;
1097 struct scu_sgl_element_pair
*sgl_pair
;
1098 struct isci_request
*ireq
= to_ireq(stp_req
);
1099 struct isci_stp_pio_sgl
*pio_sgl
= &stp_req
->sgl
;
1101 sgl_pair
= to_sgl_element_pair(ireq
, pio_sgl
->index
);
1104 else if (pio_sgl
->set
== SCU_SGL_ELEMENT_PAIR_A
) {
1105 if (sgl_pair
->B
.address_lower
== 0 &&
1106 sgl_pair
->B
.address_upper
== 0) {
1109 pio_sgl
->set
= SCU_SGL_ELEMENT_PAIR_B
;
1113 if (sgl_pair
->next_pair_lower
== 0 &&
1114 sgl_pair
->next_pair_upper
== 0) {
1118 pio_sgl
->set
= SCU_SGL_ELEMENT_PAIR_A
;
1119 sgl_pair
= to_sgl_element_pair(ireq
, pio_sgl
->index
);
1127 static enum sci_status
1128 stp_request_non_data_await_h2d_tc_event(struct isci_request
*ireq
,
1129 u32 completion_code
)
1131 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1132 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1133 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1134 ireq
->sci_status
= SCI_SUCCESS
;
1135 sci_change_state(&ireq
->sm
, SCI_REQ_STP_NON_DATA_WAIT_D2H
);
1139 /* All other completion status cause the IO to be
1140 * complete. If a NAK was received, then it is up to
1141 * the user to retry the request.
1143 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1144 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1145 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1152 #define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1154 /* transmit DATA_FIS from (current sgl + offset) for input
1155 * parameter length. current sgl and offset is alreay stored in the IO request
1157 static enum sci_status
sci_stp_request_pio_data_out_trasmit_data_frame(
1158 struct isci_request
*ireq
,
1161 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1162 struct scu_task_context
*task_context
= ireq
->tc
;
1163 struct scu_sgl_element_pair
*sgl_pair
;
1164 struct scu_sgl_element
*current_sgl
;
1166 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1167 * for the data from current_sgl+offset for the input length
1169 sgl_pair
= to_sgl_element_pair(ireq
, stp_req
->sgl
.index
);
1170 if (stp_req
->sgl
.set
== SCU_SGL_ELEMENT_PAIR_A
)
1171 current_sgl
= &sgl_pair
->A
;
1173 current_sgl
= &sgl_pair
->B
;
1176 task_context
->command_iu_upper
= current_sgl
->address_upper
;
1177 task_context
->command_iu_lower
= current_sgl
->address_lower
;
1178 task_context
->transfer_length_bytes
= length
;
1179 task_context
->type
.stp
.fis_type
= FIS_DATA
;
1181 /* send the new TC out. */
1182 return sci_controller_continue_io(ireq
);
1185 static enum sci_status
sci_stp_request_pio_data_out_transmit_data(struct isci_request
*ireq
)
1187 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1188 struct scu_sgl_element_pair
*sgl_pair
;
1189 struct scu_sgl_element
*sgl
;
1190 enum sci_status status
;
1194 offset
= stp_req
->sgl
.offset
;
1195 sgl_pair
= to_sgl_element_pair(ireq
, stp_req
->sgl
.index
);
1196 if (WARN_ONCE(!sgl_pair
, "%s: null sgl element", __func__
))
1199 if (stp_req
->sgl
.set
== SCU_SGL_ELEMENT_PAIR_A
) {
1201 len
= sgl_pair
->A
.length
- offset
;
1204 len
= sgl_pair
->B
.length
- offset
;
1207 if (stp_req
->pio_len
== 0)
1210 if (stp_req
->pio_len
>= len
) {
1211 status
= sci_stp_request_pio_data_out_trasmit_data_frame(ireq
, len
);
1212 if (status
!= SCI_SUCCESS
)
1214 stp_req
->pio_len
-= len
;
1216 /* update the current sgl, offset and save for future */
1217 sgl
= pio_sgl_next(stp_req
);
1219 } else if (stp_req
->pio_len
< len
) {
1220 sci_stp_request_pio_data_out_trasmit_data_frame(ireq
, stp_req
->pio_len
);
1222 /* Sgl offset will be adjusted and saved for future */
1223 offset
+= stp_req
->pio_len
;
1224 sgl
->address_lower
+= stp_req
->pio_len
;
1225 stp_req
->pio_len
= 0;
1228 stp_req
->sgl
.offset
= offset
;
1235 * @stp_request: The request that is used for the SGL processing.
1236 * @data_buffer: The buffer of data to be copied.
1237 * @length: The length of the data transfer.
1239 * Copy the data from the buffer for the length specified to the IO reqeust SGL
1240 * specified data region. enum sci_status
1242 static enum sci_status
1243 sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request
*stp_req
,
1244 u8
*data_buf
, u32 len
)
1246 struct isci_request
*ireq
;
1249 struct sas_task
*task
;
1250 struct scatterlist
*sg
;
1252 int total_len
= len
;
1254 ireq
= to_ireq(stp_req
);
1255 task
= isci_request_access_task(ireq
);
1256 src_addr
= data_buf
;
1258 if (task
->num_scatter
> 0) {
1261 while (total_len
> 0) {
1262 struct page
*page
= sg_page(sg
);
1264 copy_len
= min_t(int, total_len
, sg_dma_len(sg
));
1265 kaddr
= kmap_atomic(page
, KM_IRQ0
);
1266 memcpy(kaddr
+ sg
->offset
, src_addr
, copy_len
);
1267 kunmap_atomic(kaddr
, KM_IRQ0
);
1268 total_len
-= copy_len
;
1269 src_addr
+= copy_len
;
1273 BUG_ON(task
->total_xfer_len
< total_len
);
1274 memcpy(task
->scatter
, src_addr
, total_len
);
1282 * @sci_req: The PIO DATA IN request that is to receive the data.
1283 * @data_buffer: The buffer to copy from.
1285 * Copy the data buffer to the io request data region. enum sci_status
1287 static enum sci_status
sci_stp_request_pio_data_in_copy_data(
1288 struct isci_stp_request
*stp_req
,
1291 enum sci_status status
;
1294 * If there is less than 1K remaining in the transfer request
1295 * copy just the data for the transfer */
1296 if (stp_req
->pio_len
< SCU_MAX_FRAME_BUFFER_SIZE
) {
1297 status
= sci_stp_request_pio_data_in_copy_data_buffer(
1298 stp_req
, data_buffer
, stp_req
->pio_len
);
1300 if (status
== SCI_SUCCESS
)
1301 stp_req
->pio_len
= 0;
1303 /* We are transfering the whole frame so copy */
1304 status
= sci_stp_request_pio_data_in_copy_data_buffer(
1305 stp_req
, data_buffer
, SCU_MAX_FRAME_BUFFER_SIZE
);
1307 if (status
== SCI_SUCCESS
)
1308 stp_req
->pio_len
-= SCU_MAX_FRAME_BUFFER_SIZE
;
1314 static enum sci_status
1315 stp_request_pio_await_h2d_completion_tc_event(struct isci_request
*ireq
,
1316 u32 completion_code
)
1318 enum sci_status status
= SCI_SUCCESS
;
1320 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1321 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1322 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1323 ireq
->sci_status
= SCI_SUCCESS
;
1324 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
1328 /* All other completion status cause the IO to be
1329 * complete. If a NAK was received, then it is up to
1330 * the user to retry the request.
1332 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1333 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1334 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1341 static enum sci_status
1342 pio_data_out_tx_done_tc_event(struct isci_request
*ireq
,
1343 u32 completion_code
)
1345 enum sci_status status
= SCI_SUCCESS
;
1346 bool all_frames_transferred
= false;
1347 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1349 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1350 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1352 if (stp_req
->pio_len
!= 0) {
1353 status
= sci_stp_request_pio_data_out_transmit_data(ireq
);
1354 if (status
== SCI_SUCCESS
) {
1355 if (stp_req
->pio_len
== 0)
1356 all_frames_transferred
= true;
1358 } else if (stp_req
->pio_len
== 0) {
1360 * this will happen if the all data is written at the
1361 * first time after the pio setup fis is received
1363 all_frames_transferred
= true;
1366 /* all data transferred. */
1367 if (all_frames_transferred
) {
1369 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1370 * and wait for PIO_SETUP fis / or D2H REg fis. */
1371 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
1377 * All other completion status cause the IO to be complete.
1378 * If a NAK was received, then it is up to the user to retry
1381 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1382 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1383 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1390 static enum sci_status
sci_stp_request_udma_general_frame_handler(struct isci_request
*ireq
,
1393 struct isci_host
*ihost
= ireq
->owning_controller
;
1394 struct dev_to_host_fis
*frame_header
;
1395 enum sci_status status
;
1398 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1400 (void **)&frame_header
);
1402 if ((status
== SCI_SUCCESS
) &&
1403 (frame_header
->fis_type
== FIS_REGD2H
)) {
1404 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1406 (void **)&frame_buffer
);
1408 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1413 sci_controller_release_frame(ihost
, frame_index
);
1419 sci_io_request_frame_handler(struct isci_request
*ireq
,
1422 struct isci_host
*ihost
= ireq
->owning_controller
;
1423 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1424 enum sci_base_request_states state
;
1425 enum sci_status status
;
1428 state
= ireq
->sm
.current_state_id
;
1430 case SCI_REQ_STARTED
: {
1431 struct ssp_frame_hdr ssp_hdr
;
1434 sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1438 word_cnt
= sizeof(struct ssp_frame_hdr
) / sizeof(u32
);
1439 sci_swab32_cpy(&ssp_hdr
, frame_header
, word_cnt
);
1441 if (ssp_hdr
.frame_type
== SSP_RESPONSE
) {
1442 struct ssp_response_iu
*resp_iu
;
1443 ssize_t word_cnt
= SSP_RESP_IU_MAX_SIZE
/ sizeof(u32
);
1445 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1449 sci_swab32_cpy(&ireq
->ssp
.rsp
, resp_iu
, word_cnt
);
1451 resp_iu
= &ireq
->ssp
.rsp
;
1453 if (resp_iu
->datapres
== 0x01 ||
1454 resp_iu
->datapres
== 0x02) {
1455 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1456 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1458 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1459 ireq
->sci_status
= SCI_SUCCESS
;
1462 /* not a response frame, why did it get forwarded? */
1463 dev_err(&ihost
->pdev
->dev
,
1464 "%s: SCIC IO Request 0x%p received unexpected "
1465 "frame %d type 0x%02x\n", __func__
, ireq
,
1466 frame_index
, ssp_hdr
.frame_type
);
1470 * In any case we are done with this frame buffer return it to
1473 sci_controller_release_frame(ihost
, frame_index
);
1478 case SCI_REQ_TASK_WAIT_TC_RESP
:
1479 sci_io_request_copy_response(ireq
);
1480 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1481 sci_controller_release_frame(ihost
, frame_index
);
1484 case SCI_REQ_SMP_WAIT_RESP
: {
1485 struct smp_resp
*rsp_hdr
= &ireq
->smp
.rsp
;
1488 sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1492 /* byte swap the header. */
1493 word_cnt
= SMP_RESP_HDR_SZ
/ sizeof(u32
);
1494 sci_swab32_cpy(rsp_hdr
, frame_header
, word_cnt
);
1496 if (rsp_hdr
->frame_type
== SMP_RESPONSE
) {
1499 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1503 word_cnt
= (sizeof(struct smp_resp
) - SMP_RESP_HDR_SZ
) /
1506 sci_swab32_cpy(((u8
*) rsp_hdr
) + SMP_RESP_HDR_SZ
,
1507 smp_resp
, word_cnt
);
1509 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1510 ireq
->sci_status
= SCI_SUCCESS
;
1511 sci_change_state(&ireq
->sm
, SCI_REQ_SMP_WAIT_TC_COMP
);
1514 * This was not a response frame why did it get
1517 dev_err(&ihost
->pdev
->dev
,
1518 "%s: SCIC SMP Request 0x%p received unexpected "
1519 "frame %d type 0x%02x\n",
1523 rsp_hdr
->frame_type
);
1525 ireq
->scu_status
= SCU_TASK_DONE_SMP_FRM_TYPE_ERR
;
1526 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1527 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1530 sci_controller_release_frame(ihost
, frame_index
);
1535 case SCI_REQ_STP_UDMA_WAIT_TC_COMP
:
1536 return sci_stp_request_udma_general_frame_handler(ireq
,
1539 case SCI_REQ_STP_UDMA_WAIT_D2H
:
1540 /* Use the general frame handler to copy the resposne data */
1541 status
= sci_stp_request_udma_general_frame_handler(ireq
, frame_index
);
1543 if (status
!= SCI_SUCCESS
)
1546 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1547 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1548 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1551 case SCI_REQ_STP_NON_DATA_WAIT_D2H
: {
1552 struct dev_to_host_fis
*frame_header
;
1555 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1557 (void **)&frame_header
);
1559 if (status
!= SCI_SUCCESS
) {
1560 dev_err(&ihost
->pdev
->dev
,
1561 "%s: SCIC IO Request 0x%p could not get frame "
1562 "header for frame index %d, status %x\n",
1571 switch (frame_header
->fis_type
) {
1573 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1575 (void **)&frame_buffer
);
1577 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1581 /* The command has completed with error */
1582 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1583 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1587 dev_warn(&ihost
->pdev
->dev
,
1588 "%s: IO Request:0x%p Frame Id:%d protocol "
1589 "violation occurred\n", __func__
, stp_req
,
1592 ireq
->scu_status
= SCU_TASK_DONE_UNEXP_FIS
;
1593 ireq
->sci_status
= SCI_FAILURE_PROTOCOL_VIOLATION
;
1597 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1599 /* Frame has been decoded return it to the controller */
1600 sci_controller_release_frame(ihost
, frame_index
);
1605 case SCI_REQ_STP_PIO_WAIT_FRAME
: {
1606 struct sas_task
*task
= isci_request_access_task(ireq
);
1607 struct dev_to_host_fis
*frame_header
;
1610 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1612 (void **)&frame_header
);
1614 if (status
!= SCI_SUCCESS
) {
1615 dev_err(&ihost
->pdev
->dev
,
1616 "%s: SCIC IO Request 0x%p could not get frame "
1617 "header for frame index %d, status %x\n",
1618 __func__
, stp_req
, frame_index
, status
);
1622 switch (frame_header
->fis_type
) {
1624 /* Get from the frame buffer the PIO Setup Data */
1625 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1627 (void **)&frame_buffer
);
1629 /* Get the data from the PIO Setup The SCU Hardware
1630 * returns first word in the frame_header and the rest
1631 * of the data is in the frame buffer so we need to
1635 /* transfer_count: first 16bits in the 4th dword */
1636 stp_req
->pio_len
= frame_buffer
[3] & 0xffff;
1638 /* status: 4th byte in the 3rd dword */
1639 stp_req
->status
= (frame_buffer
[2] >> 24) & 0xff;
1641 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1645 ireq
->stp
.rsp
.status
= stp_req
->status
;
1647 /* The next state is dependent on whether the
1648 * request was PIO Data-in or Data out
1650 if (task
->data_dir
== DMA_FROM_DEVICE
) {
1651 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_DATA_IN
);
1652 } else if (task
->data_dir
== DMA_TO_DEVICE
) {
1654 status
= sci_stp_request_pio_data_out_transmit_data(ireq
);
1655 if (status
!= SCI_SUCCESS
)
1657 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_DATA_OUT
);
1661 case FIS_SETDEVBITS
:
1662 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
1666 if (frame_header
->status
& ATA_BUSY
) {
1668 * Now why is the drive sending a D2H Register
1669 * FIS when it is still busy? Do nothing since
1670 * we are still in the right state.
1672 dev_dbg(&ihost
->pdev
->dev
,
1673 "%s: SCIC PIO Request 0x%p received "
1674 "D2H Register FIS with BSY status "
1678 frame_header
->status
);
1682 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1684 (void **)&frame_buffer
);
1686 sci_controller_copy_sata_response(&ireq
->stp
.req
,
1690 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1691 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1692 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1696 /* FIXME: what do we do here? */
1700 /* Frame is decoded return it to the controller */
1701 sci_controller_release_frame(ihost
, frame_index
);
1706 case SCI_REQ_STP_PIO_DATA_IN
: {
1707 struct dev_to_host_fis
*frame_header
;
1708 struct sata_fis_data
*frame_buffer
;
1710 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1712 (void **)&frame_header
);
1714 if (status
!= SCI_SUCCESS
) {
1715 dev_err(&ihost
->pdev
->dev
,
1716 "%s: SCIC IO Request 0x%p could not get frame "
1717 "header for frame index %d, status %x\n",
1725 if (frame_header
->fis_type
!= FIS_DATA
) {
1726 dev_err(&ihost
->pdev
->dev
,
1727 "%s: SCIC PIO Request 0x%p received frame %d "
1728 "with fis type 0x%02x when expecting a data "
1733 frame_header
->fis_type
);
1735 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1736 ireq
->sci_status
= SCI_FAILURE_IO_REQUIRES_SCSI_ABORT
;
1737 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1739 /* Frame is decoded return it to the controller */
1740 sci_controller_release_frame(ihost
, frame_index
);
1744 if (stp_req
->sgl
.index
< 0) {
1745 ireq
->saved_rx_frame_index
= frame_index
;
1746 stp_req
->pio_len
= 0;
1748 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1750 (void **)&frame_buffer
);
1752 status
= sci_stp_request_pio_data_in_copy_data(stp_req
,
1753 (u8
*)frame_buffer
);
1755 /* Frame is decoded return it to the controller */
1756 sci_controller_release_frame(ihost
, frame_index
);
1759 /* Check for the end of the transfer, are there more
1760 * bytes remaining for this data transfer
1762 if (status
!= SCI_SUCCESS
|| stp_req
->pio_len
!= 0)
1765 if ((stp_req
->status
& ATA_BUSY
) == 0) {
1766 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1767 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1768 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1770 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
1775 case SCI_REQ_STP_SOFT_RESET_WAIT_D2H
: {
1776 struct dev_to_host_fis
*frame_header
;
1779 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1781 (void **)&frame_header
);
1782 if (status
!= SCI_SUCCESS
) {
1783 dev_err(&ihost
->pdev
->dev
,
1784 "%s: SCIC IO Request 0x%p could not get frame "
1785 "header for frame index %d, status %x\n",
1793 switch (frame_header
->fis_type
) {
1795 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1797 (void **)&frame_buffer
);
1799 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1803 /* The command has completed with error */
1804 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1805 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1809 dev_warn(&ihost
->pdev
->dev
,
1810 "%s: IO Request:0x%p Frame Id:%d protocol "
1811 "violation occurred\n",
1816 ireq
->scu_status
= SCU_TASK_DONE_UNEXP_FIS
;
1817 ireq
->sci_status
= SCI_FAILURE_PROTOCOL_VIOLATION
;
1821 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1823 /* Frame has been decoded return it to the controller */
1824 sci_controller_release_frame(ihost
, frame_index
);
1828 case SCI_REQ_ABORTING
:
1830 * TODO: Is it even possible to get an unsolicited frame in the
1833 sci_controller_release_frame(ihost
, frame_index
);
1837 dev_warn(&ihost
->pdev
->dev
,
1838 "%s: SCIC IO Request given unexpected frame %x while "
1844 sci_controller_release_frame(ihost
, frame_index
);
1845 return SCI_FAILURE_INVALID_STATE
;
1849 static enum sci_status
stp_request_udma_await_tc_event(struct isci_request
*ireq
,
1850 u32 completion_code
)
1852 enum sci_status status
= SCI_SUCCESS
;
1854 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1855 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1856 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1857 ireq
->sci_status
= SCI_SUCCESS
;
1858 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1860 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS
):
1861 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR
):
1862 /* We must check ther response buffer to see if the D2H
1863 * Register FIS was received before we got the TC
1866 if (ireq
->stp
.rsp
.fis_type
== FIS_REGD2H
) {
1867 sci_remote_device_suspend(ireq
->target_device
,
1868 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code
)));
1870 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1871 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1872 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1874 /* If we have an error completion status for the
1875 * TC then we can expect a D2H register FIS from
1876 * the device so we must change state to wait
1879 sci_change_state(&ireq
->sm
, SCI_REQ_STP_UDMA_WAIT_D2H
);
1883 /* TODO Check to see if any of these completion status need to
1884 * wait for the device to host register fis.
1886 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
1887 * - this comes only for B0
1889 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN
):
1890 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR
):
1891 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR
):
1892 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR
):
1893 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CRC_ERR
):
1894 sci_remote_device_suspend(ireq
->target_device
,
1895 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code
)));
1896 /* Fall through to the default case */
1898 /* All other completion status cause the IO to be complete. */
1899 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1900 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1901 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1908 static enum sci_status
1909 stp_request_soft_reset_await_h2d_asserted_tc_event(struct isci_request
*ireq
,
1910 u32 completion_code
)
1912 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1913 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1914 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1915 ireq
->sci_status
= SCI_SUCCESS
;
1916 sci_change_state(&ireq
->sm
, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG
);
1921 * All other completion status cause the IO to be complete.
1922 * If a NAK was received, then it is up to the user to retry
1925 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1926 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1927 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1934 static enum sci_status
1935 stp_request_soft_reset_await_h2d_diagnostic_tc_event(struct isci_request
*ireq
,
1936 u32 completion_code
)
1938 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1939 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1940 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1941 ireq
->sci_status
= SCI_SUCCESS
;
1942 sci_change_state(&ireq
->sm
, SCI_REQ_STP_SOFT_RESET_WAIT_D2H
);
1946 /* All other completion status cause the IO to be complete. If
1947 * a NAK was received, then it is up to the user to retry the
1950 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1951 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1952 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1960 sci_io_request_tc_completion(struct isci_request
*ireq
,
1961 u32 completion_code
)
1963 enum sci_base_request_states state
;
1964 struct isci_host
*ihost
= ireq
->owning_controller
;
1966 state
= ireq
->sm
.current_state_id
;
1969 case SCI_REQ_STARTED
:
1970 return request_started_state_tc_event(ireq
, completion_code
);
1972 case SCI_REQ_TASK_WAIT_TC_COMP
:
1973 return ssp_task_request_await_tc_event(ireq
,
1976 case SCI_REQ_SMP_WAIT_RESP
:
1977 return smp_request_await_response_tc_event(ireq
,
1980 case SCI_REQ_SMP_WAIT_TC_COMP
:
1981 return smp_request_await_tc_event(ireq
, completion_code
);
1983 case SCI_REQ_STP_UDMA_WAIT_TC_COMP
:
1984 return stp_request_udma_await_tc_event(ireq
,
1987 case SCI_REQ_STP_NON_DATA_WAIT_H2D
:
1988 return stp_request_non_data_await_h2d_tc_event(ireq
,
1991 case SCI_REQ_STP_PIO_WAIT_H2D
:
1992 return stp_request_pio_await_h2d_completion_tc_event(ireq
,
1995 case SCI_REQ_STP_PIO_DATA_OUT
:
1996 return pio_data_out_tx_done_tc_event(ireq
, completion_code
);
1998 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED
:
1999 return stp_request_soft_reset_await_h2d_asserted_tc_event(ireq
,
2002 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG
:
2003 return stp_request_soft_reset_await_h2d_diagnostic_tc_event(ireq
,
2006 case SCI_REQ_ABORTING
:
2007 return request_aborting_state_tc_event(ireq
,
2011 dev_warn(&ihost
->pdev
->dev
,
2012 "%s: SCIC IO Request given task completion "
2013 "notification %x while in wrong state %d\n",
2017 return SCI_FAILURE_INVALID_STATE
;
2022 * isci_request_process_response_iu() - This function sets the status and
2023 * response iu, in the task struct, from the request object for the upper
2025 * @sas_task: This parameter is the task struct from the upper layer driver.
2026 * @resp_iu: This parameter points to the response iu of the completed request.
2027 * @dev: This parameter specifies the linux device struct.
2031 static void isci_request_process_response_iu(
2032 struct sas_task
*task
,
2033 struct ssp_response_iu
*resp_iu
,
2038 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2039 "resp_iu->response_data_len = %x, "
2040 "resp_iu->sense_data_len = %x\nrepsonse data: ",
2045 resp_iu
->response_data_len
,
2046 resp_iu
->sense_data_len
);
2048 task
->task_status
.stat
= resp_iu
->status
;
2050 /* libsas updates the task status fields based on the response iu. */
2051 sas_ssp_task_response(dev
, task
, resp_iu
);
2055 * isci_request_set_open_reject_status() - This function prepares the I/O
2056 * completion for OPEN_REJECT conditions.
2057 * @request: This parameter is the completed isci_request object.
2058 * @response_ptr: This parameter specifies the service response for the I/O.
2059 * @status_ptr: This parameter specifies the exec status for the I/O.
2060 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2061 * the LLDD with respect to completing this request or forcing an abort
2062 * condition on the I/O.
2063 * @open_rej_reason: This parameter specifies the encoded reason for the
2064 * abandon-class reject.
2068 static void isci_request_set_open_reject_status(
2069 struct isci_request
*request
,
2070 struct sas_task
*task
,
2071 enum service_response
*response_ptr
,
2072 enum exec_status
*status_ptr
,
2073 enum isci_completion_selection
*complete_to_host_ptr
,
2074 enum sas_open_rej_reason open_rej_reason
)
2076 /* Task in the target is done. */
2077 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2078 *response_ptr
= SAS_TASK_UNDELIVERED
;
2079 *status_ptr
= SAS_OPEN_REJECT
;
2080 *complete_to_host_ptr
= isci_perform_normal_io_completion
;
2081 task
->task_status
.open_rej_reason
= open_rej_reason
;
2085 * isci_request_handle_controller_specific_errors() - This function decodes
2086 * controller-specific I/O completion error conditions.
2087 * @request: This parameter is the completed isci_request object.
2088 * @response_ptr: This parameter specifies the service response for the I/O.
2089 * @status_ptr: This parameter specifies the exec status for the I/O.
2090 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2091 * the LLDD with respect to completing this request or forcing an abort
2092 * condition on the I/O.
2096 static void isci_request_handle_controller_specific_errors(
2097 struct isci_remote_device
*idev
,
2098 struct isci_request
*request
,
2099 struct sas_task
*task
,
2100 enum service_response
*response_ptr
,
2101 enum exec_status
*status_ptr
,
2102 enum isci_completion_selection
*complete_to_host_ptr
)
2104 unsigned int cstatus
;
2106 cstatus
= request
->scu_status
;
2108 dev_dbg(&request
->isci_host
->pdev
->dev
,
2109 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2110 "- controller status = 0x%x\n",
2111 __func__
, request
, cstatus
);
2113 /* Decode the controller-specific errors; most
2114 * important is to recognize those conditions in which
2115 * the target may still have a task outstanding that
2118 * Note that there are SCU completion codes being
2119 * named in the decode below for which SCIC has already
2120 * done work to handle them in a way other than as
2121 * a controller-specific completion code; these are left
2122 * in the decode below for completeness sake.
2125 case SCU_TASK_DONE_DMASETUP_DIRERR
:
2126 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2127 case SCU_TASK_DONE_XFERCNT_ERR
:
2128 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2129 if (task
->task_proto
== SAS_PROTOCOL_SMP
) {
2130 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2131 *response_ptr
= SAS_TASK_COMPLETE
;
2133 /* See if the device has been/is being stopped. Note
2134 * that we ignore the quiesce state, since we are
2135 * concerned about the actual device state.
2138 *status_ptr
= SAS_DEVICE_UNKNOWN
;
2140 *status_ptr
= SAS_ABORTED_TASK
;
2142 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2144 *complete_to_host_ptr
=
2145 isci_perform_normal_io_completion
;
2147 /* Task in the target is not done. */
2148 *response_ptr
= SAS_TASK_UNDELIVERED
;
2151 *status_ptr
= SAS_DEVICE_UNKNOWN
;
2153 *status_ptr
= SAM_STAT_TASK_ABORTED
;
2155 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2157 *complete_to_host_ptr
=
2158 isci_perform_error_io_completion
;
2163 case SCU_TASK_DONE_CRC_ERR
:
2164 case SCU_TASK_DONE_NAK_CMD_ERR
:
2165 case SCU_TASK_DONE_EXCESS_DATA
:
2166 case SCU_TASK_DONE_UNEXP_FIS
:
2167 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2168 case SCU_TASK_DONE_VIIT_ENTRY_NV
: /* TODO - conditions? */
2169 case SCU_TASK_DONE_IIT_ENTRY_NV
: /* TODO - conditions? */
2170 case SCU_TASK_DONE_RNCNV_OUTBOUND
: /* TODO - conditions? */
2171 /* These are conditions in which the target
2172 * has completed the task, so that no cleanup
2175 *response_ptr
= SAS_TASK_COMPLETE
;
2177 /* See if the device has been/is being stopped. Note
2178 * that we ignore the quiesce state, since we are
2179 * concerned about the actual device state.
2182 *status_ptr
= SAS_DEVICE_UNKNOWN
;
2184 *status_ptr
= SAS_ABORTED_TASK
;
2186 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2188 *complete_to_host_ptr
= isci_perform_normal_io_completion
;
2192 /* Note that the only open reject completion codes seen here will be
2193 * abandon-class codes; all others are automatically retried in the SCU.
2195 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION
:
2197 isci_request_set_open_reject_status(
2198 request
, task
, response_ptr
, status_ptr
,
2199 complete_to_host_ptr
, SAS_OREJ_WRONG_DEST
);
2202 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION
:
2204 /* Note - the return of AB0 will change when
2205 * libsas implements detection of zone violations.
2207 isci_request_set_open_reject_status(
2208 request
, task
, response_ptr
, status_ptr
,
2209 complete_to_host_ptr
, SAS_OREJ_RESV_AB0
);
2212 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1
:
2214 isci_request_set_open_reject_status(
2215 request
, task
, response_ptr
, status_ptr
,
2216 complete_to_host_ptr
, SAS_OREJ_RESV_AB1
);
2219 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2
:
2221 isci_request_set_open_reject_status(
2222 request
, task
, response_ptr
, status_ptr
,
2223 complete_to_host_ptr
, SAS_OREJ_RESV_AB2
);
2226 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3
:
2228 isci_request_set_open_reject_status(
2229 request
, task
, response_ptr
, status_ptr
,
2230 complete_to_host_ptr
, SAS_OREJ_RESV_AB3
);
2233 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION
:
2235 isci_request_set_open_reject_status(
2236 request
, task
, response_ptr
, status_ptr
,
2237 complete_to_host_ptr
, SAS_OREJ_BAD_DEST
);
2240 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY
:
2242 isci_request_set_open_reject_status(
2243 request
, task
, response_ptr
, status_ptr
,
2244 complete_to_host_ptr
, SAS_OREJ_STP_NORES
);
2247 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED
:
2249 isci_request_set_open_reject_status(
2250 request
, task
, response_ptr
, status_ptr
,
2251 complete_to_host_ptr
, SAS_OREJ_EPROTO
);
2254 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED
:
2256 isci_request_set_open_reject_status(
2257 request
, task
, response_ptr
, status_ptr
,
2258 complete_to_host_ptr
, SAS_OREJ_CONN_RATE
);
2261 case SCU_TASK_DONE_LL_R_ERR
:
2262 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2263 case SCU_TASK_DONE_LL_PERR
:
2264 case SCU_TASK_DONE_LL_SY_TERM
:
2265 /* Also SCU_TASK_DONE_NAK_ERR:*/
2266 case SCU_TASK_DONE_LL_LF_TERM
:
2267 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2268 case SCU_TASK_DONE_LL_ABORT_ERR
:
2269 case SCU_TASK_DONE_SEQ_INV_TYPE
:
2270 /* Also SCU_TASK_DONE_UNEXP_XR: */
2271 case SCU_TASK_DONE_XR_IU_LEN_ERR
:
2272 case SCU_TASK_DONE_INV_FIS_LEN
:
2273 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2274 case SCU_TASK_DONE_SDMA_ERR
:
2275 case SCU_TASK_DONE_OFFSET_ERR
:
2276 case SCU_TASK_DONE_MAX_PLD_ERR
:
2277 case SCU_TASK_DONE_LF_ERR
:
2278 case SCU_TASK_DONE_SMP_RESP_TO_ERR
: /* Escalate to dev reset? */
2279 case SCU_TASK_DONE_SMP_LL_RX_ERR
:
2280 case SCU_TASK_DONE_UNEXP_DATA
:
2281 case SCU_TASK_DONE_UNEXP_SDBFIS
:
2282 case SCU_TASK_DONE_REG_ERR
:
2283 case SCU_TASK_DONE_SDB_ERR
:
2284 case SCU_TASK_DONE_TASK_ABORT
:
2286 /* Task in the target is not done. */
2287 *response_ptr
= SAS_TASK_UNDELIVERED
;
2288 *status_ptr
= SAM_STAT_TASK_ABORTED
;
2290 if (task
->task_proto
== SAS_PROTOCOL_SMP
) {
2291 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2293 *complete_to_host_ptr
= isci_perform_normal_io_completion
;
2295 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2297 *complete_to_host_ptr
= isci_perform_error_io_completion
;
2304 * isci_task_save_for_upper_layer_completion() - This function saves the
2305 * request for later completion to the upper layer driver.
2306 * @host: This parameter is a pointer to the host on which the the request
2307 * should be queued (either as an error or success).
2308 * @request: This parameter is the completed request.
2309 * @response: This parameter is the response code for the completed task.
2310 * @status: This parameter is the status code for the completed task.
2314 static void isci_task_save_for_upper_layer_completion(
2315 struct isci_host
*host
,
2316 struct isci_request
*request
,
2317 enum service_response response
,
2318 enum exec_status status
,
2319 enum isci_completion_selection task_notification_selection
)
2321 struct sas_task
*task
= isci_request_access_task(request
);
2323 task_notification_selection
2324 = isci_task_set_completion_status(task
, response
, status
,
2325 task_notification_selection
);
2327 /* Tasks aborted specifically by a call to the lldd_abort_task
2328 * function should not be completed to the host in the regular path.
2330 switch (task_notification_selection
) {
2332 case isci_perform_normal_io_completion
:
2334 /* Normal notification (task_done) */
2335 dev_dbg(&host
->pdev
->dev
,
2336 "%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n",
2339 task
->task_status
.resp
, response
,
2340 task
->task_status
.stat
, status
);
2341 /* Add to the completed list. */
2342 list_add(&request
->completed_node
,
2343 &host
->requests_to_complete
);
2345 /* Take the request off the device's pending request list. */
2346 list_del_init(&request
->dev_node
);
2349 case isci_perform_aborted_io_completion
:
2350 /* No notification to libsas because this request is
2351 * already in the abort path.
2353 dev_dbg(&host
->pdev
->dev
,
2354 "%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n",
2357 task
->task_status
.resp
, response
,
2358 task
->task_status
.stat
, status
);
2360 /* Wake up whatever process was waiting for this
2361 * request to complete.
2363 WARN_ON(request
->io_request_completion
== NULL
);
2365 if (request
->io_request_completion
!= NULL
) {
2367 /* Signal whoever is waiting that this
2368 * request is complete.
2370 complete(request
->io_request_completion
);
2374 case isci_perform_error_io_completion
:
2375 /* Use sas_task_abort */
2376 dev_dbg(&host
->pdev
->dev
,
2377 "%s: Error - task = %p, response=%d (%d), status=%d (%d)\n",
2380 task
->task_status
.resp
, response
,
2381 task
->task_status
.stat
, status
);
2382 /* Add to the aborted list. */
2383 list_add(&request
->completed_node
,
2384 &host
->requests_to_errorback
);
2388 dev_dbg(&host
->pdev
->dev
,
2389 "%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n",
2392 task
->task_status
.resp
, response
,
2393 task
->task_status
.stat
, status
);
2395 /* Add to the error to libsas list. */
2396 list_add(&request
->completed_node
,
2397 &host
->requests_to_errorback
);
2402 static void isci_request_process_stp_response(struct sas_task
*task
,
2403 void *response_buffer
)
2405 struct dev_to_host_fis
*d2h_reg_fis
= response_buffer
;
2406 struct task_status_struct
*ts
= &task
->task_status
;
2407 struct ata_task_resp
*resp
= (void *)&ts
->buf
[0];
2409 resp
->frame_len
= le16_to_cpu(*(__le16
*)(response_buffer
+ 6));
2410 memcpy(&resp
->ending_fis
[0], response_buffer
+ 16, 24);
2411 ts
->buf_valid_size
= sizeof(*resp
);
2414 * If the device fault bit is set in the status register, then
2415 * set the sense data and return.
2417 if (d2h_reg_fis
->status
& ATA_DF
)
2418 ts
->stat
= SAS_PROTO_RESPONSE
;
2420 ts
->stat
= SAM_STAT_GOOD
;
2422 ts
->resp
= SAS_TASK_COMPLETE
;
2425 static void isci_request_io_request_complete(struct isci_host
*ihost
,
2426 struct isci_request
*request
,
2427 enum sci_io_status completion_status
)
2429 struct sas_task
*task
= isci_request_access_task(request
);
2430 struct ssp_response_iu
*resp_iu
;
2432 unsigned long task_flags
;
2433 struct isci_remote_device
*idev
= isci_lookup_device(task
->dev
);
2434 enum service_response response
= SAS_TASK_UNDELIVERED
;
2435 enum exec_status status
= SAS_ABORTED_TASK
;
2436 enum isci_request_status request_status
;
2437 enum isci_completion_selection complete_to_host
2438 = isci_perform_normal_io_completion
;
2440 dev_dbg(&ihost
->pdev
->dev
,
2441 "%s: request = %p, task = %p,\n"
2442 "task->data_dir = %d completion_status = 0x%x\n",
2449 spin_lock(&request
->state_lock
);
2450 request_status
= request
->status
;
2452 /* Decode the request status. Note that if the request has been
2453 * aborted by a task management function, we don't care
2454 * what the status is.
2456 switch (request_status
) {
2459 /* "aborted" indicates that the request was aborted by a task
2460 * management function, since once a task management request is
2461 * perfomed by the device, the request only completes because
2462 * of the subsequent driver terminate.
2464 * Aborted also means an external thread is explicitly managing
2465 * this request, so that we do not complete it up the stack.
2467 * The target is still there (since the TMF was successful).
2469 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2470 response
= SAS_TASK_COMPLETE
;
2472 /* See if the device has been/is being stopped. Note
2473 * that we ignore the quiesce state, since we are
2474 * concerned about the actual device state.
2477 status
= SAS_DEVICE_UNKNOWN
;
2479 status
= SAS_ABORTED_TASK
;
2481 complete_to_host
= isci_perform_aborted_io_completion
;
2482 /* This was an aborted request. */
2484 spin_unlock(&request
->state_lock
);
2488 /* aborting means that the task management function tried and
2489 * failed to abort the request. We need to note the request
2490 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
2493 * Aborting also means an external thread is explicitly managing
2494 * this request, so that we do not complete it up the stack.
2496 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2497 response
= SAS_TASK_UNDELIVERED
;
2500 /* The device has been /is being stopped. Note that
2501 * we ignore the quiesce state, since we are
2502 * concerned about the actual device state.
2504 status
= SAS_DEVICE_UNKNOWN
;
2506 status
= SAS_PHY_DOWN
;
2508 complete_to_host
= isci_perform_aborted_io_completion
;
2510 /* This was an aborted request. */
2512 spin_unlock(&request
->state_lock
);
2517 /* This was an terminated request. This happens when
2518 * the I/O is being terminated because of an action on
2519 * the device (reset, tear down, etc.), and the I/O needs
2520 * to be completed up the stack.
2522 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2523 response
= SAS_TASK_UNDELIVERED
;
2525 /* See if the device has been/is being stopped. Note
2526 * that we ignore the quiesce state, since we are
2527 * concerned about the actual device state.
2530 status
= SAS_DEVICE_UNKNOWN
;
2532 status
= SAS_ABORTED_TASK
;
2534 complete_to_host
= isci_perform_aborted_io_completion
;
2536 /* This was a terminated request. */
2538 spin_unlock(&request
->state_lock
);
2542 /* This was a terminated request that timed-out during the
2543 * termination process. There is no task to complete to
2546 complete_to_host
= isci_perform_normal_io_completion
;
2547 spin_unlock(&request
->state_lock
);
2552 /* The request is done from an SCU HW perspective. */
2553 request
->status
= completed
;
2555 spin_unlock(&request
->state_lock
);
2557 /* This is an active request being completed from the core. */
2558 switch (completion_status
) {
2560 case SCI_IO_FAILURE_RESPONSE_VALID
:
2561 dev_dbg(&ihost
->pdev
->dev
,
2562 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2567 if (sas_protocol_ata(task
->task_proto
)) {
2568 resp_buf
= &request
->stp
.rsp
;
2569 isci_request_process_stp_response(task
,
2571 } else if (SAS_PROTOCOL_SSP
== task
->task_proto
) {
2573 /* crack the iu response buffer. */
2574 resp_iu
= &request
->ssp
.rsp
;
2575 isci_request_process_response_iu(task
, resp_iu
,
2578 } else if (SAS_PROTOCOL_SMP
== task
->task_proto
) {
2580 dev_err(&ihost
->pdev
->dev
,
2581 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2582 "SAS_PROTOCOL_SMP protocol\n",
2586 dev_err(&ihost
->pdev
->dev
,
2587 "%s: unknown protocol\n", __func__
);
2589 /* use the task status set in the task struct by the
2590 * isci_request_process_response_iu call.
2592 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2593 response
= task
->task_status
.resp
;
2594 status
= task
->task_status
.stat
;
2597 case SCI_IO_SUCCESS
:
2598 case SCI_IO_SUCCESS_IO_DONE_EARLY
:
2600 response
= SAS_TASK_COMPLETE
;
2601 status
= SAM_STAT_GOOD
;
2602 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2604 if (task
->task_proto
== SAS_PROTOCOL_SMP
) {
2605 void *rsp
= &request
->smp
.rsp
;
2607 dev_dbg(&ihost
->pdev
->dev
,
2608 "%s: SMP protocol completion\n",
2611 sg_copy_from_buffer(
2612 &task
->smp_task
.smp_resp
, 1,
2613 rsp
, sizeof(struct smp_resp
));
2614 } else if (completion_status
2615 == SCI_IO_SUCCESS_IO_DONE_EARLY
) {
2617 /* This was an SSP / STP / SATA transfer.
2618 * There is a possibility that less data than
2619 * the maximum was transferred.
2621 u32 transferred_length
= sci_req_tx_bytes(request
);
2623 task
->task_status
.residual
2624 = task
->total_xfer_len
- transferred_length
;
2626 /* If there were residual bytes, call this an
2629 if (task
->task_status
.residual
!= 0)
2630 status
= SAS_DATA_UNDERRUN
;
2632 dev_dbg(&ihost
->pdev
->dev
,
2633 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2638 dev_dbg(&ihost
->pdev
->dev
,
2639 "%s: SCI_IO_SUCCESS\n",
2644 case SCI_IO_FAILURE_TERMINATED
:
2645 dev_dbg(&ihost
->pdev
->dev
,
2646 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2651 /* The request was terminated explicitly. No handling
2652 * is needed in the SCSI error handler path.
2654 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2655 response
= SAS_TASK_UNDELIVERED
;
2657 /* See if the device has been/is being stopped. Note
2658 * that we ignore the quiesce state, since we are
2659 * concerned about the actual device state.
2662 status
= SAS_DEVICE_UNKNOWN
;
2664 status
= SAS_ABORTED_TASK
;
2666 complete_to_host
= isci_perform_normal_io_completion
;
2669 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
:
2671 isci_request_handle_controller_specific_errors(
2672 idev
, request
, task
, &response
, &status
,
2677 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
:
2678 /* This is a special case, in that the I/O completion
2679 * is telling us that the device needs a reset.
2680 * In order for the device reset condition to be
2681 * noticed, the I/O has to be handled in the error
2682 * handler. Set the reset flag and cause the
2683 * SCSI error thread to be scheduled.
2685 spin_lock_irqsave(&task
->task_state_lock
, task_flags
);
2686 task
->task_state_flags
|= SAS_TASK_NEED_DEV_RESET
;
2687 spin_unlock_irqrestore(&task
->task_state_lock
, task_flags
);
2690 response
= SAS_TASK_UNDELIVERED
;
2691 status
= SAM_STAT_TASK_ABORTED
;
2693 complete_to_host
= isci_perform_error_io_completion
;
2694 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2697 case SCI_FAILURE_RETRY_REQUIRED
:
2699 /* Fail the I/O so it can be retried. */
2700 response
= SAS_TASK_UNDELIVERED
;
2702 status
= SAS_DEVICE_UNKNOWN
;
2704 status
= SAS_ABORTED_TASK
;
2706 complete_to_host
= isci_perform_normal_io_completion
;
2707 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2712 /* Catch any otherwise unhandled error codes here. */
2713 dev_dbg(&ihost
->pdev
->dev
,
2714 "%s: invalid completion code: 0x%x - "
2715 "isci_request = %p\n",
2716 __func__
, completion_status
, request
);
2718 response
= SAS_TASK_UNDELIVERED
;
2720 /* See if the device has been/is being stopped. Note
2721 * that we ignore the quiesce state, since we are
2722 * concerned about the actual device state.
2725 status
= SAS_DEVICE_UNKNOWN
;
2727 status
= SAS_ABORTED_TASK
;
2729 if (SAS_PROTOCOL_SMP
== task
->task_proto
) {
2730 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2731 complete_to_host
= isci_perform_normal_io_completion
;
2733 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2734 complete_to_host
= isci_perform_error_io_completion
;
2741 switch (task
->task_proto
) {
2742 case SAS_PROTOCOL_SSP
:
2743 if (task
->data_dir
== DMA_NONE
)
2745 if (task
->num_scatter
== 0)
2746 /* 0 indicates a single dma address */
2747 dma_unmap_single(&ihost
->pdev
->dev
,
2748 request
->zero_scatter_daddr
,
2749 task
->total_xfer_len
, task
->data_dir
);
2750 else /* unmap the sgl dma addresses */
2751 dma_unmap_sg(&ihost
->pdev
->dev
, task
->scatter
,
2752 request
->num_sg_entries
, task
->data_dir
);
2754 case SAS_PROTOCOL_SMP
: {
2755 struct scatterlist
*sg
= &task
->smp_task
.smp_req
;
2756 struct smp_req
*smp_req
;
2759 dma_unmap_sg(&ihost
->pdev
->dev
, sg
, 1, DMA_TO_DEVICE
);
2761 /* need to swab it back in case the command buffer is re-used */
2762 kaddr
= kmap_atomic(sg_page(sg
), KM_IRQ0
);
2763 smp_req
= kaddr
+ sg
->offset
;
2764 sci_swab32_cpy(smp_req
, smp_req
, sg
->length
/ sizeof(u32
));
2765 kunmap_atomic(kaddr
, KM_IRQ0
);
2772 /* Put the completed request on the correct list */
2773 isci_task_save_for_upper_layer_completion(ihost
, request
, response
,
2774 status
, complete_to_host
2777 /* complete the io request to the core. */
2778 sci_controller_complete_io(ihost
, request
->target_device
, request
);
2779 isci_put_device(idev
);
2781 /* set terminated handle so it cannot be completed or
2782 * terminated again, and to cause any calls into abort
2783 * task to recognize the already completed case.
2785 set_bit(IREQ_TERMINATED
, &request
->flags
);
2788 static void sci_request_started_state_enter(struct sci_base_state_machine
*sm
)
2790 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
2791 struct domain_device
*dev
= ireq
->target_device
->domain_dev
;
2792 struct sas_task
*task
;
2794 /* XXX as hch said always creating an internal sas_task for tmf
2795 * requests would simplify the driver
2797 task
= ireq
->ttype
== io_task
? isci_request_access_task(ireq
) : NULL
;
2799 /* all unaccelerated request types (non ssp or ncq) handled with
2802 if (!task
&& dev
->dev_type
== SAS_END_DEV
) {
2803 sci_change_state(sm
, SCI_REQ_TASK_WAIT_TC_COMP
);
2805 (isci_request_access_tmf(ireq
)->tmf_code
== isci_tmf_sata_srst_high
||
2806 isci_request_access_tmf(ireq
)->tmf_code
== isci_tmf_sata_srst_low
)) {
2807 sci_change_state(sm
, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED
);
2808 } else if (task
&& task
->task_proto
== SAS_PROTOCOL_SMP
) {
2809 sci_change_state(sm
, SCI_REQ_SMP_WAIT_RESP
);
2810 } else if (task
&& sas_protocol_ata(task
->task_proto
) &&
2811 !task
->ata_task
.use_ncq
) {
2814 if (task
->data_dir
== DMA_NONE
)
2815 state
= SCI_REQ_STP_NON_DATA_WAIT_H2D
;
2816 else if (task
->ata_task
.dma_xfer
)
2817 state
= SCI_REQ_STP_UDMA_WAIT_TC_COMP
;
2819 state
= SCI_REQ_STP_PIO_WAIT_H2D
;
2821 sci_change_state(sm
, state
);
2825 static void sci_request_completed_state_enter(struct sci_base_state_machine
*sm
)
2827 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
2828 struct isci_host
*ihost
= ireq
->owning_controller
;
2830 /* Tell the SCI_USER that the IO request is complete */
2831 if (!test_bit(IREQ_TMF
, &ireq
->flags
))
2832 isci_request_io_request_complete(ihost
, ireq
,
2835 isci_task_request_complete(ihost
, ireq
, ireq
->sci_status
);
2838 static void sci_request_aborting_state_enter(struct sci_base_state_machine
*sm
)
2840 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
2842 /* Setting the abort bit in the Task Context is required by the silicon. */
2843 ireq
->tc
->abort
= 1;
2846 static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine
*sm
)
2848 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
2850 ireq
->target_device
->working_request
= ireq
;
2853 static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine
*sm
)
2855 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
2857 ireq
->target_device
->working_request
= ireq
;
2860 static void sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter(struct sci_base_state_machine
*sm
)
2862 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
2864 ireq
->target_device
->working_request
= ireq
;
2867 static void sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter(struct sci_base_state_machine
*sm
)
2869 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
2870 struct scu_task_context
*tc
= ireq
->tc
;
2871 struct host_to_dev_fis
*h2d_fis
;
2872 enum sci_status status
;
2874 /* Clear the SRST bit */
2875 h2d_fis
= &ireq
->stp
.cmd
;
2876 h2d_fis
->control
= 0;
2878 /* Clear the TC control bit */
2879 tc
->control_frame
= 0;
2881 status
= sci_controller_continue_io(ireq
);
2882 WARN_ONCE(status
!= SCI_SUCCESS
, "isci: continue io failure\n");
2885 static const struct sci_base_state sci_request_state_table
[] = {
2886 [SCI_REQ_INIT
] = { },
2887 [SCI_REQ_CONSTRUCTED
] = { },
2888 [SCI_REQ_STARTED
] = {
2889 .enter_state
= sci_request_started_state_enter
,
2891 [SCI_REQ_STP_NON_DATA_WAIT_H2D
] = {
2892 .enter_state
= sci_stp_request_started_non_data_await_h2d_completion_enter
,
2894 [SCI_REQ_STP_NON_DATA_WAIT_D2H
] = { },
2895 [SCI_REQ_STP_PIO_WAIT_H2D
] = {
2896 .enter_state
= sci_stp_request_started_pio_await_h2d_completion_enter
,
2898 [SCI_REQ_STP_PIO_WAIT_FRAME
] = { },
2899 [SCI_REQ_STP_PIO_DATA_IN
] = { },
2900 [SCI_REQ_STP_PIO_DATA_OUT
] = { },
2901 [SCI_REQ_STP_UDMA_WAIT_TC_COMP
] = { },
2902 [SCI_REQ_STP_UDMA_WAIT_D2H
] = { },
2903 [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED
] = {
2904 .enter_state
= sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter
,
2906 [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG
] = {
2907 .enter_state
= sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter
,
2909 [SCI_REQ_STP_SOFT_RESET_WAIT_D2H
] = { },
2910 [SCI_REQ_TASK_WAIT_TC_COMP
] = { },
2911 [SCI_REQ_TASK_WAIT_TC_RESP
] = { },
2912 [SCI_REQ_SMP_WAIT_RESP
] = { },
2913 [SCI_REQ_SMP_WAIT_TC_COMP
] = { },
2914 [SCI_REQ_COMPLETED
] = {
2915 .enter_state
= sci_request_completed_state_enter
,
2917 [SCI_REQ_ABORTING
] = {
2918 .enter_state
= sci_request_aborting_state_enter
,
2920 [SCI_REQ_FINAL
] = { },
2924 sci_general_request_construct(struct isci_host
*ihost
,
2925 struct isci_remote_device
*idev
,
2926 struct isci_request
*ireq
)
2928 sci_init_sm(&ireq
->sm
, sci_request_state_table
, SCI_REQ_INIT
);
2930 ireq
->target_device
= idev
;
2931 ireq
->protocol
= SCIC_NO_PROTOCOL
;
2932 ireq
->saved_rx_frame_index
= SCU_INVALID_FRAME_INDEX
;
2934 ireq
->sci_status
= SCI_SUCCESS
;
2935 ireq
->scu_status
= 0;
2936 ireq
->post_context
= 0xFFFFFFFF;
2939 static enum sci_status
2940 sci_io_request_construct(struct isci_host
*ihost
,
2941 struct isci_remote_device
*idev
,
2942 struct isci_request
*ireq
)
2944 struct domain_device
*dev
= idev
->domain_dev
;
2945 enum sci_status status
= SCI_SUCCESS
;
2947 /* Build the common part of the request */
2948 sci_general_request_construct(ihost
, idev
, ireq
);
2950 if (idev
->rnc
.remote_node_index
== SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
)
2951 return SCI_FAILURE_INVALID_REMOTE_DEVICE
;
2953 if (dev
->dev_type
== SAS_END_DEV
)
2955 else if (dev
->dev_type
== SATA_DEV
|| (dev
->tproto
& SAS_PROTOCOL_STP
))
2956 memset(&ireq
->stp
.cmd
, 0, sizeof(ireq
->stp
.cmd
));
2957 else if (dev_is_expander(dev
))
2960 return SCI_FAILURE_UNSUPPORTED_PROTOCOL
;
2962 memset(ireq
->tc
, 0, offsetof(struct scu_task_context
, sgl_pair_ab
));
2967 enum sci_status
sci_task_request_construct(struct isci_host
*ihost
,
2968 struct isci_remote_device
*idev
,
2969 u16 io_tag
, struct isci_request
*ireq
)
2971 struct domain_device
*dev
= idev
->domain_dev
;
2972 enum sci_status status
= SCI_SUCCESS
;
2974 /* Build the common part of the request */
2975 sci_general_request_construct(ihost
, idev
, ireq
);
2977 if (dev
->dev_type
== SAS_END_DEV
||
2978 dev
->dev_type
== SATA_DEV
|| (dev
->tproto
& SAS_PROTOCOL_STP
)) {
2979 set_bit(IREQ_TMF
, &ireq
->flags
);
2980 memset(ireq
->tc
, 0, sizeof(struct scu_task_context
));
2982 status
= SCI_FAILURE_UNSUPPORTED_PROTOCOL
;
2987 static enum sci_status
isci_request_ssp_request_construct(
2988 struct isci_request
*request
)
2990 enum sci_status status
;
2992 dev_dbg(&request
->isci_host
->pdev
->dev
,
2993 "%s: request = %p\n",
2996 status
= sci_io_request_construct_basic_ssp(request
);
3000 static enum sci_status
isci_request_stp_request_construct(struct isci_request
*ireq
)
3002 struct sas_task
*task
= isci_request_access_task(ireq
);
3003 struct host_to_dev_fis
*fis
= &ireq
->stp
.cmd
;
3004 struct ata_queued_cmd
*qc
= task
->uldd_task
;
3005 enum sci_status status
;
3007 dev_dbg(&ireq
->isci_host
->pdev
->dev
,
3012 memcpy(fis
, &task
->ata_task
.fis
, sizeof(struct host_to_dev_fis
));
3013 if (!task
->ata_task
.device_control_reg_update
)
3017 status
= sci_io_request_construct_basic_sata(ireq
);
3019 if (qc
&& (qc
->tf
.command
== ATA_CMD_FPDMA_WRITE
||
3020 qc
->tf
.command
== ATA_CMD_FPDMA_READ
)) {
3021 fis
->sector_count
= qc
->tag
<< 3;
3022 ireq
->tc
->type
.stp
.ncq_tag
= qc
->tag
;
3028 static enum sci_status
3029 sci_io_request_construct_smp(struct device
*dev
,
3030 struct isci_request
*ireq
,
3031 struct sas_task
*task
)
3033 struct scatterlist
*sg
= &task
->smp_task
.smp_req
;
3034 struct isci_remote_device
*idev
;
3035 struct scu_task_context
*task_context
;
3036 struct isci_port
*iport
;
3037 struct smp_req
*smp_req
;
3042 kaddr
= kmap_atomic(sg_page(sg
), KM_IRQ0
);
3043 smp_req
= kaddr
+ sg
->offset
;
3045 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3046 * functions under SAS 2.0, a zero request length really indicates
3047 * a non-zero default length.
3049 if (smp_req
->req_len
== 0) {
3050 switch (smp_req
->func
) {
3052 case SMP_REPORT_PHY_ERR_LOG
:
3053 case SMP_REPORT_PHY_SATA
:
3054 case SMP_REPORT_ROUTE_INFO
:
3055 smp_req
->req_len
= 2;
3057 case SMP_CONF_ROUTE_INFO
:
3058 case SMP_PHY_CONTROL
:
3059 case SMP_PHY_TEST_FUNCTION
:
3060 smp_req
->req_len
= 9;
3062 /* Default - zero is a valid default for 2.0. */
3065 req_len
= smp_req
->req_len
;
3066 sci_swab32_cpy(smp_req
, smp_req
, sg
->length
/ sizeof(u32
));
3067 cmd
= *(u32
*) smp_req
;
3068 kunmap_atomic(kaddr
, KM_IRQ0
);
3070 if (!dma_map_sg(dev
, sg
, 1, DMA_TO_DEVICE
))
3073 ireq
->protocol
= SCIC_SMP_PROTOCOL
;
3075 /* byte swap the smp request. */
3077 task_context
= ireq
->tc
;
3079 idev
= ireq
->target_device
;
3080 iport
= idev
->owning_port
;
3083 * Fill in the TC with the its required data
3086 task_context
->priority
= 0;
3087 task_context
->initiator_request
= 1;
3088 task_context
->connection_rate
= idev
->connection_rate
;
3089 task_context
->protocol_engine_index
= ISCI_PEG
;
3090 task_context
->logical_port_index
= iport
->physical_port_index
;
3091 task_context
->protocol_type
= SCU_TASK_CONTEXT_PROTOCOL_SMP
;
3092 task_context
->abort
= 0;
3093 task_context
->valid
= SCU_TASK_CONTEXT_VALID
;
3094 task_context
->context_type
= SCU_TASK_CONTEXT_TYPE
;
3097 task_context
->remote_node_index
= idev
->rnc
.remote_node_index
;
3098 task_context
->command_code
= 0;
3099 task_context
->task_type
= SCU_TASK_TYPE_SMP_REQUEST
;
3102 task_context
->link_layer_control
= 0;
3103 task_context
->do_not_dma_ssp_good_response
= 1;
3104 task_context
->strict_ordering
= 0;
3105 task_context
->control_frame
= 1;
3106 task_context
->timeout_enable
= 0;
3107 task_context
->block_guard_enable
= 0;
3110 task_context
->address_modifier
= 0;
3113 task_context
->ssp_command_iu_length
= req_len
;
3116 task_context
->transfer_length_bytes
= 0;
3119 * 18h ~ 30h, protocol specific
3120 * since commandIU has been build by framework at this point, we just
3121 * copy the frist DWord from command IU to this location. */
3122 memcpy(&task_context
->type
.smp
, &cmd
, sizeof(u32
));
3126 * "For SMP you could program it to zero. We would prefer that way
3127 * so that done code will be consistent." - Venki
3129 task_context
->task_phase
= 0;
3131 ireq
->post_context
= (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
|
3132 (ISCI_PEG
<< SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT
) |
3133 (iport
->physical_port_index
<<
3134 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT
) |
3135 ISCI_TAG_TCI(ireq
->io_tag
));
3137 * Copy the physical address for the command buffer to the SCU Task
3138 * Context command buffer should not contain command header.
3140 task_context
->command_iu_upper
= upper_32_bits(sg_dma_address(sg
));
3141 task_context
->command_iu_lower
= lower_32_bits(sg_dma_address(sg
) + sizeof(u32
));
3143 /* SMP response comes as UF, so no need to set response IU address. */
3144 task_context
->response_iu_upper
= 0;
3145 task_context
->response_iu_lower
= 0;
3147 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
3153 * isci_smp_request_build() - This function builds the smp request.
3154 * @ireq: This parameter points to the isci_request allocated in the
3155 * request construct function.
3157 * SCI_SUCCESS on successfull completion, or specific failure code.
3159 static enum sci_status
isci_smp_request_build(struct isci_request
*ireq
)
3161 struct sas_task
*task
= isci_request_access_task(ireq
);
3162 struct device
*dev
= &ireq
->isci_host
->pdev
->dev
;
3163 enum sci_status status
= SCI_FAILURE
;
3165 status
= sci_io_request_construct_smp(dev
, ireq
, task
);
3166 if (status
!= SCI_SUCCESS
)
3167 dev_dbg(&ireq
->isci_host
->pdev
->dev
,
3168 "%s: failed with status = %d\n",
3176 * isci_io_request_build() - This function builds the io request object.
3177 * @ihost: This parameter specifies the ISCI host object
3178 * @request: This parameter points to the isci_request object allocated in the
3179 * request construct function.
3180 * @sci_device: This parameter is the handle for the sci core's remote device
3181 * object that is the destination for this request.
3183 * SCI_SUCCESS on successfull completion, or specific failure code.
3185 static enum sci_status
isci_io_request_build(struct isci_host
*ihost
,
3186 struct isci_request
*request
,
3187 struct isci_remote_device
*idev
)
3189 enum sci_status status
= SCI_SUCCESS
;
3190 struct sas_task
*task
= isci_request_access_task(request
);
3192 dev_dbg(&ihost
->pdev
->dev
,
3193 "%s: idev = 0x%p; request = %p, "
3194 "num_scatter = %d\n",
3200 /* map the sgl addresses, if present.
3201 * libata does the mapping for sata devices
3202 * before we get the request.
3204 if (task
->num_scatter
&&
3205 !sas_protocol_ata(task
->task_proto
) &&
3206 !(SAS_PROTOCOL_SMP
& task
->task_proto
)) {
3208 request
->num_sg_entries
= dma_map_sg(
3215 if (request
->num_sg_entries
== 0)
3216 return SCI_FAILURE_INSUFFICIENT_RESOURCES
;
3219 status
= sci_io_request_construct(ihost
, idev
, request
);
3221 if (status
!= SCI_SUCCESS
) {
3222 dev_dbg(&ihost
->pdev
->dev
,
3223 "%s: failed request construct\n",
3228 switch (task
->task_proto
) {
3229 case SAS_PROTOCOL_SMP
:
3230 status
= isci_smp_request_build(request
);
3232 case SAS_PROTOCOL_SSP
:
3233 status
= isci_request_ssp_request_construct(request
);
3235 case SAS_PROTOCOL_SATA
:
3236 case SAS_PROTOCOL_STP
:
3237 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:
3238 status
= isci_request_stp_request_construct(request
);
3241 dev_dbg(&ihost
->pdev
->dev
,
3242 "%s: unknown protocol\n", __func__
);
3249 static struct isci_request
*isci_request_from_tag(struct isci_host
*ihost
, u16 tag
)
3251 struct isci_request
*ireq
;
3253 ireq
= ihost
->reqs
[ISCI_TAG_TCI(tag
)];
3255 ireq
->io_request_completion
= NULL
;
3257 ireq
->num_sg_entries
= 0;
3258 INIT_LIST_HEAD(&ireq
->completed_node
);
3259 INIT_LIST_HEAD(&ireq
->dev_node
);
3260 isci_request_change_state(ireq
, allocated
);
3265 static struct isci_request
*isci_io_request_from_tag(struct isci_host
*ihost
,
3266 struct sas_task
*task
,
3269 struct isci_request
*ireq
;
3271 ireq
= isci_request_from_tag(ihost
, tag
);
3272 ireq
->ttype_ptr
.io_task_ptr
= task
;
3273 ireq
->ttype
= io_task
;
3274 task
->lldd_task
= ireq
;
3279 struct isci_request
*isci_tmf_request_from_tag(struct isci_host
*ihost
,
3280 struct isci_tmf
*isci_tmf
,
3283 struct isci_request
*ireq
;
3285 ireq
= isci_request_from_tag(ihost
, tag
);
3286 ireq
->ttype_ptr
.tmf_task_ptr
= isci_tmf
;
3287 ireq
->ttype
= tmf_task
;
3292 int isci_request_execute(struct isci_host
*ihost
, struct isci_remote_device
*idev
,
3293 struct sas_task
*task
, u16 tag
)
3295 enum sci_status status
= SCI_FAILURE_UNSUPPORTED_PROTOCOL
;
3296 struct isci_request
*ireq
;
3297 unsigned long flags
;
3300 /* do common allocation and init of request object. */
3301 ireq
= isci_io_request_from_tag(ihost
, task
, tag
);
3303 status
= isci_io_request_build(ihost
, ireq
, idev
);
3304 if (status
!= SCI_SUCCESS
) {
3305 dev_dbg(&ihost
->pdev
->dev
,
3306 "%s: request_construct failed - status = 0x%x\n",
3312 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
3314 if (test_bit(IDEV_IO_NCQERROR
, &idev
->flags
)) {
3316 if (isci_task_is_ncq_recovery(task
)) {
3318 /* The device is in an NCQ recovery state. Issue the
3319 * request on the task side. Note that it will
3320 * complete on the I/O request side because the
3321 * request was built that way (ie.
3322 * ireq->is_task_management_request is false).
3324 status
= sci_controller_start_task(ihost
,
3328 status
= SCI_FAILURE
;
3331 /* send the request, let the core assign the IO TAG. */
3332 status
= sci_controller_start_io(ihost
, idev
,
3336 if (status
!= SCI_SUCCESS
&&
3337 status
!= SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
) {
3338 dev_dbg(&ihost
->pdev
->dev
,
3339 "%s: failed request start (0x%x)\n",
3341 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
3345 /* Either I/O started OK, or the core has signaled that
3346 * the device needs a target reset.
3348 * In either case, hold onto the I/O for later.
3350 * Update it's status and add it to the list in the
3351 * remote device object.
3353 list_add(&ireq
->dev_node
, &idev
->reqs_in_process
);
3355 if (status
== SCI_SUCCESS
) {
3356 isci_request_change_state(ireq
, started
);
3358 /* The request did not really start in the
3359 * hardware, so clear the request handle
3360 * here so no terminations will be done.
3362 set_bit(IREQ_TERMINATED
, &ireq
->flags
);
3363 isci_request_change_state(ireq
, completed
);
3365 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
3368 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
) {
3369 /* Signal libsas that we need the SCSI error
3370 * handler thread to work on this I/O and that
3371 * we want a device reset.
3373 spin_lock_irqsave(&task
->task_state_lock
, flags
);
3374 task
->task_state_flags
|= SAS_TASK_NEED_DEV_RESET
;
3375 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
3377 /* Cause this task to be scheduled in the SCSI error
3380 isci_execpath_callback(ihost
, task
,
3383 /* Change the status, since we are holding
3384 * the I/O until it is managed by the SCSI
3387 status
= SCI_SUCCESS
;