pxafb: convert fb driver to use ioremap() and __raw_{readl, writel}
[linux-2.6/x86.git] / drivers / video / pxafb.c
blobd97dc9383d476eae14a2d7a246d89bc099c50479
1 /*
2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
19 * email address:
21 * linux-arm-kernel@lists.arm.linux.org.uk
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/string.h>
31 #include <linux/interrupt.h>
32 #include <linux/slab.h>
33 #include <linux/fb.h>
34 #include <linux/delay.h>
35 #include <linux/init.h>
36 #include <linux/ioport.h>
37 #include <linux/cpufreq.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/err.h>
43 #include <asm/hardware.h>
44 #include <asm/io.h>
45 #include <asm/irq.h>
46 #include <asm/div64.h>
47 #include <asm/arch/pxa-regs.h>
48 #include <asm/arch/pxa2xx-gpio.h>
49 #include <asm/arch/bitfield.h>
50 #include <asm/arch/pxafb.h>
53 * Complain if VAR is out of range.
55 #define DEBUG_VAR 1
57 #include "pxafb.h"
59 /* Bits which should not be set in machine configuration structures */
60 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
61 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
62 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
64 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
65 LCCR3_PCD | LCCR3_BPP)
67 static void (*pxafb_backlight_power)(int);
68 static void (*pxafb_lcd_power)(int, struct fb_var_screeninfo *);
70 static int pxafb_activate_var(struct fb_var_screeninfo *var,
71 struct pxafb_info *);
72 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
74 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
76 unsigned long flags;
78 local_irq_save(flags);
80 * We need to handle two requests being made at the same time.
81 * There are two important cases:
82 * 1. When we are changing VT (C_REENABLE) while unblanking
83 * (C_ENABLE) We must perform the unblanking, which will
84 * do our REENABLE for us.
85 * 2. When we are blanking, but immediately unblank before
86 * we have blanked. We do the "REENABLE" thing here as
87 * well, just to be sure.
89 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
90 state = (u_int) -1;
91 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
92 state = C_REENABLE;
94 if (state != (u_int)-1) {
95 fbi->task_state = state;
96 schedule_work(&fbi->task);
98 local_irq_restore(flags);
101 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
103 chan &= 0xffff;
104 chan >>= 16 - bf->length;
105 return chan << bf->offset;
108 static int
109 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
110 u_int trans, struct fb_info *info)
112 struct pxafb_info *fbi = (struct pxafb_info *)info;
113 u_int val;
115 if (regno >= fbi->palette_size)
116 return 1;
118 if (fbi->fb.var.grayscale) {
119 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
120 return 0;
123 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
124 case LCCR4_PAL_FOR_0:
125 val = ((red >> 0) & 0xf800);
126 val |= ((green >> 5) & 0x07e0);
127 val |= ((blue >> 11) & 0x001f);
128 fbi->palette_cpu[regno] = val;
129 break;
130 case LCCR4_PAL_FOR_1:
131 val = ((red << 8) & 0x00f80000);
132 val |= ((green >> 0) & 0x0000fc00);
133 val |= ((blue >> 8) & 0x000000f8);
134 ((u32 *)(fbi->palette_cpu))[regno] = val;
135 break;
136 case LCCR4_PAL_FOR_2:
137 val = ((red << 8) & 0x00fc0000);
138 val |= ((green >> 0) & 0x0000fc00);
139 val |= ((blue >> 8) & 0x000000fc);
140 ((u32 *)(fbi->palette_cpu))[regno] = val;
141 break;
144 return 0;
147 static int
148 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
149 u_int trans, struct fb_info *info)
151 struct pxafb_info *fbi = (struct pxafb_info *)info;
152 unsigned int val;
153 int ret = 1;
156 * If inverse mode was selected, invert all the colours
157 * rather than the register number. The register number
158 * is what you poke into the framebuffer to produce the
159 * colour you requested.
161 if (fbi->cmap_inverse) {
162 red = 0xffff - red;
163 green = 0xffff - green;
164 blue = 0xffff - blue;
168 * If greyscale is true, then we convert the RGB value
169 * to greyscale no matter what visual we are using.
171 if (fbi->fb.var.grayscale)
172 red = green = blue = (19595 * red + 38470 * green +
173 7471 * blue) >> 16;
175 switch (fbi->fb.fix.visual) {
176 case FB_VISUAL_TRUECOLOR:
178 * 16-bit True Colour. We encode the RGB value
179 * according to the RGB bitfield information.
181 if (regno < 16) {
182 u32 *pal = fbi->fb.pseudo_palette;
184 val = chan_to_field(red, &fbi->fb.var.red);
185 val |= chan_to_field(green, &fbi->fb.var.green);
186 val |= chan_to_field(blue, &fbi->fb.var.blue);
188 pal[regno] = val;
189 ret = 0;
191 break;
193 case FB_VISUAL_STATIC_PSEUDOCOLOR:
194 case FB_VISUAL_PSEUDOCOLOR:
195 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
196 break;
199 return ret;
203 * pxafb_bpp_to_lccr3():
204 * Convert a bits per pixel value to the correct bit pattern for LCCR3
206 static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var)
208 int ret = 0;
209 switch (var->bits_per_pixel) {
210 case 1: ret = LCCR3_1BPP; break;
211 case 2: ret = LCCR3_2BPP; break;
212 case 4: ret = LCCR3_4BPP; break;
213 case 8: ret = LCCR3_8BPP; break;
214 case 16: ret = LCCR3_16BPP; break;
216 return ret;
219 #ifdef CONFIG_CPU_FREQ
221 * pxafb_display_dma_period()
222 * Calculate the minimum period (in picoseconds) between two DMA
223 * requests for the LCD controller. If we hit this, it means we're
224 * doing nothing but LCD DMA.
226 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
229 * Period = pixclock * bits_per_byte * bytes_per_transfer
230 * / memory_bits_per_pixel;
232 return var->pixclock * 8 * 16 / var->bits_per_pixel;
234 #endif
237 * Select the smallest mode that allows the desired resolution to be
238 * displayed. If desired parameters can be rounded up.
240 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
241 struct fb_var_screeninfo *var)
243 struct pxafb_mode_info *mode = NULL;
244 struct pxafb_mode_info *modelist = mach->modes;
245 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
246 unsigned int i;
248 for (i = 0; i < mach->num_modes; i++) {
249 if (modelist[i].xres >= var->xres &&
250 modelist[i].yres >= var->yres &&
251 modelist[i].xres < best_x &&
252 modelist[i].yres < best_y &&
253 modelist[i].bpp >= var->bits_per_pixel) {
254 best_x = modelist[i].xres;
255 best_y = modelist[i].yres;
256 mode = &modelist[i];
260 return mode;
263 static void pxafb_setmode(struct fb_var_screeninfo *var,
264 struct pxafb_mode_info *mode)
266 var->xres = mode->xres;
267 var->yres = mode->yres;
268 var->bits_per_pixel = mode->bpp;
269 var->pixclock = mode->pixclock;
270 var->hsync_len = mode->hsync_len;
271 var->left_margin = mode->left_margin;
272 var->right_margin = mode->right_margin;
273 var->vsync_len = mode->vsync_len;
274 var->upper_margin = mode->upper_margin;
275 var->lower_margin = mode->lower_margin;
276 var->sync = mode->sync;
277 var->grayscale = mode->cmap_greyscale;
278 var->xres_virtual = var->xres;
279 var->yres_virtual = var->yres;
283 * pxafb_check_var():
284 * Get the video params out of 'var'. If a value doesn't fit, round it up,
285 * if it's too big, return -EINVAL.
287 * Round up in the following order: bits_per_pixel, xres,
288 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
289 * bitfields, horizontal timing, vertical timing.
291 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
293 struct pxafb_info *fbi = (struct pxafb_info *)info;
294 struct pxafb_mach_info *inf = fbi->dev->platform_data;
296 if (var->xres < MIN_XRES)
297 var->xres = MIN_XRES;
298 if (var->yres < MIN_YRES)
299 var->yres = MIN_YRES;
301 if (inf->fixed_modes) {
302 struct pxafb_mode_info *mode;
304 mode = pxafb_getmode(inf, var);
305 if (!mode)
306 return -EINVAL;
307 pxafb_setmode(var, mode);
308 } else {
309 if (var->xres > inf->modes->xres)
310 return -EINVAL;
311 if (var->yres > inf->modes->yres)
312 return -EINVAL;
313 if (var->bits_per_pixel > inf->modes->bpp)
314 return -EINVAL;
317 var->xres_virtual =
318 max(var->xres_virtual, var->xres);
319 var->yres_virtual =
320 max(var->yres_virtual, var->yres);
323 * Setup the RGB parameters for this display.
325 * The pixel packing format is described on page 7-11 of the
326 * PXA2XX Developer's Manual.
328 if (var->bits_per_pixel == 16) {
329 var->red.offset = 11; var->red.length = 5;
330 var->green.offset = 5; var->green.length = 6;
331 var->blue.offset = 0; var->blue.length = 5;
332 var->transp.offset = var->transp.length = 0;
333 } else {
334 var->red.offset = var->green.offset = 0;
335 var->blue.offset = var->transp.offset = 0;
336 var->red.length = 8;
337 var->green.length = 8;
338 var->blue.length = 8;
339 var->transp.length = 0;
342 #ifdef CONFIG_CPU_FREQ
343 pr_debug("pxafb: dma period = %d ps, clock = %d kHz\n",
344 pxafb_display_dma_period(var),
345 get_clk_frequency_khz(0));
346 #endif
348 return 0;
351 static inline void pxafb_set_truecolor(u_int is_true_color)
353 /* do your machine-specific setup if needed */
357 * pxafb_set_par():
358 * Set the user defined part of the display for the specified console
360 static int pxafb_set_par(struct fb_info *info)
362 struct pxafb_info *fbi = (struct pxafb_info *)info;
363 struct fb_var_screeninfo *var = &info->var;
364 unsigned long palette_mem_size;
366 if (var->bits_per_pixel == 16)
367 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
368 else if (!fbi->cmap_static)
369 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
370 else {
372 * Some people have weird ideas about wanting static
373 * pseudocolor maps. I suspect their user space
374 * applications are broken.
376 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
379 fbi->fb.fix.line_length = var->xres_virtual *
380 var->bits_per_pixel / 8;
381 if (var->bits_per_pixel == 16)
382 fbi->palette_size = 0;
383 else
384 fbi->palette_size = var->bits_per_pixel == 1 ?
385 4 : 1 << var->bits_per_pixel;
387 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
388 palette_mem_size = fbi->palette_size * sizeof(u16);
389 else
390 palette_mem_size = fbi->palette_size * sizeof(u32);
392 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
393 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
396 * Set (any) board control register to handle new color depth
398 pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
400 if (fbi->fb.var.bits_per_pixel == 16)
401 fb_dealloc_cmap(&fbi->fb.cmap);
402 else
403 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
405 pxafb_activate_var(var, fbi);
407 return 0;
411 * pxafb_blank():
412 * Blank the display by setting all palette values to zero. Note, the
413 * 16 bpp mode does not really use the palette, so this will not
414 * blank the display in all modes.
416 static int pxafb_blank(int blank, struct fb_info *info)
418 struct pxafb_info *fbi = (struct pxafb_info *)info;
419 int i;
421 switch (blank) {
422 case FB_BLANK_POWERDOWN:
423 case FB_BLANK_VSYNC_SUSPEND:
424 case FB_BLANK_HSYNC_SUSPEND:
425 case FB_BLANK_NORMAL:
426 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
427 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
428 for (i = 0; i < fbi->palette_size; i++)
429 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
431 pxafb_schedule_work(fbi, C_DISABLE);
432 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
433 break;
435 case FB_BLANK_UNBLANK:
436 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
437 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
438 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
439 fb_set_cmap(&fbi->fb.cmap, info);
440 pxafb_schedule_work(fbi, C_ENABLE);
442 return 0;
445 static int pxafb_mmap(struct fb_info *info,
446 struct vm_area_struct *vma)
448 struct pxafb_info *fbi = (struct pxafb_info *)info;
449 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
451 if (off < info->fix.smem_len) {
452 vma->vm_pgoff += 1;
453 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
454 fbi->map_dma, fbi->map_size);
456 return -EINVAL;
459 static struct fb_ops pxafb_ops = {
460 .owner = THIS_MODULE,
461 .fb_check_var = pxafb_check_var,
462 .fb_set_par = pxafb_set_par,
463 .fb_setcolreg = pxafb_setcolreg,
464 .fb_fillrect = cfb_fillrect,
465 .fb_copyarea = cfb_copyarea,
466 .fb_imageblit = cfb_imageblit,
467 .fb_blank = pxafb_blank,
468 .fb_mmap = pxafb_mmap,
472 * Calculate the PCD value from the clock rate (in picoseconds).
473 * We take account of the PPCR clock setting.
474 * From PXA Developer's Manual:
476 * PixelClock = LCLK
477 * -------------
478 * 2 ( PCD + 1 )
480 * PCD = LCLK
481 * ------------- - 1
482 * 2(PixelClock)
484 * Where:
485 * LCLK = LCD/Memory Clock
486 * PCD = LCCR3[7:0]
488 * PixelClock here is in Hz while the pixclock argument given is the
489 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
491 * The function get_lclk_frequency_10khz returns LCLK in units of
492 * 10khz. Calling the result of this function lclk gives us the
493 * following
495 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
496 * -------------------------------------- - 1
499 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
501 static inline unsigned int get_pcd(struct pxafb_info *fbi,
502 unsigned int pixclock)
504 unsigned long long pcd;
506 /* FIXME: Need to take into account Double Pixel Clock mode
507 * (DPC) bit? or perhaps set it based on the various clock
508 * speeds */
509 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
510 pcd *= pixclock;
511 do_div(pcd, 100000000 * 2);
512 /* no need for this, since we should subtract 1 anyway. they cancel */
513 /* pcd += 1; */ /* make up for integer math truncations */
514 return (unsigned int)pcd;
518 * Some touchscreens need hsync information from the video driver to
519 * function correctly. We export it here. Note that 'hsync_time' and
520 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
521 * of the hsync period in seconds.
523 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
525 unsigned long htime;
527 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
528 fbi->hsync_time = 0;
529 return;
532 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
534 fbi->hsync_time = htime;
537 unsigned long pxafb_get_hsync_time(struct device *dev)
539 struct pxafb_info *fbi = dev_get_drvdata(dev);
541 /* If display is blanked/suspended, hsync isn't active */
542 if (!fbi || (fbi->state != C_ENABLE))
543 return 0;
545 return fbi->hsync_time;
547 EXPORT_SYMBOL(pxafb_get_hsync_time);
550 * pxafb_activate_var():
551 * Configures LCD Controller based on entries in var parameter.
552 * Settings are only written to the controller if changes were made.
554 static int pxafb_activate_var(struct fb_var_screeninfo *var,
555 struct pxafb_info *fbi)
557 struct pxafb_lcd_reg new_regs;
558 u_long flags;
559 u_int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
561 #if DEBUG_VAR
562 if (var->xres < 16 || var->xres > 1024)
563 printk(KERN_ERR "%s: invalid xres %d\n",
564 fbi->fb.fix.id, var->xres);
565 switch (var->bits_per_pixel) {
566 case 1:
567 case 2:
568 case 4:
569 case 8:
570 case 16:
571 break;
572 default:
573 printk(KERN_ERR "%s: invalid bit depth %d\n",
574 fbi->fb.fix.id, var->bits_per_pixel);
575 break;
577 if (var->hsync_len < 1 || var->hsync_len > 64)
578 printk(KERN_ERR "%s: invalid hsync_len %d\n",
579 fbi->fb.fix.id, var->hsync_len);
580 if (var->left_margin < 1 || var->left_margin > 255)
581 printk(KERN_ERR "%s: invalid left_margin %d\n",
582 fbi->fb.fix.id, var->left_margin);
583 if (var->right_margin < 1 || var->right_margin > 255)
584 printk(KERN_ERR "%s: invalid right_margin %d\n",
585 fbi->fb.fix.id, var->right_margin);
586 if (var->yres < 1 || var->yres > 1024)
587 printk(KERN_ERR "%s: invalid yres %d\n",
588 fbi->fb.fix.id, var->yres);
589 if (var->vsync_len < 1 || var->vsync_len > 64)
590 printk(KERN_ERR "%s: invalid vsync_len %d\n",
591 fbi->fb.fix.id, var->vsync_len);
592 if (var->upper_margin < 0 || var->upper_margin > 255)
593 printk(KERN_ERR "%s: invalid upper_margin %d\n",
594 fbi->fb.fix.id, var->upper_margin);
595 if (var->lower_margin < 0 || var->lower_margin > 255)
596 printk(KERN_ERR "%s: invalid lower_margin %d\n",
597 fbi->fb.fix.id, var->lower_margin);
598 #endif
600 new_regs.lccr0 = fbi->lccr0 |
601 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
602 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
604 new_regs.lccr1 =
605 LCCR1_DisWdth(var->xres) +
606 LCCR1_HorSnchWdth(var->hsync_len) +
607 LCCR1_BegLnDel(var->left_margin) +
608 LCCR1_EndLnDel(var->right_margin);
611 * If we have a dual scan LCD, we need to halve
612 * the YRES parameter.
614 lines_per_panel = var->yres;
615 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
616 lines_per_panel /= 2;
618 new_regs.lccr2 =
619 LCCR2_DisHght(lines_per_panel) +
620 LCCR2_VrtSnchWdth(var->vsync_len) +
621 LCCR2_BegFrmDel(var->upper_margin) +
622 LCCR2_EndFrmDel(var->lower_margin);
624 new_regs.lccr3 = fbi->lccr3 |
625 pxafb_bpp_to_lccr3(var) |
626 (var->sync & FB_SYNC_HOR_HIGH_ACT ?
627 LCCR3_HorSnchH : LCCR3_HorSnchL) |
628 (var->sync & FB_SYNC_VERT_HIGH_ACT ?
629 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
631 if (pcd)
632 new_regs.lccr3 |= LCCR3_PixClkDiv(pcd);
634 /* Update shadow copy atomically */
635 local_irq_save(flags);
637 /* setup dma descriptors */
638 fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)
639 ((unsigned int)fbi->palette_cpu - 3*16);
640 fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)
641 ((unsigned int)fbi->palette_cpu - 2*16);
642 fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)
643 ((unsigned int)fbi->palette_cpu - 1*16);
645 fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16;
646 fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16;
647 fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16;
649 #define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length)
651 /* populate descriptors */
652 fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma;
653 fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL;
654 fbi->dmadesc_fblow_cpu->fidr = 0;
655 fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL;
657 fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */
659 fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma;
660 fbi->dmadesc_fbhigh_cpu->fidr = 0;
661 fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL;
663 fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma;
664 fbi->dmadesc_palette_cpu->fidr = 0;
665 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
666 fbi->dmadesc_palette_cpu->ldcmd = fbi->palette_size *
667 sizeof(u16);
668 else
669 fbi->dmadesc_palette_cpu->ldcmd = fbi->palette_size *
670 sizeof(u32);
671 fbi->dmadesc_palette_cpu->ldcmd |= LDCMD_PAL;
673 if (var->bits_per_pixel == 16) {
674 /* palette shouldn't be loaded in true-color mode */
675 fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
676 fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */
677 /* init it to something, even though we won't be using it */
678 fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma;
679 } else {
680 /* flips back and forth between pal and fbhigh */
681 fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
682 fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma;
683 fbi->fdadr0 = fbi->dmadesc_palette_dma;
686 fbi->reg_lccr0 = new_regs.lccr0;
687 fbi->reg_lccr1 = new_regs.lccr1;
688 fbi->reg_lccr2 = new_regs.lccr2;
689 fbi->reg_lccr3 = new_regs.lccr3;
690 fbi->reg_lccr4 = __raw_readl(fbi->mmio_base + LCCR4) &
691 (~LCCR4_PAL_FOR_MASK);
692 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
693 set_hsync_time(fbi, pcd);
694 local_irq_restore(flags);
697 * Only update the registers if the controller is enabled
698 * and something has changed.
700 if ((__raw_readl(fbi->mmio_base + LCCR0) != fbi->reg_lccr0) ||
701 (__raw_readl(fbi->mmio_base + LCCR1) != fbi->reg_lccr1) ||
702 (__raw_readl(fbi->mmio_base + LCCR2) != fbi->reg_lccr2) ||
703 (__raw_readl(fbi->mmio_base + LCCR3) != fbi->reg_lccr3) ||
704 (__raw_readl(fbi->mmio_base + FDADR0) != fbi->fdadr0) ||
705 (__raw_readl(fbi->mmio_base + FDADR1) != fbi->fdadr1))
706 pxafb_schedule_work(fbi, C_REENABLE);
708 return 0;
712 * NOTE! The following functions are purely helpers for set_ctrlr_state.
713 * Do not call them directly; set_ctrlr_state does the correct serialisation
714 * to ensure that things happen in the right way 100% of time time.
715 * -- rmk
717 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
719 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
721 if (pxafb_backlight_power)
722 pxafb_backlight_power(on);
725 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
727 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
729 if (pxafb_lcd_power)
730 pxafb_lcd_power(on, &fbi->fb.var);
733 static void pxafb_setup_gpio(struct pxafb_info *fbi)
735 int gpio, ldd_bits;
736 unsigned int lccr0 = fbi->lccr0;
739 * setup is based on type of panel supported
742 /* 4 bit interface */
743 if ((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
744 (lccr0 & LCCR0_SDS) == LCCR0_Sngl &&
745 (lccr0 & LCCR0_DPD) == LCCR0_4PixMono)
746 ldd_bits = 4;
748 /* 8 bit interface */
749 else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
750 ((lccr0 & LCCR0_SDS) == LCCR0_Dual ||
751 (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) ||
752 ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
753 (lccr0 & LCCR0_PAS) == LCCR0_Pas &&
754 (lccr0 & LCCR0_SDS) == LCCR0_Sngl))
755 ldd_bits = 8;
757 /* 16 bit interface */
758 else if ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
759 ((lccr0 & LCCR0_SDS) == LCCR0_Dual ||
760 (lccr0 & LCCR0_PAS) == LCCR0_Act))
761 ldd_bits = 16;
763 else {
764 printk(KERN_ERR "pxafb_setup_gpio: unable to determine "
765 "bits per pixel\n");
766 return;
769 for (gpio = 58; ldd_bits; gpio++, ldd_bits--)
770 pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT);
771 pxa_gpio_mode(GPIO74_LCD_FCLK_MD);
772 pxa_gpio_mode(GPIO75_LCD_LCLK_MD);
773 pxa_gpio_mode(GPIO76_LCD_PCLK_MD);
774 pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD);
777 static void pxafb_enable_controller(struct pxafb_info *fbi)
779 pr_debug("pxafb: Enabling LCD controller\n");
780 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0);
781 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1);
782 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
783 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
784 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
785 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
787 /* enable LCD controller clock */
788 clk_enable(fbi->clk);
790 /* Sequence from 11.7.10 */
791 __raw_writel(fbi->reg_lccr3, fbi->mmio_base + LCCR3);
792 __raw_writel(fbi->reg_lccr2, fbi->mmio_base + LCCR2);
793 __raw_writel(fbi->reg_lccr1, fbi->mmio_base + LCCR1);
794 __raw_writel(fbi->reg_lccr0 & ~LCCR0_ENB, fbi->mmio_base + LCCR0);
796 __raw_writel(fbi->fdadr0, fbi->mmio_base + FDADR0);
797 __raw_writel(fbi->fdadr1, fbi->mmio_base + FDADR1);
798 __raw_writel(fbi->reg_lccr0 | LCCR0_ENB, fbi->mmio_base + LCCR0);
801 static void pxafb_disable_controller(struct pxafb_info *fbi)
803 uint32_t lccr0;
805 DECLARE_WAITQUEUE(wait, current);
807 set_current_state(TASK_UNINTERRUPTIBLE);
808 add_wait_queue(&fbi->ctrlr_wait, &wait);
810 /* Clear LCD Status Register */
811 __raw_writel(0xffffffff, fbi->mmio_base + LCSR);
813 lccr0 = __raw_readl(fbi->mmio_base + LCCR0) & ~LCCR0_LDM;
814 __raw_writel(lccr0, fbi->mmio_base + LCCR0);
815 __raw_writel(lccr0 | LCCR0_DIS, fbi->mmio_base + LCCR0);
817 schedule_timeout(200 * HZ / 1000);
818 remove_wait_queue(&fbi->ctrlr_wait, &wait);
820 /* disable LCD controller clock */
821 clk_disable(fbi->clk);
825 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
827 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
829 struct pxafb_info *fbi = dev_id;
830 unsigned int lccr0, lcsr = __raw_readl(fbi->mmio_base + LCSR);
832 if (lcsr & LCSR_LDD) {
833 lccr0 = __raw_readl(fbi->mmio_base + LCCR0) | LCCR0_LDM;
834 __raw_writel(lccr0, fbi->mmio_base + LCCR0);
835 wake_up(&fbi->ctrlr_wait);
838 __raw_writel(lcsr, fbi->mmio_base + LCSR);
839 return IRQ_HANDLED;
843 * This function must be called from task context only, since it will
844 * sleep when disabling the LCD controller, or if we get two contending
845 * processes trying to alter state.
847 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
849 u_int old_state;
851 down(&fbi->ctrlr_sem);
853 old_state = fbi->state;
856 * Hack around fbcon initialisation.
858 if (old_state == C_STARTUP && state == C_REENABLE)
859 state = C_ENABLE;
861 switch (state) {
862 case C_DISABLE_CLKCHANGE:
864 * Disable controller for clock change. If the
865 * controller is already disabled, then do nothing.
867 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
868 fbi->state = state;
869 /* TODO __pxafb_lcd_power(fbi, 0); */
870 pxafb_disable_controller(fbi);
872 break;
874 case C_DISABLE_PM:
875 case C_DISABLE:
877 * Disable controller
879 if (old_state != C_DISABLE) {
880 fbi->state = state;
881 __pxafb_backlight_power(fbi, 0);
882 __pxafb_lcd_power(fbi, 0);
883 if (old_state != C_DISABLE_CLKCHANGE)
884 pxafb_disable_controller(fbi);
886 break;
888 case C_ENABLE_CLKCHANGE:
890 * Enable the controller after clock change. Only
891 * do this if we were disabled for the clock change.
893 if (old_state == C_DISABLE_CLKCHANGE) {
894 fbi->state = C_ENABLE;
895 pxafb_enable_controller(fbi);
896 /* TODO __pxafb_lcd_power(fbi, 1); */
898 break;
900 case C_REENABLE:
902 * Re-enable the controller only if it was already
903 * enabled. This is so we reprogram the control
904 * registers.
906 if (old_state == C_ENABLE) {
907 __pxafb_lcd_power(fbi, 0);
908 pxafb_disable_controller(fbi);
909 pxafb_setup_gpio(fbi);
910 pxafb_enable_controller(fbi);
911 __pxafb_lcd_power(fbi, 1);
913 break;
915 case C_ENABLE_PM:
917 * Re-enable the controller after PM. This is not
918 * perfect - think about the case where we were doing
919 * a clock change, and we suspended half-way through.
921 if (old_state != C_DISABLE_PM)
922 break;
923 /* fall through */
925 case C_ENABLE:
927 * Power up the LCD screen, enable controller, and
928 * turn on the backlight.
930 if (old_state != C_ENABLE) {
931 fbi->state = C_ENABLE;
932 pxafb_setup_gpio(fbi);
933 pxafb_enable_controller(fbi);
934 __pxafb_lcd_power(fbi, 1);
935 __pxafb_backlight_power(fbi, 1);
937 break;
939 up(&fbi->ctrlr_sem);
943 * Our LCD controller task (which is called when we blank or unblank)
944 * via keventd.
946 static void pxafb_task(struct work_struct *work)
948 struct pxafb_info *fbi =
949 container_of(work, struct pxafb_info, task);
950 u_int state = xchg(&fbi->task_state, -1);
952 set_ctrlr_state(fbi, state);
955 #ifdef CONFIG_CPU_FREQ
957 * CPU clock speed change handler. We need to adjust the LCD timing
958 * parameters when the CPU clock is adjusted by the power management
959 * subsystem.
961 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
963 static int
964 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
966 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
967 /* TODO struct cpufreq_freqs *f = data; */
968 u_int pcd;
970 switch (val) {
971 case CPUFREQ_PRECHANGE:
972 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
973 break;
975 case CPUFREQ_POSTCHANGE:
976 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
977 set_hsync_time(fbi, pcd);
978 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
979 LCCR3_PixClkDiv(pcd);
980 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
981 break;
983 return 0;
986 static int
987 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
989 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
990 struct fb_var_screeninfo *var = &fbi->fb.var;
991 struct cpufreq_policy *policy = data;
993 switch (val) {
994 case CPUFREQ_ADJUST:
995 case CPUFREQ_INCOMPATIBLE:
996 pr_debug("min dma period: %d ps, "
997 "new clock %d kHz\n", pxafb_display_dma_period(var),
998 policy->max);
999 /* TODO: fill in min/max values */
1000 break;
1002 return 0;
1004 #endif
1006 #ifdef CONFIG_PM
1008 * Power management hooks. Note that we won't be called from IRQ context,
1009 * unlike the blank functions above, so we may sleep.
1011 static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
1013 struct pxafb_info *fbi = platform_get_drvdata(dev);
1015 set_ctrlr_state(fbi, C_DISABLE_PM);
1016 return 0;
1019 static int pxafb_resume(struct platform_device *dev)
1021 struct pxafb_info *fbi = platform_get_drvdata(dev);
1023 set_ctrlr_state(fbi, C_ENABLE_PM);
1024 return 0;
1026 #else
1027 #define pxafb_suspend NULL
1028 #define pxafb_resume NULL
1029 #endif
1032 * pxafb_map_video_memory():
1033 * Allocates the DRAM memory for the frame buffer. This buffer is
1034 * remapped into a non-cached, non-buffered, memory region to
1035 * allow palette and pixel writes to occur without flushing the
1036 * cache. Once this area is remapped, all virtual memory
1037 * access to the video memory should occur at the new region.
1039 static int __init pxafb_map_video_memory(struct pxafb_info *fbi)
1041 u_long palette_mem_size;
1044 * We reserve one page for the palette, plus the size
1045 * of the framebuffer.
1047 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1048 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1049 &fbi->map_dma, GFP_KERNEL);
1051 if (fbi->map_cpu) {
1052 /* prevent initial garbage on screen */
1053 memset(fbi->map_cpu, 0, fbi->map_size);
1054 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1055 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1057 * FIXME: this is actually the wrong thing to place in
1058 * smem_start. But fbdev suffers from the problem that
1059 * it needs an API which doesn't exist (in this case,
1060 * dma_writecombine_mmap)
1062 fbi->fb.fix.smem_start = fbi->screen_dma;
1063 fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
1065 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1066 palette_mem_size = fbi->palette_size * sizeof(u16);
1067 else
1068 palette_mem_size = fbi->palette_size * sizeof(u32);
1070 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE
1071 - palette_mem_size);
1072 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
1075 return fbi->map_cpu ? 0 : -ENOMEM;
1078 static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev)
1080 struct pxafb_info *fbi;
1081 void *addr;
1082 struct pxafb_mach_info *inf = dev->platform_data;
1083 struct pxafb_mode_info *mode = inf->modes;
1084 int i, smemlen;
1086 /* Alloc the pxafb_info and pseudo_palette in one step */
1087 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1088 if (!fbi)
1089 return NULL;
1091 memset(fbi, 0, sizeof(struct pxafb_info));
1092 fbi->dev = dev;
1094 fbi->clk = clk_get(dev, "LCDCLK");
1095 if (IS_ERR(fbi->clk)) {
1096 kfree(fbi);
1097 return NULL;
1100 strcpy(fbi->fb.fix.id, PXA_NAME);
1102 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1103 fbi->fb.fix.type_aux = 0;
1104 fbi->fb.fix.xpanstep = 0;
1105 fbi->fb.fix.ypanstep = 0;
1106 fbi->fb.fix.ywrapstep = 0;
1107 fbi->fb.fix.accel = FB_ACCEL_NONE;
1109 fbi->fb.var.nonstd = 0;
1110 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1111 fbi->fb.var.height = -1;
1112 fbi->fb.var.width = -1;
1113 fbi->fb.var.accel_flags = 0;
1114 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1116 fbi->fb.fbops = &pxafb_ops;
1117 fbi->fb.flags = FBINFO_DEFAULT;
1118 fbi->fb.node = -1;
1120 addr = fbi;
1121 addr = addr + sizeof(struct pxafb_info);
1122 fbi->fb.pseudo_palette = addr;
1124 pxafb_setmode(&fbi->fb.var, mode);
1126 fbi->cmap_inverse = inf->cmap_inverse;
1127 fbi->cmap_static = inf->cmap_static;
1129 fbi->lccr0 = inf->lccr0;
1130 fbi->lccr3 = inf->lccr3;
1131 fbi->lccr4 = inf->lccr4;
1132 fbi->state = C_STARTUP;
1133 fbi->task_state = (u_char)-1;
1135 for (i = 0; i < inf->num_modes; i++) {
1136 smemlen = mode[i].xres * mode[i].yres * mode[i].bpp / 8;
1137 if (smemlen > fbi->fb.fix.smem_len)
1138 fbi->fb.fix.smem_len = smemlen;
1141 init_waitqueue_head(&fbi->ctrlr_wait);
1142 INIT_WORK(&fbi->task, pxafb_task);
1143 init_MUTEX(&fbi->ctrlr_sem);
1145 return fbi;
1148 #ifdef CONFIG_FB_PXA_PARAMETERS
1149 static int __init parse_opt_mode(struct device *dev, const char *this_opt)
1151 struct pxafb_mach_info *inf = dev->platform_data;
1153 const char *name = this_opt+5;
1154 unsigned int namelen = strlen(name);
1155 int res_specified = 0, bpp_specified = 0;
1156 unsigned int xres = 0, yres = 0, bpp = 0;
1157 int yres_specified = 0;
1158 int i;
1159 for (i = namelen-1; i >= 0; i--) {
1160 switch (name[i]) {
1161 case '-':
1162 namelen = i;
1163 if (!bpp_specified && !yres_specified) {
1164 bpp = simple_strtoul(&name[i+1], NULL, 0);
1165 bpp_specified = 1;
1166 } else
1167 goto done;
1168 break;
1169 case 'x':
1170 if (!yres_specified) {
1171 yres = simple_strtoul(&name[i+1], NULL, 0);
1172 yres_specified = 1;
1173 } else
1174 goto done;
1175 break;
1176 case '0' ... '9':
1177 break;
1178 default:
1179 goto done;
1182 if (i < 0 && yres_specified) {
1183 xres = simple_strtoul(name, NULL, 0);
1184 res_specified = 1;
1186 done:
1187 if (res_specified) {
1188 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1189 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1191 if (bpp_specified)
1192 switch (bpp) {
1193 case 1:
1194 case 2:
1195 case 4:
1196 case 8:
1197 case 16:
1198 inf->modes[0].bpp = bpp;
1199 dev_info(dev, "overriding bit depth: %d\n", bpp);
1200 break;
1201 default:
1202 dev_err(dev, "Depth %d is not valid\n", bpp);
1203 return -EINVAL;
1205 return 0;
1208 static int __init parse_opt(struct device *dev, char *this_opt)
1210 struct pxafb_mach_info *inf = dev->platform_data;
1211 struct pxafb_mode_info *mode = &inf->modes[0];
1212 char s[64];
1214 s[0] = '\0';
1216 if (!strncmp(this_opt, "mode:", 5)) {
1217 return parse_opt_mode(dev, this_opt);
1218 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1219 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1220 sprintf(s, "pixclock: %ld\n", mode->pixclock);
1221 } else if (!strncmp(this_opt, "left:", 5)) {
1222 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1223 sprintf(s, "left: %u\n", mode->left_margin);
1224 } else if (!strncmp(this_opt, "right:", 6)) {
1225 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1226 sprintf(s, "right: %u\n", mode->right_margin);
1227 } else if (!strncmp(this_opt, "upper:", 6)) {
1228 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1229 sprintf(s, "upper: %u\n", mode->upper_margin);
1230 } else if (!strncmp(this_opt, "lower:", 6)) {
1231 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1232 sprintf(s, "lower: %u\n", mode->lower_margin);
1233 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1234 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1235 sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1236 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1237 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1238 sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1239 } else if (!strncmp(this_opt, "hsync:", 6)) {
1240 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1241 sprintf(s, "hsync: Active Low\n");
1242 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1243 } else {
1244 sprintf(s, "hsync: Active High\n");
1245 mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1247 } else if (!strncmp(this_opt, "vsync:", 6)) {
1248 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1249 sprintf(s, "vsync: Active Low\n");
1250 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1251 } else {
1252 sprintf(s, "vsync: Active High\n");
1253 mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1255 } else if (!strncmp(this_opt, "dpc:", 4)) {
1256 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1257 sprintf(s, "double pixel clock: false\n");
1258 inf->lccr3 &= ~LCCR3_DPC;
1259 } else {
1260 sprintf(s, "double pixel clock: true\n");
1261 inf->lccr3 |= LCCR3_DPC;
1263 } else if (!strncmp(this_opt, "outputen:", 9)) {
1264 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1265 sprintf(s, "output enable: active low\n");
1266 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1267 } else {
1268 sprintf(s, "output enable: active high\n");
1269 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1271 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1272 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1273 sprintf(s, "pixel clock polarity: falling edge\n");
1274 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1275 } else {
1276 sprintf(s, "pixel clock polarity: rising edge\n");
1277 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1279 } else if (!strncmp(this_opt, "color", 5)) {
1280 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1281 } else if (!strncmp(this_opt, "mono", 4)) {
1282 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1283 } else if (!strncmp(this_opt, "active", 6)) {
1284 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1285 } else if (!strncmp(this_opt, "passive", 7)) {
1286 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1287 } else if (!strncmp(this_opt, "single", 6)) {
1288 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1289 } else if (!strncmp(this_opt, "dual", 4)) {
1290 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1291 } else if (!strncmp(this_opt, "4pix", 4)) {
1292 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1293 } else if (!strncmp(this_opt, "8pix", 4)) {
1294 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1295 } else {
1296 dev_err(dev, "unknown option: %s\n", this_opt);
1297 return -EINVAL;
1300 if (s[0] != '\0')
1301 dev_info(dev, "override %s", s);
1303 return 0;
1306 static int __init pxafb_parse_options(struct device *dev, char *options)
1308 char *this_opt;
1309 int ret;
1311 if (!options || !*options)
1312 return 0;
1314 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1316 /* could be made table driven or similar?... */
1317 while ((this_opt = strsep(&options, ",")) != NULL) {
1318 ret = parse_opt(dev, this_opt);
1319 if (ret)
1320 return ret;
1322 return 0;
1325 static char g_options[256] __devinitdata = "";
1327 #ifndef CONFIG_MODULES
1328 static int __devinit pxafb_setup_options(void)
1330 char *options = NULL;
1332 if (fb_get_options("pxafb", &options))
1333 return -ENODEV;
1335 if (options)
1336 strlcpy(g_options, options, sizeof(g_options));
1338 return 0;
1340 #else
1341 #define pxafb_setup_options() (0)
1343 module_param_string(options, g_options, sizeof(g_options), 0);
1344 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
1345 #endif
1347 #else
1348 #define pxafb_parse_options(...) (0)
1349 #define pxafb_setup_options() (0)
1350 #endif
1352 static int __init pxafb_probe(struct platform_device *dev)
1354 struct pxafb_info *fbi;
1355 struct pxafb_mach_info *inf;
1356 struct resource *r;
1357 int irq, ret;
1359 dev_dbg(&dev->dev, "pxafb_probe\n");
1361 inf = dev->dev.platform_data;
1362 ret = -ENOMEM;
1363 fbi = NULL;
1364 if (!inf)
1365 goto failed;
1367 ret = pxafb_parse_options(&dev->dev, g_options);
1368 if (ret < 0)
1369 goto failed;
1371 #ifdef DEBUG_VAR
1372 /* Check for various illegal bit-combinations. Currently only
1373 * a warning is given. */
1375 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
1376 dev_warn(&dev->dev, "machine LCCR0 setting contains "
1377 "illegal bits: %08x\n",
1378 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
1379 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
1380 dev_warn(&dev->dev, "machine LCCR3 setting contains "
1381 "illegal bits: %08x\n",
1382 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
1383 if (inf->lccr0 & LCCR0_DPD &&
1384 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
1385 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
1386 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
1387 dev_warn(&dev->dev, "Double Pixel Data (DPD) mode is "
1388 "only valid in passive mono"
1389 " single panel mode\n");
1390 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
1391 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1392 dev_warn(&dev->dev, "Dual panel only valid in passive mode\n");
1393 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
1394 (inf->modes->upper_margin || inf->modes->lower_margin))
1395 dev_warn(&dev->dev, "Upper and lower margins must be 0 in "
1396 "passive mode\n");
1397 #endif
1399 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
1400 inf->modes->xres,
1401 inf->modes->yres,
1402 inf->modes->bpp);
1403 if (inf->modes->xres == 0 ||
1404 inf->modes->yres == 0 ||
1405 inf->modes->bpp == 0) {
1406 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
1407 ret = -EINVAL;
1408 goto failed;
1410 pxafb_backlight_power = inf->pxafb_backlight_power;
1411 pxafb_lcd_power = inf->pxafb_lcd_power;
1412 fbi = pxafb_init_fbinfo(&dev->dev);
1413 if (!fbi) {
1414 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
1415 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
1416 ret = -ENOMEM;
1417 goto failed;
1420 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
1421 if (r == NULL) {
1422 dev_err(&dev->dev, "no I/O memory resource defined\n");
1423 ret = -ENODEV;
1424 goto failed;
1427 r = request_mem_region(r->start, r->end - r->start + 1, dev->name);
1428 if (r == NULL) {
1429 dev_err(&dev->dev, "failed to request I/O memory\n");
1430 ret = -EBUSY;
1431 goto failed;
1434 fbi->mmio_base = ioremap(r->start, r->end - r->start + 1);
1435 if (fbi->mmio_base == NULL) {
1436 dev_err(&dev->dev, "failed to map I/O memory\n");
1437 ret = -EBUSY;
1438 goto failed_free_res;
1441 /* Initialize video memory */
1442 ret = pxafb_map_video_memory(fbi);
1443 if (ret) {
1444 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
1445 ret = -ENOMEM;
1446 goto failed_free_io;
1449 irq = platform_get_irq(dev, 0);
1450 if (irq < 0) {
1451 dev_err(&dev->dev, "no IRQ defined\n");
1452 ret = -ENODEV;
1453 goto failed_free_mem;
1456 ret = request_irq(irq, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
1457 if (ret) {
1458 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
1459 ret = -EBUSY;
1460 goto failed_free_mem;
1464 * This makes sure that our colour bitfield
1465 * descriptors are correctly initialised.
1467 pxafb_check_var(&fbi->fb.var, &fbi->fb);
1468 pxafb_set_par(&fbi->fb);
1470 platform_set_drvdata(dev, fbi);
1472 ret = register_framebuffer(&fbi->fb);
1473 if (ret < 0) {
1474 dev_err(&dev->dev,
1475 "Failed to register framebuffer device: %d\n", ret);
1476 goto failed_free_irq;
1479 #ifdef CONFIG_CPU_FREQ
1480 fbi->freq_transition.notifier_call = pxafb_freq_transition;
1481 fbi->freq_policy.notifier_call = pxafb_freq_policy;
1482 cpufreq_register_notifier(&fbi->freq_transition,
1483 CPUFREQ_TRANSITION_NOTIFIER);
1484 cpufreq_register_notifier(&fbi->freq_policy,
1485 CPUFREQ_POLICY_NOTIFIER);
1486 #endif
1489 * Ok, now enable the LCD controller
1491 set_ctrlr_state(fbi, C_ENABLE);
1493 return 0;
1495 failed_free_irq:
1496 free_irq(irq, fbi);
1497 failed_free_res:
1498 release_mem_region(r->start, r->end - r->start + 1);
1499 failed_free_io:
1500 iounmap(fbi->mmio_base);
1501 failed_free_mem:
1502 dma_free_writecombine(&dev->dev, fbi->map_size,
1503 fbi->map_cpu, fbi->map_dma);
1504 failed:
1505 platform_set_drvdata(dev, NULL);
1506 kfree(fbi);
1507 return ret;
1510 static struct platform_driver pxafb_driver = {
1511 .probe = pxafb_probe,
1512 .suspend = pxafb_suspend,
1513 .resume = pxafb_resume,
1514 .driver = {
1515 .name = "pxa2xx-fb",
1519 static int __devinit pxafb_init(void)
1521 if (pxafb_setup_options())
1522 return -EINVAL;
1524 return platform_driver_register(&pxafb_driver);
1527 module_init(pxafb_init);
1529 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
1530 MODULE_LICENSE("GPL");