this_cpu: Straight transformations
[linux-2.6/x86.git] / fs / ext4 / mballoc.c
blobd527fd384582e75f872ad40ba001353bdef3aab3
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <trace/events/ext4.h>
29 * MUSTDO:
30 * - test ext4_ext_search_left() and ext4_ext_search_right()
31 * - search for metadata in few groups
33 * TODO v4:
34 * - normalization should take into account whether file is still open
35 * - discard preallocations if no free space left (policy?)
36 * - don't normalize tails
37 * - quota
38 * - reservation for superuser
40 * TODO v3:
41 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
42 * - track min/max extents in each group for better group selection
43 * - mb_mark_used() may allocate chunk right after splitting buddy
44 * - tree of groups sorted by number of free blocks
45 * - error handling
49 * The allocation request involve request for multiple number of blocks
50 * near to the goal(block) value specified.
52 * During initialization phase of the allocator we decide to use the
53 * group preallocation or inode preallocation depending on the size of
54 * the file. The size of the file could be the resulting file size we
55 * would have after allocation, or the current file size, which ever
56 * is larger. If the size is less than sbi->s_mb_stream_request we
57 * select to use the group preallocation. The default value of
58 * s_mb_stream_request is 16 blocks. This can also be tuned via
59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60 * terms of number of blocks.
62 * The main motivation for having small file use group preallocation is to
63 * ensure that we have small files closer together on the disk.
65 * First stage the allocator looks at the inode prealloc list,
66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67 * spaces for this particular inode. The inode prealloc space is
68 * represented as:
70 * pa_lstart -> the logical start block for this prealloc space
71 * pa_pstart -> the physical start block for this prealloc space
72 * pa_len -> lenght for this prealloc space
73 * pa_free -> free space available in this prealloc space
75 * The inode preallocation space is used looking at the _logical_ start
76 * block. If only the logical file block falls within the range of prealloc
77 * space we will consume the particular prealloc space. This make sure that
78 * that the we have contiguous physical blocks representing the file blocks
80 * The important thing to be noted in case of inode prealloc space is that
81 * we don't modify the values associated to inode prealloc space except
82 * pa_free.
84 * If we are not able to find blocks in the inode prealloc space and if we
85 * have the group allocation flag set then we look at the locality group
86 * prealloc space. These are per CPU prealloc list repreasented as
88 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 * The reason for having a per cpu locality group is to reduce the contention
91 * between CPUs. It is possible to get scheduled at this point.
93 * The locality group prealloc space is used looking at whether we have
94 * enough free space (pa_free) withing the prealloc space.
96 * If we can't allocate blocks via inode prealloc or/and locality group
97 * prealloc then we look at the buddy cache. The buddy cache is represented
98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99 * mapped to the buddy and bitmap information regarding different
100 * groups. The buddy information is attached to buddy cache inode so that
101 * we can access them through the page cache. The information regarding
102 * each group is loaded via ext4_mb_load_buddy. The information involve
103 * block bitmap and buddy information. The information are stored in the
104 * inode as:
106 * { page }
107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 * one block each for bitmap and buddy information. So for each group we
111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
112 * blocksize) blocks. So it can have information regarding groups_per_page
113 * which is blocks_per_page/2
115 * The buddy cache inode is not stored on disk. The inode is thrown
116 * away when the filesystem is unmounted.
118 * We look for count number of blocks in the buddy cache. If we were able
119 * to locate that many free blocks we return with additional information
120 * regarding rest of the contiguous physical block available
122 * Before allocating blocks via buddy cache we normalize the request
123 * blocks. This ensure we ask for more blocks that we needed. The extra
124 * blocks that we get after allocation is added to the respective prealloc
125 * list. In case of inode preallocation we follow a list of heuristics
126 * based on file size. This can be found in ext4_mb_normalize_request. If
127 * we are doing a group prealloc we try to normalize the request to
128 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
129 * 512 blocks. This can be tuned via
130 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
131 * terms of number of blocks. If we have mounted the file system with -O
132 * stripe=<value> option the group prealloc request is normalized to the
133 * stripe value (sbi->s_stripe)
135 * The regular allocator(using the buddy cache) supports few tunables.
137 * /sys/fs/ext4/<partition>/mb_min_to_scan
138 * /sys/fs/ext4/<partition>/mb_max_to_scan
139 * /sys/fs/ext4/<partition>/mb_order2_req
141 * The regular allocator uses buddy scan only if the request len is power of
142 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
143 * value of s_mb_order2_reqs can be tuned via
144 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
145 * stripe size (sbi->s_stripe), we try to search for contigous block in
146 * stripe size. This should result in better allocation on RAID setups. If
147 * not, we search in the specific group using bitmap for best extents. The
148 * tunable min_to_scan and max_to_scan control the behaviour here.
149 * min_to_scan indicate how long the mballoc __must__ look for a best
150 * extent and max_to_scan indicates how long the mballoc __can__ look for a
151 * best extent in the found extents. Searching for the blocks starts with
152 * the group specified as the goal value in allocation context via
153 * ac_g_ex. Each group is first checked based on the criteria whether it
154 * can used for allocation. ext4_mb_good_group explains how the groups are
155 * checked.
157 * Both the prealloc space are getting populated as above. So for the first
158 * request we will hit the buddy cache which will result in this prealloc
159 * space getting filled. The prealloc space is then later used for the
160 * subsequent request.
164 * mballoc operates on the following data:
165 * - on-disk bitmap
166 * - in-core buddy (actually includes buddy and bitmap)
167 * - preallocation descriptors (PAs)
169 * there are two types of preallocations:
170 * - inode
171 * assiged to specific inode and can be used for this inode only.
172 * it describes part of inode's space preallocated to specific
173 * physical blocks. any block from that preallocated can be used
174 * independent. the descriptor just tracks number of blocks left
175 * unused. so, before taking some block from descriptor, one must
176 * make sure corresponded logical block isn't allocated yet. this
177 * also means that freeing any block within descriptor's range
178 * must discard all preallocated blocks.
179 * - locality group
180 * assigned to specific locality group which does not translate to
181 * permanent set of inodes: inode can join and leave group. space
182 * from this type of preallocation can be used for any inode. thus
183 * it's consumed from the beginning to the end.
185 * relation between them can be expressed as:
186 * in-core buddy = on-disk bitmap + preallocation descriptors
188 * this mean blocks mballoc considers used are:
189 * - allocated blocks (persistent)
190 * - preallocated blocks (non-persistent)
192 * consistency in mballoc world means that at any time a block is either
193 * free or used in ALL structures. notice: "any time" should not be read
194 * literally -- time is discrete and delimited by locks.
196 * to keep it simple, we don't use block numbers, instead we count number of
197 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
199 * all operations can be expressed as:
200 * - init buddy: buddy = on-disk + PAs
201 * - new PA: buddy += N; PA = N
202 * - use inode PA: on-disk += N; PA -= N
203 * - discard inode PA buddy -= on-disk - PA; PA = 0
204 * - use locality group PA on-disk += N; PA -= N
205 * - discard locality group PA buddy -= PA; PA = 0
206 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
207 * is used in real operation because we can't know actual used
208 * bits from PA, only from on-disk bitmap
210 * if we follow this strict logic, then all operations above should be atomic.
211 * given some of them can block, we'd have to use something like semaphores
212 * killing performance on high-end SMP hardware. let's try to relax it using
213 * the following knowledge:
214 * 1) if buddy is referenced, it's already initialized
215 * 2) while block is used in buddy and the buddy is referenced,
216 * nobody can re-allocate that block
217 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
218 * bit set and PA claims same block, it's OK. IOW, one can set bit in
219 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
220 * block
222 * so, now we're building a concurrency table:
223 * - init buddy vs.
224 * - new PA
225 * blocks for PA are allocated in the buddy, buddy must be referenced
226 * until PA is linked to allocation group to avoid concurrent buddy init
227 * - use inode PA
228 * we need to make sure that either on-disk bitmap or PA has uptodate data
229 * given (3) we care that PA-=N operation doesn't interfere with init
230 * - discard inode PA
231 * the simplest way would be to have buddy initialized by the discard
232 * - use locality group PA
233 * again PA-=N must be serialized with init
234 * - discard locality group PA
235 * the simplest way would be to have buddy initialized by the discard
236 * - new PA vs.
237 * - use inode PA
238 * i_data_sem serializes them
239 * - discard inode PA
240 * discard process must wait until PA isn't used by another process
241 * - use locality group PA
242 * some mutex should serialize them
243 * - discard locality group PA
244 * discard process must wait until PA isn't used by another process
245 * - use inode PA
246 * - use inode PA
247 * i_data_sem or another mutex should serializes them
248 * - discard inode PA
249 * discard process must wait until PA isn't used by another process
250 * - use locality group PA
251 * nothing wrong here -- they're different PAs covering different blocks
252 * - discard locality group PA
253 * discard process must wait until PA isn't used by another process
255 * now we're ready to make few consequences:
256 * - PA is referenced and while it is no discard is possible
257 * - PA is referenced until block isn't marked in on-disk bitmap
258 * - PA changes only after on-disk bitmap
259 * - discard must not compete with init. either init is done before
260 * any discard or they're serialized somehow
261 * - buddy init as sum of on-disk bitmap and PAs is done atomically
263 * a special case when we've used PA to emptiness. no need to modify buddy
264 * in this case, but we should care about concurrent init
269 * Logic in few words:
271 * - allocation:
272 * load group
273 * find blocks
274 * mark bits in on-disk bitmap
275 * release group
277 * - use preallocation:
278 * find proper PA (per-inode or group)
279 * load group
280 * mark bits in on-disk bitmap
281 * release group
282 * release PA
284 * - free:
285 * load group
286 * mark bits in on-disk bitmap
287 * release group
289 * - discard preallocations in group:
290 * mark PAs deleted
291 * move them onto local list
292 * load on-disk bitmap
293 * load group
294 * remove PA from object (inode or locality group)
295 * mark free blocks in-core
297 * - discard inode's preallocations:
301 * Locking rules
303 * Locks:
304 * - bitlock on a group (group)
305 * - object (inode/locality) (object)
306 * - per-pa lock (pa)
308 * Paths:
309 * - new pa
310 * object
311 * group
313 * - find and use pa:
314 * pa
316 * - release consumed pa:
317 * pa
318 * group
319 * object
321 * - generate in-core bitmap:
322 * group
323 * pa
325 * - discard all for given object (inode, locality group):
326 * object
327 * pa
328 * group
330 * - discard all for given group:
331 * group
332 * pa
333 * group
334 * object
337 static struct kmem_cache *ext4_pspace_cachep;
338 static struct kmem_cache *ext4_ac_cachep;
339 static struct kmem_cache *ext4_free_ext_cachep;
340 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
341 ext4_group_t group);
342 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
343 ext4_group_t group);
344 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
346 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
348 #if BITS_PER_LONG == 64
349 *bit += ((unsigned long) addr & 7UL) << 3;
350 addr = (void *) ((unsigned long) addr & ~7UL);
351 #elif BITS_PER_LONG == 32
352 *bit += ((unsigned long) addr & 3UL) << 3;
353 addr = (void *) ((unsigned long) addr & ~3UL);
354 #else
355 #error "how many bits you are?!"
356 #endif
357 return addr;
360 static inline int mb_test_bit(int bit, void *addr)
363 * ext4_test_bit on architecture like powerpc
364 * needs unsigned long aligned address
366 addr = mb_correct_addr_and_bit(&bit, addr);
367 return ext4_test_bit(bit, addr);
370 static inline void mb_set_bit(int bit, void *addr)
372 addr = mb_correct_addr_and_bit(&bit, addr);
373 ext4_set_bit(bit, addr);
376 static inline void mb_clear_bit(int bit, void *addr)
378 addr = mb_correct_addr_and_bit(&bit, addr);
379 ext4_clear_bit(bit, addr);
382 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
384 int fix = 0, ret, tmpmax;
385 addr = mb_correct_addr_and_bit(&fix, addr);
386 tmpmax = max + fix;
387 start += fix;
389 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
390 if (ret > max)
391 return max;
392 return ret;
395 static inline int mb_find_next_bit(void *addr, int max, int start)
397 int fix = 0, ret, tmpmax;
398 addr = mb_correct_addr_and_bit(&fix, addr);
399 tmpmax = max + fix;
400 start += fix;
402 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
403 if (ret > max)
404 return max;
405 return ret;
408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
410 char *bb;
412 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
413 BUG_ON(max == NULL);
415 if (order > e4b->bd_blkbits + 1) {
416 *max = 0;
417 return NULL;
420 /* at order 0 we see each particular block */
421 *max = 1 << (e4b->bd_blkbits + 3);
422 if (order == 0)
423 return EXT4_MB_BITMAP(e4b);
425 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
426 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
428 return bb;
431 #ifdef DOUBLE_CHECK
432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
433 int first, int count)
435 int i;
436 struct super_block *sb = e4b->bd_sb;
438 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
439 return;
440 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
441 for (i = 0; i < count; i++) {
442 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
443 ext4_fsblk_t blocknr;
444 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
445 blocknr += first + i;
446 blocknr +=
447 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
448 ext4_grp_locked_error(sb, e4b->bd_group,
449 __func__, "double-free of inode"
450 " %lu's block %llu(bit %u in group %u)",
451 inode ? inode->i_ino : 0, blocknr,
452 first + i, e4b->bd_group);
454 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
460 int i;
462 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
463 return;
464 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
465 for (i = 0; i < count; i++) {
466 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
467 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
473 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
474 unsigned char *b1, *b2;
475 int i;
476 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
477 b2 = (unsigned char *) bitmap;
478 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
479 if (b1[i] != b2[i]) {
480 printk(KERN_ERR "corruption in group %u "
481 "at byte %u(%u): %x in copy != %x "
482 "on disk/prealloc\n",
483 e4b->bd_group, i, i * 8, b1[i], b2[i]);
484 BUG();
490 #else
491 static inline void mb_free_blocks_double(struct inode *inode,
492 struct ext4_buddy *e4b, int first, int count)
494 return;
496 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
497 int first, int count)
499 return;
501 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
503 return;
505 #endif
507 #ifdef AGGRESSIVE_CHECK
509 #define MB_CHECK_ASSERT(assert) \
510 do { \
511 if (!(assert)) { \
512 printk(KERN_EMERG \
513 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
514 function, file, line, # assert); \
515 BUG(); \
517 } while (0)
519 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
520 const char *function, int line)
522 struct super_block *sb = e4b->bd_sb;
523 int order = e4b->bd_blkbits + 1;
524 int max;
525 int max2;
526 int i;
527 int j;
528 int k;
529 int count;
530 struct ext4_group_info *grp;
531 int fragments = 0;
532 int fstart;
533 struct list_head *cur;
534 void *buddy;
535 void *buddy2;
538 static int mb_check_counter;
539 if (mb_check_counter++ % 100 != 0)
540 return 0;
543 while (order > 1) {
544 buddy = mb_find_buddy(e4b, order, &max);
545 MB_CHECK_ASSERT(buddy);
546 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
547 MB_CHECK_ASSERT(buddy2);
548 MB_CHECK_ASSERT(buddy != buddy2);
549 MB_CHECK_ASSERT(max * 2 == max2);
551 count = 0;
552 for (i = 0; i < max; i++) {
554 if (mb_test_bit(i, buddy)) {
555 /* only single bit in buddy2 may be 1 */
556 if (!mb_test_bit(i << 1, buddy2)) {
557 MB_CHECK_ASSERT(
558 mb_test_bit((i<<1)+1, buddy2));
559 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
560 MB_CHECK_ASSERT(
561 mb_test_bit(i << 1, buddy2));
563 continue;
566 /* both bits in buddy2 must be 0 */
567 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
568 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
570 for (j = 0; j < (1 << order); j++) {
571 k = (i * (1 << order)) + j;
572 MB_CHECK_ASSERT(
573 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
575 count++;
577 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
578 order--;
581 fstart = -1;
582 buddy = mb_find_buddy(e4b, 0, &max);
583 for (i = 0; i < max; i++) {
584 if (!mb_test_bit(i, buddy)) {
585 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
586 if (fstart == -1) {
587 fragments++;
588 fstart = i;
590 continue;
592 fstart = -1;
593 /* check used bits only */
594 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
595 buddy2 = mb_find_buddy(e4b, j, &max2);
596 k = i >> j;
597 MB_CHECK_ASSERT(k < max2);
598 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
601 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
602 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
604 grp = ext4_get_group_info(sb, e4b->bd_group);
605 buddy = mb_find_buddy(e4b, 0, &max);
606 list_for_each(cur, &grp->bb_prealloc_list) {
607 ext4_group_t groupnr;
608 struct ext4_prealloc_space *pa;
609 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
610 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
611 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
612 for (i = 0; i < pa->pa_len; i++)
613 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
615 return 0;
617 #undef MB_CHECK_ASSERT
618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
619 __FILE__, __func__, __LINE__)
620 #else
621 #define mb_check_buddy(e4b)
622 #endif
624 /* FIXME!! need more doc */
625 static void ext4_mb_mark_free_simple(struct super_block *sb,
626 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
627 struct ext4_group_info *grp)
629 struct ext4_sb_info *sbi = EXT4_SB(sb);
630 ext4_grpblk_t min;
631 ext4_grpblk_t max;
632 ext4_grpblk_t chunk;
633 unsigned short border;
635 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
637 border = 2 << sb->s_blocksize_bits;
639 while (len > 0) {
640 /* find how many blocks can be covered since this position */
641 max = ffs(first | border) - 1;
643 /* find how many blocks of power 2 we need to mark */
644 min = fls(len) - 1;
646 if (max < min)
647 min = max;
648 chunk = 1 << min;
650 /* mark multiblock chunks only */
651 grp->bb_counters[min]++;
652 if (min > 0)
653 mb_clear_bit(first >> min,
654 buddy + sbi->s_mb_offsets[min]);
656 len -= chunk;
657 first += chunk;
661 static noinline_for_stack
662 void ext4_mb_generate_buddy(struct super_block *sb,
663 void *buddy, void *bitmap, ext4_group_t group)
665 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
666 ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
667 ext4_grpblk_t i = 0;
668 ext4_grpblk_t first;
669 ext4_grpblk_t len;
670 unsigned free = 0;
671 unsigned fragments = 0;
672 unsigned long long period = get_cycles();
674 /* initialize buddy from bitmap which is aggregation
675 * of on-disk bitmap and preallocations */
676 i = mb_find_next_zero_bit(bitmap, max, 0);
677 grp->bb_first_free = i;
678 while (i < max) {
679 fragments++;
680 first = i;
681 i = mb_find_next_bit(bitmap, max, i);
682 len = i - first;
683 free += len;
684 if (len > 1)
685 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
686 else
687 grp->bb_counters[0]++;
688 if (i < max)
689 i = mb_find_next_zero_bit(bitmap, max, i);
691 grp->bb_fragments = fragments;
693 if (free != grp->bb_free) {
694 ext4_grp_locked_error(sb, group, __func__,
695 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
696 group, free, grp->bb_free);
698 * If we intent to continue, we consider group descritor
699 * corrupt and update bb_free using bitmap value
701 grp->bb_free = free;
704 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
706 period = get_cycles() - period;
707 spin_lock(&EXT4_SB(sb)->s_bal_lock);
708 EXT4_SB(sb)->s_mb_buddies_generated++;
709 EXT4_SB(sb)->s_mb_generation_time += period;
710 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
713 /* The buddy information is attached the buddy cache inode
714 * for convenience. The information regarding each group
715 * is loaded via ext4_mb_load_buddy. The information involve
716 * block bitmap and buddy information. The information are
717 * stored in the inode as
719 * { page }
720 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
723 * one block each for bitmap and buddy information.
724 * So for each group we take up 2 blocks. A page can
725 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
726 * So it can have information regarding groups_per_page which
727 * is blocks_per_page/2
730 static int ext4_mb_init_cache(struct page *page, char *incore)
732 ext4_group_t ngroups;
733 int blocksize;
734 int blocks_per_page;
735 int groups_per_page;
736 int err = 0;
737 int i;
738 ext4_group_t first_group;
739 int first_block;
740 struct super_block *sb;
741 struct buffer_head *bhs;
742 struct buffer_head **bh;
743 struct inode *inode;
744 char *data;
745 char *bitmap;
747 mb_debug(1, "init page %lu\n", page->index);
749 inode = page->mapping->host;
750 sb = inode->i_sb;
751 ngroups = ext4_get_groups_count(sb);
752 blocksize = 1 << inode->i_blkbits;
753 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
755 groups_per_page = blocks_per_page >> 1;
756 if (groups_per_page == 0)
757 groups_per_page = 1;
759 /* allocate buffer_heads to read bitmaps */
760 if (groups_per_page > 1) {
761 err = -ENOMEM;
762 i = sizeof(struct buffer_head *) * groups_per_page;
763 bh = kzalloc(i, GFP_NOFS);
764 if (bh == NULL)
765 goto out;
766 } else
767 bh = &bhs;
769 first_group = page->index * blocks_per_page / 2;
771 /* read all groups the page covers into the cache */
772 for (i = 0; i < groups_per_page; i++) {
773 struct ext4_group_desc *desc;
775 if (first_group + i >= ngroups)
776 break;
778 err = -EIO;
779 desc = ext4_get_group_desc(sb, first_group + i, NULL);
780 if (desc == NULL)
781 goto out;
783 err = -ENOMEM;
784 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
785 if (bh[i] == NULL)
786 goto out;
788 if (bitmap_uptodate(bh[i]))
789 continue;
791 lock_buffer(bh[i]);
792 if (bitmap_uptodate(bh[i])) {
793 unlock_buffer(bh[i]);
794 continue;
796 ext4_lock_group(sb, first_group + i);
797 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
798 ext4_init_block_bitmap(sb, bh[i],
799 first_group + i, desc);
800 set_bitmap_uptodate(bh[i]);
801 set_buffer_uptodate(bh[i]);
802 ext4_unlock_group(sb, first_group + i);
803 unlock_buffer(bh[i]);
804 continue;
806 ext4_unlock_group(sb, first_group + i);
807 if (buffer_uptodate(bh[i])) {
809 * if not uninit if bh is uptodate,
810 * bitmap is also uptodate
812 set_bitmap_uptodate(bh[i]);
813 unlock_buffer(bh[i]);
814 continue;
816 get_bh(bh[i]);
818 * submit the buffer_head for read. We can
819 * safely mark the bitmap as uptodate now.
820 * We do it here so the bitmap uptodate bit
821 * get set with buffer lock held.
823 set_bitmap_uptodate(bh[i]);
824 bh[i]->b_end_io = end_buffer_read_sync;
825 submit_bh(READ, bh[i]);
826 mb_debug(1, "read bitmap for group %u\n", first_group + i);
829 /* wait for I/O completion */
830 for (i = 0; i < groups_per_page && bh[i]; i++)
831 wait_on_buffer(bh[i]);
833 err = -EIO;
834 for (i = 0; i < groups_per_page && bh[i]; i++)
835 if (!buffer_uptodate(bh[i]))
836 goto out;
838 err = 0;
839 first_block = page->index * blocks_per_page;
840 /* init the page */
841 memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
842 for (i = 0; i < blocks_per_page; i++) {
843 int group;
844 struct ext4_group_info *grinfo;
846 group = (first_block + i) >> 1;
847 if (group >= ngroups)
848 break;
851 * data carry information regarding this
852 * particular group in the format specified
853 * above
856 data = page_address(page) + (i * blocksize);
857 bitmap = bh[group - first_group]->b_data;
860 * We place the buddy block and bitmap block
861 * close together
863 if ((first_block + i) & 1) {
864 /* this is block of buddy */
865 BUG_ON(incore == NULL);
866 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
867 group, page->index, i * blocksize);
868 grinfo = ext4_get_group_info(sb, group);
869 grinfo->bb_fragments = 0;
870 memset(grinfo->bb_counters, 0,
871 sizeof(*grinfo->bb_counters) *
872 (sb->s_blocksize_bits+2));
874 * incore got set to the group block bitmap below
876 ext4_lock_group(sb, group);
877 ext4_mb_generate_buddy(sb, data, incore, group);
878 ext4_unlock_group(sb, group);
879 incore = NULL;
880 } else {
881 /* this is block of bitmap */
882 BUG_ON(incore != NULL);
883 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
884 group, page->index, i * blocksize);
886 /* see comments in ext4_mb_put_pa() */
887 ext4_lock_group(sb, group);
888 memcpy(data, bitmap, blocksize);
890 /* mark all preallocated blks used in in-core bitmap */
891 ext4_mb_generate_from_pa(sb, data, group);
892 ext4_mb_generate_from_freelist(sb, data, group);
893 ext4_unlock_group(sb, group);
895 /* set incore so that the buddy information can be
896 * generated using this
898 incore = data;
901 SetPageUptodate(page);
903 out:
904 if (bh) {
905 for (i = 0; i < groups_per_page && bh[i]; i++)
906 brelse(bh[i]);
907 if (bh != &bhs)
908 kfree(bh);
910 return err;
913 static noinline_for_stack
914 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
917 int ret = 0;
918 void *bitmap;
919 int blocks_per_page;
920 int block, pnum, poff;
921 int num_grp_locked = 0;
922 struct ext4_group_info *this_grp;
923 struct ext4_sb_info *sbi = EXT4_SB(sb);
924 struct inode *inode = sbi->s_buddy_cache;
925 struct page *page = NULL, *bitmap_page = NULL;
927 mb_debug(1, "init group %u\n", group);
928 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
929 this_grp = ext4_get_group_info(sb, group);
931 * This ensures that we don't reinit the buddy cache
932 * page which map to the group from which we are already
933 * allocating. If we are looking at the buddy cache we would
934 * have taken a reference using ext4_mb_load_buddy and that
935 * would have taken the alloc_sem lock.
937 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group);
938 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
940 * somebody initialized the group
941 * return without doing anything
943 ret = 0;
944 goto err;
947 * the buddy cache inode stores the block bitmap
948 * and buddy information in consecutive blocks.
949 * So for each group we need two blocks.
951 block = group * 2;
952 pnum = block / blocks_per_page;
953 poff = block % blocks_per_page;
954 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
955 if (page) {
956 BUG_ON(page->mapping != inode->i_mapping);
957 ret = ext4_mb_init_cache(page, NULL);
958 if (ret) {
959 unlock_page(page);
960 goto err;
962 unlock_page(page);
964 if (page == NULL || !PageUptodate(page)) {
965 ret = -EIO;
966 goto err;
968 mark_page_accessed(page);
969 bitmap_page = page;
970 bitmap = page_address(page) + (poff * sb->s_blocksize);
972 /* init buddy cache */
973 block++;
974 pnum = block / blocks_per_page;
975 poff = block % blocks_per_page;
976 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
977 if (page == bitmap_page) {
979 * If both the bitmap and buddy are in
980 * the same page we don't need to force
981 * init the buddy
983 unlock_page(page);
984 } else if (page) {
985 BUG_ON(page->mapping != inode->i_mapping);
986 ret = ext4_mb_init_cache(page, bitmap);
987 if (ret) {
988 unlock_page(page);
989 goto err;
991 unlock_page(page);
993 if (page == NULL || !PageUptodate(page)) {
994 ret = -EIO;
995 goto err;
997 mark_page_accessed(page);
998 err:
999 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1000 if (bitmap_page)
1001 page_cache_release(bitmap_page);
1002 if (page)
1003 page_cache_release(page);
1004 return ret;
1007 static noinline_for_stack int
1008 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1009 struct ext4_buddy *e4b)
1011 int blocks_per_page;
1012 int block;
1013 int pnum;
1014 int poff;
1015 struct page *page;
1016 int ret;
1017 struct ext4_group_info *grp;
1018 struct ext4_sb_info *sbi = EXT4_SB(sb);
1019 struct inode *inode = sbi->s_buddy_cache;
1021 mb_debug(1, "load group %u\n", group);
1023 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1024 grp = ext4_get_group_info(sb, group);
1026 e4b->bd_blkbits = sb->s_blocksize_bits;
1027 e4b->bd_info = ext4_get_group_info(sb, group);
1028 e4b->bd_sb = sb;
1029 e4b->bd_group = group;
1030 e4b->bd_buddy_page = NULL;
1031 e4b->bd_bitmap_page = NULL;
1032 e4b->alloc_semp = &grp->alloc_sem;
1034 /* Take the read lock on the group alloc
1035 * sem. This would make sure a parallel
1036 * ext4_mb_init_group happening on other
1037 * groups mapped by the page is blocked
1038 * till we are done with allocation
1040 repeat_load_buddy:
1041 down_read(e4b->alloc_semp);
1043 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1044 /* we need to check for group need init flag
1045 * with alloc_semp held so that we can be sure
1046 * that new blocks didn't get added to the group
1047 * when we are loading the buddy cache
1049 up_read(e4b->alloc_semp);
1051 * we need full data about the group
1052 * to make a good selection
1054 ret = ext4_mb_init_group(sb, group);
1055 if (ret)
1056 return ret;
1057 goto repeat_load_buddy;
1061 * the buddy cache inode stores the block bitmap
1062 * and buddy information in consecutive blocks.
1063 * So for each group we need two blocks.
1065 block = group * 2;
1066 pnum = block / blocks_per_page;
1067 poff = block % blocks_per_page;
1069 /* we could use find_or_create_page(), but it locks page
1070 * what we'd like to avoid in fast path ... */
1071 page = find_get_page(inode->i_mapping, pnum);
1072 if (page == NULL || !PageUptodate(page)) {
1073 if (page)
1075 * drop the page reference and try
1076 * to get the page with lock. If we
1077 * are not uptodate that implies
1078 * somebody just created the page but
1079 * is yet to initialize the same. So
1080 * wait for it to initialize.
1082 page_cache_release(page);
1083 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1084 if (page) {
1085 BUG_ON(page->mapping != inode->i_mapping);
1086 if (!PageUptodate(page)) {
1087 ret = ext4_mb_init_cache(page, NULL);
1088 if (ret) {
1089 unlock_page(page);
1090 goto err;
1092 mb_cmp_bitmaps(e4b, page_address(page) +
1093 (poff * sb->s_blocksize));
1095 unlock_page(page);
1098 if (page == NULL || !PageUptodate(page)) {
1099 ret = -EIO;
1100 goto err;
1102 e4b->bd_bitmap_page = page;
1103 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1104 mark_page_accessed(page);
1106 block++;
1107 pnum = block / blocks_per_page;
1108 poff = block % blocks_per_page;
1110 page = find_get_page(inode->i_mapping, pnum);
1111 if (page == NULL || !PageUptodate(page)) {
1112 if (page)
1113 page_cache_release(page);
1114 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1115 if (page) {
1116 BUG_ON(page->mapping != inode->i_mapping);
1117 if (!PageUptodate(page)) {
1118 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1119 if (ret) {
1120 unlock_page(page);
1121 goto err;
1124 unlock_page(page);
1127 if (page == NULL || !PageUptodate(page)) {
1128 ret = -EIO;
1129 goto err;
1131 e4b->bd_buddy_page = page;
1132 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1133 mark_page_accessed(page);
1135 BUG_ON(e4b->bd_bitmap_page == NULL);
1136 BUG_ON(e4b->bd_buddy_page == NULL);
1138 return 0;
1140 err:
1141 if (e4b->bd_bitmap_page)
1142 page_cache_release(e4b->bd_bitmap_page);
1143 if (e4b->bd_buddy_page)
1144 page_cache_release(e4b->bd_buddy_page);
1145 e4b->bd_buddy = NULL;
1146 e4b->bd_bitmap = NULL;
1148 /* Done with the buddy cache */
1149 up_read(e4b->alloc_semp);
1150 return ret;
1153 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1155 if (e4b->bd_bitmap_page)
1156 page_cache_release(e4b->bd_bitmap_page);
1157 if (e4b->bd_buddy_page)
1158 page_cache_release(e4b->bd_buddy_page);
1159 /* Done with the buddy cache */
1160 if (e4b->alloc_semp)
1161 up_read(e4b->alloc_semp);
1165 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1167 int order = 1;
1168 void *bb;
1170 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1171 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1173 bb = EXT4_MB_BUDDY(e4b);
1174 while (order <= e4b->bd_blkbits + 1) {
1175 block = block >> 1;
1176 if (!mb_test_bit(block, bb)) {
1177 /* this block is part of buddy of order 'order' */
1178 return order;
1180 bb += 1 << (e4b->bd_blkbits - order);
1181 order++;
1183 return 0;
1186 static void mb_clear_bits(void *bm, int cur, int len)
1188 __u32 *addr;
1190 len = cur + len;
1191 while (cur < len) {
1192 if ((cur & 31) == 0 && (len - cur) >= 32) {
1193 /* fast path: clear whole word at once */
1194 addr = bm + (cur >> 3);
1195 *addr = 0;
1196 cur += 32;
1197 continue;
1199 mb_clear_bit(cur, bm);
1200 cur++;
1204 static void mb_set_bits(void *bm, int cur, int len)
1206 __u32 *addr;
1208 len = cur + len;
1209 while (cur < len) {
1210 if ((cur & 31) == 0 && (len - cur) >= 32) {
1211 /* fast path: set whole word at once */
1212 addr = bm + (cur >> 3);
1213 *addr = 0xffffffff;
1214 cur += 32;
1215 continue;
1217 mb_set_bit(cur, bm);
1218 cur++;
1222 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1223 int first, int count)
1225 int block = 0;
1226 int max = 0;
1227 int order;
1228 void *buddy;
1229 void *buddy2;
1230 struct super_block *sb = e4b->bd_sb;
1232 BUG_ON(first + count > (sb->s_blocksize << 3));
1233 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1234 mb_check_buddy(e4b);
1235 mb_free_blocks_double(inode, e4b, first, count);
1237 e4b->bd_info->bb_free += count;
1238 if (first < e4b->bd_info->bb_first_free)
1239 e4b->bd_info->bb_first_free = first;
1241 /* let's maintain fragments counter */
1242 if (first != 0)
1243 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1244 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1245 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1246 if (block && max)
1247 e4b->bd_info->bb_fragments--;
1248 else if (!block && !max)
1249 e4b->bd_info->bb_fragments++;
1251 /* let's maintain buddy itself */
1252 while (count-- > 0) {
1253 block = first++;
1254 order = 0;
1256 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1257 ext4_fsblk_t blocknr;
1258 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1259 blocknr += block;
1260 blocknr +=
1261 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1262 ext4_grp_locked_error(sb, e4b->bd_group,
1263 __func__, "double-free of inode"
1264 " %lu's block %llu(bit %u in group %u)",
1265 inode ? inode->i_ino : 0, blocknr, block,
1266 e4b->bd_group);
1268 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1269 e4b->bd_info->bb_counters[order]++;
1271 /* start of the buddy */
1272 buddy = mb_find_buddy(e4b, order, &max);
1274 do {
1275 block &= ~1UL;
1276 if (mb_test_bit(block, buddy) ||
1277 mb_test_bit(block + 1, buddy))
1278 break;
1280 /* both the buddies are free, try to coalesce them */
1281 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1283 if (!buddy2)
1284 break;
1286 if (order > 0) {
1287 /* for special purposes, we don't set
1288 * free bits in bitmap */
1289 mb_set_bit(block, buddy);
1290 mb_set_bit(block + 1, buddy);
1292 e4b->bd_info->bb_counters[order]--;
1293 e4b->bd_info->bb_counters[order]--;
1295 block = block >> 1;
1296 order++;
1297 e4b->bd_info->bb_counters[order]++;
1299 mb_clear_bit(block, buddy2);
1300 buddy = buddy2;
1301 } while (1);
1303 mb_check_buddy(e4b);
1306 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1307 int needed, struct ext4_free_extent *ex)
1309 int next = block;
1310 int max;
1311 int ord;
1312 void *buddy;
1314 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1315 BUG_ON(ex == NULL);
1317 buddy = mb_find_buddy(e4b, order, &max);
1318 BUG_ON(buddy == NULL);
1319 BUG_ON(block >= max);
1320 if (mb_test_bit(block, buddy)) {
1321 ex->fe_len = 0;
1322 ex->fe_start = 0;
1323 ex->fe_group = 0;
1324 return 0;
1327 /* FIXME dorp order completely ? */
1328 if (likely(order == 0)) {
1329 /* find actual order */
1330 order = mb_find_order_for_block(e4b, block);
1331 block = block >> order;
1334 ex->fe_len = 1 << order;
1335 ex->fe_start = block << order;
1336 ex->fe_group = e4b->bd_group;
1338 /* calc difference from given start */
1339 next = next - ex->fe_start;
1340 ex->fe_len -= next;
1341 ex->fe_start += next;
1343 while (needed > ex->fe_len &&
1344 (buddy = mb_find_buddy(e4b, order, &max))) {
1346 if (block + 1 >= max)
1347 break;
1349 next = (block + 1) * (1 << order);
1350 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1351 break;
1353 ord = mb_find_order_for_block(e4b, next);
1355 order = ord;
1356 block = next >> order;
1357 ex->fe_len += 1 << order;
1360 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1361 return ex->fe_len;
1364 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1366 int ord;
1367 int mlen = 0;
1368 int max = 0;
1369 int cur;
1370 int start = ex->fe_start;
1371 int len = ex->fe_len;
1372 unsigned ret = 0;
1373 int len0 = len;
1374 void *buddy;
1376 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1377 BUG_ON(e4b->bd_group != ex->fe_group);
1378 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1379 mb_check_buddy(e4b);
1380 mb_mark_used_double(e4b, start, len);
1382 e4b->bd_info->bb_free -= len;
1383 if (e4b->bd_info->bb_first_free == start)
1384 e4b->bd_info->bb_first_free += len;
1386 /* let's maintain fragments counter */
1387 if (start != 0)
1388 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1389 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1390 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1391 if (mlen && max)
1392 e4b->bd_info->bb_fragments++;
1393 else if (!mlen && !max)
1394 e4b->bd_info->bb_fragments--;
1396 /* let's maintain buddy itself */
1397 while (len) {
1398 ord = mb_find_order_for_block(e4b, start);
1400 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1401 /* the whole chunk may be allocated at once! */
1402 mlen = 1 << ord;
1403 buddy = mb_find_buddy(e4b, ord, &max);
1404 BUG_ON((start >> ord) >= max);
1405 mb_set_bit(start >> ord, buddy);
1406 e4b->bd_info->bb_counters[ord]--;
1407 start += mlen;
1408 len -= mlen;
1409 BUG_ON(len < 0);
1410 continue;
1413 /* store for history */
1414 if (ret == 0)
1415 ret = len | (ord << 16);
1417 /* we have to split large buddy */
1418 BUG_ON(ord <= 0);
1419 buddy = mb_find_buddy(e4b, ord, &max);
1420 mb_set_bit(start >> ord, buddy);
1421 e4b->bd_info->bb_counters[ord]--;
1423 ord--;
1424 cur = (start >> ord) & ~1U;
1425 buddy = mb_find_buddy(e4b, ord, &max);
1426 mb_clear_bit(cur, buddy);
1427 mb_clear_bit(cur + 1, buddy);
1428 e4b->bd_info->bb_counters[ord]++;
1429 e4b->bd_info->bb_counters[ord]++;
1432 mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1433 mb_check_buddy(e4b);
1435 return ret;
1439 * Must be called under group lock!
1441 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1442 struct ext4_buddy *e4b)
1444 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1445 int ret;
1447 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1448 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1450 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1451 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1452 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1454 /* preallocation can change ac_b_ex, thus we store actually
1455 * allocated blocks for history */
1456 ac->ac_f_ex = ac->ac_b_ex;
1458 ac->ac_status = AC_STATUS_FOUND;
1459 ac->ac_tail = ret & 0xffff;
1460 ac->ac_buddy = ret >> 16;
1463 * take the page reference. We want the page to be pinned
1464 * so that we don't get a ext4_mb_init_cache_call for this
1465 * group until we update the bitmap. That would mean we
1466 * double allocate blocks. The reference is dropped
1467 * in ext4_mb_release_context
1469 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1470 get_page(ac->ac_bitmap_page);
1471 ac->ac_buddy_page = e4b->bd_buddy_page;
1472 get_page(ac->ac_buddy_page);
1473 /* on allocation we use ac to track the held semaphore */
1474 ac->alloc_semp = e4b->alloc_semp;
1475 e4b->alloc_semp = NULL;
1476 /* store last allocated for subsequent stream allocation */
1477 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1478 spin_lock(&sbi->s_md_lock);
1479 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1480 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1481 spin_unlock(&sbi->s_md_lock);
1486 * regular allocator, for general purposes allocation
1489 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1490 struct ext4_buddy *e4b,
1491 int finish_group)
1493 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1494 struct ext4_free_extent *bex = &ac->ac_b_ex;
1495 struct ext4_free_extent *gex = &ac->ac_g_ex;
1496 struct ext4_free_extent ex;
1497 int max;
1499 if (ac->ac_status == AC_STATUS_FOUND)
1500 return;
1502 * We don't want to scan for a whole year
1504 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1505 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1506 ac->ac_status = AC_STATUS_BREAK;
1507 return;
1511 * Haven't found good chunk so far, let's continue
1513 if (bex->fe_len < gex->fe_len)
1514 return;
1516 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1517 && bex->fe_group == e4b->bd_group) {
1518 /* recheck chunk's availability - we don't know
1519 * when it was found (within this lock-unlock
1520 * period or not) */
1521 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1522 if (max >= gex->fe_len) {
1523 ext4_mb_use_best_found(ac, e4b);
1524 return;
1530 * The routine checks whether found extent is good enough. If it is,
1531 * then the extent gets marked used and flag is set to the context
1532 * to stop scanning. Otherwise, the extent is compared with the
1533 * previous found extent and if new one is better, then it's stored
1534 * in the context. Later, the best found extent will be used, if
1535 * mballoc can't find good enough extent.
1537 * FIXME: real allocation policy is to be designed yet!
1539 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1540 struct ext4_free_extent *ex,
1541 struct ext4_buddy *e4b)
1543 struct ext4_free_extent *bex = &ac->ac_b_ex;
1544 struct ext4_free_extent *gex = &ac->ac_g_ex;
1546 BUG_ON(ex->fe_len <= 0);
1547 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1548 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1549 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1551 ac->ac_found++;
1554 * The special case - take what you catch first
1556 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1557 *bex = *ex;
1558 ext4_mb_use_best_found(ac, e4b);
1559 return;
1563 * Let's check whether the chuck is good enough
1565 if (ex->fe_len == gex->fe_len) {
1566 *bex = *ex;
1567 ext4_mb_use_best_found(ac, e4b);
1568 return;
1572 * If this is first found extent, just store it in the context
1574 if (bex->fe_len == 0) {
1575 *bex = *ex;
1576 return;
1580 * If new found extent is better, store it in the context
1582 if (bex->fe_len < gex->fe_len) {
1583 /* if the request isn't satisfied, any found extent
1584 * larger than previous best one is better */
1585 if (ex->fe_len > bex->fe_len)
1586 *bex = *ex;
1587 } else if (ex->fe_len > gex->fe_len) {
1588 /* if the request is satisfied, then we try to find
1589 * an extent that still satisfy the request, but is
1590 * smaller than previous one */
1591 if (ex->fe_len < bex->fe_len)
1592 *bex = *ex;
1595 ext4_mb_check_limits(ac, e4b, 0);
1598 static noinline_for_stack
1599 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1600 struct ext4_buddy *e4b)
1602 struct ext4_free_extent ex = ac->ac_b_ex;
1603 ext4_group_t group = ex.fe_group;
1604 int max;
1605 int err;
1607 BUG_ON(ex.fe_len <= 0);
1608 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1609 if (err)
1610 return err;
1612 ext4_lock_group(ac->ac_sb, group);
1613 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1615 if (max > 0) {
1616 ac->ac_b_ex = ex;
1617 ext4_mb_use_best_found(ac, e4b);
1620 ext4_unlock_group(ac->ac_sb, group);
1621 ext4_mb_release_desc(e4b);
1623 return 0;
1626 static noinline_for_stack
1627 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1628 struct ext4_buddy *e4b)
1630 ext4_group_t group = ac->ac_g_ex.fe_group;
1631 int max;
1632 int err;
1633 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1634 struct ext4_super_block *es = sbi->s_es;
1635 struct ext4_free_extent ex;
1637 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1638 return 0;
1640 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1641 if (err)
1642 return err;
1644 ext4_lock_group(ac->ac_sb, group);
1645 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1646 ac->ac_g_ex.fe_len, &ex);
1648 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1649 ext4_fsblk_t start;
1651 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1652 ex.fe_start + le32_to_cpu(es->s_first_data_block);
1653 /* use do_div to get remainder (would be 64-bit modulo) */
1654 if (do_div(start, sbi->s_stripe) == 0) {
1655 ac->ac_found++;
1656 ac->ac_b_ex = ex;
1657 ext4_mb_use_best_found(ac, e4b);
1659 } else if (max >= ac->ac_g_ex.fe_len) {
1660 BUG_ON(ex.fe_len <= 0);
1661 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1662 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1663 ac->ac_found++;
1664 ac->ac_b_ex = ex;
1665 ext4_mb_use_best_found(ac, e4b);
1666 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1667 /* Sometimes, caller may want to merge even small
1668 * number of blocks to an existing extent */
1669 BUG_ON(ex.fe_len <= 0);
1670 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1671 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1672 ac->ac_found++;
1673 ac->ac_b_ex = ex;
1674 ext4_mb_use_best_found(ac, e4b);
1676 ext4_unlock_group(ac->ac_sb, group);
1677 ext4_mb_release_desc(e4b);
1679 return 0;
1683 * The routine scans buddy structures (not bitmap!) from given order
1684 * to max order and tries to find big enough chunk to satisfy the req
1686 static noinline_for_stack
1687 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1688 struct ext4_buddy *e4b)
1690 struct super_block *sb = ac->ac_sb;
1691 struct ext4_group_info *grp = e4b->bd_info;
1692 void *buddy;
1693 int i;
1694 int k;
1695 int max;
1697 BUG_ON(ac->ac_2order <= 0);
1698 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1699 if (grp->bb_counters[i] == 0)
1700 continue;
1702 buddy = mb_find_buddy(e4b, i, &max);
1703 BUG_ON(buddy == NULL);
1705 k = mb_find_next_zero_bit(buddy, max, 0);
1706 BUG_ON(k >= max);
1708 ac->ac_found++;
1710 ac->ac_b_ex.fe_len = 1 << i;
1711 ac->ac_b_ex.fe_start = k << i;
1712 ac->ac_b_ex.fe_group = e4b->bd_group;
1714 ext4_mb_use_best_found(ac, e4b);
1716 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1718 if (EXT4_SB(sb)->s_mb_stats)
1719 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1721 break;
1726 * The routine scans the group and measures all found extents.
1727 * In order to optimize scanning, caller must pass number of
1728 * free blocks in the group, so the routine can know upper limit.
1730 static noinline_for_stack
1731 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1732 struct ext4_buddy *e4b)
1734 struct super_block *sb = ac->ac_sb;
1735 void *bitmap = EXT4_MB_BITMAP(e4b);
1736 struct ext4_free_extent ex;
1737 int i;
1738 int free;
1740 free = e4b->bd_info->bb_free;
1741 BUG_ON(free <= 0);
1743 i = e4b->bd_info->bb_first_free;
1745 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1746 i = mb_find_next_zero_bit(bitmap,
1747 EXT4_BLOCKS_PER_GROUP(sb), i);
1748 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1750 * IF we have corrupt bitmap, we won't find any
1751 * free blocks even though group info says we
1752 * we have free blocks
1754 ext4_grp_locked_error(sb, e4b->bd_group,
1755 __func__, "%d free blocks as per "
1756 "group info. But bitmap says 0",
1757 free);
1758 break;
1761 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1762 BUG_ON(ex.fe_len <= 0);
1763 if (free < ex.fe_len) {
1764 ext4_grp_locked_error(sb, e4b->bd_group,
1765 __func__, "%d free blocks as per "
1766 "group info. But got %d blocks",
1767 free, ex.fe_len);
1769 * The number of free blocks differs. This mostly
1770 * indicate that the bitmap is corrupt. So exit
1771 * without claiming the space.
1773 break;
1776 ext4_mb_measure_extent(ac, &ex, e4b);
1778 i += ex.fe_len;
1779 free -= ex.fe_len;
1782 ext4_mb_check_limits(ac, e4b, 1);
1786 * This is a special case for storages like raid5
1787 * we try to find stripe-aligned chunks for stripe-size requests
1788 * XXX should do so at least for multiples of stripe size as well
1790 static noinline_for_stack
1791 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1792 struct ext4_buddy *e4b)
1794 struct super_block *sb = ac->ac_sb;
1795 struct ext4_sb_info *sbi = EXT4_SB(sb);
1796 void *bitmap = EXT4_MB_BITMAP(e4b);
1797 struct ext4_free_extent ex;
1798 ext4_fsblk_t first_group_block;
1799 ext4_fsblk_t a;
1800 ext4_grpblk_t i;
1801 int max;
1803 BUG_ON(sbi->s_stripe == 0);
1805 /* find first stripe-aligned block in group */
1806 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1807 + le32_to_cpu(sbi->s_es->s_first_data_block);
1808 a = first_group_block + sbi->s_stripe - 1;
1809 do_div(a, sbi->s_stripe);
1810 i = (a * sbi->s_stripe) - first_group_block;
1812 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1813 if (!mb_test_bit(i, bitmap)) {
1814 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1815 if (max >= sbi->s_stripe) {
1816 ac->ac_found++;
1817 ac->ac_b_ex = ex;
1818 ext4_mb_use_best_found(ac, e4b);
1819 break;
1822 i += sbi->s_stripe;
1826 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1827 ext4_group_t group, int cr)
1829 unsigned free, fragments;
1830 unsigned i, bits;
1831 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1832 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1834 BUG_ON(cr < 0 || cr >= 4);
1835 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1837 free = grp->bb_free;
1838 fragments = grp->bb_fragments;
1839 if (free == 0)
1840 return 0;
1841 if (fragments == 0)
1842 return 0;
1844 switch (cr) {
1845 case 0:
1846 BUG_ON(ac->ac_2order == 0);
1848 /* Avoid using the first bg of a flexgroup for data files */
1849 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1850 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1851 ((group % flex_size) == 0))
1852 return 0;
1854 bits = ac->ac_sb->s_blocksize_bits + 1;
1855 for (i = ac->ac_2order; i <= bits; i++)
1856 if (grp->bb_counters[i] > 0)
1857 return 1;
1858 break;
1859 case 1:
1860 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1861 return 1;
1862 break;
1863 case 2:
1864 if (free >= ac->ac_g_ex.fe_len)
1865 return 1;
1866 break;
1867 case 3:
1868 return 1;
1869 default:
1870 BUG();
1873 return 0;
1877 * lock the group_info alloc_sem of all the groups
1878 * belonging to the same buddy cache page. This
1879 * make sure other parallel operation on the buddy
1880 * cache doesn't happen whild holding the buddy cache
1881 * lock
1883 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1885 int i;
1886 int block, pnum;
1887 int blocks_per_page;
1888 int groups_per_page;
1889 ext4_group_t ngroups = ext4_get_groups_count(sb);
1890 ext4_group_t first_group;
1891 struct ext4_group_info *grp;
1893 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1895 * the buddy cache inode stores the block bitmap
1896 * and buddy information in consecutive blocks.
1897 * So for each group we need two blocks.
1899 block = group * 2;
1900 pnum = block / blocks_per_page;
1901 first_group = pnum * blocks_per_page / 2;
1903 groups_per_page = blocks_per_page >> 1;
1904 if (groups_per_page == 0)
1905 groups_per_page = 1;
1906 /* read all groups the page covers into the cache */
1907 for (i = 0; i < groups_per_page; i++) {
1909 if ((first_group + i) >= ngroups)
1910 break;
1911 grp = ext4_get_group_info(sb, first_group + i);
1912 /* take all groups write allocation
1913 * semaphore. This make sure there is
1914 * no block allocation going on in any
1915 * of that groups
1917 down_write_nested(&grp->alloc_sem, i);
1919 return i;
1922 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1923 ext4_group_t group, int locked_group)
1925 int i;
1926 int block, pnum;
1927 int blocks_per_page;
1928 ext4_group_t first_group;
1929 struct ext4_group_info *grp;
1931 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1933 * the buddy cache inode stores the block bitmap
1934 * and buddy information in consecutive blocks.
1935 * So for each group we need two blocks.
1937 block = group * 2;
1938 pnum = block / blocks_per_page;
1939 first_group = pnum * blocks_per_page / 2;
1940 /* release locks on all the groups */
1941 for (i = 0; i < locked_group; i++) {
1943 grp = ext4_get_group_info(sb, first_group + i);
1944 /* take all groups write allocation
1945 * semaphore. This make sure there is
1946 * no block allocation going on in any
1947 * of that groups
1949 up_write(&grp->alloc_sem);
1954 static noinline_for_stack int
1955 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1957 ext4_group_t ngroups, group, i;
1958 int cr;
1959 int err = 0;
1960 int bsbits;
1961 struct ext4_sb_info *sbi;
1962 struct super_block *sb;
1963 struct ext4_buddy e4b;
1965 sb = ac->ac_sb;
1966 sbi = EXT4_SB(sb);
1967 ngroups = ext4_get_groups_count(sb);
1968 /* non-extent files are limited to low blocks/groups */
1969 if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL))
1970 ngroups = sbi->s_blockfile_groups;
1972 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1974 /* first, try the goal */
1975 err = ext4_mb_find_by_goal(ac, &e4b);
1976 if (err || ac->ac_status == AC_STATUS_FOUND)
1977 goto out;
1979 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1980 goto out;
1983 * ac->ac2_order is set only if the fe_len is a power of 2
1984 * if ac2_order is set we also set criteria to 0 so that we
1985 * try exact allocation using buddy.
1987 i = fls(ac->ac_g_ex.fe_len);
1988 ac->ac_2order = 0;
1990 * We search using buddy data only if the order of the request
1991 * is greater than equal to the sbi_s_mb_order2_reqs
1992 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1994 if (i >= sbi->s_mb_order2_reqs) {
1996 * This should tell if fe_len is exactly power of 2
1998 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1999 ac->ac_2order = i - 1;
2002 bsbits = ac->ac_sb->s_blocksize_bits;
2004 /* if stream allocation is enabled, use global goal */
2005 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2006 /* TBD: may be hot point */
2007 spin_lock(&sbi->s_md_lock);
2008 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2009 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2010 spin_unlock(&sbi->s_md_lock);
2013 /* Let's just scan groups to find more-less suitable blocks */
2014 cr = ac->ac_2order ? 0 : 1;
2016 * cr == 0 try to get exact allocation,
2017 * cr == 3 try to get anything
2019 repeat:
2020 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2021 ac->ac_criteria = cr;
2023 * searching for the right group start
2024 * from the goal value specified
2026 group = ac->ac_g_ex.fe_group;
2028 for (i = 0; i < ngroups; group++, i++) {
2029 struct ext4_group_info *grp;
2030 struct ext4_group_desc *desc;
2032 if (group == ngroups)
2033 group = 0;
2035 /* quick check to skip empty groups */
2036 grp = ext4_get_group_info(sb, group);
2037 if (grp->bb_free == 0)
2038 continue;
2040 err = ext4_mb_load_buddy(sb, group, &e4b);
2041 if (err)
2042 goto out;
2044 ext4_lock_group(sb, group);
2045 if (!ext4_mb_good_group(ac, group, cr)) {
2046 /* someone did allocation from this group */
2047 ext4_unlock_group(sb, group);
2048 ext4_mb_release_desc(&e4b);
2049 continue;
2052 ac->ac_groups_scanned++;
2053 desc = ext4_get_group_desc(sb, group, NULL);
2054 if (cr == 0)
2055 ext4_mb_simple_scan_group(ac, &e4b);
2056 else if (cr == 1 &&
2057 ac->ac_g_ex.fe_len == sbi->s_stripe)
2058 ext4_mb_scan_aligned(ac, &e4b);
2059 else
2060 ext4_mb_complex_scan_group(ac, &e4b);
2062 ext4_unlock_group(sb, group);
2063 ext4_mb_release_desc(&e4b);
2065 if (ac->ac_status != AC_STATUS_CONTINUE)
2066 break;
2070 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2071 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2073 * We've been searching too long. Let's try to allocate
2074 * the best chunk we've found so far
2077 ext4_mb_try_best_found(ac, &e4b);
2078 if (ac->ac_status != AC_STATUS_FOUND) {
2080 * Someone more lucky has already allocated it.
2081 * The only thing we can do is just take first
2082 * found block(s)
2083 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2085 ac->ac_b_ex.fe_group = 0;
2086 ac->ac_b_ex.fe_start = 0;
2087 ac->ac_b_ex.fe_len = 0;
2088 ac->ac_status = AC_STATUS_CONTINUE;
2089 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2090 cr = 3;
2091 atomic_inc(&sbi->s_mb_lost_chunks);
2092 goto repeat;
2095 out:
2096 return err;
2099 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2101 struct super_block *sb = seq->private;
2102 ext4_group_t group;
2104 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2105 return NULL;
2106 group = *pos + 1;
2107 return (void *) ((unsigned long) group);
2110 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2112 struct super_block *sb = seq->private;
2113 ext4_group_t group;
2115 ++*pos;
2116 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2117 return NULL;
2118 group = *pos + 1;
2119 return (void *) ((unsigned long) group);
2122 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2124 struct super_block *sb = seq->private;
2125 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2126 int i;
2127 int err;
2128 struct ext4_buddy e4b;
2129 struct sg {
2130 struct ext4_group_info info;
2131 ext4_grpblk_t counters[16];
2132 } sg;
2134 group--;
2135 if (group == 0)
2136 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2137 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2138 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2139 "group", "free", "frags", "first",
2140 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2141 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2143 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2144 sizeof(struct ext4_group_info);
2145 err = ext4_mb_load_buddy(sb, group, &e4b);
2146 if (err) {
2147 seq_printf(seq, "#%-5u: I/O error\n", group);
2148 return 0;
2150 ext4_lock_group(sb, group);
2151 memcpy(&sg, ext4_get_group_info(sb, group), i);
2152 ext4_unlock_group(sb, group);
2153 ext4_mb_release_desc(&e4b);
2155 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2156 sg.info.bb_fragments, sg.info.bb_first_free);
2157 for (i = 0; i <= 13; i++)
2158 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2159 sg.info.bb_counters[i] : 0);
2160 seq_printf(seq, " ]\n");
2162 return 0;
2165 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2169 static const struct seq_operations ext4_mb_seq_groups_ops = {
2170 .start = ext4_mb_seq_groups_start,
2171 .next = ext4_mb_seq_groups_next,
2172 .stop = ext4_mb_seq_groups_stop,
2173 .show = ext4_mb_seq_groups_show,
2176 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2178 struct super_block *sb = PDE(inode)->data;
2179 int rc;
2181 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2182 if (rc == 0) {
2183 struct seq_file *m = (struct seq_file *)file->private_data;
2184 m->private = sb;
2186 return rc;
2190 static const struct file_operations ext4_mb_seq_groups_fops = {
2191 .owner = THIS_MODULE,
2192 .open = ext4_mb_seq_groups_open,
2193 .read = seq_read,
2194 .llseek = seq_lseek,
2195 .release = seq_release,
2199 /* Create and initialize ext4_group_info data for the given group. */
2200 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2201 struct ext4_group_desc *desc)
2203 int i, len;
2204 int metalen = 0;
2205 struct ext4_sb_info *sbi = EXT4_SB(sb);
2206 struct ext4_group_info **meta_group_info;
2209 * First check if this group is the first of a reserved block.
2210 * If it's true, we have to allocate a new table of pointers
2211 * to ext4_group_info structures
2213 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2214 metalen = sizeof(*meta_group_info) <<
2215 EXT4_DESC_PER_BLOCK_BITS(sb);
2216 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2217 if (meta_group_info == NULL) {
2218 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2219 "buddy group\n");
2220 goto exit_meta_group_info;
2222 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2223 meta_group_info;
2227 * calculate needed size. if change bb_counters size,
2228 * don't forget about ext4_mb_generate_buddy()
2230 len = offsetof(typeof(**meta_group_info),
2231 bb_counters[sb->s_blocksize_bits + 2]);
2233 meta_group_info =
2234 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2235 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2237 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2238 if (meta_group_info[i] == NULL) {
2239 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2240 goto exit_group_info;
2242 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2243 &(meta_group_info[i]->bb_state));
2246 * initialize bb_free to be able to skip
2247 * empty groups without initialization
2249 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2250 meta_group_info[i]->bb_free =
2251 ext4_free_blocks_after_init(sb, group, desc);
2252 } else {
2253 meta_group_info[i]->bb_free =
2254 ext4_free_blks_count(sb, desc);
2257 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2258 init_rwsem(&meta_group_info[i]->alloc_sem);
2259 meta_group_info[i]->bb_free_root.rb_node = NULL;
2261 #ifdef DOUBLE_CHECK
2263 struct buffer_head *bh;
2264 meta_group_info[i]->bb_bitmap =
2265 kmalloc(sb->s_blocksize, GFP_KERNEL);
2266 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2267 bh = ext4_read_block_bitmap(sb, group);
2268 BUG_ON(bh == NULL);
2269 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2270 sb->s_blocksize);
2271 put_bh(bh);
2273 #endif
2275 return 0;
2277 exit_group_info:
2278 /* If a meta_group_info table has been allocated, release it now */
2279 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2280 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2281 exit_meta_group_info:
2282 return -ENOMEM;
2283 } /* ext4_mb_add_groupinfo */
2285 static int ext4_mb_init_backend(struct super_block *sb)
2287 ext4_group_t ngroups = ext4_get_groups_count(sb);
2288 ext4_group_t i;
2289 struct ext4_sb_info *sbi = EXT4_SB(sb);
2290 struct ext4_super_block *es = sbi->s_es;
2291 int num_meta_group_infos;
2292 int num_meta_group_infos_max;
2293 int array_size;
2294 struct ext4_group_desc *desc;
2296 /* This is the number of blocks used by GDT */
2297 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2298 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2301 * This is the total number of blocks used by GDT including
2302 * the number of reserved blocks for GDT.
2303 * The s_group_info array is allocated with this value
2304 * to allow a clean online resize without a complex
2305 * manipulation of pointer.
2306 * The drawback is the unused memory when no resize
2307 * occurs but it's very low in terms of pages
2308 * (see comments below)
2309 * Need to handle this properly when META_BG resizing is allowed
2311 num_meta_group_infos_max = num_meta_group_infos +
2312 le16_to_cpu(es->s_reserved_gdt_blocks);
2315 * array_size is the size of s_group_info array. We round it
2316 * to the next power of two because this approximation is done
2317 * internally by kmalloc so we can have some more memory
2318 * for free here (e.g. may be used for META_BG resize).
2320 array_size = 1;
2321 while (array_size < sizeof(*sbi->s_group_info) *
2322 num_meta_group_infos_max)
2323 array_size = array_size << 1;
2324 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2325 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2326 * So a two level scheme suffices for now. */
2327 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2328 if (sbi->s_group_info == NULL) {
2329 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2330 return -ENOMEM;
2332 sbi->s_buddy_cache = new_inode(sb);
2333 if (sbi->s_buddy_cache == NULL) {
2334 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2335 goto err_freesgi;
2337 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2338 for (i = 0; i < ngroups; i++) {
2339 desc = ext4_get_group_desc(sb, i, NULL);
2340 if (desc == NULL) {
2341 printk(KERN_ERR
2342 "EXT4-fs: can't read descriptor %u\n", i);
2343 goto err_freebuddy;
2345 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2346 goto err_freebuddy;
2349 return 0;
2351 err_freebuddy:
2352 while (i-- > 0)
2353 kfree(ext4_get_group_info(sb, i));
2354 i = num_meta_group_infos;
2355 while (i-- > 0)
2356 kfree(sbi->s_group_info[i]);
2357 iput(sbi->s_buddy_cache);
2358 err_freesgi:
2359 kfree(sbi->s_group_info);
2360 return -ENOMEM;
2363 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2365 struct ext4_sb_info *sbi = EXT4_SB(sb);
2366 unsigned i, j;
2367 unsigned offset;
2368 unsigned max;
2369 int ret;
2371 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2373 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2374 if (sbi->s_mb_offsets == NULL) {
2375 return -ENOMEM;
2378 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2379 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2380 if (sbi->s_mb_maxs == NULL) {
2381 kfree(sbi->s_mb_offsets);
2382 return -ENOMEM;
2385 /* order 0 is regular bitmap */
2386 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2387 sbi->s_mb_offsets[0] = 0;
2389 i = 1;
2390 offset = 0;
2391 max = sb->s_blocksize << 2;
2392 do {
2393 sbi->s_mb_offsets[i] = offset;
2394 sbi->s_mb_maxs[i] = max;
2395 offset += 1 << (sb->s_blocksize_bits - i);
2396 max = max >> 1;
2397 i++;
2398 } while (i <= sb->s_blocksize_bits + 1);
2400 /* init file for buddy data */
2401 ret = ext4_mb_init_backend(sb);
2402 if (ret != 0) {
2403 kfree(sbi->s_mb_offsets);
2404 kfree(sbi->s_mb_maxs);
2405 return ret;
2408 spin_lock_init(&sbi->s_md_lock);
2409 spin_lock_init(&sbi->s_bal_lock);
2411 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2412 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2413 sbi->s_mb_stats = MB_DEFAULT_STATS;
2414 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2415 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2416 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2418 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2419 if (sbi->s_locality_groups == NULL) {
2420 kfree(sbi->s_mb_offsets);
2421 kfree(sbi->s_mb_maxs);
2422 return -ENOMEM;
2424 for_each_possible_cpu(i) {
2425 struct ext4_locality_group *lg;
2426 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2427 mutex_init(&lg->lg_mutex);
2428 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2429 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2430 spin_lock_init(&lg->lg_prealloc_lock);
2433 if (sbi->s_proc)
2434 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2435 &ext4_mb_seq_groups_fops, sb);
2437 if (sbi->s_journal)
2438 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2439 return 0;
2442 /* need to called with the ext4 group lock held */
2443 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2445 struct ext4_prealloc_space *pa;
2446 struct list_head *cur, *tmp;
2447 int count = 0;
2449 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2450 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2451 list_del(&pa->pa_group_list);
2452 count++;
2453 kmem_cache_free(ext4_pspace_cachep, pa);
2455 if (count)
2456 mb_debug(1, "mballoc: %u PAs left\n", count);
2460 int ext4_mb_release(struct super_block *sb)
2462 ext4_group_t ngroups = ext4_get_groups_count(sb);
2463 ext4_group_t i;
2464 int num_meta_group_infos;
2465 struct ext4_group_info *grinfo;
2466 struct ext4_sb_info *sbi = EXT4_SB(sb);
2468 if (sbi->s_group_info) {
2469 for (i = 0; i < ngroups; i++) {
2470 grinfo = ext4_get_group_info(sb, i);
2471 #ifdef DOUBLE_CHECK
2472 kfree(grinfo->bb_bitmap);
2473 #endif
2474 ext4_lock_group(sb, i);
2475 ext4_mb_cleanup_pa(grinfo);
2476 ext4_unlock_group(sb, i);
2477 kfree(grinfo);
2479 num_meta_group_infos = (ngroups +
2480 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2481 EXT4_DESC_PER_BLOCK_BITS(sb);
2482 for (i = 0; i < num_meta_group_infos; i++)
2483 kfree(sbi->s_group_info[i]);
2484 kfree(sbi->s_group_info);
2486 kfree(sbi->s_mb_offsets);
2487 kfree(sbi->s_mb_maxs);
2488 if (sbi->s_buddy_cache)
2489 iput(sbi->s_buddy_cache);
2490 if (sbi->s_mb_stats) {
2491 printk(KERN_INFO
2492 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2493 atomic_read(&sbi->s_bal_allocated),
2494 atomic_read(&sbi->s_bal_reqs),
2495 atomic_read(&sbi->s_bal_success));
2496 printk(KERN_INFO
2497 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2498 "%u 2^N hits, %u breaks, %u lost\n",
2499 atomic_read(&sbi->s_bal_ex_scanned),
2500 atomic_read(&sbi->s_bal_goals),
2501 atomic_read(&sbi->s_bal_2orders),
2502 atomic_read(&sbi->s_bal_breaks),
2503 atomic_read(&sbi->s_mb_lost_chunks));
2504 printk(KERN_INFO
2505 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2506 sbi->s_mb_buddies_generated++,
2507 sbi->s_mb_generation_time);
2508 printk(KERN_INFO
2509 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2510 atomic_read(&sbi->s_mb_preallocated),
2511 atomic_read(&sbi->s_mb_discarded));
2514 free_percpu(sbi->s_locality_groups);
2515 if (sbi->s_proc)
2516 remove_proc_entry("mb_groups", sbi->s_proc);
2518 return 0;
2522 * This function is called by the jbd2 layer once the commit has finished,
2523 * so we know we can free the blocks that were released with that commit.
2525 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2527 struct super_block *sb = journal->j_private;
2528 struct ext4_buddy e4b;
2529 struct ext4_group_info *db;
2530 int err, count = 0, count2 = 0;
2531 struct ext4_free_data *entry;
2532 ext4_fsblk_t discard_block;
2533 struct list_head *l, *ltmp;
2535 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2536 entry = list_entry(l, struct ext4_free_data, list);
2538 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2539 entry->count, entry->group, entry);
2541 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2542 /* we expect to find existing buddy because it's pinned */
2543 BUG_ON(err != 0);
2545 db = e4b.bd_info;
2546 /* there are blocks to put in buddy to make them really free */
2547 count += entry->count;
2548 count2++;
2549 ext4_lock_group(sb, entry->group);
2550 /* Take it out of per group rb tree */
2551 rb_erase(&entry->node, &(db->bb_free_root));
2552 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2554 if (!db->bb_free_root.rb_node) {
2555 /* No more items in the per group rb tree
2556 * balance refcounts from ext4_mb_free_metadata()
2558 page_cache_release(e4b.bd_buddy_page);
2559 page_cache_release(e4b.bd_bitmap_page);
2561 ext4_unlock_group(sb, entry->group);
2562 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2563 + entry->start_blk
2564 + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2565 trace_ext4_discard_blocks(sb, (unsigned long long)discard_block,
2566 entry->count);
2567 sb_issue_discard(sb, discard_block, entry->count);
2569 kmem_cache_free(ext4_free_ext_cachep, entry);
2570 ext4_mb_release_desc(&e4b);
2573 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2576 #ifdef CONFIG_EXT4_DEBUG
2577 u8 mb_enable_debug __read_mostly;
2579 static struct dentry *debugfs_dir;
2580 static struct dentry *debugfs_debug;
2582 static void __init ext4_create_debugfs_entry(void)
2584 debugfs_dir = debugfs_create_dir("ext4", NULL);
2585 if (debugfs_dir)
2586 debugfs_debug = debugfs_create_u8("mballoc-debug",
2587 S_IRUGO | S_IWUSR,
2588 debugfs_dir,
2589 &mb_enable_debug);
2592 static void ext4_remove_debugfs_entry(void)
2594 debugfs_remove(debugfs_debug);
2595 debugfs_remove(debugfs_dir);
2598 #else
2600 static void __init ext4_create_debugfs_entry(void)
2604 static void ext4_remove_debugfs_entry(void)
2608 #endif
2610 int __init init_ext4_mballoc(void)
2612 ext4_pspace_cachep =
2613 kmem_cache_create("ext4_prealloc_space",
2614 sizeof(struct ext4_prealloc_space),
2615 0, SLAB_RECLAIM_ACCOUNT, NULL);
2616 if (ext4_pspace_cachep == NULL)
2617 return -ENOMEM;
2619 ext4_ac_cachep =
2620 kmem_cache_create("ext4_alloc_context",
2621 sizeof(struct ext4_allocation_context),
2622 0, SLAB_RECLAIM_ACCOUNT, NULL);
2623 if (ext4_ac_cachep == NULL) {
2624 kmem_cache_destroy(ext4_pspace_cachep);
2625 return -ENOMEM;
2628 ext4_free_ext_cachep =
2629 kmem_cache_create("ext4_free_block_extents",
2630 sizeof(struct ext4_free_data),
2631 0, SLAB_RECLAIM_ACCOUNT, NULL);
2632 if (ext4_free_ext_cachep == NULL) {
2633 kmem_cache_destroy(ext4_pspace_cachep);
2634 kmem_cache_destroy(ext4_ac_cachep);
2635 return -ENOMEM;
2637 ext4_create_debugfs_entry();
2638 return 0;
2641 void exit_ext4_mballoc(void)
2644 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2645 * before destroying the slab cache.
2647 rcu_barrier();
2648 kmem_cache_destroy(ext4_pspace_cachep);
2649 kmem_cache_destroy(ext4_ac_cachep);
2650 kmem_cache_destroy(ext4_free_ext_cachep);
2651 ext4_remove_debugfs_entry();
2656 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2657 * Returns 0 if success or error code
2659 static noinline_for_stack int
2660 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2661 handle_t *handle, unsigned int reserv_blks)
2663 struct buffer_head *bitmap_bh = NULL;
2664 struct ext4_super_block *es;
2665 struct ext4_group_desc *gdp;
2666 struct buffer_head *gdp_bh;
2667 struct ext4_sb_info *sbi;
2668 struct super_block *sb;
2669 ext4_fsblk_t block;
2670 int err, len;
2672 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2673 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2675 sb = ac->ac_sb;
2676 sbi = EXT4_SB(sb);
2677 es = sbi->s_es;
2680 err = -EIO;
2681 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2682 if (!bitmap_bh)
2683 goto out_err;
2685 err = ext4_journal_get_write_access(handle, bitmap_bh);
2686 if (err)
2687 goto out_err;
2689 err = -EIO;
2690 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2691 if (!gdp)
2692 goto out_err;
2694 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2695 ext4_free_blks_count(sb, gdp));
2697 err = ext4_journal_get_write_access(handle, gdp_bh);
2698 if (err)
2699 goto out_err;
2701 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2702 + ac->ac_b_ex.fe_start
2703 + le32_to_cpu(es->s_first_data_block);
2705 len = ac->ac_b_ex.fe_len;
2706 if (!ext4_data_block_valid(sbi, block, len)) {
2707 ext4_error(sb, __func__,
2708 "Allocating blocks %llu-%llu which overlap "
2709 "fs metadata\n", block, block+len);
2710 /* File system mounted not to panic on error
2711 * Fix the bitmap and repeat the block allocation
2712 * We leak some of the blocks here.
2714 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2715 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2716 ac->ac_b_ex.fe_len);
2717 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2718 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2719 if (!err)
2720 err = -EAGAIN;
2721 goto out_err;
2724 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2725 #ifdef AGGRESSIVE_CHECK
2727 int i;
2728 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2729 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2730 bitmap_bh->b_data));
2733 #endif
2734 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2735 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2736 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2737 ext4_free_blks_set(sb, gdp,
2738 ext4_free_blocks_after_init(sb,
2739 ac->ac_b_ex.fe_group, gdp));
2741 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2742 ext4_free_blks_set(sb, gdp, len);
2743 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2745 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2746 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2748 * Now reduce the dirty block count also. Should not go negative
2750 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2751 /* release all the reserved blocks if non delalloc */
2752 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2753 else {
2754 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
2755 ac->ac_b_ex.fe_len);
2756 /* convert reserved quota blocks to real quota blocks */
2757 vfs_dq_claim_block(ac->ac_inode, ac->ac_b_ex.fe_len);
2760 if (sbi->s_log_groups_per_flex) {
2761 ext4_group_t flex_group = ext4_flex_group(sbi,
2762 ac->ac_b_ex.fe_group);
2763 atomic_sub(ac->ac_b_ex.fe_len,
2764 &sbi->s_flex_groups[flex_group].free_blocks);
2767 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2768 if (err)
2769 goto out_err;
2770 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2772 out_err:
2773 sb->s_dirt = 1;
2774 brelse(bitmap_bh);
2775 return err;
2779 * here we normalize request for locality group
2780 * Group request are normalized to s_strip size if we set the same via mount
2781 * option. If not we set it to s_mb_group_prealloc which can be configured via
2782 * /sys/fs/ext4/<partition>/mb_group_prealloc
2784 * XXX: should we try to preallocate more than the group has now?
2786 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2788 struct super_block *sb = ac->ac_sb;
2789 struct ext4_locality_group *lg = ac->ac_lg;
2791 BUG_ON(lg == NULL);
2792 if (EXT4_SB(sb)->s_stripe)
2793 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
2794 else
2795 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2796 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2797 current->pid, ac->ac_g_ex.fe_len);
2801 * Normalization means making request better in terms of
2802 * size and alignment
2804 static noinline_for_stack void
2805 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2806 struct ext4_allocation_request *ar)
2808 int bsbits, max;
2809 ext4_lblk_t end;
2810 loff_t size, orig_size, start_off;
2811 ext4_lblk_t start, orig_start;
2812 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2813 struct ext4_prealloc_space *pa;
2815 /* do normalize only data requests, metadata requests
2816 do not need preallocation */
2817 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2818 return;
2820 /* sometime caller may want exact blocks */
2821 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2822 return;
2824 /* caller may indicate that preallocation isn't
2825 * required (it's a tail, for example) */
2826 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2827 return;
2829 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2830 ext4_mb_normalize_group_request(ac);
2831 return ;
2834 bsbits = ac->ac_sb->s_blocksize_bits;
2836 /* first, let's learn actual file size
2837 * given current request is allocated */
2838 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2839 size = size << bsbits;
2840 if (size < i_size_read(ac->ac_inode))
2841 size = i_size_read(ac->ac_inode);
2843 /* max size of free chunks */
2844 max = 2 << bsbits;
2846 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2847 (req <= (size) || max <= (chunk_size))
2849 /* first, try to predict filesize */
2850 /* XXX: should this table be tunable? */
2851 start_off = 0;
2852 if (size <= 16 * 1024) {
2853 size = 16 * 1024;
2854 } else if (size <= 32 * 1024) {
2855 size = 32 * 1024;
2856 } else if (size <= 64 * 1024) {
2857 size = 64 * 1024;
2858 } else if (size <= 128 * 1024) {
2859 size = 128 * 1024;
2860 } else if (size <= 256 * 1024) {
2861 size = 256 * 1024;
2862 } else if (size <= 512 * 1024) {
2863 size = 512 * 1024;
2864 } else if (size <= 1024 * 1024) {
2865 size = 1024 * 1024;
2866 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2867 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2868 (21 - bsbits)) << 21;
2869 size = 2 * 1024 * 1024;
2870 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2871 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2872 (22 - bsbits)) << 22;
2873 size = 4 * 1024 * 1024;
2874 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2875 (8<<20)>>bsbits, max, 8 * 1024)) {
2876 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2877 (23 - bsbits)) << 23;
2878 size = 8 * 1024 * 1024;
2879 } else {
2880 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2881 size = ac->ac_o_ex.fe_len << bsbits;
2883 orig_size = size = size >> bsbits;
2884 orig_start = start = start_off >> bsbits;
2886 /* don't cover already allocated blocks in selected range */
2887 if (ar->pleft && start <= ar->lleft) {
2888 size -= ar->lleft + 1 - start;
2889 start = ar->lleft + 1;
2891 if (ar->pright && start + size - 1 >= ar->lright)
2892 size -= start + size - ar->lright;
2894 end = start + size;
2896 /* check we don't cross already preallocated blocks */
2897 rcu_read_lock();
2898 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2899 ext4_lblk_t pa_end;
2901 if (pa->pa_deleted)
2902 continue;
2903 spin_lock(&pa->pa_lock);
2904 if (pa->pa_deleted) {
2905 spin_unlock(&pa->pa_lock);
2906 continue;
2909 pa_end = pa->pa_lstart + pa->pa_len;
2911 /* PA must not overlap original request */
2912 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2913 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2915 /* skip PAs this normalized request doesn't overlap with */
2916 if (pa->pa_lstart >= end || pa_end <= start) {
2917 spin_unlock(&pa->pa_lock);
2918 continue;
2920 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2922 /* adjust start or end to be adjacent to this pa */
2923 if (pa_end <= ac->ac_o_ex.fe_logical) {
2924 BUG_ON(pa_end < start);
2925 start = pa_end;
2926 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2927 BUG_ON(pa->pa_lstart > end);
2928 end = pa->pa_lstart;
2930 spin_unlock(&pa->pa_lock);
2932 rcu_read_unlock();
2933 size = end - start;
2935 /* XXX: extra loop to check we really don't overlap preallocations */
2936 rcu_read_lock();
2937 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2938 ext4_lblk_t pa_end;
2939 spin_lock(&pa->pa_lock);
2940 if (pa->pa_deleted == 0) {
2941 pa_end = pa->pa_lstart + pa->pa_len;
2942 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
2944 spin_unlock(&pa->pa_lock);
2946 rcu_read_unlock();
2948 if (start + size <= ac->ac_o_ex.fe_logical &&
2949 start > ac->ac_o_ex.fe_logical) {
2950 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
2951 (unsigned long) start, (unsigned long) size,
2952 (unsigned long) ac->ac_o_ex.fe_logical);
2954 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
2955 start > ac->ac_o_ex.fe_logical);
2956 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
2958 /* now prepare goal request */
2960 /* XXX: is it better to align blocks WRT to logical
2961 * placement or satisfy big request as is */
2962 ac->ac_g_ex.fe_logical = start;
2963 ac->ac_g_ex.fe_len = size;
2965 /* define goal start in order to merge */
2966 if (ar->pright && (ar->lright == (start + size))) {
2967 /* merge to the right */
2968 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
2969 &ac->ac_f_ex.fe_group,
2970 &ac->ac_f_ex.fe_start);
2971 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
2973 if (ar->pleft && (ar->lleft + 1 == start)) {
2974 /* merge to the left */
2975 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
2976 &ac->ac_f_ex.fe_group,
2977 &ac->ac_f_ex.fe_start);
2978 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
2981 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
2982 (unsigned) orig_size, (unsigned) start);
2985 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
2987 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2989 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
2990 atomic_inc(&sbi->s_bal_reqs);
2991 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
2992 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
2993 atomic_inc(&sbi->s_bal_success);
2994 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
2995 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2996 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2997 atomic_inc(&sbi->s_bal_goals);
2998 if (ac->ac_found > sbi->s_mb_max_to_scan)
2999 atomic_inc(&sbi->s_bal_breaks);
3002 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3003 trace_ext4_mballoc_alloc(ac);
3004 else
3005 trace_ext4_mballoc_prealloc(ac);
3009 * use blocks preallocated to inode
3011 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3012 struct ext4_prealloc_space *pa)
3014 ext4_fsblk_t start;
3015 ext4_fsblk_t end;
3016 int len;
3018 /* found preallocated blocks, use them */
3019 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3020 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3021 len = end - start;
3022 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3023 &ac->ac_b_ex.fe_start);
3024 ac->ac_b_ex.fe_len = len;
3025 ac->ac_status = AC_STATUS_FOUND;
3026 ac->ac_pa = pa;
3028 BUG_ON(start < pa->pa_pstart);
3029 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3030 BUG_ON(pa->pa_free < len);
3031 pa->pa_free -= len;
3033 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3037 * use blocks preallocated to locality group
3039 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3040 struct ext4_prealloc_space *pa)
3042 unsigned int len = ac->ac_o_ex.fe_len;
3044 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3045 &ac->ac_b_ex.fe_group,
3046 &ac->ac_b_ex.fe_start);
3047 ac->ac_b_ex.fe_len = len;
3048 ac->ac_status = AC_STATUS_FOUND;
3049 ac->ac_pa = pa;
3051 /* we don't correct pa_pstart or pa_plen here to avoid
3052 * possible race when the group is being loaded concurrently
3053 * instead we correct pa later, after blocks are marked
3054 * in on-disk bitmap -- see ext4_mb_release_context()
3055 * Other CPUs are prevented from allocating from this pa by lg_mutex
3057 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3061 * Return the prealloc space that have minimal distance
3062 * from the goal block. @cpa is the prealloc
3063 * space that is having currently known minimal distance
3064 * from the goal block.
3066 static struct ext4_prealloc_space *
3067 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3068 struct ext4_prealloc_space *pa,
3069 struct ext4_prealloc_space *cpa)
3071 ext4_fsblk_t cur_distance, new_distance;
3073 if (cpa == NULL) {
3074 atomic_inc(&pa->pa_count);
3075 return pa;
3077 cur_distance = abs(goal_block - cpa->pa_pstart);
3078 new_distance = abs(goal_block - pa->pa_pstart);
3080 if (cur_distance < new_distance)
3081 return cpa;
3083 /* drop the previous reference */
3084 atomic_dec(&cpa->pa_count);
3085 atomic_inc(&pa->pa_count);
3086 return pa;
3090 * search goal blocks in preallocated space
3092 static noinline_for_stack int
3093 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3095 int order, i;
3096 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3097 struct ext4_locality_group *lg;
3098 struct ext4_prealloc_space *pa, *cpa = NULL;
3099 ext4_fsblk_t goal_block;
3101 /* only data can be preallocated */
3102 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3103 return 0;
3105 /* first, try per-file preallocation */
3106 rcu_read_lock();
3107 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3109 /* all fields in this condition don't change,
3110 * so we can skip locking for them */
3111 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3112 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3113 continue;
3115 /* non-extent files can't have physical blocks past 2^32 */
3116 if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL) &&
3117 pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3118 continue;
3120 /* found preallocated blocks, use them */
3121 spin_lock(&pa->pa_lock);
3122 if (pa->pa_deleted == 0 && pa->pa_free) {
3123 atomic_inc(&pa->pa_count);
3124 ext4_mb_use_inode_pa(ac, pa);
3125 spin_unlock(&pa->pa_lock);
3126 ac->ac_criteria = 10;
3127 rcu_read_unlock();
3128 return 1;
3130 spin_unlock(&pa->pa_lock);
3132 rcu_read_unlock();
3134 /* can we use group allocation? */
3135 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3136 return 0;
3138 /* inode may have no locality group for some reason */
3139 lg = ac->ac_lg;
3140 if (lg == NULL)
3141 return 0;
3142 order = fls(ac->ac_o_ex.fe_len) - 1;
3143 if (order > PREALLOC_TB_SIZE - 1)
3144 /* The max size of hash table is PREALLOC_TB_SIZE */
3145 order = PREALLOC_TB_SIZE - 1;
3147 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3148 ac->ac_g_ex.fe_start +
3149 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3151 * search for the prealloc space that is having
3152 * minimal distance from the goal block.
3154 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3155 rcu_read_lock();
3156 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3157 pa_inode_list) {
3158 spin_lock(&pa->pa_lock);
3159 if (pa->pa_deleted == 0 &&
3160 pa->pa_free >= ac->ac_o_ex.fe_len) {
3162 cpa = ext4_mb_check_group_pa(goal_block,
3163 pa, cpa);
3165 spin_unlock(&pa->pa_lock);
3167 rcu_read_unlock();
3169 if (cpa) {
3170 ext4_mb_use_group_pa(ac, cpa);
3171 ac->ac_criteria = 20;
3172 return 1;
3174 return 0;
3178 * the function goes through all block freed in the group
3179 * but not yet committed and marks them used in in-core bitmap.
3180 * buddy must be generated from this bitmap
3181 * Need to be called with the ext4 group lock held
3183 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3184 ext4_group_t group)
3186 struct rb_node *n;
3187 struct ext4_group_info *grp;
3188 struct ext4_free_data *entry;
3190 grp = ext4_get_group_info(sb, group);
3191 n = rb_first(&(grp->bb_free_root));
3193 while (n) {
3194 entry = rb_entry(n, struct ext4_free_data, node);
3195 mb_set_bits(bitmap, entry->start_blk, entry->count);
3196 n = rb_next(n);
3198 return;
3202 * the function goes through all preallocation in this group and marks them
3203 * used in in-core bitmap. buddy must be generated from this bitmap
3204 * Need to be called with ext4 group lock held
3206 static noinline_for_stack
3207 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3208 ext4_group_t group)
3210 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3211 struct ext4_prealloc_space *pa;
3212 struct list_head *cur;
3213 ext4_group_t groupnr;
3214 ext4_grpblk_t start;
3215 int preallocated = 0;
3216 int count = 0;
3217 int len;
3219 /* all form of preallocation discards first load group,
3220 * so the only competing code is preallocation use.
3221 * we don't need any locking here
3222 * notice we do NOT ignore preallocations with pa_deleted
3223 * otherwise we could leave used blocks available for
3224 * allocation in buddy when concurrent ext4_mb_put_pa()
3225 * is dropping preallocation
3227 list_for_each(cur, &grp->bb_prealloc_list) {
3228 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3229 spin_lock(&pa->pa_lock);
3230 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3231 &groupnr, &start);
3232 len = pa->pa_len;
3233 spin_unlock(&pa->pa_lock);
3234 if (unlikely(len == 0))
3235 continue;
3236 BUG_ON(groupnr != group);
3237 mb_set_bits(bitmap, start, len);
3238 preallocated += len;
3239 count++;
3241 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3244 static void ext4_mb_pa_callback(struct rcu_head *head)
3246 struct ext4_prealloc_space *pa;
3247 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3248 kmem_cache_free(ext4_pspace_cachep, pa);
3252 * drops a reference to preallocated space descriptor
3253 * if this was the last reference and the space is consumed
3255 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3256 struct super_block *sb, struct ext4_prealloc_space *pa)
3258 ext4_group_t grp;
3259 ext4_fsblk_t grp_blk;
3261 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3262 return;
3264 /* in this short window concurrent discard can set pa_deleted */
3265 spin_lock(&pa->pa_lock);
3266 if (pa->pa_deleted == 1) {
3267 spin_unlock(&pa->pa_lock);
3268 return;
3271 pa->pa_deleted = 1;
3272 spin_unlock(&pa->pa_lock);
3274 grp_blk = pa->pa_pstart;
3276 * If doing group-based preallocation, pa_pstart may be in the
3277 * next group when pa is used up
3279 if (pa->pa_type == MB_GROUP_PA)
3280 grp_blk--;
3282 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3285 * possible race:
3287 * P1 (buddy init) P2 (regular allocation)
3288 * find block B in PA
3289 * copy on-disk bitmap to buddy
3290 * mark B in on-disk bitmap
3291 * drop PA from group
3292 * mark all PAs in buddy
3294 * thus, P1 initializes buddy with B available. to prevent this
3295 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3296 * against that pair
3298 ext4_lock_group(sb, grp);
3299 list_del(&pa->pa_group_list);
3300 ext4_unlock_group(sb, grp);
3302 spin_lock(pa->pa_obj_lock);
3303 list_del_rcu(&pa->pa_inode_list);
3304 spin_unlock(pa->pa_obj_lock);
3306 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3310 * creates new preallocated space for given inode
3312 static noinline_for_stack int
3313 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3315 struct super_block *sb = ac->ac_sb;
3316 struct ext4_prealloc_space *pa;
3317 struct ext4_group_info *grp;
3318 struct ext4_inode_info *ei;
3320 /* preallocate only when found space is larger then requested */
3321 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3322 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3323 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3325 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3326 if (pa == NULL)
3327 return -ENOMEM;
3329 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3330 int winl;
3331 int wins;
3332 int win;
3333 int offs;
3335 /* we can't allocate as much as normalizer wants.
3336 * so, found space must get proper lstart
3337 * to cover original request */
3338 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3339 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3341 /* we're limited by original request in that
3342 * logical block must be covered any way
3343 * winl is window we can move our chunk within */
3344 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3346 /* also, we should cover whole original request */
3347 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3349 /* the smallest one defines real window */
3350 win = min(winl, wins);
3352 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3353 if (offs && offs < win)
3354 win = offs;
3356 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3357 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3358 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3361 /* preallocation can change ac_b_ex, thus we store actually
3362 * allocated blocks for history */
3363 ac->ac_f_ex = ac->ac_b_ex;
3365 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3366 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3367 pa->pa_len = ac->ac_b_ex.fe_len;
3368 pa->pa_free = pa->pa_len;
3369 atomic_set(&pa->pa_count, 1);
3370 spin_lock_init(&pa->pa_lock);
3371 INIT_LIST_HEAD(&pa->pa_inode_list);
3372 INIT_LIST_HEAD(&pa->pa_group_list);
3373 pa->pa_deleted = 0;
3374 pa->pa_type = MB_INODE_PA;
3376 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3377 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3378 trace_ext4_mb_new_inode_pa(ac, pa);
3380 ext4_mb_use_inode_pa(ac, pa);
3381 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3383 ei = EXT4_I(ac->ac_inode);
3384 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3386 pa->pa_obj_lock = &ei->i_prealloc_lock;
3387 pa->pa_inode = ac->ac_inode;
3389 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3390 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3391 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3393 spin_lock(pa->pa_obj_lock);
3394 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3395 spin_unlock(pa->pa_obj_lock);
3397 return 0;
3401 * creates new preallocated space for locality group inodes belongs to
3403 static noinline_for_stack int
3404 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3406 struct super_block *sb = ac->ac_sb;
3407 struct ext4_locality_group *lg;
3408 struct ext4_prealloc_space *pa;
3409 struct ext4_group_info *grp;
3411 /* preallocate only when found space is larger then requested */
3412 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3413 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3414 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3416 BUG_ON(ext4_pspace_cachep == NULL);
3417 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3418 if (pa == NULL)
3419 return -ENOMEM;
3421 /* preallocation can change ac_b_ex, thus we store actually
3422 * allocated blocks for history */
3423 ac->ac_f_ex = ac->ac_b_ex;
3425 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3426 pa->pa_lstart = pa->pa_pstart;
3427 pa->pa_len = ac->ac_b_ex.fe_len;
3428 pa->pa_free = pa->pa_len;
3429 atomic_set(&pa->pa_count, 1);
3430 spin_lock_init(&pa->pa_lock);
3431 INIT_LIST_HEAD(&pa->pa_inode_list);
3432 INIT_LIST_HEAD(&pa->pa_group_list);
3433 pa->pa_deleted = 0;
3434 pa->pa_type = MB_GROUP_PA;
3436 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3437 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3438 trace_ext4_mb_new_group_pa(ac, pa);
3440 ext4_mb_use_group_pa(ac, pa);
3441 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3443 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3444 lg = ac->ac_lg;
3445 BUG_ON(lg == NULL);
3447 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3448 pa->pa_inode = NULL;
3450 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3451 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3452 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3455 * We will later add the new pa to the right bucket
3456 * after updating the pa_free in ext4_mb_release_context
3458 return 0;
3461 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3463 int err;
3465 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3466 err = ext4_mb_new_group_pa(ac);
3467 else
3468 err = ext4_mb_new_inode_pa(ac);
3469 return err;
3473 * finds all unused blocks in on-disk bitmap, frees them in
3474 * in-core bitmap and buddy.
3475 * @pa must be unlinked from inode and group lists, so that
3476 * nobody else can find/use it.
3477 * the caller MUST hold group/inode locks.
3478 * TODO: optimize the case when there are no in-core structures yet
3480 static noinline_for_stack int
3481 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3482 struct ext4_prealloc_space *pa,
3483 struct ext4_allocation_context *ac)
3485 struct super_block *sb = e4b->bd_sb;
3486 struct ext4_sb_info *sbi = EXT4_SB(sb);
3487 unsigned int end;
3488 unsigned int next;
3489 ext4_group_t group;
3490 ext4_grpblk_t bit;
3491 unsigned long long grp_blk_start;
3492 sector_t start;
3493 int err = 0;
3494 int free = 0;
3496 BUG_ON(pa->pa_deleted == 0);
3497 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3498 grp_blk_start = pa->pa_pstart - bit;
3499 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3500 end = bit + pa->pa_len;
3502 if (ac) {
3503 ac->ac_sb = sb;
3504 ac->ac_inode = pa->pa_inode;
3507 while (bit < end) {
3508 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3509 if (bit >= end)
3510 break;
3511 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3512 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3513 le32_to_cpu(sbi->s_es->s_first_data_block);
3514 mb_debug(1, " free preallocated %u/%u in group %u\n",
3515 (unsigned) start, (unsigned) next - bit,
3516 (unsigned) group);
3517 free += next - bit;
3519 if (ac) {
3520 ac->ac_b_ex.fe_group = group;
3521 ac->ac_b_ex.fe_start = bit;
3522 ac->ac_b_ex.fe_len = next - bit;
3523 ac->ac_b_ex.fe_logical = 0;
3524 trace_ext4_mballoc_discard(ac);
3527 trace_ext4_mb_release_inode_pa(ac, pa, grp_blk_start + bit,
3528 next - bit);
3529 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3530 bit = next + 1;
3532 if (free != pa->pa_free) {
3533 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3534 pa, (unsigned long) pa->pa_lstart,
3535 (unsigned long) pa->pa_pstart,
3536 (unsigned long) pa->pa_len);
3537 ext4_grp_locked_error(sb, group,
3538 __func__, "free %u, pa_free %u",
3539 free, pa->pa_free);
3541 * pa is already deleted so we use the value obtained
3542 * from the bitmap and continue.
3545 atomic_add(free, &sbi->s_mb_discarded);
3547 return err;
3550 static noinline_for_stack int
3551 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3552 struct ext4_prealloc_space *pa,
3553 struct ext4_allocation_context *ac)
3555 struct super_block *sb = e4b->bd_sb;
3556 ext4_group_t group;
3557 ext4_grpblk_t bit;
3559 trace_ext4_mb_release_group_pa(ac, pa);
3560 BUG_ON(pa->pa_deleted == 0);
3561 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3562 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3563 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3564 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3566 if (ac) {
3567 ac->ac_sb = sb;
3568 ac->ac_inode = NULL;
3569 ac->ac_b_ex.fe_group = group;
3570 ac->ac_b_ex.fe_start = bit;
3571 ac->ac_b_ex.fe_len = pa->pa_len;
3572 ac->ac_b_ex.fe_logical = 0;
3573 trace_ext4_mballoc_discard(ac);
3576 return 0;
3580 * releases all preallocations in given group
3582 * first, we need to decide discard policy:
3583 * - when do we discard
3584 * 1) ENOSPC
3585 * - how many do we discard
3586 * 1) how many requested
3588 static noinline_for_stack int
3589 ext4_mb_discard_group_preallocations(struct super_block *sb,
3590 ext4_group_t group, int needed)
3592 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3593 struct buffer_head *bitmap_bh = NULL;
3594 struct ext4_prealloc_space *pa, *tmp;
3595 struct ext4_allocation_context *ac;
3596 struct list_head list;
3597 struct ext4_buddy e4b;
3598 int err;
3599 int busy = 0;
3600 int free = 0;
3602 mb_debug(1, "discard preallocation for group %u\n", group);
3604 if (list_empty(&grp->bb_prealloc_list))
3605 return 0;
3607 bitmap_bh = ext4_read_block_bitmap(sb, group);
3608 if (bitmap_bh == NULL) {
3609 ext4_error(sb, __func__, "Error in reading block "
3610 "bitmap for %u", group);
3611 return 0;
3614 err = ext4_mb_load_buddy(sb, group, &e4b);
3615 if (err) {
3616 ext4_error(sb, __func__, "Error in loading buddy "
3617 "information for %u", group);
3618 put_bh(bitmap_bh);
3619 return 0;
3622 if (needed == 0)
3623 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3625 INIT_LIST_HEAD(&list);
3626 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3627 if (ac)
3628 ac->ac_sb = sb;
3629 repeat:
3630 ext4_lock_group(sb, group);
3631 list_for_each_entry_safe(pa, tmp,
3632 &grp->bb_prealloc_list, pa_group_list) {
3633 spin_lock(&pa->pa_lock);
3634 if (atomic_read(&pa->pa_count)) {
3635 spin_unlock(&pa->pa_lock);
3636 busy = 1;
3637 continue;
3639 if (pa->pa_deleted) {
3640 spin_unlock(&pa->pa_lock);
3641 continue;
3644 /* seems this one can be freed ... */
3645 pa->pa_deleted = 1;
3647 /* we can trust pa_free ... */
3648 free += pa->pa_free;
3650 spin_unlock(&pa->pa_lock);
3652 list_del(&pa->pa_group_list);
3653 list_add(&pa->u.pa_tmp_list, &list);
3656 /* if we still need more blocks and some PAs were used, try again */
3657 if (free < needed && busy) {
3658 busy = 0;
3659 ext4_unlock_group(sb, group);
3661 * Yield the CPU here so that we don't get soft lockup
3662 * in non preempt case.
3664 yield();
3665 goto repeat;
3668 /* found anything to free? */
3669 if (list_empty(&list)) {
3670 BUG_ON(free != 0);
3671 goto out;
3674 /* now free all selected PAs */
3675 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3677 /* remove from object (inode or locality group) */
3678 spin_lock(pa->pa_obj_lock);
3679 list_del_rcu(&pa->pa_inode_list);
3680 spin_unlock(pa->pa_obj_lock);
3682 if (pa->pa_type == MB_GROUP_PA)
3683 ext4_mb_release_group_pa(&e4b, pa, ac);
3684 else
3685 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3687 list_del(&pa->u.pa_tmp_list);
3688 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3691 out:
3692 ext4_unlock_group(sb, group);
3693 if (ac)
3694 kmem_cache_free(ext4_ac_cachep, ac);
3695 ext4_mb_release_desc(&e4b);
3696 put_bh(bitmap_bh);
3697 return free;
3701 * releases all non-used preallocated blocks for given inode
3703 * It's important to discard preallocations under i_data_sem
3704 * We don't want another block to be served from the prealloc
3705 * space when we are discarding the inode prealloc space.
3707 * FIXME!! Make sure it is valid at all the call sites
3709 void ext4_discard_preallocations(struct inode *inode)
3711 struct ext4_inode_info *ei = EXT4_I(inode);
3712 struct super_block *sb = inode->i_sb;
3713 struct buffer_head *bitmap_bh = NULL;
3714 struct ext4_prealloc_space *pa, *tmp;
3715 struct ext4_allocation_context *ac;
3716 ext4_group_t group = 0;
3717 struct list_head list;
3718 struct ext4_buddy e4b;
3719 int err;
3721 if (!S_ISREG(inode->i_mode)) {
3722 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3723 return;
3726 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3727 trace_ext4_discard_preallocations(inode);
3729 INIT_LIST_HEAD(&list);
3731 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3732 if (ac) {
3733 ac->ac_sb = sb;
3734 ac->ac_inode = inode;
3736 repeat:
3737 /* first, collect all pa's in the inode */
3738 spin_lock(&ei->i_prealloc_lock);
3739 while (!list_empty(&ei->i_prealloc_list)) {
3740 pa = list_entry(ei->i_prealloc_list.next,
3741 struct ext4_prealloc_space, pa_inode_list);
3742 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3743 spin_lock(&pa->pa_lock);
3744 if (atomic_read(&pa->pa_count)) {
3745 /* this shouldn't happen often - nobody should
3746 * use preallocation while we're discarding it */
3747 spin_unlock(&pa->pa_lock);
3748 spin_unlock(&ei->i_prealloc_lock);
3749 printk(KERN_ERR "uh-oh! used pa while discarding\n");
3750 WARN_ON(1);
3751 schedule_timeout_uninterruptible(HZ);
3752 goto repeat;
3755 if (pa->pa_deleted == 0) {
3756 pa->pa_deleted = 1;
3757 spin_unlock(&pa->pa_lock);
3758 list_del_rcu(&pa->pa_inode_list);
3759 list_add(&pa->u.pa_tmp_list, &list);
3760 continue;
3763 /* someone is deleting pa right now */
3764 spin_unlock(&pa->pa_lock);
3765 spin_unlock(&ei->i_prealloc_lock);
3767 /* we have to wait here because pa_deleted
3768 * doesn't mean pa is already unlinked from
3769 * the list. as we might be called from
3770 * ->clear_inode() the inode will get freed
3771 * and concurrent thread which is unlinking
3772 * pa from inode's list may access already
3773 * freed memory, bad-bad-bad */
3775 /* XXX: if this happens too often, we can
3776 * add a flag to force wait only in case
3777 * of ->clear_inode(), but not in case of
3778 * regular truncate */
3779 schedule_timeout_uninterruptible(HZ);
3780 goto repeat;
3782 spin_unlock(&ei->i_prealloc_lock);
3784 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3785 BUG_ON(pa->pa_type != MB_INODE_PA);
3786 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3788 err = ext4_mb_load_buddy(sb, group, &e4b);
3789 if (err) {
3790 ext4_error(sb, __func__, "Error in loading buddy "
3791 "information for %u", group);
3792 continue;
3795 bitmap_bh = ext4_read_block_bitmap(sb, group);
3796 if (bitmap_bh == NULL) {
3797 ext4_error(sb, __func__, "Error in reading block "
3798 "bitmap for %u", group);
3799 ext4_mb_release_desc(&e4b);
3800 continue;
3803 ext4_lock_group(sb, group);
3804 list_del(&pa->pa_group_list);
3805 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3806 ext4_unlock_group(sb, group);
3808 ext4_mb_release_desc(&e4b);
3809 put_bh(bitmap_bh);
3811 list_del(&pa->u.pa_tmp_list);
3812 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3814 if (ac)
3815 kmem_cache_free(ext4_ac_cachep, ac);
3819 * finds all preallocated spaces and return blocks being freed to them
3820 * if preallocated space becomes full (no block is used from the space)
3821 * then the function frees space in buddy
3822 * XXX: at the moment, truncate (which is the only way to free blocks)
3823 * discards all preallocations
3825 static void ext4_mb_return_to_preallocation(struct inode *inode,
3826 struct ext4_buddy *e4b,
3827 sector_t block, int count)
3829 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
3831 #ifdef CONFIG_EXT4_DEBUG
3832 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3834 struct super_block *sb = ac->ac_sb;
3835 ext4_group_t ngroups, i;
3837 printk(KERN_ERR "EXT4-fs: Can't allocate:"
3838 " Allocation context details:\n");
3839 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3840 ac->ac_status, ac->ac_flags);
3841 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3842 "best %lu/%lu/%lu@%lu cr %d\n",
3843 (unsigned long)ac->ac_o_ex.fe_group,
3844 (unsigned long)ac->ac_o_ex.fe_start,
3845 (unsigned long)ac->ac_o_ex.fe_len,
3846 (unsigned long)ac->ac_o_ex.fe_logical,
3847 (unsigned long)ac->ac_g_ex.fe_group,
3848 (unsigned long)ac->ac_g_ex.fe_start,
3849 (unsigned long)ac->ac_g_ex.fe_len,
3850 (unsigned long)ac->ac_g_ex.fe_logical,
3851 (unsigned long)ac->ac_b_ex.fe_group,
3852 (unsigned long)ac->ac_b_ex.fe_start,
3853 (unsigned long)ac->ac_b_ex.fe_len,
3854 (unsigned long)ac->ac_b_ex.fe_logical,
3855 (int)ac->ac_criteria);
3856 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3857 ac->ac_found);
3858 printk(KERN_ERR "EXT4-fs: groups: \n");
3859 ngroups = ext4_get_groups_count(sb);
3860 for (i = 0; i < ngroups; i++) {
3861 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3862 struct ext4_prealloc_space *pa;
3863 ext4_grpblk_t start;
3864 struct list_head *cur;
3865 ext4_lock_group(sb, i);
3866 list_for_each(cur, &grp->bb_prealloc_list) {
3867 pa = list_entry(cur, struct ext4_prealloc_space,
3868 pa_group_list);
3869 spin_lock(&pa->pa_lock);
3870 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3871 NULL, &start);
3872 spin_unlock(&pa->pa_lock);
3873 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3874 start, pa->pa_len);
3876 ext4_unlock_group(sb, i);
3878 if (grp->bb_free == 0)
3879 continue;
3880 printk(KERN_ERR "%u: %d/%d \n",
3881 i, grp->bb_free, grp->bb_fragments);
3883 printk(KERN_ERR "\n");
3885 #else
3886 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3888 return;
3890 #endif
3893 * We use locality group preallocation for small size file. The size of the
3894 * file is determined by the current size or the resulting size after
3895 * allocation which ever is larger
3897 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3899 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3901 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3902 int bsbits = ac->ac_sb->s_blocksize_bits;
3903 loff_t size, isize;
3905 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3906 return;
3908 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3909 return;
3911 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3912 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3913 >> bsbits;
3915 if ((size == isize) &&
3916 !ext4_fs_is_busy(sbi) &&
3917 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3918 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3919 return;
3922 /* don't use group allocation for large files */
3923 size = max(size, isize);
3924 if (size >= sbi->s_mb_stream_request) {
3925 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3926 return;
3929 BUG_ON(ac->ac_lg != NULL);
3931 * locality group prealloc space are per cpu. The reason for having
3932 * per cpu locality group is to reduce the contention between block
3933 * request from multiple CPUs.
3935 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3937 /* we're going to use group allocation */
3938 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3940 /* serialize all allocations in the group */
3941 mutex_lock(&ac->ac_lg->lg_mutex);
3944 static noinline_for_stack int
3945 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3946 struct ext4_allocation_request *ar)
3948 struct super_block *sb = ar->inode->i_sb;
3949 struct ext4_sb_info *sbi = EXT4_SB(sb);
3950 struct ext4_super_block *es = sbi->s_es;
3951 ext4_group_t group;
3952 unsigned int len;
3953 ext4_fsblk_t goal;
3954 ext4_grpblk_t block;
3956 /* we can't allocate > group size */
3957 len = ar->len;
3959 /* just a dirty hack to filter too big requests */
3960 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
3961 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
3963 /* start searching from the goal */
3964 goal = ar->goal;
3965 if (goal < le32_to_cpu(es->s_first_data_block) ||
3966 goal >= ext4_blocks_count(es))
3967 goal = le32_to_cpu(es->s_first_data_block);
3968 ext4_get_group_no_and_offset(sb, goal, &group, &block);
3970 /* set up allocation goals */
3971 memset(ac, 0, sizeof(struct ext4_allocation_context));
3972 ac->ac_b_ex.fe_logical = ar->logical;
3973 ac->ac_status = AC_STATUS_CONTINUE;
3974 ac->ac_sb = sb;
3975 ac->ac_inode = ar->inode;
3976 ac->ac_o_ex.fe_logical = ar->logical;
3977 ac->ac_o_ex.fe_group = group;
3978 ac->ac_o_ex.fe_start = block;
3979 ac->ac_o_ex.fe_len = len;
3980 ac->ac_g_ex.fe_logical = ar->logical;
3981 ac->ac_g_ex.fe_group = group;
3982 ac->ac_g_ex.fe_start = block;
3983 ac->ac_g_ex.fe_len = len;
3984 ac->ac_flags = ar->flags;
3986 /* we have to define context: we'll we work with a file or
3987 * locality group. this is a policy, actually */
3988 ext4_mb_group_or_file(ac);
3990 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
3991 "left: %u/%u, right %u/%u to %swritable\n",
3992 (unsigned) ar->len, (unsigned) ar->logical,
3993 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
3994 (unsigned) ar->lleft, (unsigned) ar->pleft,
3995 (unsigned) ar->lright, (unsigned) ar->pright,
3996 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
3997 return 0;
4001 static noinline_for_stack void
4002 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4003 struct ext4_locality_group *lg,
4004 int order, int total_entries)
4006 ext4_group_t group = 0;
4007 struct ext4_buddy e4b;
4008 struct list_head discard_list;
4009 struct ext4_prealloc_space *pa, *tmp;
4010 struct ext4_allocation_context *ac;
4012 mb_debug(1, "discard locality group preallocation\n");
4014 INIT_LIST_HEAD(&discard_list);
4015 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4016 if (ac)
4017 ac->ac_sb = sb;
4019 spin_lock(&lg->lg_prealloc_lock);
4020 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4021 pa_inode_list) {
4022 spin_lock(&pa->pa_lock);
4023 if (atomic_read(&pa->pa_count)) {
4025 * This is the pa that we just used
4026 * for block allocation. So don't
4027 * free that
4029 spin_unlock(&pa->pa_lock);
4030 continue;
4032 if (pa->pa_deleted) {
4033 spin_unlock(&pa->pa_lock);
4034 continue;
4036 /* only lg prealloc space */
4037 BUG_ON(pa->pa_type != MB_GROUP_PA);
4039 /* seems this one can be freed ... */
4040 pa->pa_deleted = 1;
4041 spin_unlock(&pa->pa_lock);
4043 list_del_rcu(&pa->pa_inode_list);
4044 list_add(&pa->u.pa_tmp_list, &discard_list);
4046 total_entries--;
4047 if (total_entries <= 5) {
4049 * we want to keep only 5 entries
4050 * allowing it to grow to 8. This
4051 * mak sure we don't call discard
4052 * soon for this list.
4054 break;
4057 spin_unlock(&lg->lg_prealloc_lock);
4059 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4061 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4062 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4063 ext4_error(sb, __func__, "Error in loading buddy "
4064 "information for %u", group);
4065 continue;
4067 ext4_lock_group(sb, group);
4068 list_del(&pa->pa_group_list);
4069 ext4_mb_release_group_pa(&e4b, pa, ac);
4070 ext4_unlock_group(sb, group);
4072 ext4_mb_release_desc(&e4b);
4073 list_del(&pa->u.pa_tmp_list);
4074 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4076 if (ac)
4077 kmem_cache_free(ext4_ac_cachep, ac);
4081 * We have incremented pa_count. So it cannot be freed at this
4082 * point. Also we hold lg_mutex. So no parallel allocation is
4083 * possible from this lg. That means pa_free cannot be updated.
4085 * A parallel ext4_mb_discard_group_preallocations is possible.
4086 * which can cause the lg_prealloc_list to be updated.
4089 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4091 int order, added = 0, lg_prealloc_count = 1;
4092 struct super_block *sb = ac->ac_sb;
4093 struct ext4_locality_group *lg = ac->ac_lg;
4094 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4096 order = fls(pa->pa_free) - 1;
4097 if (order > PREALLOC_TB_SIZE - 1)
4098 /* The max size of hash table is PREALLOC_TB_SIZE */
4099 order = PREALLOC_TB_SIZE - 1;
4100 /* Add the prealloc space to lg */
4101 rcu_read_lock();
4102 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4103 pa_inode_list) {
4104 spin_lock(&tmp_pa->pa_lock);
4105 if (tmp_pa->pa_deleted) {
4106 spin_unlock(&tmp_pa->pa_lock);
4107 continue;
4109 if (!added && pa->pa_free < tmp_pa->pa_free) {
4110 /* Add to the tail of the previous entry */
4111 list_add_tail_rcu(&pa->pa_inode_list,
4112 &tmp_pa->pa_inode_list);
4113 added = 1;
4115 * we want to count the total
4116 * number of entries in the list
4119 spin_unlock(&tmp_pa->pa_lock);
4120 lg_prealloc_count++;
4122 if (!added)
4123 list_add_tail_rcu(&pa->pa_inode_list,
4124 &lg->lg_prealloc_list[order]);
4125 rcu_read_unlock();
4127 /* Now trim the list to be not more than 8 elements */
4128 if (lg_prealloc_count > 8) {
4129 ext4_mb_discard_lg_preallocations(sb, lg,
4130 order, lg_prealloc_count);
4131 return;
4133 return ;
4137 * release all resource we used in allocation
4139 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4141 struct ext4_prealloc_space *pa = ac->ac_pa;
4142 if (pa) {
4143 if (pa->pa_type == MB_GROUP_PA) {
4144 /* see comment in ext4_mb_use_group_pa() */
4145 spin_lock(&pa->pa_lock);
4146 pa->pa_pstart += ac->ac_b_ex.fe_len;
4147 pa->pa_lstart += ac->ac_b_ex.fe_len;
4148 pa->pa_free -= ac->ac_b_ex.fe_len;
4149 pa->pa_len -= ac->ac_b_ex.fe_len;
4150 spin_unlock(&pa->pa_lock);
4153 if (ac->alloc_semp)
4154 up_read(ac->alloc_semp);
4155 if (pa) {
4157 * We want to add the pa to the right bucket.
4158 * Remove it from the list and while adding
4159 * make sure the list to which we are adding
4160 * doesn't grow big. We need to release
4161 * alloc_semp before calling ext4_mb_add_n_trim()
4163 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4164 spin_lock(pa->pa_obj_lock);
4165 list_del_rcu(&pa->pa_inode_list);
4166 spin_unlock(pa->pa_obj_lock);
4167 ext4_mb_add_n_trim(ac);
4169 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4171 if (ac->ac_bitmap_page)
4172 page_cache_release(ac->ac_bitmap_page);
4173 if (ac->ac_buddy_page)
4174 page_cache_release(ac->ac_buddy_page);
4175 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4176 mutex_unlock(&ac->ac_lg->lg_mutex);
4177 ext4_mb_collect_stats(ac);
4178 return 0;
4181 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4183 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4184 int ret;
4185 int freed = 0;
4187 trace_ext4_mb_discard_preallocations(sb, needed);
4188 for (i = 0; i < ngroups && needed > 0; i++) {
4189 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4190 freed += ret;
4191 needed -= ret;
4194 return freed;
4198 * Main entry point into mballoc to allocate blocks
4199 * it tries to use preallocation first, then falls back
4200 * to usual allocation
4202 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4203 struct ext4_allocation_request *ar, int *errp)
4205 int freed;
4206 struct ext4_allocation_context *ac = NULL;
4207 struct ext4_sb_info *sbi;
4208 struct super_block *sb;
4209 ext4_fsblk_t block = 0;
4210 unsigned int inquota = 0;
4211 unsigned int reserv_blks = 0;
4213 sb = ar->inode->i_sb;
4214 sbi = EXT4_SB(sb);
4216 trace_ext4_request_blocks(ar);
4219 * For delayed allocation, we could skip the ENOSPC and
4220 * EDQUOT check, as blocks and quotas have been already
4221 * reserved when data being copied into pagecache.
4223 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4224 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4225 else {
4226 /* Without delayed allocation we need to verify
4227 * there is enough free blocks to do block allocation
4228 * and verify allocation doesn't exceed the quota limits.
4230 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4231 /* let others to free the space */
4232 yield();
4233 ar->len = ar->len >> 1;
4235 if (!ar->len) {
4236 *errp = -ENOSPC;
4237 return 0;
4239 reserv_blks = ar->len;
4240 while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) {
4241 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4242 ar->len--;
4244 inquota = ar->len;
4245 if (ar->len == 0) {
4246 *errp = -EDQUOT;
4247 goto out3;
4251 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4252 if (!ac) {
4253 ar->len = 0;
4254 *errp = -ENOMEM;
4255 goto out1;
4258 *errp = ext4_mb_initialize_context(ac, ar);
4259 if (*errp) {
4260 ar->len = 0;
4261 goto out2;
4264 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4265 if (!ext4_mb_use_preallocated(ac)) {
4266 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4267 ext4_mb_normalize_request(ac, ar);
4268 repeat:
4269 /* allocate space in core */
4270 ext4_mb_regular_allocator(ac);
4272 /* as we've just preallocated more space than
4273 * user requested orinally, we store allocated
4274 * space in a special descriptor */
4275 if (ac->ac_status == AC_STATUS_FOUND &&
4276 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4277 ext4_mb_new_preallocation(ac);
4279 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4280 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4281 if (*errp == -EAGAIN) {
4283 * drop the reference that we took
4284 * in ext4_mb_use_best_found
4286 ext4_mb_release_context(ac);
4287 ac->ac_b_ex.fe_group = 0;
4288 ac->ac_b_ex.fe_start = 0;
4289 ac->ac_b_ex.fe_len = 0;
4290 ac->ac_status = AC_STATUS_CONTINUE;
4291 goto repeat;
4292 } else if (*errp) {
4293 ac->ac_b_ex.fe_len = 0;
4294 ar->len = 0;
4295 ext4_mb_show_ac(ac);
4296 } else {
4297 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4298 ar->len = ac->ac_b_ex.fe_len;
4300 } else {
4301 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4302 if (freed)
4303 goto repeat;
4304 *errp = -ENOSPC;
4305 ac->ac_b_ex.fe_len = 0;
4306 ar->len = 0;
4307 ext4_mb_show_ac(ac);
4310 ext4_mb_release_context(ac);
4312 out2:
4313 kmem_cache_free(ext4_ac_cachep, ac);
4314 out1:
4315 if (inquota && ar->len < inquota)
4316 vfs_dq_free_block(ar->inode, inquota - ar->len);
4317 out3:
4318 if (!ar->len) {
4319 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4320 /* release all the reserved blocks if non delalloc */
4321 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4322 reserv_blks);
4325 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4327 return block;
4331 * We can merge two free data extents only if the physical blocks
4332 * are contiguous, AND the extents were freed by the same transaction,
4333 * AND the blocks are associated with the same group.
4335 static int can_merge(struct ext4_free_data *entry1,
4336 struct ext4_free_data *entry2)
4338 if ((entry1->t_tid == entry2->t_tid) &&
4339 (entry1->group == entry2->group) &&
4340 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4341 return 1;
4342 return 0;
4345 static noinline_for_stack int
4346 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4347 struct ext4_free_data *new_entry)
4349 ext4_grpblk_t block;
4350 struct ext4_free_data *entry;
4351 struct ext4_group_info *db = e4b->bd_info;
4352 struct super_block *sb = e4b->bd_sb;
4353 struct ext4_sb_info *sbi = EXT4_SB(sb);
4354 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4355 struct rb_node *parent = NULL, *new_node;
4357 BUG_ON(!ext4_handle_valid(handle));
4358 BUG_ON(e4b->bd_bitmap_page == NULL);
4359 BUG_ON(e4b->bd_buddy_page == NULL);
4361 new_node = &new_entry->node;
4362 block = new_entry->start_blk;
4364 if (!*n) {
4365 /* first free block exent. We need to
4366 protect buddy cache from being freed,
4367 * otherwise we'll refresh it from
4368 * on-disk bitmap and lose not-yet-available
4369 * blocks */
4370 page_cache_get(e4b->bd_buddy_page);
4371 page_cache_get(e4b->bd_bitmap_page);
4373 while (*n) {
4374 parent = *n;
4375 entry = rb_entry(parent, struct ext4_free_data, node);
4376 if (block < entry->start_blk)
4377 n = &(*n)->rb_left;
4378 else if (block >= (entry->start_blk + entry->count))
4379 n = &(*n)->rb_right;
4380 else {
4381 ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4382 "Double free of blocks %d (%d %d)",
4383 block, entry->start_blk, entry->count);
4384 return 0;
4388 rb_link_node(new_node, parent, n);
4389 rb_insert_color(new_node, &db->bb_free_root);
4391 /* Now try to see the extent can be merged to left and right */
4392 node = rb_prev(new_node);
4393 if (node) {
4394 entry = rb_entry(node, struct ext4_free_data, node);
4395 if (can_merge(entry, new_entry)) {
4396 new_entry->start_blk = entry->start_blk;
4397 new_entry->count += entry->count;
4398 rb_erase(node, &(db->bb_free_root));
4399 spin_lock(&sbi->s_md_lock);
4400 list_del(&entry->list);
4401 spin_unlock(&sbi->s_md_lock);
4402 kmem_cache_free(ext4_free_ext_cachep, entry);
4406 node = rb_next(new_node);
4407 if (node) {
4408 entry = rb_entry(node, struct ext4_free_data, node);
4409 if (can_merge(new_entry, entry)) {
4410 new_entry->count += entry->count;
4411 rb_erase(node, &(db->bb_free_root));
4412 spin_lock(&sbi->s_md_lock);
4413 list_del(&entry->list);
4414 spin_unlock(&sbi->s_md_lock);
4415 kmem_cache_free(ext4_free_ext_cachep, entry);
4418 /* Add the extent to transaction's private list */
4419 spin_lock(&sbi->s_md_lock);
4420 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4421 spin_unlock(&sbi->s_md_lock);
4422 return 0;
4426 * Main entry point into mballoc to free blocks
4428 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4429 ext4_fsblk_t block, unsigned long count,
4430 int metadata, unsigned long *freed)
4432 struct buffer_head *bitmap_bh = NULL;
4433 struct super_block *sb = inode->i_sb;
4434 struct ext4_allocation_context *ac = NULL;
4435 struct ext4_group_desc *gdp;
4436 struct ext4_super_block *es;
4437 unsigned int overflow;
4438 ext4_grpblk_t bit;
4439 struct buffer_head *gd_bh;
4440 ext4_group_t block_group;
4441 struct ext4_sb_info *sbi;
4442 struct ext4_buddy e4b;
4443 int err = 0;
4444 int ret;
4446 *freed = 0;
4448 sbi = EXT4_SB(sb);
4449 es = EXT4_SB(sb)->s_es;
4450 if (block < le32_to_cpu(es->s_first_data_block) ||
4451 block + count < block ||
4452 block + count > ext4_blocks_count(es)) {
4453 ext4_error(sb, __func__,
4454 "Freeing blocks not in datazone - "
4455 "block = %llu, count = %lu", block, count);
4456 goto error_return;
4459 ext4_debug("freeing block %llu\n", block);
4460 trace_ext4_free_blocks(inode, block, count, metadata);
4462 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4463 if (ac) {
4464 ac->ac_inode = inode;
4465 ac->ac_sb = sb;
4468 do_more:
4469 overflow = 0;
4470 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4473 * Check to see if we are freeing blocks across a group
4474 * boundary.
4476 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4477 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4478 count -= overflow;
4480 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4481 if (!bitmap_bh) {
4482 err = -EIO;
4483 goto error_return;
4485 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4486 if (!gdp) {
4487 err = -EIO;
4488 goto error_return;
4491 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4492 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4493 in_range(block, ext4_inode_table(sb, gdp),
4494 EXT4_SB(sb)->s_itb_per_group) ||
4495 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4496 EXT4_SB(sb)->s_itb_per_group)) {
4498 ext4_error(sb, __func__,
4499 "Freeing blocks in system zone - "
4500 "Block = %llu, count = %lu", block, count);
4501 /* err = 0. ext4_std_error should be a no op */
4502 goto error_return;
4505 BUFFER_TRACE(bitmap_bh, "getting write access");
4506 err = ext4_journal_get_write_access(handle, bitmap_bh);
4507 if (err)
4508 goto error_return;
4511 * We are about to modify some metadata. Call the journal APIs
4512 * to unshare ->b_data if a currently-committing transaction is
4513 * using it
4515 BUFFER_TRACE(gd_bh, "get_write_access");
4516 err = ext4_journal_get_write_access(handle, gd_bh);
4517 if (err)
4518 goto error_return;
4519 #ifdef AGGRESSIVE_CHECK
4521 int i;
4522 for (i = 0; i < count; i++)
4523 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4525 #endif
4526 if (ac) {
4527 ac->ac_b_ex.fe_group = block_group;
4528 ac->ac_b_ex.fe_start = bit;
4529 ac->ac_b_ex.fe_len = count;
4530 trace_ext4_mballoc_free(ac);
4533 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4534 if (err)
4535 goto error_return;
4536 if (metadata && ext4_handle_valid(handle)) {
4537 struct ext4_free_data *new_entry;
4539 * blocks being freed are metadata. these blocks shouldn't
4540 * be used until this transaction is committed
4542 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4543 new_entry->start_blk = bit;
4544 new_entry->group = block_group;
4545 new_entry->count = count;
4546 new_entry->t_tid = handle->h_transaction->t_tid;
4548 ext4_lock_group(sb, block_group);
4549 mb_clear_bits(bitmap_bh->b_data, bit, count);
4550 ext4_mb_free_metadata(handle, &e4b, new_entry);
4551 } else {
4552 /* need to update group_info->bb_free and bitmap
4553 * with group lock held. generate_buddy look at
4554 * them with group lock_held
4556 ext4_lock_group(sb, block_group);
4557 mb_clear_bits(bitmap_bh->b_data, bit, count);
4558 mb_free_blocks(inode, &e4b, bit, count);
4559 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4562 ret = ext4_free_blks_count(sb, gdp) + count;
4563 ext4_free_blks_set(sb, gdp, ret);
4564 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4565 ext4_unlock_group(sb, block_group);
4566 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4568 if (sbi->s_log_groups_per_flex) {
4569 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4570 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4573 ext4_mb_release_desc(&e4b);
4575 *freed += count;
4577 /* We dirtied the bitmap block */
4578 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4579 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4581 /* And the group descriptor block */
4582 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4583 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4584 if (!err)
4585 err = ret;
4587 if (overflow && !err) {
4588 block += count;
4589 count = overflow;
4590 put_bh(bitmap_bh);
4591 goto do_more;
4593 sb->s_dirt = 1;
4594 error_return:
4595 brelse(bitmap_bh);
4596 ext4_std_error(sb, err);
4597 if (ac)
4598 kmem_cache_free(ext4_ac_cachep, ac);
4599 return;