md/raid5: add some more fields to stripe_head_state
[linux-2.6/x86.git] / drivers / md / raid5.c
blobbc15f48be78dbe0400e2ab2efd4536dee1a52220
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
60 * Stripe cache
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
79 * be valid.
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 * The following can be used to debug the driver
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 static inline int raid5_bi_phys_segments(struct bio *bio)
107 return bio->bi_phys_segments & 0xffff;
110 static inline int raid5_bi_hw_segments(struct bio *bio)
112 return (bio->bi_phys_segments >> 16) & 0xffff;
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123 unsigned short val = raid5_bi_hw_segments(bio);
125 --val;
126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 return val;
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
138 if (sh->ddf_layout)
139 /* ddf always start from first device */
140 return 0;
141 /* md starts just after Q block */
142 if (sh->qd_idx == sh->disks - 1)
143 return 0;
144 else
145 return sh->qd_idx + 1;
147 static inline int raid6_next_disk(int disk, int raid_disks)
149 disk++;
150 return (disk < raid_disks) ? disk : 0;
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
161 int slot = *count;
163 if (sh->ddf_layout)
164 (*count)++;
165 if (idx == sh->pd_idx)
166 return syndrome_disks;
167 if (idx == sh->qd_idx)
168 return syndrome_disks + 1;
169 if (!sh->ddf_layout)
170 (*count)++;
171 return slot;
174 static void return_io(struct bio *return_bi)
176 struct bio *bi = return_bi;
177 while (bi) {
179 return_bi = bi->bi_next;
180 bi->bi_next = NULL;
181 bi->bi_size = 0;
182 bio_endio(bi, 0);
183 bi = return_bi;
187 static void print_raid5_conf (raid5_conf_t *conf);
189 static int stripe_operations_active(struct stripe_head *sh)
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
198 if (atomic_dec_and_test(&sh->count)) {
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 if (test_bit(STRIPE_DELAYED, &sh->state))
203 list_add_tail(&sh->lru, &conf->delayed_list);
204 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205 sh->bm_seq - conf->seq_write > 0)
206 list_add_tail(&sh->lru, &conf->bitmap_list);
207 else {
208 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209 list_add_tail(&sh->lru, &conf->handle_list);
211 md_wakeup_thread(conf->mddev->thread);
212 } else {
213 BUG_ON(stripe_operations_active(sh));
214 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215 atomic_dec(&conf->preread_active_stripes);
216 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217 md_wakeup_thread(conf->mddev->thread);
219 atomic_dec(&conf->active_stripes);
220 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221 list_add_tail(&sh->lru, &conf->inactive_list);
222 wake_up(&conf->wait_for_stripe);
223 if (conf->retry_read_aligned)
224 md_wakeup_thread(conf->mddev->thread);
230 static void release_stripe(struct stripe_head *sh)
232 raid5_conf_t *conf = sh->raid_conf;
233 unsigned long flags;
235 spin_lock_irqsave(&conf->device_lock, flags);
236 __release_stripe(conf, sh);
237 spin_unlock_irqrestore(&conf->device_lock, flags);
240 static inline void remove_hash(struct stripe_head *sh)
242 pr_debug("remove_hash(), stripe %llu\n",
243 (unsigned long long)sh->sector);
245 hlist_del_init(&sh->hash);
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
250 struct hlist_head *hp = stripe_hash(conf, sh->sector);
252 pr_debug("insert_hash(), stripe %llu\n",
253 (unsigned long long)sh->sector);
255 CHECK_DEVLOCK();
256 hlist_add_head(&sh->hash, hp);
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
263 struct stripe_head *sh = NULL;
264 struct list_head *first;
266 CHECK_DEVLOCK();
267 if (list_empty(&conf->inactive_list))
268 goto out;
269 first = conf->inactive_list.next;
270 sh = list_entry(first, struct stripe_head, lru);
271 list_del_init(first);
272 remove_hash(sh);
273 atomic_inc(&conf->active_stripes);
274 out:
275 return sh;
278 static void shrink_buffers(struct stripe_head *sh)
280 struct page *p;
281 int i;
282 int num = sh->raid_conf->pool_size;
284 for (i = 0; i < num ; i++) {
285 p = sh->dev[i].page;
286 if (!p)
287 continue;
288 sh->dev[i].page = NULL;
289 put_page(p);
293 static int grow_buffers(struct stripe_head *sh)
295 int i;
296 int num = sh->raid_conf->pool_size;
298 for (i = 0; i < num; i++) {
299 struct page *page;
301 if (!(page = alloc_page(GFP_KERNEL))) {
302 return 1;
304 sh->dev[i].page = page;
306 return 0;
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311 struct stripe_head *sh);
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
315 raid5_conf_t *conf = sh->raid_conf;
316 int i;
318 BUG_ON(atomic_read(&sh->count) != 0);
319 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320 BUG_ON(stripe_operations_active(sh));
322 CHECK_DEVLOCK();
323 pr_debug("init_stripe called, stripe %llu\n",
324 (unsigned long long)sh->sector);
326 remove_hash(sh);
328 sh->generation = conf->generation - previous;
329 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330 sh->sector = sector;
331 stripe_set_idx(sector, conf, previous, sh);
332 sh->state = 0;
335 for (i = sh->disks; i--; ) {
336 struct r5dev *dev = &sh->dev[i];
338 if (dev->toread || dev->read || dev->towrite || dev->written ||
339 test_bit(R5_LOCKED, &dev->flags)) {
340 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341 (unsigned long long)sh->sector, i, dev->toread,
342 dev->read, dev->towrite, dev->written,
343 test_bit(R5_LOCKED, &dev->flags));
344 BUG();
346 dev->flags = 0;
347 raid5_build_block(sh, i, previous);
349 insert_hash(conf, sh);
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353 short generation)
355 struct stripe_head *sh;
356 struct hlist_node *hn;
358 CHECK_DEVLOCK();
359 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361 if (sh->sector == sector && sh->generation == generation)
362 return sh;
363 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364 return NULL;
368 * Need to check if array has failed when deciding whether to:
369 * - start an array
370 * - remove non-faulty devices
371 * - add a spare
372 * - allow a reshape
373 * This determination is simple when no reshape is happening.
374 * However if there is a reshape, we need to carefully check
375 * both the before and after sections.
376 * This is because some failed devices may only affect one
377 * of the two sections, and some non-in_sync devices may
378 * be insync in the section most affected by failed devices.
380 static int has_failed(raid5_conf_t *conf)
382 int degraded;
383 int i;
384 if (conf->mddev->reshape_position == MaxSector)
385 return conf->mddev->degraded > conf->max_degraded;
387 rcu_read_lock();
388 degraded = 0;
389 for (i = 0; i < conf->previous_raid_disks; i++) {
390 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391 if (!rdev || test_bit(Faulty, &rdev->flags))
392 degraded++;
393 else if (test_bit(In_sync, &rdev->flags))
395 else
396 /* not in-sync or faulty.
397 * If the reshape increases the number of devices,
398 * this is being recovered by the reshape, so
399 * this 'previous' section is not in_sync.
400 * If the number of devices is being reduced however,
401 * the device can only be part of the array if
402 * we are reverting a reshape, so this section will
403 * be in-sync.
405 if (conf->raid_disks >= conf->previous_raid_disks)
406 degraded++;
408 rcu_read_unlock();
409 if (degraded > conf->max_degraded)
410 return 1;
411 rcu_read_lock();
412 degraded = 0;
413 for (i = 0; i < conf->raid_disks; i++) {
414 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415 if (!rdev || test_bit(Faulty, &rdev->flags))
416 degraded++;
417 else if (test_bit(In_sync, &rdev->flags))
419 else
420 /* not in-sync or faulty.
421 * If reshape increases the number of devices, this
422 * section has already been recovered, else it
423 * almost certainly hasn't.
425 if (conf->raid_disks <= conf->previous_raid_disks)
426 degraded++;
428 rcu_read_unlock();
429 if (degraded > conf->max_degraded)
430 return 1;
431 return 0;
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436 int previous, int noblock, int noquiesce)
438 struct stripe_head *sh;
440 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
442 spin_lock_irq(&conf->device_lock);
444 do {
445 wait_event_lock_irq(conf->wait_for_stripe,
446 conf->quiesce == 0 || noquiesce,
447 conf->device_lock, /* nothing */);
448 sh = __find_stripe(conf, sector, conf->generation - previous);
449 if (!sh) {
450 if (!conf->inactive_blocked)
451 sh = get_free_stripe(conf);
452 if (noblock && sh == NULL)
453 break;
454 if (!sh) {
455 conf->inactive_blocked = 1;
456 wait_event_lock_irq(conf->wait_for_stripe,
457 !list_empty(&conf->inactive_list) &&
458 (atomic_read(&conf->active_stripes)
459 < (conf->max_nr_stripes *3/4)
460 || !conf->inactive_blocked),
461 conf->device_lock,
463 conf->inactive_blocked = 0;
464 } else
465 init_stripe(sh, sector, previous);
466 } else {
467 if (atomic_read(&sh->count)) {
468 BUG_ON(!list_empty(&sh->lru)
469 && !test_bit(STRIPE_EXPANDING, &sh->state));
470 } else {
471 if (!test_bit(STRIPE_HANDLE, &sh->state))
472 atomic_inc(&conf->active_stripes);
473 if (list_empty(&sh->lru) &&
474 !test_bit(STRIPE_EXPANDING, &sh->state))
475 BUG();
476 list_del_init(&sh->lru);
479 } while (sh == NULL);
481 if (sh)
482 atomic_inc(&sh->count);
484 spin_unlock_irq(&conf->device_lock);
485 return sh;
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
495 raid5_conf_t *conf = sh->raid_conf;
496 int i, disks = sh->disks;
498 might_sleep();
500 for (i = disks; i--; ) {
501 int rw;
502 struct bio *bi;
503 mdk_rdev_t *rdev;
504 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506 rw = WRITE_FUA;
507 else
508 rw = WRITE;
509 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510 rw = READ;
511 else
512 continue;
514 bi = &sh->dev[i].req;
516 bi->bi_rw = rw;
517 if (rw & WRITE)
518 bi->bi_end_io = raid5_end_write_request;
519 else
520 bi->bi_end_io = raid5_end_read_request;
522 rcu_read_lock();
523 rdev = rcu_dereference(conf->disks[i].rdev);
524 if (rdev && test_bit(Faulty, &rdev->flags))
525 rdev = NULL;
526 if (rdev)
527 atomic_inc(&rdev->nr_pending);
528 rcu_read_unlock();
530 if (rdev) {
531 if (s->syncing || s->expanding || s->expanded)
532 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
534 set_bit(STRIPE_IO_STARTED, &sh->state);
536 bi->bi_bdev = rdev->bdev;
537 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538 __func__, (unsigned long long)sh->sector,
539 bi->bi_rw, i);
540 atomic_inc(&sh->count);
541 bi->bi_sector = sh->sector + rdev->data_offset;
542 bi->bi_flags = 1 << BIO_UPTODATE;
543 bi->bi_vcnt = 1;
544 bi->bi_max_vecs = 1;
545 bi->bi_idx = 0;
546 bi->bi_io_vec = &sh->dev[i].vec;
547 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548 bi->bi_io_vec[0].bv_offset = 0;
549 bi->bi_size = STRIPE_SIZE;
550 bi->bi_next = NULL;
551 if ((rw & WRITE) &&
552 test_bit(R5_ReWrite, &sh->dev[i].flags))
553 atomic_add(STRIPE_SECTORS,
554 &rdev->corrected_errors);
555 generic_make_request(bi);
556 } else {
557 if (rw & WRITE)
558 set_bit(STRIPE_DEGRADED, &sh->state);
559 pr_debug("skip op %ld on disc %d for sector %llu\n",
560 bi->bi_rw, i, (unsigned long long)sh->sector);
561 clear_bit(R5_LOCKED, &sh->dev[i].flags);
562 set_bit(STRIPE_HANDLE, &sh->state);
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569 sector_t sector, struct dma_async_tx_descriptor *tx)
571 struct bio_vec *bvl;
572 struct page *bio_page;
573 int i;
574 int page_offset;
575 struct async_submit_ctl submit;
576 enum async_tx_flags flags = 0;
578 if (bio->bi_sector >= sector)
579 page_offset = (signed)(bio->bi_sector - sector) * 512;
580 else
581 page_offset = (signed)(sector - bio->bi_sector) * -512;
583 if (frombio)
584 flags |= ASYNC_TX_FENCE;
585 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
587 bio_for_each_segment(bvl, bio, i) {
588 int len = bvl->bv_len;
589 int clen;
590 int b_offset = 0;
592 if (page_offset < 0) {
593 b_offset = -page_offset;
594 page_offset += b_offset;
595 len -= b_offset;
598 if (len > 0 && page_offset + len > STRIPE_SIZE)
599 clen = STRIPE_SIZE - page_offset;
600 else
601 clen = len;
603 if (clen > 0) {
604 b_offset += bvl->bv_offset;
605 bio_page = bvl->bv_page;
606 if (frombio)
607 tx = async_memcpy(page, bio_page, page_offset,
608 b_offset, clen, &submit);
609 else
610 tx = async_memcpy(bio_page, page, b_offset,
611 page_offset, clen, &submit);
613 /* chain the operations */
614 submit.depend_tx = tx;
616 if (clen < len) /* hit end of page */
617 break;
618 page_offset += len;
621 return tx;
624 static void ops_complete_biofill(void *stripe_head_ref)
626 struct stripe_head *sh = stripe_head_ref;
627 struct bio *return_bi = NULL;
628 raid5_conf_t *conf = sh->raid_conf;
629 int i;
631 pr_debug("%s: stripe %llu\n", __func__,
632 (unsigned long long)sh->sector);
634 /* clear completed biofills */
635 spin_lock_irq(&conf->device_lock);
636 for (i = sh->disks; i--; ) {
637 struct r5dev *dev = &sh->dev[i];
639 /* acknowledge completion of a biofill operation */
640 /* and check if we need to reply to a read request,
641 * new R5_Wantfill requests are held off until
642 * !STRIPE_BIOFILL_RUN
644 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645 struct bio *rbi, *rbi2;
647 BUG_ON(!dev->read);
648 rbi = dev->read;
649 dev->read = NULL;
650 while (rbi && rbi->bi_sector <
651 dev->sector + STRIPE_SECTORS) {
652 rbi2 = r5_next_bio(rbi, dev->sector);
653 if (!raid5_dec_bi_phys_segments(rbi)) {
654 rbi->bi_next = return_bi;
655 return_bi = rbi;
657 rbi = rbi2;
661 spin_unlock_irq(&conf->device_lock);
662 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
664 return_io(return_bi);
666 set_bit(STRIPE_HANDLE, &sh->state);
667 release_stripe(sh);
670 static void ops_run_biofill(struct stripe_head *sh)
672 struct dma_async_tx_descriptor *tx = NULL;
673 raid5_conf_t *conf = sh->raid_conf;
674 struct async_submit_ctl submit;
675 int i;
677 pr_debug("%s: stripe %llu\n", __func__,
678 (unsigned long long)sh->sector);
680 for (i = sh->disks; i--; ) {
681 struct r5dev *dev = &sh->dev[i];
682 if (test_bit(R5_Wantfill, &dev->flags)) {
683 struct bio *rbi;
684 spin_lock_irq(&conf->device_lock);
685 dev->read = rbi = dev->toread;
686 dev->toread = NULL;
687 spin_unlock_irq(&conf->device_lock);
688 while (rbi && rbi->bi_sector <
689 dev->sector + STRIPE_SECTORS) {
690 tx = async_copy_data(0, rbi, dev->page,
691 dev->sector, tx);
692 rbi = r5_next_bio(rbi, dev->sector);
697 atomic_inc(&sh->count);
698 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699 async_trigger_callback(&submit);
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
704 struct r5dev *tgt;
706 if (target < 0)
707 return;
709 tgt = &sh->dev[target];
710 set_bit(R5_UPTODATE, &tgt->flags);
711 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712 clear_bit(R5_Wantcompute, &tgt->flags);
715 static void ops_complete_compute(void *stripe_head_ref)
717 struct stripe_head *sh = stripe_head_ref;
719 pr_debug("%s: stripe %llu\n", __func__,
720 (unsigned long long)sh->sector);
722 /* mark the computed target(s) as uptodate */
723 mark_target_uptodate(sh, sh->ops.target);
724 mark_target_uptodate(sh, sh->ops.target2);
726 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727 if (sh->check_state == check_state_compute_run)
728 sh->check_state = check_state_compute_result;
729 set_bit(STRIPE_HANDLE, &sh->state);
730 release_stripe(sh);
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735 struct raid5_percpu *percpu)
737 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
743 int disks = sh->disks;
744 struct page **xor_srcs = percpu->scribble;
745 int target = sh->ops.target;
746 struct r5dev *tgt = &sh->dev[target];
747 struct page *xor_dest = tgt->page;
748 int count = 0;
749 struct dma_async_tx_descriptor *tx;
750 struct async_submit_ctl submit;
751 int i;
753 pr_debug("%s: stripe %llu block: %d\n",
754 __func__, (unsigned long long)sh->sector, target);
755 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
757 for (i = disks; i--; )
758 if (i != target)
759 xor_srcs[count++] = sh->dev[i].page;
761 atomic_inc(&sh->count);
763 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764 ops_complete_compute, sh, to_addr_conv(sh, percpu));
765 if (unlikely(count == 1))
766 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767 else
768 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
770 return tx;
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774 * @srcs - (struct page *) array of size sh->disks
775 * @sh - stripe_head to parse
777 * Populates srcs in proper layout order for the stripe and returns the
778 * 'count' of sources to be used in a call to async_gen_syndrome. The P
779 * destination buffer is recorded in srcs[count] and the Q destination
780 * is recorded in srcs[count+1]].
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
784 int disks = sh->disks;
785 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786 int d0_idx = raid6_d0(sh);
787 int count;
788 int i;
790 for (i = 0; i < disks; i++)
791 srcs[i] = NULL;
793 count = 0;
794 i = d0_idx;
795 do {
796 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
798 srcs[slot] = sh->dev[i].page;
799 i = raid6_next_disk(i, disks);
800 } while (i != d0_idx);
802 return syndrome_disks;
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
808 int disks = sh->disks;
809 struct page **blocks = percpu->scribble;
810 int target;
811 int qd_idx = sh->qd_idx;
812 struct dma_async_tx_descriptor *tx;
813 struct async_submit_ctl submit;
814 struct r5dev *tgt;
815 struct page *dest;
816 int i;
817 int count;
819 if (sh->ops.target < 0)
820 target = sh->ops.target2;
821 else if (sh->ops.target2 < 0)
822 target = sh->ops.target;
823 else
824 /* we should only have one valid target */
825 BUG();
826 BUG_ON(target < 0);
827 pr_debug("%s: stripe %llu block: %d\n",
828 __func__, (unsigned long long)sh->sector, target);
830 tgt = &sh->dev[target];
831 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832 dest = tgt->page;
834 atomic_inc(&sh->count);
836 if (target == qd_idx) {
837 count = set_syndrome_sources(blocks, sh);
838 blocks[count] = NULL; /* regenerating p is not necessary */
839 BUG_ON(blocks[count+1] != dest); /* q should already be set */
840 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841 ops_complete_compute, sh,
842 to_addr_conv(sh, percpu));
843 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844 } else {
845 /* Compute any data- or p-drive using XOR */
846 count = 0;
847 for (i = disks; i-- ; ) {
848 if (i == target || i == qd_idx)
849 continue;
850 blocks[count++] = sh->dev[i].page;
853 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854 NULL, ops_complete_compute, sh,
855 to_addr_conv(sh, percpu));
856 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
859 return tx;
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
865 int i, count, disks = sh->disks;
866 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867 int d0_idx = raid6_d0(sh);
868 int faila = -1, failb = -1;
869 int target = sh->ops.target;
870 int target2 = sh->ops.target2;
871 struct r5dev *tgt = &sh->dev[target];
872 struct r5dev *tgt2 = &sh->dev[target2];
873 struct dma_async_tx_descriptor *tx;
874 struct page **blocks = percpu->scribble;
875 struct async_submit_ctl submit;
877 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878 __func__, (unsigned long long)sh->sector, target, target2);
879 BUG_ON(target < 0 || target2 < 0);
880 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
883 /* we need to open-code set_syndrome_sources to handle the
884 * slot number conversion for 'faila' and 'failb'
886 for (i = 0; i < disks ; i++)
887 blocks[i] = NULL;
888 count = 0;
889 i = d0_idx;
890 do {
891 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
893 blocks[slot] = sh->dev[i].page;
895 if (i == target)
896 faila = slot;
897 if (i == target2)
898 failb = slot;
899 i = raid6_next_disk(i, disks);
900 } while (i != d0_idx);
902 BUG_ON(faila == failb);
903 if (failb < faila)
904 swap(faila, failb);
905 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906 __func__, (unsigned long long)sh->sector, faila, failb);
908 atomic_inc(&sh->count);
910 if (failb == syndrome_disks+1) {
911 /* Q disk is one of the missing disks */
912 if (faila == syndrome_disks) {
913 /* Missing P+Q, just recompute */
914 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915 ops_complete_compute, sh,
916 to_addr_conv(sh, percpu));
917 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918 STRIPE_SIZE, &submit);
919 } else {
920 struct page *dest;
921 int data_target;
922 int qd_idx = sh->qd_idx;
924 /* Missing D+Q: recompute D from P, then recompute Q */
925 if (target == qd_idx)
926 data_target = target2;
927 else
928 data_target = target;
930 count = 0;
931 for (i = disks; i-- ; ) {
932 if (i == data_target || i == qd_idx)
933 continue;
934 blocks[count++] = sh->dev[i].page;
936 dest = sh->dev[data_target].page;
937 init_async_submit(&submit,
938 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939 NULL, NULL, NULL,
940 to_addr_conv(sh, percpu));
941 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942 &submit);
944 count = set_syndrome_sources(blocks, sh);
945 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946 ops_complete_compute, sh,
947 to_addr_conv(sh, percpu));
948 return async_gen_syndrome(blocks, 0, count+2,
949 STRIPE_SIZE, &submit);
951 } else {
952 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953 ops_complete_compute, sh,
954 to_addr_conv(sh, percpu));
955 if (failb == syndrome_disks) {
956 /* We're missing D+P. */
957 return async_raid6_datap_recov(syndrome_disks+2,
958 STRIPE_SIZE, faila,
959 blocks, &submit);
960 } else {
961 /* We're missing D+D. */
962 return async_raid6_2data_recov(syndrome_disks+2,
963 STRIPE_SIZE, faila, failb,
964 blocks, &submit);
970 static void ops_complete_prexor(void *stripe_head_ref)
972 struct stripe_head *sh = stripe_head_ref;
974 pr_debug("%s: stripe %llu\n", __func__,
975 (unsigned long long)sh->sector);
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980 struct dma_async_tx_descriptor *tx)
982 int disks = sh->disks;
983 struct page **xor_srcs = percpu->scribble;
984 int count = 0, pd_idx = sh->pd_idx, i;
985 struct async_submit_ctl submit;
987 /* existing parity data subtracted */
988 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
990 pr_debug("%s: stripe %llu\n", __func__,
991 (unsigned long long)sh->sector);
993 for (i = disks; i--; ) {
994 struct r5dev *dev = &sh->dev[i];
995 /* Only process blocks that are known to be uptodate */
996 if (test_bit(R5_Wantdrain, &dev->flags))
997 xor_srcs[count++] = dev->page;
1000 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1004 return tx;
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1010 int disks = sh->disks;
1011 int i;
1013 pr_debug("%s: stripe %llu\n", __func__,
1014 (unsigned long long)sh->sector);
1016 for (i = disks; i--; ) {
1017 struct r5dev *dev = &sh->dev[i];
1018 struct bio *chosen;
1020 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021 struct bio *wbi;
1023 spin_lock_irq(&sh->raid_conf->device_lock);
1024 chosen = dev->towrite;
1025 dev->towrite = NULL;
1026 BUG_ON(dev->written);
1027 wbi = dev->written = chosen;
1028 spin_unlock_irq(&sh->raid_conf->device_lock);
1030 while (wbi && wbi->bi_sector <
1031 dev->sector + STRIPE_SECTORS) {
1032 if (wbi->bi_rw & REQ_FUA)
1033 set_bit(R5_WantFUA, &dev->flags);
1034 tx = async_copy_data(1, wbi, dev->page,
1035 dev->sector, tx);
1036 wbi = r5_next_bio(wbi, dev->sector);
1041 return tx;
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1046 struct stripe_head *sh = stripe_head_ref;
1047 int disks = sh->disks;
1048 int pd_idx = sh->pd_idx;
1049 int qd_idx = sh->qd_idx;
1050 int i;
1051 bool fua = false;
1053 pr_debug("%s: stripe %llu\n", __func__,
1054 (unsigned long long)sh->sector);
1056 for (i = disks; i--; )
1057 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1059 for (i = disks; i--; ) {
1060 struct r5dev *dev = &sh->dev[i];
1062 if (dev->written || i == pd_idx || i == qd_idx) {
1063 set_bit(R5_UPTODATE, &dev->flags);
1064 if (fua)
1065 set_bit(R5_WantFUA, &dev->flags);
1069 if (sh->reconstruct_state == reconstruct_state_drain_run)
1070 sh->reconstruct_state = reconstruct_state_drain_result;
1071 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073 else {
1074 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075 sh->reconstruct_state = reconstruct_state_result;
1078 set_bit(STRIPE_HANDLE, &sh->state);
1079 release_stripe(sh);
1082 static void
1083 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084 struct dma_async_tx_descriptor *tx)
1086 int disks = sh->disks;
1087 struct page **xor_srcs = percpu->scribble;
1088 struct async_submit_ctl submit;
1089 int count = 0, pd_idx = sh->pd_idx, i;
1090 struct page *xor_dest;
1091 int prexor = 0;
1092 unsigned long flags;
1094 pr_debug("%s: stripe %llu\n", __func__,
1095 (unsigned long long)sh->sector);
1097 /* check if prexor is active which means only process blocks
1098 * that are part of a read-modify-write (written)
1100 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101 prexor = 1;
1102 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103 for (i = disks; i--; ) {
1104 struct r5dev *dev = &sh->dev[i];
1105 if (dev->written)
1106 xor_srcs[count++] = dev->page;
1108 } else {
1109 xor_dest = sh->dev[pd_idx].page;
1110 for (i = disks; i--; ) {
1111 struct r5dev *dev = &sh->dev[i];
1112 if (i != pd_idx)
1113 xor_srcs[count++] = dev->page;
1117 /* 1/ if we prexor'd then the dest is reused as a source
1118 * 2/ if we did not prexor then we are redoing the parity
1119 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120 * for the synchronous xor case
1122 flags = ASYNC_TX_ACK |
1123 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1125 atomic_inc(&sh->count);
1127 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128 to_addr_conv(sh, percpu));
1129 if (unlikely(count == 1))
1130 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131 else
1132 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1135 static void
1136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137 struct dma_async_tx_descriptor *tx)
1139 struct async_submit_ctl submit;
1140 struct page **blocks = percpu->scribble;
1141 int count;
1143 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1145 count = set_syndrome_sources(blocks, sh);
1147 atomic_inc(&sh->count);
1149 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150 sh, to_addr_conv(sh, percpu));
1151 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1154 static void ops_complete_check(void *stripe_head_ref)
1156 struct stripe_head *sh = stripe_head_ref;
1158 pr_debug("%s: stripe %llu\n", __func__,
1159 (unsigned long long)sh->sector);
1161 sh->check_state = check_state_check_result;
1162 set_bit(STRIPE_HANDLE, &sh->state);
1163 release_stripe(sh);
1166 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1168 int disks = sh->disks;
1169 int pd_idx = sh->pd_idx;
1170 int qd_idx = sh->qd_idx;
1171 struct page *xor_dest;
1172 struct page **xor_srcs = percpu->scribble;
1173 struct dma_async_tx_descriptor *tx;
1174 struct async_submit_ctl submit;
1175 int count;
1176 int i;
1178 pr_debug("%s: stripe %llu\n", __func__,
1179 (unsigned long long)sh->sector);
1181 count = 0;
1182 xor_dest = sh->dev[pd_idx].page;
1183 xor_srcs[count++] = xor_dest;
1184 for (i = disks; i--; ) {
1185 if (i == pd_idx || i == qd_idx)
1186 continue;
1187 xor_srcs[count++] = sh->dev[i].page;
1190 init_async_submit(&submit, 0, NULL, NULL, NULL,
1191 to_addr_conv(sh, percpu));
1192 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193 &sh->ops.zero_sum_result, &submit);
1195 atomic_inc(&sh->count);
1196 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197 tx = async_trigger_callback(&submit);
1200 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1202 struct page **srcs = percpu->scribble;
1203 struct async_submit_ctl submit;
1204 int count;
1206 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207 (unsigned long long)sh->sector, checkp);
1209 count = set_syndrome_sources(srcs, sh);
1210 if (!checkp)
1211 srcs[count] = NULL;
1213 atomic_inc(&sh->count);
1214 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215 sh, to_addr_conv(sh, percpu));
1216 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1220 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1222 int overlap_clear = 0, i, disks = sh->disks;
1223 struct dma_async_tx_descriptor *tx = NULL;
1224 raid5_conf_t *conf = sh->raid_conf;
1225 int level = conf->level;
1226 struct raid5_percpu *percpu;
1227 unsigned long cpu;
1229 cpu = get_cpu();
1230 percpu = per_cpu_ptr(conf->percpu, cpu);
1231 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232 ops_run_biofill(sh);
1233 overlap_clear++;
1236 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237 if (level < 6)
1238 tx = ops_run_compute5(sh, percpu);
1239 else {
1240 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241 tx = ops_run_compute6_1(sh, percpu);
1242 else
1243 tx = ops_run_compute6_2(sh, percpu);
1245 /* terminate the chain if reconstruct is not set to be run */
1246 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247 async_tx_ack(tx);
1250 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251 tx = ops_run_prexor(sh, percpu, tx);
1253 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254 tx = ops_run_biodrain(sh, tx);
1255 overlap_clear++;
1258 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259 if (level < 6)
1260 ops_run_reconstruct5(sh, percpu, tx);
1261 else
1262 ops_run_reconstruct6(sh, percpu, tx);
1265 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266 if (sh->check_state == check_state_run)
1267 ops_run_check_p(sh, percpu);
1268 else if (sh->check_state == check_state_run_q)
1269 ops_run_check_pq(sh, percpu, 0);
1270 else if (sh->check_state == check_state_run_pq)
1271 ops_run_check_pq(sh, percpu, 1);
1272 else
1273 BUG();
1276 if (overlap_clear)
1277 for (i = disks; i--; ) {
1278 struct r5dev *dev = &sh->dev[i];
1279 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280 wake_up(&sh->raid_conf->wait_for_overlap);
1282 put_cpu();
1285 #ifdef CONFIG_MULTICORE_RAID456
1286 static void async_run_ops(void *param, async_cookie_t cookie)
1288 struct stripe_head *sh = param;
1289 unsigned long ops_request = sh->ops.request;
1291 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292 wake_up(&sh->ops.wait_for_ops);
1294 __raid_run_ops(sh, ops_request);
1295 release_stripe(sh);
1298 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1300 /* since handle_stripe can be called outside of raid5d context
1301 * we need to ensure sh->ops.request is de-staged before another
1302 * request arrives
1304 wait_event(sh->ops.wait_for_ops,
1305 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306 sh->ops.request = ops_request;
1308 atomic_inc(&sh->count);
1309 async_schedule(async_run_ops, sh);
1311 #else
1312 #define raid_run_ops __raid_run_ops
1313 #endif
1315 static int grow_one_stripe(raid5_conf_t *conf)
1317 struct stripe_head *sh;
1318 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1319 if (!sh)
1320 return 0;
1322 sh->raid_conf = conf;
1323 #ifdef CONFIG_MULTICORE_RAID456
1324 init_waitqueue_head(&sh->ops.wait_for_ops);
1325 #endif
1327 if (grow_buffers(sh)) {
1328 shrink_buffers(sh);
1329 kmem_cache_free(conf->slab_cache, sh);
1330 return 0;
1332 /* we just created an active stripe so... */
1333 atomic_set(&sh->count, 1);
1334 atomic_inc(&conf->active_stripes);
1335 INIT_LIST_HEAD(&sh->lru);
1336 release_stripe(sh);
1337 return 1;
1340 static int grow_stripes(raid5_conf_t *conf, int num)
1342 struct kmem_cache *sc;
1343 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1345 if (conf->mddev->gendisk)
1346 sprintf(conf->cache_name[0],
1347 "raid%d-%s", conf->level, mdname(conf->mddev));
1348 else
1349 sprintf(conf->cache_name[0],
1350 "raid%d-%p", conf->level, conf->mddev);
1351 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1353 conf->active_name = 0;
1354 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1355 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1356 0, 0, NULL);
1357 if (!sc)
1358 return 1;
1359 conf->slab_cache = sc;
1360 conf->pool_size = devs;
1361 while (num--)
1362 if (!grow_one_stripe(conf))
1363 return 1;
1364 return 0;
1368 * scribble_len - return the required size of the scribble region
1369 * @num - total number of disks in the array
1371 * The size must be enough to contain:
1372 * 1/ a struct page pointer for each device in the array +2
1373 * 2/ room to convert each entry in (1) to its corresponding dma
1374 * (dma_map_page()) or page (page_address()) address.
1376 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1377 * calculate over all devices (not just the data blocks), using zeros in place
1378 * of the P and Q blocks.
1380 static size_t scribble_len(int num)
1382 size_t len;
1384 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1386 return len;
1389 static int resize_stripes(raid5_conf_t *conf, int newsize)
1391 /* Make all the stripes able to hold 'newsize' devices.
1392 * New slots in each stripe get 'page' set to a new page.
1394 * This happens in stages:
1395 * 1/ create a new kmem_cache and allocate the required number of
1396 * stripe_heads.
1397 * 2/ gather all the old stripe_heads and tranfer the pages across
1398 * to the new stripe_heads. This will have the side effect of
1399 * freezing the array as once all stripe_heads have been collected,
1400 * no IO will be possible. Old stripe heads are freed once their
1401 * pages have been transferred over, and the old kmem_cache is
1402 * freed when all stripes are done.
1403 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1404 * we simple return a failre status - no need to clean anything up.
1405 * 4/ allocate new pages for the new slots in the new stripe_heads.
1406 * If this fails, we don't bother trying the shrink the
1407 * stripe_heads down again, we just leave them as they are.
1408 * As each stripe_head is processed the new one is released into
1409 * active service.
1411 * Once step2 is started, we cannot afford to wait for a write,
1412 * so we use GFP_NOIO allocations.
1414 struct stripe_head *osh, *nsh;
1415 LIST_HEAD(newstripes);
1416 struct disk_info *ndisks;
1417 unsigned long cpu;
1418 int err;
1419 struct kmem_cache *sc;
1420 int i;
1422 if (newsize <= conf->pool_size)
1423 return 0; /* never bother to shrink */
1425 err = md_allow_write(conf->mddev);
1426 if (err)
1427 return err;
1429 /* Step 1 */
1430 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1431 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1432 0, 0, NULL);
1433 if (!sc)
1434 return -ENOMEM;
1436 for (i = conf->max_nr_stripes; i; i--) {
1437 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1438 if (!nsh)
1439 break;
1441 nsh->raid_conf = conf;
1442 #ifdef CONFIG_MULTICORE_RAID456
1443 init_waitqueue_head(&nsh->ops.wait_for_ops);
1444 #endif
1446 list_add(&nsh->lru, &newstripes);
1448 if (i) {
1449 /* didn't get enough, give up */
1450 while (!list_empty(&newstripes)) {
1451 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1452 list_del(&nsh->lru);
1453 kmem_cache_free(sc, nsh);
1455 kmem_cache_destroy(sc);
1456 return -ENOMEM;
1458 /* Step 2 - Must use GFP_NOIO now.
1459 * OK, we have enough stripes, start collecting inactive
1460 * stripes and copying them over
1462 list_for_each_entry(nsh, &newstripes, lru) {
1463 spin_lock_irq(&conf->device_lock);
1464 wait_event_lock_irq(conf->wait_for_stripe,
1465 !list_empty(&conf->inactive_list),
1466 conf->device_lock,
1468 osh = get_free_stripe(conf);
1469 spin_unlock_irq(&conf->device_lock);
1470 atomic_set(&nsh->count, 1);
1471 for(i=0; i<conf->pool_size; i++)
1472 nsh->dev[i].page = osh->dev[i].page;
1473 for( ; i<newsize; i++)
1474 nsh->dev[i].page = NULL;
1475 kmem_cache_free(conf->slab_cache, osh);
1477 kmem_cache_destroy(conf->slab_cache);
1479 /* Step 3.
1480 * At this point, we are holding all the stripes so the array
1481 * is completely stalled, so now is a good time to resize
1482 * conf->disks and the scribble region
1484 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1485 if (ndisks) {
1486 for (i=0; i<conf->raid_disks; i++)
1487 ndisks[i] = conf->disks[i];
1488 kfree(conf->disks);
1489 conf->disks = ndisks;
1490 } else
1491 err = -ENOMEM;
1493 get_online_cpus();
1494 conf->scribble_len = scribble_len(newsize);
1495 for_each_present_cpu(cpu) {
1496 struct raid5_percpu *percpu;
1497 void *scribble;
1499 percpu = per_cpu_ptr(conf->percpu, cpu);
1500 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1502 if (scribble) {
1503 kfree(percpu->scribble);
1504 percpu->scribble = scribble;
1505 } else {
1506 err = -ENOMEM;
1507 break;
1510 put_online_cpus();
1512 /* Step 4, return new stripes to service */
1513 while(!list_empty(&newstripes)) {
1514 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1515 list_del_init(&nsh->lru);
1517 for (i=conf->raid_disks; i < newsize; i++)
1518 if (nsh->dev[i].page == NULL) {
1519 struct page *p = alloc_page(GFP_NOIO);
1520 nsh->dev[i].page = p;
1521 if (!p)
1522 err = -ENOMEM;
1524 release_stripe(nsh);
1526 /* critical section pass, GFP_NOIO no longer needed */
1528 conf->slab_cache = sc;
1529 conf->active_name = 1-conf->active_name;
1530 conf->pool_size = newsize;
1531 return err;
1534 static int drop_one_stripe(raid5_conf_t *conf)
1536 struct stripe_head *sh;
1538 spin_lock_irq(&conf->device_lock);
1539 sh = get_free_stripe(conf);
1540 spin_unlock_irq(&conf->device_lock);
1541 if (!sh)
1542 return 0;
1543 BUG_ON(atomic_read(&sh->count));
1544 shrink_buffers(sh);
1545 kmem_cache_free(conf->slab_cache, sh);
1546 atomic_dec(&conf->active_stripes);
1547 return 1;
1550 static void shrink_stripes(raid5_conf_t *conf)
1552 while (drop_one_stripe(conf))
1555 if (conf->slab_cache)
1556 kmem_cache_destroy(conf->slab_cache);
1557 conf->slab_cache = NULL;
1560 static void raid5_end_read_request(struct bio * bi, int error)
1562 struct stripe_head *sh = bi->bi_private;
1563 raid5_conf_t *conf = sh->raid_conf;
1564 int disks = sh->disks, i;
1565 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1566 char b[BDEVNAME_SIZE];
1567 mdk_rdev_t *rdev;
1570 for (i=0 ; i<disks; i++)
1571 if (bi == &sh->dev[i].req)
1572 break;
1574 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1575 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1576 uptodate);
1577 if (i == disks) {
1578 BUG();
1579 return;
1582 if (uptodate) {
1583 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1584 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1585 rdev = conf->disks[i].rdev;
1586 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1587 " (%lu sectors at %llu on %s)\n",
1588 mdname(conf->mddev), STRIPE_SECTORS,
1589 (unsigned long long)(sh->sector
1590 + rdev->data_offset),
1591 bdevname(rdev->bdev, b));
1592 clear_bit(R5_ReadError, &sh->dev[i].flags);
1593 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1595 if (atomic_read(&conf->disks[i].rdev->read_errors))
1596 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1597 } else {
1598 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1599 int retry = 0;
1600 rdev = conf->disks[i].rdev;
1602 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1603 atomic_inc(&rdev->read_errors);
1604 if (conf->mddev->degraded >= conf->max_degraded)
1605 printk_rl(KERN_WARNING
1606 "md/raid:%s: read error not correctable "
1607 "(sector %llu on %s).\n",
1608 mdname(conf->mddev),
1609 (unsigned long long)(sh->sector
1610 + rdev->data_offset),
1611 bdn);
1612 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1613 /* Oh, no!!! */
1614 printk_rl(KERN_WARNING
1615 "md/raid:%s: read error NOT corrected!! "
1616 "(sector %llu on %s).\n",
1617 mdname(conf->mddev),
1618 (unsigned long long)(sh->sector
1619 + rdev->data_offset),
1620 bdn);
1621 else if (atomic_read(&rdev->read_errors)
1622 > conf->max_nr_stripes)
1623 printk(KERN_WARNING
1624 "md/raid:%s: Too many read errors, failing device %s.\n",
1625 mdname(conf->mddev), bdn);
1626 else
1627 retry = 1;
1628 if (retry)
1629 set_bit(R5_ReadError, &sh->dev[i].flags);
1630 else {
1631 clear_bit(R5_ReadError, &sh->dev[i].flags);
1632 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633 md_error(conf->mddev, rdev);
1636 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1637 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638 set_bit(STRIPE_HANDLE, &sh->state);
1639 release_stripe(sh);
1642 static void raid5_end_write_request(struct bio *bi, int error)
1644 struct stripe_head *sh = bi->bi_private;
1645 raid5_conf_t *conf = sh->raid_conf;
1646 int disks = sh->disks, i;
1647 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1649 for (i=0 ; i<disks; i++)
1650 if (bi == &sh->dev[i].req)
1651 break;
1653 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1654 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655 uptodate);
1656 if (i == disks) {
1657 BUG();
1658 return;
1661 if (!uptodate)
1662 md_error(conf->mddev, conf->disks[i].rdev);
1664 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1666 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1667 set_bit(STRIPE_HANDLE, &sh->state);
1668 release_stripe(sh);
1672 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1674 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1676 struct r5dev *dev = &sh->dev[i];
1678 bio_init(&dev->req);
1679 dev->req.bi_io_vec = &dev->vec;
1680 dev->req.bi_vcnt++;
1681 dev->req.bi_max_vecs++;
1682 dev->vec.bv_page = dev->page;
1683 dev->vec.bv_len = STRIPE_SIZE;
1684 dev->vec.bv_offset = 0;
1686 dev->req.bi_sector = sh->sector;
1687 dev->req.bi_private = sh;
1689 dev->flags = 0;
1690 dev->sector = compute_blocknr(sh, i, previous);
1693 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1695 char b[BDEVNAME_SIZE];
1696 raid5_conf_t *conf = mddev->private;
1697 pr_debug("raid456: error called\n");
1699 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700 unsigned long flags;
1701 spin_lock_irqsave(&conf->device_lock, flags);
1702 mddev->degraded++;
1703 spin_unlock_irqrestore(&conf->device_lock, flags);
1705 * if recovery was running, make sure it aborts.
1707 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1709 set_bit(Faulty, &rdev->flags);
1710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 printk(KERN_ALERT
1712 "md/raid:%s: Disk failure on %s, disabling device.\n"
1713 "md/raid:%s: Operation continuing on %d devices.\n",
1714 mdname(mddev),
1715 bdevname(rdev->bdev, b),
1716 mdname(mddev),
1717 conf->raid_disks - mddev->degraded);
1721 * Input: a 'big' sector number,
1722 * Output: index of the data and parity disk, and the sector # in them.
1724 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725 int previous, int *dd_idx,
1726 struct stripe_head *sh)
1728 sector_t stripe, stripe2;
1729 sector_t chunk_number;
1730 unsigned int chunk_offset;
1731 int pd_idx, qd_idx;
1732 int ddf_layout = 0;
1733 sector_t new_sector;
1734 int algorithm = previous ? conf->prev_algo
1735 : conf->algorithm;
1736 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1737 : conf->chunk_sectors;
1738 int raid_disks = previous ? conf->previous_raid_disks
1739 : conf->raid_disks;
1740 int data_disks = raid_disks - conf->max_degraded;
1742 /* First compute the information on this sector */
1745 * Compute the chunk number and the sector offset inside the chunk
1747 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1748 chunk_number = r_sector;
1751 * Compute the stripe number
1753 stripe = chunk_number;
1754 *dd_idx = sector_div(stripe, data_disks);
1755 stripe2 = stripe;
1757 * Select the parity disk based on the user selected algorithm.
1759 pd_idx = qd_idx = ~0;
1760 switch(conf->level) {
1761 case 4:
1762 pd_idx = data_disks;
1763 break;
1764 case 5:
1765 switch (algorithm) {
1766 case ALGORITHM_LEFT_ASYMMETRIC:
1767 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768 if (*dd_idx >= pd_idx)
1769 (*dd_idx)++;
1770 break;
1771 case ALGORITHM_RIGHT_ASYMMETRIC:
1772 pd_idx = sector_div(stripe2, raid_disks);
1773 if (*dd_idx >= pd_idx)
1774 (*dd_idx)++;
1775 break;
1776 case ALGORITHM_LEFT_SYMMETRIC:
1777 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1779 break;
1780 case ALGORITHM_RIGHT_SYMMETRIC:
1781 pd_idx = sector_div(stripe2, raid_disks);
1782 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783 break;
1784 case ALGORITHM_PARITY_0:
1785 pd_idx = 0;
1786 (*dd_idx)++;
1787 break;
1788 case ALGORITHM_PARITY_N:
1789 pd_idx = data_disks;
1790 break;
1791 default:
1792 BUG();
1794 break;
1795 case 6:
1797 switch (algorithm) {
1798 case ALGORITHM_LEFT_ASYMMETRIC:
1799 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800 qd_idx = pd_idx + 1;
1801 if (pd_idx == raid_disks-1) {
1802 (*dd_idx)++; /* Q D D D P */
1803 qd_idx = 0;
1804 } else if (*dd_idx >= pd_idx)
1805 (*dd_idx) += 2; /* D D P Q D */
1806 break;
1807 case ALGORITHM_RIGHT_ASYMMETRIC:
1808 pd_idx = sector_div(stripe2, raid_disks);
1809 qd_idx = pd_idx + 1;
1810 if (pd_idx == raid_disks-1) {
1811 (*dd_idx)++; /* Q D D D P */
1812 qd_idx = 0;
1813 } else if (*dd_idx >= pd_idx)
1814 (*dd_idx) += 2; /* D D P Q D */
1815 break;
1816 case ALGORITHM_LEFT_SYMMETRIC:
1817 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818 qd_idx = (pd_idx + 1) % raid_disks;
1819 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820 break;
1821 case ALGORITHM_RIGHT_SYMMETRIC:
1822 pd_idx = sector_div(stripe2, raid_disks);
1823 qd_idx = (pd_idx + 1) % raid_disks;
1824 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825 break;
1827 case ALGORITHM_PARITY_0:
1828 pd_idx = 0;
1829 qd_idx = 1;
1830 (*dd_idx) += 2;
1831 break;
1832 case ALGORITHM_PARITY_N:
1833 pd_idx = data_disks;
1834 qd_idx = data_disks + 1;
1835 break;
1837 case ALGORITHM_ROTATING_ZERO_RESTART:
1838 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1839 * of blocks for computing Q is different.
1841 pd_idx = sector_div(stripe2, raid_disks);
1842 qd_idx = pd_idx + 1;
1843 if (pd_idx == raid_disks-1) {
1844 (*dd_idx)++; /* Q D D D P */
1845 qd_idx = 0;
1846 } else if (*dd_idx >= pd_idx)
1847 (*dd_idx) += 2; /* D D P Q D */
1848 ddf_layout = 1;
1849 break;
1851 case ALGORITHM_ROTATING_N_RESTART:
1852 /* Same a left_asymmetric, by first stripe is
1853 * D D D P Q rather than
1854 * Q D D D P
1856 stripe2 += 1;
1857 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858 qd_idx = pd_idx + 1;
1859 if (pd_idx == raid_disks-1) {
1860 (*dd_idx)++; /* Q D D D P */
1861 qd_idx = 0;
1862 } else if (*dd_idx >= pd_idx)
1863 (*dd_idx) += 2; /* D D P Q D */
1864 ddf_layout = 1;
1865 break;
1867 case ALGORITHM_ROTATING_N_CONTINUE:
1868 /* Same as left_symmetric but Q is before P */
1869 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1871 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872 ddf_layout = 1;
1873 break;
1875 case ALGORITHM_LEFT_ASYMMETRIC_6:
1876 /* RAID5 left_asymmetric, with Q on last device */
1877 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878 if (*dd_idx >= pd_idx)
1879 (*dd_idx)++;
1880 qd_idx = raid_disks - 1;
1881 break;
1883 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1884 pd_idx = sector_div(stripe2, raid_disks-1);
1885 if (*dd_idx >= pd_idx)
1886 (*dd_idx)++;
1887 qd_idx = raid_disks - 1;
1888 break;
1890 case ALGORITHM_LEFT_SYMMETRIC_6:
1891 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1893 qd_idx = raid_disks - 1;
1894 break;
1896 case ALGORITHM_RIGHT_SYMMETRIC_6:
1897 pd_idx = sector_div(stripe2, raid_disks-1);
1898 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1899 qd_idx = raid_disks - 1;
1900 break;
1902 case ALGORITHM_PARITY_0_6:
1903 pd_idx = 0;
1904 (*dd_idx)++;
1905 qd_idx = raid_disks - 1;
1906 break;
1908 default:
1909 BUG();
1911 break;
1914 if (sh) {
1915 sh->pd_idx = pd_idx;
1916 sh->qd_idx = qd_idx;
1917 sh->ddf_layout = ddf_layout;
1920 * Finally, compute the new sector number
1922 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1923 return new_sector;
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1929 raid5_conf_t *conf = sh->raid_conf;
1930 int raid_disks = sh->disks;
1931 int data_disks = raid_disks - conf->max_degraded;
1932 sector_t new_sector = sh->sector, check;
1933 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1934 : conf->chunk_sectors;
1935 int algorithm = previous ? conf->prev_algo
1936 : conf->algorithm;
1937 sector_t stripe;
1938 int chunk_offset;
1939 sector_t chunk_number;
1940 int dummy1, dd_idx = i;
1941 sector_t r_sector;
1942 struct stripe_head sh2;
1945 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1946 stripe = new_sector;
1948 if (i == sh->pd_idx)
1949 return 0;
1950 switch(conf->level) {
1951 case 4: break;
1952 case 5:
1953 switch (algorithm) {
1954 case ALGORITHM_LEFT_ASYMMETRIC:
1955 case ALGORITHM_RIGHT_ASYMMETRIC:
1956 if (i > sh->pd_idx)
1957 i--;
1958 break;
1959 case ALGORITHM_LEFT_SYMMETRIC:
1960 case ALGORITHM_RIGHT_SYMMETRIC:
1961 if (i < sh->pd_idx)
1962 i += raid_disks;
1963 i -= (sh->pd_idx + 1);
1964 break;
1965 case ALGORITHM_PARITY_0:
1966 i -= 1;
1967 break;
1968 case ALGORITHM_PARITY_N:
1969 break;
1970 default:
1971 BUG();
1973 break;
1974 case 6:
1975 if (i == sh->qd_idx)
1976 return 0; /* It is the Q disk */
1977 switch (algorithm) {
1978 case ALGORITHM_LEFT_ASYMMETRIC:
1979 case ALGORITHM_RIGHT_ASYMMETRIC:
1980 case ALGORITHM_ROTATING_ZERO_RESTART:
1981 case ALGORITHM_ROTATING_N_RESTART:
1982 if (sh->pd_idx == raid_disks-1)
1983 i--; /* Q D D D P */
1984 else if (i > sh->pd_idx)
1985 i -= 2; /* D D P Q D */
1986 break;
1987 case ALGORITHM_LEFT_SYMMETRIC:
1988 case ALGORITHM_RIGHT_SYMMETRIC:
1989 if (sh->pd_idx == raid_disks-1)
1990 i--; /* Q D D D P */
1991 else {
1992 /* D D P Q D */
1993 if (i < sh->pd_idx)
1994 i += raid_disks;
1995 i -= (sh->pd_idx + 2);
1997 break;
1998 case ALGORITHM_PARITY_0:
1999 i -= 2;
2000 break;
2001 case ALGORITHM_PARITY_N:
2002 break;
2003 case ALGORITHM_ROTATING_N_CONTINUE:
2004 /* Like left_symmetric, but P is before Q */
2005 if (sh->pd_idx == 0)
2006 i--; /* P D D D Q */
2007 else {
2008 /* D D Q P D */
2009 if (i < sh->pd_idx)
2010 i += raid_disks;
2011 i -= (sh->pd_idx + 1);
2013 break;
2014 case ALGORITHM_LEFT_ASYMMETRIC_6:
2015 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2016 if (i > sh->pd_idx)
2017 i--;
2018 break;
2019 case ALGORITHM_LEFT_SYMMETRIC_6:
2020 case ALGORITHM_RIGHT_SYMMETRIC_6:
2021 if (i < sh->pd_idx)
2022 i += data_disks + 1;
2023 i -= (sh->pd_idx + 1);
2024 break;
2025 case ALGORITHM_PARITY_0_6:
2026 i -= 1;
2027 break;
2028 default:
2029 BUG();
2031 break;
2034 chunk_number = stripe * data_disks + i;
2035 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2037 check = raid5_compute_sector(conf, r_sector,
2038 previous, &dummy1, &sh2);
2039 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2040 || sh2.qd_idx != sh->qd_idx) {
2041 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2042 mdname(conf->mddev));
2043 return 0;
2045 return r_sector;
2049 static void
2050 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051 int rcw, int expand)
2053 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054 raid5_conf_t *conf = sh->raid_conf;
2055 int level = conf->level;
2057 if (rcw) {
2058 /* if we are not expanding this is a proper write request, and
2059 * there will be bios with new data to be drained into the
2060 * stripe cache
2062 if (!expand) {
2063 sh->reconstruct_state = reconstruct_state_drain_run;
2064 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2065 } else
2066 sh->reconstruct_state = reconstruct_state_run;
2068 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2070 for (i = disks; i--; ) {
2071 struct r5dev *dev = &sh->dev[i];
2073 if (dev->towrite) {
2074 set_bit(R5_LOCKED, &dev->flags);
2075 set_bit(R5_Wantdrain, &dev->flags);
2076 if (!expand)
2077 clear_bit(R5_UPTODATE, &dev->flags);
2078 s->locked++;
2081 if (s->locked + conf->max_degraded == disks)
2082 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083 atomic_inc(&conf->pending_full_writes);
2084 } else {
2085 BUG_ON(level == 6);
2086 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2087 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2089 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2091 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2094 for (i = disks; i--; ) {
2095 struct r5dev *dev = &sh->dev[i];
2096 if (i == pd_idx)
2097 continue;
2099 if (dev->towrite &&
2100 (test_bit(R5_UPTODATE, &dev->flags) ||
2101 test_bit(R5_Wantcompute, &dev->flags))) {
2102 set_bit(R5_Wantdrain, &dev->flags);
2103 set_bit(R5_LOCKED, &dev->flags);
2104 clear_bit(R5_UPTODATE, &dev->flags);
2105 s->locked++;
2110 /* keep the parity disk(s) locked while asynchronous operations
2111 * are in flight
2113 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2114 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115 s->locked++;
2117 if (level == 6) {
2118 int qd_idx = sh->qd_idx;
2119 struct r5dev *dev = &sh->dev[qd_idx];
2121 set_bit(R5_LOCKED, &dev->flags);
2122 clear_bit(R5_UPTODATE, &dev->flags);
2123 s->locked++;
2126 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127 __func__, (unsigned long long)sh->sector,
2128 s->locked, s->ops_request);
2132 * Each stripe/dev can have one or more bion attached.
2133 * toread/towrite point to the first in a chain.
2134 * The bi_next chain must be in order.
2136 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2138 struct bio **bip;
2139 raid5_conf_t *conf = sh->raid_conf;
2140 int firstwrite=0;
2142 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2143 (unsigned long long)bi->bi_sector,
2144 (unsigned long long)sh->sector);
2147 spin_lock_irq(&conf->device_lock);
2148 if (forwrite) {
2149 bip = &sh->dev[dd_idx].towrite;
2150 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2151 firstwrite = 1;
2152 } else
2153 bip = &sh->dev[dd_idx].toread;
2154 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2155 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2156 goto overlap;
2157 bip = & (*bip)->bi_next;
2159 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2160 goto overlap;
2162 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2163 if (*bip)
2164 bi->bi_next = *bip;
2165 *bip = bi;
2166 bi->bi_phys_segments++;
2168 if (forwrite) {
2169 /* check if page is covered */
2170 sector_t sector = sh->dev[dd_idx].sector;
2171 for (bi=sh->dev[dd_idx].towrite;
2172 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2173 bi && bi->bi_sector <= sector;
2174 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2175 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2176 sector = bi->bi_sector + (bi->bi_size>>9);
2178 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2179 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2181 spin_unlock_irq(&conf->device_lock);
2183 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2184 (unsigned long long)(*bip)->bi_sector,
2185 (unsigned long long)sh->sector, dd_idx);
2187 if (conf->mddev->bitmap && firstwrite) {
2188 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2189 STRIPE_SECTORS, 0);
2190 sh->bm_seq = conf->seq_flush+1;
2191 set_bit(STRIPE_BIT_DELAY, &sh->state);
2193 return 1;
2195 overlap:
2196 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197 spin_unlock_irq(&conf->device_lock);
2198 return 0;
2201 static void end_reshape(raid5_conf_t *conf);
2203 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2204 struct stripe_head *sh)
2206 int sectors_per_chunk =
2207 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208 int dd_idx;
2209 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2212 raid5_compute_sector(conf,
2213 stripe * (disks - conf->max_degraded)
2214 *sectors_per_chunk + chunk_offset,
2215 previous,
2216 &dd_idx, sh);
2219 static void
2220 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221 struct stripe_head_state *s, int disks,
2222 struct bio **return_bi)
2224 int i;
2225 for (i = disks; i--; ) {
2226 struct bio *bi;
2227 int bitmap_end = 0;
2229 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2230 mdk_rdev_t *rdev;
2231 rcu_read_lock();
2232 rdev = rcu_dereference(conf->disks[i].rdev);
2233 if (rdev && test_bit(In_sync, &rdev->flags))
2234 /* multiple read failures in one stripe */
2235 md_error(conf->mddev, rdev);
2236 rcu_read_unlock();
2238 spin_lock_irq(&conf->device_lock);
2239 /* fail all writes first */
2240 bi = sh->dev[i].towrite;
2241 sh->dev[i].towrite = NULL;
2242 if (bi) {
2243 s->to_write--;
2244 bitmap_end = 1;
2247 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2248 wake_up(&conf->wait_for_overlap);
2250 while (bi && bi->bi_sector <
2251 sh->dev[i].sector + STRIPE_SECTORS) {
2252 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2253 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254 if (!raid5_dec_bi_phys_segments(bi)) {
2255 md_write_end(conf->mddev);
2256 bi->bi_next = *return_bi;
2257 *return_bi = bi;
2259 bi = nextbi;
2261 /* and fail all 'written' */
2262 bi = sh->dev[i].written;
2263 sh->dev[i].written = NULL;
2264 if (bi) bitmap_end = 1;
2265 while (bi && bi->bi_sector <
2266 sh->dev[i].sector + STRIPE_SECTORS) {
2267 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2268 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269 if (!raid5_dec_bi_phys_segments(bi)) {
2270 md_write_end(conf->mddev);
2271 bi->bi_next = *return_bi;
2272 *return_bi = bi;
2274 bi = bi2;
2277 /* fail any reads if this device is non-operational and
2278 * the data has not reached the cache yet.
2280 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2281 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2282 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283 bi = sh->dev[i].toread;
2284 sh->dev[i].toread = NULL;
2285 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2286 wake_up(&conf->wait_for_overlap);
2287 if (bi) s->to_read--;
2288 while (bi && bi->bi_sector <
2289 sh->dev[i].sector + STRIPE_SECTORS) {
2290 struct bio *nextbi =
2291 r5_next_bio(bi, sh->dev[i].sector);
2292 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293 if (!raid5_dec_bi_phys_segments(bi)) {
2294 bi->bi_next = *return_bi;
2295 *return_bi = bi;
2297 bi = nextbi;
2300 spin_unlock_irq(&conf->device_lock);
2301 if (bitmap_end)
2302 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2303 STRIPE_SECTORS, 0, 0);
2306 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2307 if (atomic_dec_and_test(&conf->pending_full_writes))
2308 md_wakeup_thread(conf->mddev->thread);
2311 /* fetch_block5 - checks the given member device to see if its data needs
2312 * to be read or computed to satisfy a request.
2314 * Returns 1 when no more member devices need to be checked, otherwise returns
2315 * 0 to tell the loop in handle_stripe_fill5 to continue
2317 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2318 int disk_idx, int disks)
2320 struct r5dev *dev = &sh->dev[disk_idx];
2321 struct r5dev *failed_dev = &sh->dev[s->failed_num[0]];
2323 /* is the data in this block needed, and can we get it? */
2324 if (!test_bit(R5_LOCKED, &dev->flags) &&
2325 !test_bit(R5_UPTODATE, &dev->flags) &&
2326 (dev->toread ||
2327 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2328 s->syncing || s->expanding ||
2329 (s->failed &&
2330 (failed_dev->toread ||
2331 (failed_dev->towrite &&
2332 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2333 /* We would like to get this block, possibly by computing it,
2334 * otherwise read it if the backing disk is insync
2336 if ((s->uptodate == disks - 1) &&
2337 (s->failed && disk_idx == s->failed_num[0])) {
2338 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2339 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2340 set_bit(R5_Wantcompute, &dev->flags);
2341 sh->ops.target = disk_idx;
2342 sh->ops.target2 = -1;
2343 s->req_compute = 1;
2344 /* Careful: from this point on 'uptodate' is in the eye
2345 * of raid_run_ops which services 'compute' operations
2346 * before writes. R5_Wantcompute flags a block that will
2347 * be R5_UPTODATE by the time it is needed for a
2348 * subsequent operation.
2350 s->uptodate++;
2351 return 1; /* uptodate + compute == disks */
2352 } else if (test_bit(R5_Insync, &dev->flags)) {
2353 set_bit(R5_LOCKED, &dev->flags);
2354 set_bit(R5_Wantread, &dev->flags);
2355 s->locked++;
2356 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2357 s->syncing);
2361 return 0;
2365 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2367 static void handle_stripe_fill5(struct stripe_head *sh,
2368 struct stripe_head_state *s, int disks)
2370 int i;
2372 /* look for blocks to read/compute, skip this if a compute
2373 * is already in flight, or if the stripe contents are in the
2374 * midst of changing due to a write
2376 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2377 !sh->reconstruct_state)
2378 for (i = disks; i--; )
2379 if (fetch_block5(sh, s, i, disks))
2380 break;
2381 set_bit(STRIPE_HANDLE, &sh->state);
2384 /* fetch_block6 - checks the given member device to see if its data needs
2385 * to be read or computed to satisfy a request.
2387 * Returns 1 when no more member devices need to be checked, otherwise returns
2388 * 0 to tell the loop in handle_stripe_fill6 to continue
2390 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2391 int disk_idx, int disks)
2393 struct r5dev *dev = &sh->dev[disk_idx];
2394 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2395 &sh->dev[s->failed_num[1]] };
2397 if (!test_bit(R5_LOCKED, &dev->flags) &&
2398 !test_bit(R5_UPTODATE, &dev->flags) &&
2399 (dev->toread ||
2400 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2401 s->syncing || s->expanding ||
2402 (s->failed >= 1 &&
2403 (fdev[0]->toread || s->to_write)) ||
2404 (s->failed >= 2 &&
2405 (fdev[1]->toread || s->to_write)))) {
2406 /* we would like to get this block, possibly by computing it,
2407 * otherwise read it if the backing disk is insync
2409 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2410 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2411 if ((s->uptodate == disks - 1) &&
2412 (s->failed && (disk_idx == s->failed_num[0] ||
2413 disk_idx == s->failed_num[1]))) {
2414 /* have disk failed, and we're requested to fetch it;
2415 * do compute it
2417 pr_debug("Computing stripe %llu block %d\n",
2418 (unsigned long long)sh->sector, disk_idx);
2419 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2420 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2421 set_bit(R5_Wantcompute, &dev->flags);
2422 sh->ops.target = disk_idx;
2423 sh->ops.target2 = -1; /* no 2nd target */
2424 s->req_compute = 1;
2425 s->uptodate++;
2426 return 1;
2427 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2428 /* Computing 2-failure is *very* expensive; only
2429 * do it if failed >= 2
2431 int other;
2432 for (other = disks; other--; ) {
2433 if (other == disk_idx)
2434 continue;
2435 if (!test_bit(R5_UPTODATE,
2436 &sh->dev[other].flags))
2437 break;
2439 BUG_ON(other < 0);
2440 pr_debug("Computing stripe %llu blocks %d,%d\n",
2441 (unsigned long long)sh->sector,
2442 disk_idx, other);
2443 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2444 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2445 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2446 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2447 sh->ops.target = disk_idx;
2448 sh->ops.target2 = other;
2449 s->uptodate += 2;
2450 s->req_compute = 1;
2451 return 1;
2452 } else if (test_bit(R5_Insync, &dev->flags)) {
2453 set_bit(R5_LOCKED, &dev->flags);
2454 set_bit(R5_Wantread, &dev->flags);
2455 s->locked++;
2456 pr_debug("Reading block %d (sync=%d)\n",
2457 disk_idx, s->syncing);
2461 return 0;
2465 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2467 static void handle_stripe_fill6(struct stripe_head *sh,
2468 struct stripe_head_state *s,
2469 int disks)
2471 int i;
2473 /* look for blocks to read/compute, skip this if a compute
2474 * is already in flight, or if the stripe contents are in the
2475 * midst of changing due to a write
2477 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2478 !sh->reconstruct_state)
2479 for (i = disks; i--; )
2480 if (fetch_block6(sh, s, i, disks))
2481 break;
2482 set_bit(STRIPE_HANDLE, &sh->state);
2486 /* handle_stripe_clean_event
2487 * any written block on an uptodate or failed drive can be returned.
2488 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2489 * never LOCKED, so we don't need to test 'failed' directly.
2491 static void handle_stripe_clean_event(raid5_conf_t *conf,
2492 struct stripe_head *sh, int disks, struct bio **return_bi)
2494 int i;
2495 struct r5dev *dev;
2497 for (i = disks; i--; )
2498 if (sh->dev[i].written) {
2499 dev = &sh->dev[i];
2500 if (!test_bit(R5_LOCKED, &dev->flags) &&
2501 test_bit(R5_UPTODATE, &dev->flags)) {
2502 /* We can return any write requests */
2503 struct bio *wbi, *wbi2;
2504 int bitmap_end = 0;
2505 pr_debug("Return write for disc %d\n", i);
2506 spin_lock_irq(&conf->device_lock);
2507 wbi = dev->written;
2508 dev->written = NULL;
2509 while (wbi && wbi->bi_sector <
2510 dev->sector + STRIPE_SECTORS) {
2511 wbi2 = r5_next_bio(wbi, dev->sector);
2512 if (!raid5_dec_bi_phys_segments(wbi)) {
2513 md_write_end(conf->mddev);
2514 wbi->bi_next = *return_bi;
2515 *return_bi = wbi;
2517 wbi = wbi2;
2519 if (dev->towrite == NULL)
2520 bitmap_end = 1;
2521 spin_unlock_irq(&conf->device_lock);
2522 if (bitmap_end)
2523 bitmap_endwrite(conf->mddev->bitmap,
2524 sh->sector,
2525 STRIPE_SECTORS,
2526 !test_bit(STRIPE_DEGRADED, &sh->state),
2531 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2532 if (atomic_dec_and_test(&conf->pending_full_writes))
2533 md_wakeup_thread(conf->mddev->thread);
2536 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2537 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2539 int rmw = 0, rcw = 0, i;
2540 for (i = disks; i--; ) {
2541 /* would I have to read this buffer for read_modify_write */
2542 struct r5dev *dev = &sh->dev[i];
2543 if ((dev->towrite || i == sh->pd_idx) &&
2544 !test_bit(R5_LOCKED, &dev->flags) &&
2545 !(test_bit(R5_UPTODATE, &dev->flags) ||
2546 test_bit(R5_Wantcompute, &dev->flags))) {
2547 if (test_bit(R5_Insync, &dev->flags))
2548 rmw++;
2549 else
2550 rmw += 2*disks; /* cannot read it */
2552 /* Would I have to read this buffer for reconstruct_write */
2553 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2554 !test_bit(R5_LOCKED, &dev->flags) &&
2555 !(test_bit(R5_UPTODATE, &dev->flags) ||
2556 test_bit(R5_Wantcompute, &dev->flags))) {
2557 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2558 else
2559 rcw += 2*disks;
2562 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2563 (unsigned long long)sh->sector, rmw, rcw);
2564 set_bit(STRIPE_HANDLE, &sh->state);
2565 if (rmw < rcw && rmw > 0)
2566 /* prefer read-modify-write, but need to get some data */
2567 for (i = disks; i--; ) {
2568 struct r5dev *dev = &sh->dev[i];
2569 if ((dev->towrite || i == sh->pd_idx) &&
2570 !test_bit(R5_LOCKED, &dev->flags) &&
2571 !(test_bit(R5_UPTODATE, &dev->flags) ||
2572 test_bit(R5_Wantcompute, &dev->flags)) &&
2573 test_bit(R5_Insync, &dev->flags)) {
2574 if (
2575 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2576 pr_debug("Read_old block "
2577 "%d for r-m-w\n", i);
2578 set_bit(R5_LOCKED, &dev->flags);
2579 set_bit(R5_Wantread, &dev->flags);
2580 s->locked++;
2581 } else {
2582 set_bit(STRIPE_DELAYED, &sh->state);
2583 set_bit(STRIPE_HANDLE, &sh->state);
2587 if (rcw <= rmw && rcw > 0)
2588 /* want reconstruct write, but need to get some data */
2589 for (i = disks; i--; ) {
2590 struct r5dev *dev = &sh->dev[i];
2591 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2592 i != sh->pd_idx &&
2593 !test_bit(R5_LOCKED, &dev->flags) &&
2594 !(test_bit(R5_UPTODATE, &dev->flags) ||
2595 test_bit(R5_Wantcompute, &dev->flags)) &&
2596 test_bit(R5_Insync, &dev->flags)) {
2597 if (
2598 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2599 pr_debug("Read_old block "
2600 "%d for Reconstruct\n", i);
2601 set_bit(R5_LOCKED, &dev->flags);
2602 set_bit(R5_Wantread, &dev->flags);
2603 s->locked++;
2604 } else {
2605 set_bit(STRIPE_DELAYED, &sh->state);
2606 set_bit(STRIPE_HANDLE, &sh->state);
2610 /* now if nothing is locked, and if we have enough data,
2611 * we can start a write request
2613 /* since handle_stripe can be called at any time we need to handle the
2614 * case where a compute block operation has been submitted and then a
2615 * subsequent call wants to start a write request. raid_run_ops only
2616 * handles the case where compute block and reconstruct are requested
2617 * simultaneously. If this is not the case then new writes need to be
2618 * held off until the compute completes.
2620 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2621 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2622 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2623 schedule_reconstruction(sh, s, rcw == 0, 0);
2626 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2627 struct stripe_head *sh, struct stripe_head_state *s,
2628 int disks)
2630 int rcw = 0, pd_idx = sh->pd_idx, i;
2631 int qd_idx = sh->qd_idx;
2633 set_bit(STRIPE_HANDLE, &sh->state);
2634 for (i = disks; i--; ) {
2635 struct r5dev *dev = &sh->dev[i];
2636 /* check if we haven't enough data */
2637 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2638 i != pd_idx && i != qd_idx &&
2639 !test_bit(R5_LOCKED, &dev->flags) &&
2640 !(test_bit(R5_UPTODATE, &dev->flags) ||
2641 test_bit(R5_Wantcompute, &dev->flags))) {
2642 rcw++;
2643 if (!test_bit(R5_Insync, &dev->flags))
2644 continue; /* it's a failed drive */
2646 if (
2647 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2648 pr_debug("Read_old stripe %llu "
2649 "block %d for Reconstruct\n",
2650 (unsigned long long)sh->sector, i);
2651 set_bit(R5_LOCKED, &dev->flags);
2652 set_bit(R5_Wantread, &dev->flags);
2653 s->locked++;
2654 } else {
2655 pr_debug("Request delayed stripe %llu "
2656 "block %d for Reconstruct\n",
2657 (unsigned long long)sh->sector, i);
2658 set_bit(STRIPE_DELAYED, &sh->state);
2659 set_bit(STRIPE_HANDLE, &sh->state);
2663 /* now if nothing is locked, and if we have enough data, we can start a
2664 * write request
2666 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2667 s->locked == 0 && rcw == 0 &&
2668 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2669 schedule_reconstruction(sh, s, 1, 0);
2673 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2674 struct stripe_head_state *s, int disks)
2676 struct r5dev *dev = NULL;
2678 set_bit(STRIPE_HANDLE, &sh->state);
2680 switch (sh->check_state) {
2681 case check_state_idle:
2682 /* start a new check operation if there are no failures */
2683 if (s->failed == 0) {
2684 BUG_ON(s->uptodate != disks);
2685 sh->check_state = check_state_run;
2686 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2687 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2688 s->uptodate--;
2689 break;
2691 dev = &sh->dev[s->failed_num[0]];
2692 /* fall through */
2693 case check_state_compute_result:
2694 sh->check_state = check_state_idle;
2695 if (!dev)
2696 dev = &sh->dev[sh->pd_idx];
2698 /* check that a write has not made the stripe insync */
2699 if (test_bit(STRIPE_INSYNC, &sh->state))
2700 break;
2702 /* either failed parity check, or recovery is happening */
2703 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2704 BUG_ON(s->uptodate != disks);
2706 set_bit(R5_LOCKED, &dev->flags);
2707 s->locked++;
2708 set_bit(R5_Wantwrite, &dev->flags);
2710 clear_bit(STRIPE_DEGRADED, &sh->state);
2711 set_bit(STRIPE_INSYNC, &sh->state);
2712 break;
2713 case check_state_run:
2714 break; /* we will be called again upon completion */
2715 case check_state_check_result:
2716 sh->check_state = check_state_idle;
2718 /* if a failure occurred during the check operation, leave
2719 * STRIPE_INSYNC not set and let the stripe be handled again
2721 if (s->failed)
2722 break;
2724 /* handle a successful check operation, if parity is correct
2725 * we are done. Otherwise update the mismatch count and repair
2726 * parity if !MD_RECOVERY_CHECK
2728 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2729 /* parity is correct (on disc,
2730 * not in buffer any more)
2732 set_bit(STRIPE_INSYNC, &sh->state);
2733 else {
2734 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2735 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2736 /* don't try to repair!! */
2737 set_bit(STRIPE_INSYNC, &sh->state);
2738 else {
2739 sh->check_state = check_state_compute_run;
2740 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2741 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2742 set_bit(R5_Wantcompute,
2743 &sh->dev[sh->pd_idx].flags);
2744 sh->ops.target = sh->pd_idx;
2745 sh->ops.target2 = -1;
2746 s->uptodate++;
2749 break;
2750 case check_state_compute_run:
2751 break;
2752 default:
2753 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2754 __func__, sh->check_state,
2755 (unsigned long long) sh->sector);
2756 BUG();
2761 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2762 struct stripe_head_state *s,
2763 int disks)
2765 int pd_idx = sh->pd_idx;
2766 int qd_idx = sh->qd_idx;
2767 struct r5dev *dev;
2769 set_bit(STRIPE_HANDLE, &sh->state);
2771 BUG_ON(s->failed > 2);
2773 /* Want to check and possibly repair P and Q.
2774 * However there could be one 'failed' device, in which
2775 * case we can only check one of them, possibly using the
2776 * other to generate missing data
2779 switch (sh->check_state) {
2780 case check_state_idle:
2781 /* start a new check operation if there are < 2 failures */
2782 if (s->failed == s->q_failed) {
2783 /* The only possible failed device holds Q, so it
2784 * makes sense to check P (If anything else were failed,
2785 * we would have used P to recreate it).
2787 sh->check_state = check_state_run;
2789 if (!s->q_failed && s->failed < 2) {
2790 /* Q is not failed, and we didn't use it to generate
2791 * anything, so it makes sense to check it
2793 if (sh->check_state == check_state_run)
2794 sh->check_state = check_state_run_pq;
2795 else
2796 sh->check_state = check_state_run_q;
2799 /* discard potentially stale zero_sum_result */
2800 sh->ops.zero_sum_result = 0;
2802 if (sh->check_state == check_state_run) {
2803 /* async_xor_zero_sum destroys the contents of P */
2804 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2805 s->uptodate--;
2807 if (sh->check_state >= check_state_run &&
2808 sh->check_state <= check_state_run_pq) {
2809 /* async_syndrome_zero_sum preserves P and Q, so
2810 * no need to mark them !uptodate here
2812 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2813 break;
2816 /* we have 2-disk failure */
2817 BUG_ON(s->failed != 2);
2818 /* fall through */
2819 case check_state_compute_result:
2820 sh->check_state = check_state_idle;
2822 /* check that a write has not made the stripe insync */
2823 if (test_bit(STRIPE_INSYNC, &sh->state))
2824 break;
2826 /* now write out any block on a failed drive,
2827 * or P or Q if they were recomputed
2829 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2830 if (s->failed == 2) {
2831 dev = &sh->dev[s->failed_num[1]];
2832 s->locked++;
2833 set_bit(R5_LOCKED, &dev->flags);
2834 set_bit(R5_Wantwrite, &dev->flags);
2836 if (s->failed >= 1) {
2837 dev = &sh->dev[s->failed_num[0]];
2838 s->locked++;
2839 set_bit(R5_LOCKED, &dev->flags);
2840 set_bit(R5_Wantwrite, &dev->flags);
2842 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2843 dev = &sh->dev[pd_idx];
2844 s->locked++;
2845 set_bit(R5_LOCKED, &dev->flags);
2846 set_bit(R5_Wantwrite, &dev->flags);
2848 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2849 dev = &sh->dev[qd_idx];
2850 s->locked++;
2851 set_bit(R5_LOCKED, &dev->flags);
2852 set_bit(R5_Wantwrite, &dev->flags);
2854 clear_bit(STRIPE_DEGRADED, &sh->state);
2856 set_bit(STRIPE_INSYNC, &sh->state);
2857 break;
2858 case check_state_run:
2859 case check_state_run_q:
2860 case check_state_run_pq:
2861 break; /* we will be called again upon completion */
2862 case check_state_check_result:
2863 sh->check_state = check_state_idle;
2865 /* handle a successful check operation, if parity is correct
2866 * we are done. Otherwise update the mismatch count and repair
2867 * parity if !MD_RECOVERY_CHECK
2869 if (sh->ops.zero_sum_result == 0) {
2870 /* both parities are correct */
2871 if (!s->failed)
2872 set_bit(STRIPE_INSYNC, &sh->state);
2873 else {
2874 /* in contrast to the raid5 case we can validate
2875 * parity, but still have a failure to write
2876 * back
2878 sh->check_state = check_state_compute_result;
2879 /* Returning at this point means that we may go
2880 * off and bring p and/or q uptodate again so
2881 * we make sure to check zero_sum_result again
2882 * to verify if p or q need writeback
2885 } else {
2886 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2887 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2888 /* don't try to repair!! */
2889 set_bit(STRIPE_INSYNC, &sh->state);
2890 else {
2891 int *target = &sh->ops.target;
2893 sh->ops.target = -1;
2894 sh->ops.target2 = -1;
2895 sh->check_state = check_state_compute_run;
2896 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2897 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2898 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2899 set_bit(R5_Wantcompute,
2900 &sh->dev[pd_idx].flags);
2901 *target = pd_idx;
2902 target = &sh->ops.target2;
2903 s->uptodate++;
2905 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2906 set_bit(R5_Wantcompute,
2907 &sh->dev[qd_idx].flags);
2908 *target = qd_idx;
2909 s->uptodate++;
2913 break;
2914 case check_state_compute_run:
2915 break;
2916 default:
2917 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2918 __func__, sh->check_state,
2919 (unsigned long long) sh->sector);
2920 BUG();
2924 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2925 struct stripe_head_state *r6s)
2927 int i;
2929 /* We have read all the blocks in this stripe and now we need to
2930 * copy some of them into a target stripe for expand.
2932 struct dma_async_tx_descriptor *tx = NULL;
2933 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2934 for (i = 0; i < sh->disks; i++)
2935 if (i != sh->pd_idx && i != sh->qd_idx) {
2936 int dd_idx, j;
2937 struct stripe_head *sh2;
2938 struct async_submit_ctl submit;
2940 sector_t bn = compute_blocknr(sh, i, 1);
2941 sector_t s = raid5_compute_sector(conf, bn, 0,
2942 &dd_idx, NULL);
2943 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2944 if (sh2 == NULL)
2945 /* so far only the early blocks of this stripe
2946 * have been requested. When later blocks
2947 * get requested, we will try again
2949 continue;
2950 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2951 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2952 /* must have already done this block */
2953 release_stripe(sh2);
2954 continue;
2957 /* place all the copies on one channel */
2958 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2959 tx = async_memcpy(sh2->dev[dd_idx].page,
2960 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2961 &submit);
2963 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2964 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2965 for (j = 0; j < conf->raid_disks; j++)
2966 if (j != sh2->pd_idx &&
2967 (!r6s || j != sh2->qd_idx) &&
2968 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2969 break;
2970 if (j == conf->raid_disks) {
2971 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2972 set_bit(STRIPE_HANDLE, &sh2->state);
2974 release_stripe(sh2);
2977 /* done submitting copies, wait for them to complete */
2978 if (tx) {
2979 async_tx_ack(tx);
2980 dma_wait_for_async_tx(tx);
2986 * handle_stripe - do things to a stripe.
2988 * We lock the stripe and then examine the state of various bits
2989 * to see what needs to be done.
2990 * Possible results:
2991 * return some read request which now have data
2992 * return some write requests which are safely on disc
2993 * schedule a read on some buffers
2994 * schedule a write of some buffers
2995 * return confirmation of parity correctness
2997 * buffers are taken off read_list or write_list, and bh_cache buffers
2998 * get BH_Lock set before the stripe lock is released.
3002 static void handle_stripe5(struct stripe_head *sh)
3004 raid5_conf_t *conf = sh->raid_conf;
3005 int disks = sh->disks, i;
3006 struct stripe_head_state s;
3007 struct r5dev *dev;
3008 int prexor;
3010 memset(&s, 0, sizeof(s));
3011 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3012 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3013 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3014 sh->reconstruct_state);
3016 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3017 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3018 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3020 /* Now to look around and see what can be done */
3021 rcu_read_lock();
3022 spin_lock_irq(&conf->device_lock);
3023 for (i=disks; i--; ) {
3024 mdk_rdev_t *rdev;
3026 dev = &sh->dev[i];
3028 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3029 "written %p\n", i, dev->flags, dev->toread, dev->read,
3030 dev->towrite, dev->written);
3032 /* maybe we can request a biofill operation
3034 * new wantfill requests are only permitted while
3035 * ops_complete_biofill is guaranteed to be inactive
3037 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3038 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3039 set_bit(R5_Wantfill, &dev->flags);
3041 /* now count some things */
3042 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3043 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3044 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3046 if (test_bit(R5_Wantfill, &dev->flags))
3047 s.to_fill++;
3048 else if (dev->toread)
3049 s.to_read++;
3050 if (dev->towrite) {
3051 s.to_write++;
3052 if (!test_bit(R5_OVERWRITE, &dev->flags))
3053 s.non_overwrite++;
3055 if (dev->written)
3056 s.written++;
3057 rdev = rcu_dereference(conf->disks[i].rdev);
3058 if (s.blocked_rdev == NULL &&
3059 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3060 s.blocked_rdev = rdev;
3061 atomic_inc(&rdev->nr_pending);
3063 clear_bit(R5_Insync, &dev->flags);
3064 if (!rdev)
3065 /* Not in-sync */;
3066 else if (test_bit(In_sync, &rdev->flags))
3067 set_bit(R5_Insync, &dev->flags);
3068 else {
3069 /* could be in-sync depending on recovery/reshape status */
3070 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3071 set_bit(R5_Insync, &dev->flags);
3073 if (!test_bit(R5_Insync, &dev->flags)) {
3074 /* The ReadError flag will just be confusing now */
3075 clear_bit(R5_ReadError, &dev->flags);
3076 clear_bit(R5_ReWrite, &dev->flags);
3078 if (test_bit(R5_ReadError, &dev->flags))
3079 clear_bit(R5_Insync, &dev->flags);
3080 if (!test_bit(R5_Insync, &dev->flags)) {
3081 s.failed++;
3082 s.failed_num[0] = i;
3085 spin_unlock_irq(&conf->device_lock);
3086 rcu_read_unlock();
3088 if (unlikely(s.blocked_rdev)) {
3089 if (s.syncing || s.expanding || s.expanded ||
3090 s.to_write || s.written) {
3091 set_bit(STRIPE_HANDLE, &sh->state);
3092 goto unlock;
3094 /* There is nothing for the blocked_rdev to block */
3095 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3096 s.blocked_rdev = NULL;
3099 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3100 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3101 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3104 pr_debug("locked=%d uptodate=%d to_read=%d"
3105 " to_write=%d failed=%d failed_num=%d\n",
3106 s.locked, s.uptodate, s.to_read, s.to_write,
3107 s.failed, s.failed_num[0]);
3108 /* check if the array has lost two devices and, if so, some requests might
3109 * need to be failed
3111 if (s.failed > 1 && s.to_read+s.to_write+s.written)
3112 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3113 if (s.failed > 1 && s.syncing) {
3114 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3115 clear_bit(STRIPE_SYNCING, &sh->state);
3116 s.syncing = 0;
3119 /* might be able to return some write requests if the parity block
3120 * is safe, or on a failed drive
3122 dev = &sh->dev[sh->pd_idx];
3123 if ( s.written &&
3124 ((test_bit(R5_Insync, &dev->flags) &&
3125 !test_bit(R5_LOCKED, &dev->flags) &&
3126 test_bit(R5_UPTODATE, &dev->flags)) ||
3127 (s.failed == 1 && s.failed_num[0] == sh->pd_idx)))
3128 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3130 /* Now we might consider reading some blocks, either to check/generate
3131 * parity, or to satisfy requests
3132 * or to load a block that is being partially written.
3134 if (s.to_read || s.non_overwrite ||
3135 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3136 handle_stripe_fill5(sh, &s, disks);
3138 /* Now we check to see if any write operations have recently
3139 * completed
3141 prexor = 0;
3142 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3143 prexor = 1;
3144 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3145 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3146 sh->reconstruct_state = reconstruct_state_idle;
3148 /* All the 'written' buffers and the parity block are ready to
3149 * be written back to disk
3151 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3152 for (i = disks; i--; ) {
3153 dev = &sh->dev[i];
3154 if (test_bit(R5_LOCKED, &dev->flags) &&
3155 (i == sh->pd_idx || dev->written)) {
3156 pr_debug("Writing block %d\n", i);
3157 set_bit(R5_Wantwrite, &dev->flags);
3158 if (prexor)
3159 continue;
3160 if (!test_bit(R5_Insync, &dev->flags) ||
3161 (i == sh->pd_idx && s.failed == 0))
3162 set_bit(STRIPE_INSYNC, &sh->state);
3165 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3166 s.dec_preread_active = 1;
3169 /* Now to consider new write requests and what else, if anything
3170 * should be read. We do not handle new writes when:
3171 * 1/ A 'write' operation (copy+xor) is already in flight.
3172 * 2/ A 'check' operation is in flight, as it may clobber the parity
3173 * block.
3175 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3176 handle_stripe_dirtying5(conf, sh, &s, disks);
3178 /* maybe we need to check and possibly fix the parity for this stripe
3179 * Any reads will already have been scheduled, so we just see if enough
3180 * data is available. The parity check is held off while parity
3181 * dependent operations are in flight.
3183 if (sh->check_state ||
3184 (s.syncing && s.locked == 0 &&
3185 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3186 !test_bit(STRIPE_INSYNC, &sh->state)))
3187 handle_parity_checks5(conf, sh, &s, disks);
3189 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3190 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3191 clear_bit(STRIPE_SYNCING, &sh->state);
3194 /* If the failed drive is just a ReadError, then we might need to progress
3195 * the repair/check process
3197 if (s.failed == 1 && !conf->mddev->ro &&
3198 test_bit(R5_ReadError, &sh->dev[s.failed_num[0]].flags)
3199 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num[0]].flags)
3200 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num[0]].flags)
3202 dev = &sh->dev[s.failed_num[0]];
3203 if (!test_bit(R5_ReWrite, &dev->flags)) {
3204 set_bit(R5_Wantwrite, &dev->flags);
3205 set_bit(R5_ReWrite, &dev->flags);
3206 set_bit(R5_LOCKED, &dev->flags);
3207 s.locked++;
3208 } else {
3209 /* let's read it back */
3210 set_bit(R5_Wantread, &dev->flags);
3211 set_bit(R5_LOCKED, &dev->flags);
3212 s.locked++;
3216 /* Finish reconstruct operations initiated by the expansion process */
3217 if (sh->reconstruct_state == reconstruct_state_result) {
3218 struct stripe_head *sh2
3219 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3220 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3221 /* sh cannot be written until sh2 has been read.
3222 * so arrange for sh to be delayed a little
3224 set_bit(STRIPE_DELAYED, &sh->state);
3225 set_bit(STRIPE_HANDLE, &sh->state);
3226 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3227 &sh2->state))
3228 atomic_inc(&conf->preread_active_stripes);
3229 release_stripe(sh2);
3230 goto unlock;
3232 if (sh2)
3233 release_stripe(sh2);
3235 sh->reconstruct_state = reconstruct_state_idle;
3236 clear_bit(STRIPE_EXPANDING, &sh->state);
3237 for (i = conf->raid_disks; i--; ) {
3238 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3239 set_bit(R5_LOCKED, &sh->dev[i].flags);
3240 s.locked++;
3244 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3245 !sh->reconstruct_state) {
3246 /* Need to write out all blocks after computing parity */
3247 sh->disks = conf->raid_disks;
3248 stripe_set_idx(sh->sector, conf, 0, sh);
3249 schedule_reconstruction(sh, &s, 1, 1);
3250 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3251 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3252 atomic_dec(&conf->reshape_stripes);
3253 wake_up(&conf->wait_for_overlap);
3254 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3257 if (s.expanding && s.locked == 0 &&
3258 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3259 handle_stripe_expansion(conf, sh, NULL);
3261 unlock:
3263 /* wait for this device to become unblocked */
3264 if (unlikely(s.blocked_rdev))
3265 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3267 if (s.ops_request)
3268 raid_run_ops(sh, s.ops_request);
3270 ops_run_io(sh, &s);
3272 if (s.dec_preread_active) {
3273 /* We delay this until after ops_run_io so that if make_request
3274 * is waiting on a flush, it won't continue until the writes
3275 * have actually been submitted.
3277 atomic_dec(&conf->preread_active_stripes);
3278 if (atomic_read(&conf->preread_active_stripes) <
3279 IO_THRESHOLD)
3280 md_wakeup_thread(conf->mddev->thread);
3282 return_io(s.return_bi);
3285 static void handle_stripe6(struct stripe_head *sh)
3287 raid5_conf_t *conf = sh->raid_conf;
3288 int disks = sh->disks;
3289 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3290 struct stripe_head_state s;
3291 struct r5dev *dev, *pdev, *qdev;
3293 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3294 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3295 (unsigned long long)sh->sector, sh->state,
3296 atomic_read(&sh->count), pd_idx, qd_idx,
3297 sh->check_state, sh->reconstruct_state);
3298 memset(&s, 0, sizeof(s));
3300 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3301 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3302 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3303 /* Now to look around and see what can be done */
3305 rcu_read_lock();
3306 spin_lock_irq(&conf->device_lock);
3307 for (i=disks; i--; ) {
3308 mdk_rdev_t *rdev;
3309 dev = &sh->dev[i];
3311 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3312 i, dev->flags, dev->toread, dev->towrite, dev->written);
3313 /* maybe we can reply to a read
3315 * new wantfill requests are only permitted while
3316 * ops_complete_biofill is guaranteed to be inactive
3318 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3319 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3320 set_bit(R5_Wantfill, &dev->flags);
3322 /* now count some things */
3323 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3324 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3325 if (test_bit(R5_Wantcompute, &dev->flags)) {
3326 s.compute++;
3327 BUG_ON(s.compute > 2);
3330 if (test_bit(R5_Wantfill, &dev->flags)) {
3331 s.to_fill++;
3332 } else if (dev->toread)
3333 s.to_read++;
3334 if (dev->towrite) {
3335 s.to_write++;
3336 if (!test_bit(R5_OVERWRITE, &dev->flags))
3337 s.non_overwrite++;
3339 if (dev->written)
3340 s.written++;
3341 rdev = rcu_dereference(conf->disks[i].rdev);
3342 if (s.blocked_rdev == NULL &&
3343 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3344 s.blocked_rdev = rdev;
3345 atomic_inc(&rdev->nr_pending);
3347 clear_bit(R5_Insync, &dev->flags);
3348 if (!rdev)
3349 /* Not in-sync */;
3350 else if (test_bit(In_sync, &rdev->flags))
3351 set_bit(R5_Insync, &dev->flags);
3352 else {
3353 /* in sync if before recovery_offset */
3354 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3355 set_bit(R5_Insync, &dev->flags);
3357 if (!test_bit(R5_Insync, &dev->flags)) {
3358 /* The ReadError flag will just be confusing now */
3359 clear_bit(R5_ReadError, &dev->flags);
3360 clear_bit(R5_ReWrite, &dev->flags);
3362 if (test_bit(R5_ReadError, &dev->flags))
3363 clear_bit(R5_Insync, &dev->flags);
3364 if (!test_bit(R5_Insync, &dev->flags)) {
3365 if (s.failed < 2)
3366 s.failed_num[s.failed] = i;
3367 s.failed++;
3370 spin_unlock_irq(&conf->device_lock);
3371 rcu_read_unlock();
3373 if (unlikely(s.blocked_rdev)) {
3374 if (s.syncing || s.expanding || s.expanded ||
3375 s.to_write || s.written) {
3376 set_bit(STRIPE_HANDLE, &sh->state);
3377 goto unlock;
3379 /* There is nothing for the blocked_rdev to block */
3380 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3381 s.blocked_rdev = NULL;
3384 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3385 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3386 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3389 pr_debug("locked=%d uptodate=%d to_read=%d"
3390 " to_write=%d failed=%d failed_num=%d,%d\n",
3391 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3392 s.failed_num[0], s.failed_num[1]);
3393 /* check if the array has lost >2 devices and, if so, some requests
3394 * might need to be failed
3396 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3397 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3398 if (s.failed > 2 && s.syncing) {
3399 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3400 clear_bit(STRIPE_SYNCING, &sh->state);
3401 s.syncing = 0;
3405 * might be able to return some write requests if the parity blocks
3406 * are safe, or on a failed drive
3408 pdev = &sh->dev[pd_idx];
3409 s.p_failed = (s.failed >= 1 && s.failed_num[0] == pd_idx)
3410 || (s.failed >= 2 && s.failed_num[1] == pd_idx);
3411 qdev = &sh->dev[qd_idx];
3412 s.q_failed = (s.failed >= 1 && s.failed_num[0] == qd_idx)
3413 || (s.failed >= 2 && s.failed_num[1] == qd_idx);
3415 if (s.written &&
3416 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3417 && !test_bit(R5_LOCKED, &pdev->flags)
3418 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3419 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3420 && !test_bit(R5_LOCKED, &qdev->flags)
3421 && test_bit(R5_UPTODATE, &qdev->flags)))))
3422 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3424 /* Now we might consider reading some blocks, either to check/generate
3425 * parity, or to satisfy requests
3426 * or to load a block that is being partially written.
3428 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3429 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3430 handle_stripe_fill6(sh, &s, disks);
3432 /* Now we check to see if any write operations have recently
3433 * completed
3435 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3437 sh->reconstruct_state = reconstruct_state_idle;
3438 /* All the 'written' buffers and the parity blocks are ready to
3439 * be written back to disk
3441 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3442 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3443 for (i = disks; i--; ) {
3444 dev = &sh->dev[i];
3445 if (test_bit(R5_LOCKED, &dev->flags) &&
3446 (i == sh->pd_idx || i == qd_idx ||
3447 dev->written)) {
3448 pr_debug("Writing block %d\n", i);
3449 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3450 set_bit(R5_Wantwrite, &dev->flags);
3451 if (!test_bit(R5_Insync, &dev->flags) ||
3452 ((i == sh->pd_idx || i == qd_idx) &&
3453 s.failed == 0))
3454 set_bit(STRIPE_INSYNC, &sh->state);
3457 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3458 s.dec_preread_active = 1;
3461 /* Now to consider new write requests and what else, if anything
3462 * should be read. We do not handle new writes when:
3463 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3464 * 2/ A 'check' operation is in flight, as it may clobber the parity
3465 * block.
3467 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3468 handle_stripe_dirtying6(conf, sh, &s, disks);
3470 /* maybe we need to check and possibly fix the parity for this stripe
3471 * Any reads will already have been scheduled, so we just see if enough
3472 * data is available. The parity check is held off while parity
3473 * dependent operations are in flight.
3475 if (sh->check_state ||
3476 (s.syncing && s.locked == 0 &&
3477 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3478 !test_bit(STRIPE_INSYNC, &sh->state)))
3479 handle_parity_checks6(conf, sh, &s, disks);
3481 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3482 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3483 clear_bit(STRIPE_SYNCING, &sh->state);
3486 /* If the failed drives are just a ReadError, then we might need
3487 * to progress the repair/check process
3489 if (s.failed <= 2 && !conf->mddev->ro)
3490 for (i = 0; i < s.failed; i++) {
3491 dev = &sh->dev[s.failed_num[i]];
3492 if (test_bit(R5_ReadError, &dev->flags)
3493 && !test_bit(R5_LOCKED, &dev->flags)
3494 && test_bit(R5_UPTODATE, &dev->flags)
3496 if (!test_bit(R5_ReWrite, &dev->flags)) {
3497 set_bit(R5_Wantwrite, &dev->flags);
3498 set_bit(R5_ReWrite, &dev->flags);
3499 set_bit(R5_LOCKED, &dev->flags);
3500 s.locked++;
3501 } else {
3502 /* let's read it back */
3503 set_bit(R5_Wantread, &dev->flags);
3504 set_bit(R5_LOCKED, &dev->flags);
3505 s.locked++;
3510 /* Finish reconstruct operations initiated by the expansion process */
3511 if (sh->reconstruct_state == reconstruct_state_result) {
3512 sh->reconstruct_state = reconstruct_state_idle;
3513 clear_bit(STRIPE_EXPANDING, &sh->state);
3514 for (i = conf->raid_disks; i--; ) {
3515 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3516 set_bit(R5_LOCKED, &sh->dev[i].flags);
3517 s.locked++;
3521 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3522 !sh->reconstruct_state) {
3523 struct stripe_head *sh2
3524 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3525 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3526 /* sh cannot be written until sh2 has been read.
3527 * so arrange for sh to be delayed a little
3529 set_bit(STRIPE_DELAYED, &sh->state);
3530 set_bit(STRIPE_HANDLE, &sh->state);
3531 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3532 &sh2->state))
3533 atomic_inc(&conf->preread_active_stripes);
3534 release_stripe(sh2);
3535 goto unlock;
3537 if (sh2)
3538 release_stripe(sh2);
3540 /* Need to write out all blocks after computing P&Q */
3541 sh->disks = conf->raid_disks;
3542 stripe_set_idx(sh->sector, conf, 0, sh);
3543 schedule_reconstruction(sh, &s, 1, 1);
3544 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3545 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3546 atomic_dec(&conf->reshape_stripes);
3547 wake_up(&conf->wait_for_overlap);
3548 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3551 if (s.expanding && s.locked == 0 &&
3552 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3553 handle_stripe_expansion(conf, sh, &s);
3555 unlock:
3557 /* wait for this device to become unblocked */
3558 if (unlikely(s.blocked_rdev))
3559 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3561 if (s.ops_request)
3562 raid_run_ops(sh, s.ops_request);
3564 ops_run_io(sh, &s);
3567 if (s.dec_preread_active) {
3568 /* We delay this until after ops_run_io so that if make_request
3569 * is waiting on a flush, it won't continue until the writes
3570 * have actually been submitted.
3572 atomic_dec(&conf->preread_active_stripes);
3573 if (atomic_read(&conf->preread_active_stripes) <
3574 IO_THRESHOLD)
3575 md_wakeup_thread(conf->mddev->thread);
3578 return_io(s.return_bi);
3581 static void handle_stripe(struct stripe_head *sh)
3583 clear_bit(STRIPE_HANDLE, &sh->state);
3584 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3585 /* already being handled, ensure it gets handled
3586 * again when current action finishes */
3587 set_bit(STRIPE_HANDLE, &sh->state);
3588 return;
3591 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3592 set_bit(STRIPE_SYNCING, &sh->state);
3593 clear_bit(STRIPE_INSYNC, &sh->state);
3595 clear_bit(STRIPE_DELAYED, &sh->state);
3597 if (sh->raid_conf->level == 6)
3598 handle_stripe6(sh);
3599 else
3600 handle_stripe5(sh);
3601 clear_bit(STRIPE_ACTIVE, &sh->state);
3604 static void raid5_activate_delayed(raid5_conf_t *conf)
3606 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3607 while (!list_empty(&conf->delayed_list)) {
3608 struct list_head *l = conf->delayed_list.next;
3609 struct stripe_head *sh;
3610 sh = list_entry(l, struct stripe_head, lru);
3611 list_del_init(l);
3612 clear_bit(STRIPE_DELAYED, &sh->state);
3613 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3614 atomic_inc(&conf->preread_active_stripes);
3615 list_add_tail(&sh->lru, &conf->hold_list);
3620 static void activate_bit_delay(raid5_conf_t *conf)
3622 /* device_lock is held */
3623 struct list_head head;
3624 list_add(&head, &conf->bitmap_list);
3625 list_del_init(&conf->bitmap_list);
3626 while (!list_empty(&head)) {
3627 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3628 list_del_init(&sh->lru);
3629 atomic_inc(&sh->count);
3630 __release_stripe(conf, sh);
3634 int md_raid5_congested(mddev_t *mddev, int bits)
3636 raid5_conf_t *conf = mddev->private;
3638 /* No difference between reads and writes. Just check
3639 * how busy the stripe_cache is
3642 if (conf->inactive_blocked)
3643 return 1;
3644 if (conf->quiesce)
3645 return 1;
3646 if (list_empty_careful(&conf->inactive_list))
3647 return 1;
3649 return 0;
3651 EXPORT_SYMBOL_GPL(md_raid5_congested);
3653 static int raid5_congested(void *data, int bits)
3655 mddev_t *mddev = data;
3657 return mddev_congested(mddev, bits) ||
3658 md_raid5_congested(mddev, bits);
3661 /* We want read requests to align with chunks where possible,
3662 * but write requests don't need to.
3664 static int raid5_mergeable_bvec(struct request_queue *q,
3665 struct bvec_merge_data *bvm,
3666 struct bio_vec *biovec)
3668 mddev_t *mddev = q->queuedata;
3669 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3670 int max;
3671 unsigned int chunk_sectors = mddev->chunk_sectors;
3672 unsigned int bio_sectors = bvm->bi_size >> 9;
3674 if ((bvm->bi_rw & 1) == WRITE)
3675 return biovec->bv_len; /* always allow writes to be mergeable */
3677 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3678 chunk_sectors = mddev->new_chunk_sectors;
3679 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3680 if (max < 0) max = 0;
3681 if (max <= biovec->bv_len && bio_sectors == 0)
3682 return biovec->bv_len;
3683 else
3684 return max;
3688 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3690 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3691 unsigned int chunk_sectors = mddev->chunk_sectors;
3692 unsigned int bio_sectors = bio->bi_size >> 9;
3694 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3695 chunk_sectors = mddev->new_chunk_sectors;
3696 return chunk_sectors >=
3697 ((sector & (chunk_sectors - 1)) + bio_sectors);
3701 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3702 * later sampled by raid5d.
3704 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3706 unsigned long flags;
3708 spin_lock_irqsave(&conf->device_lock, flags);
3710 bi->bi_next = conf->retry_read_aligned_list;
3711 conf->retry_read_aligned_list = bi;
3713 spin_unlock_irqrestore(&conf->device_lock, flags);
3714 md_wakeup_thread(conf->mddev->thread);
3718 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3720 struct bio *bi;
3722 bi = conf->retry_read_aligned;
3723 if (bi) {
3724 conf->retry_read_aligned = NULL;
3725 return bi;
3727 bi = conf->retry_read_aligned_list;
3728 if(bi) {
3729 conf->retry_read_aligned_list = bi->bi_next;
3730 bi->bi_next = NULL;
3732 * this sets the active strip count to 1 and the processed
3733 * strip count to zero (upper 8 bits)
3735 bi->bi_phys_segments = 1; /* biased count of active stripes */
3738 return bi;
3743 * The "raid5_align_endio" should check if the read succeeded and if it
3744 * did, call bio_endio on the original bio (having bio_put the new bio
3745 * first).
3746 * If the read failed..
3748 static void raid5_align_endio(struct bio *bi, int error)
3750 struct bio* raid_bi = bi->bi_private;
3751 mddev_t *mddev;
3752 raid5_conf_t *conf;
3753 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3754 mdk_rdev_t *rdev;
3756 bio_put(bi);
3758 rdev = (void*)raid_bi->bi_next;
3759 raid_bi->bi_next = NULL;
3760 mddev = rdev->mddev;
3761 conf = mddev->private;
3763 rdev_dec_pending(rdev, conf->mddev);
3765 if (!error && uptodate) {
3766 bio_endio(raid_bi, 0);
3767 if (atomic_dec_and_test(&conf->active_aligned_reads))
3768 wake_up(&conf->wait_for_stripe);
3769 return;
3773 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3775 add_bio_to_retry(raid_bi, conf);
3778 static int bio_fits_rdev(struct bio *bi)
3780 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3782 if ((bi->bi_size>>9) > queue_max_sectors(q))
3783 return 0;
3784 blk_recount_segments(q, bi);
3785 if (bi->bi_phys_segments > queue_max_segments(q))
3786 return 0;
3788 if (q->merge_bvec_fn)
3789 /* it's too hard to apply the merge_bvec_fn at this stage,
3790 * just just give up
3792 return 0;
3794 return 1;
3798 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3800 raid5_conf_t *conf = mddev->private;
3801 int dd_idx;
3802 struct bio* align_bi;
3803 mdk_rdev_t *rdev;
3805 if (!in_chunk_boundary(mddev, raid_bio)) {
3806 pr_debug("chunk_aligned_read : non aligned\n");
3807 return 0;
3810 * use bio_clone_mddev to make a copy of the bio
3812 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3813 if (!align_bi)
3814 return 0;
3816 * set bi_end_io to a new function, and set bi_private to the
3817 * original bio.
3819 align_bi->bi_end_io = raid5_align_endio;
3820 align_bi->bi_private = raid_bio;
3822 * compute position
3824 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3826 &dd_idx, NULL);
3828 rcu_read_lock();
3829 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3830 if (rdev && test_bit(In_sync, &rdev->flags)) {
3831 atomic_inc(&rdev->nr_pending);
3832 rcu_read_unlock();
3833 raid_bio->bi_next = (void*)rdev;
3834 align_bi->bi_bdev = rdev->bdev;
3835 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3836 align_bi->bi_sector += rdev->data_offset;
3838 if (!bio_fits_rdev(align_bi)) {
3839 /* too big in some way */
3840 bio_put(align_bi);
3841 rdev_dec_pending(rdev, mddev);
3842 return 0;
3845 spin_lock_irq(&conf->device_lock);
3846 wait_event_lock_irq(conf->wait_for_stripe,
3847 conf->quiesce == 0,
3848 conf->device_lock, /* nothing */);
3849 atomic_inc(&conf->active_aligned_reads);
3850 spin_unlock_irq(&conf->device_lock);
3852 generic_make_request(align_bi);
3853 return 1;
3854 } else {
3855 rcu_read_unlock();
3856 bio_put(align_bi);
3857 return 0;
3861 /* __get_priority_stripe - get the next stripe to process
3863 * Full stripe writes are allowed to pass preread active stripes up until
3864 * the bypass_threshold is exceeded. In general the bypass_count
3865 * increments when the handle_list is handled before the hold_list; however, it
3866 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3867 * stripe with in flight i/o. The bypass_count will be reset when the
3868 * head of the hold_list has changed, i.e. the head was promoted to the
3869 * handle_list.
3871 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3873 struct stripe_head *sh;
3875 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3876 __func__,
3877 list_empty(&conf->handle_list) ? "empty" : "busy",
3878 list_empty(&conf->hold_list) ? "empty" : "busy",
3879 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3881 if (!list_empty(&conf->handle_list)) {
3882 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3884 if (list_empty(&conf->hold_list))
3885 conf->bypass_count = 0;
3886 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3887 if (conf->hold_list.next == conf->last_hold)
3888 conf->bypass_count++;
3889 else {
3890 conf->last_hold = conf->hold_list.next;
3891 conf->bypass_count -= conf->bypass_threshold;
3892 if (conf->bypass_count < 0)
3893 conf->bypass_count = 0;
3896 } else if (!list_empty(&conf->hold_list) &&
3897 ((conf->bypass_threshold &&
3898 conf->bypass_count > conf->bypass_threshold) ||
3899 atomic_read(&conf->pending_full_writes) == 0)) {
3900 sh = list_entry(conf->hold_list.next,
3901 typeof(*sh), lru);
3902 conf->bypass_count -= conf->bypass_threshold;
3903 if (conf->bypass_count < 0)
3904 conf->bypass_count = 0;
3905 } else
3906 return NULL;
3908 list_del_init(&sh->lru);
3909 atomic_inc(&sh->count);
3910 BUG_ON(atomic_read(&sh->count) != 1);
3911 return sh;
3914 static int make_request(mddev_t *mddev, struct bio * bi)
3916 raid5_conf_t *conf = mddev->private;
3917 int dd_idx;
3918 sector_t new_sector;
3919 sector_t logical_sector, last_sector;
3920 struct stripe_head *sh;
3921 const int rw = bio_data_dir(bi);
3922 int remaining;
3923 int plugged;
3925 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3926 md_flush_request(mddev, bi);
3927 return 0;
3930 md_write_start(mddev, bi);
3932 if (rw == READ &&
3933 mddev->reshape_position == MaxSector &&
3934 chunk_aligned_read(mddev,bi))
3935 return 0;
3937 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3938 last_sector = bi->bi_sector + (bi->bi_size>>9);
3939 bi->bi_next = NULL;
3940 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3942 plugged = mddev_check_plugged(mddev);
3943 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3944 DEFINE_WAIT(w);
3945 int disks, data_disks;
3946 int previous;
3948 retry:
3949 previous = 0;
3950 disks = conf->raid_disks;
3951 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3952 if (unlikely(conf->reshape_progress != MaxSector)) {
3953 /* spinlock is needed as reshape_progress may be
3954 * 64bit on a 32bit platform, and so it might be
3955 * possible to see a half-updated value
3956 * Of course reshape_progress could change after
3957 * the lock is dropped, so once we get a reference
3958 * to the stripe that we think it is, we will have
3959 * to check again.
3961 spin_lock_irq(&conf->device_lock);
3962 if (mddev->delta_disks < 0
3963 ? logical_sector < conf->reshape_progress
3964 : logical_sector >= conf->reshape_progress) {
3965 disks = conf->previous_raid_disks;
3966 previous = 1;
3967 } else {
3968 if (mddev->delta_disks < 0
3969 ? logical_sector < conf->reshape_safe
3970 : logical_sector >= conf->reshape_safe) {
3971 spin_unlock_irq(&conf->device_lock);
3972 schedule();
3973 goto retry;
3976 spin_unlock_irq(&conf->device_lock);
3978 data_disks = disks - conf->max_degraded;
3980 new_sector = raid5_compute_sector(conf, logical_sector,
3981 previous,
3982 &dd_idx, NULL);
3983 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3984 (unsigned long long)new_sector,
3985 (unsigned long long)logical_sector);
3987 sh = get_active_stripe(conf, new_sector, previous,
3988 (bi->bi_rw&RWA_MASK), 0);
3989 if (sh) {
3990 if (unlikely(previous)) {
3991 /* expansion might have moved on while waiting for a
3992 * stripe, so we must do the range check again.
3993 * Expansion could still move past after this
3994 * test, but as we are holding a reference to
3995 * 'sh', we know that if that happens,
3996 * STRIPE_EXPANDING will get set and the expansion
3997 * won't proceed until we finish with the stripe.
3999 int must_retry = 0;
4000 spin_lock_irq(&conf->device_lock);
4001 if (mddev->delta_disks < 0
4002 ? logical_sector >= conf->reshape_progress
4003 : logical_sector < conf->reshape_progress)
4004 /* mismatch, need to try again */
4005 must_retry = 1;
4006 spin_unlock_irq(&conf->device_lock);
4007 if (must_retry) {
4008 release_stripe(sh);
4009 schedule();
4010 goto retry;
4014 if (rw == WRITE &&
4015 logical_sector >= mddev->suspend_lo &&
4016 logical_sector < mddev->suspend_hi) {
4017 release_stripe(sh);
4018 /* As the suspend_* range is controlled by
4019 * userspace, we want an interruptible
4020 * wait.
4022 flush_signals(current);
4023 prepare_to_wait(&conf->wait_for_overlap,
4024 &w, TASK_INTERRUPTIBLE);
4025 if (logical_sector >= mddev->suspend_lo &&
4026 logical_sector < mddev->suspend_hi)
4027 schedule();
4028 goto retry;
4031 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4032 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4033 /* Stripe is busy expanding or
4034 * add failed due to overlap. Flush everything
4035 * and wait a while
4037 md_wakeup_thread(mddev->thread);
4038 release_stripe(sh);
4039 schedule();
4040 goto retry;
4042 finish_wait(&conf->wait_for_overlap, &w);
4043 set_bit(STRIPE_HANDLE, &sh->state);
4044 clear_bit(STRIPE_DELAYED, &sh->state);
4045 if ((bi->bi_rw & REQ_SYNC) &&
4046 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4047 atomic_inc(&conf->preread_active_stripes);
4048 release_stripe(sh);
4049 } else {
4050 /* cannot get stripe for read-ahead, just give-up */
4051 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4052 finish_wait(&conf->wait_for_overlap, &w);
4053 break;
4057 if (!plugged)
4058 md_wakeup_thread(mddev->thread);
4060 spin_lock_irq(&conf->device_lock);
4061 remaining = raid5_dec_bi_phys_segments(bi);
4062 spin_unlock_irq(&conf->device_lock);
4063 if (remaining == 0) {
4065 if ( rw == WRITE )
4066 md_write_end(mddev);
4068 bio_endio(bi, 0);
4071 return 0;
4074 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4076 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4078 /* reshaping is quite different to recovery/resync so it is
4079 * handled quite separately ... here.
4081 * On each call to sync_request, we gather one chunk worth of
4082 * destination stripes and flag them as expanding.
4083 * Then we find all the source stripes and request reads.
4084 * As the reads complete, handle_stripe will copy the data
4085 * into the destination stripe and release that stripe.
4087 raid5_conf_t *conf = mddev->private;
4088 struct stripe_head *sh;
4089 sector_t first_sector, last_sector;
4090 int raid_disks = conf->previous_raid_disks;
4091 int data_disks = raid_disks - conf->max_degraded;
4092 int new_data_disks = conf->raid_disks - conf->max_degraded;
4093 int i;
4094 int dd_idx;
4095 sector_t writepos, readpos, safepos;
4096 sector_t stripe_addr;
4097 int reshape_sectors;
4098 struct list_head stripes;
4100 if (sector_nr == 0) {
4101 /* If restarting in the middle, skip the initial sectors */
4102 if (mddev->delta_disks < 0 &&
4103 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4104 sector_nr = raid5_size(mddev, 0, 0)
4105 - conf->reshape_progress;
4106 } else if (mddev->delta_disks >= 0 &&
4107 conf->reshape_progress > 0)
4108 sector_nr = conf->reshape_progress;
4109 sector_div(sector_nr, new_data_disks);
4110 if (sector_nr) {
4111 mddev->curr_resync_completed = sector_nr;
4112 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4113 *skipped = 1;
4114 return sector_nr;
4118 /* We need to process a full chunk at a time.
4119 * If old and new chunk sizes differ, we need to process the
4120 * largest of these
4122 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4123 reshape_sectors = mddev->new_chunk_sectors;
4124 else
4125 reshape_sectors = mddev->chunk_sectors;
4127 /* we update the metadata when there is more than 3Meg
4128 * in the block range (that is rather arbitrary, should
4129 * probably be time based) or when the data about to be
4130 * copied would over-write the source of the data at
4131 * the front of the range.
4132 * i.e. one new_stripe along from reshape_progress new_maps
4133 * to after where reshape_safe old_maps to
4135 writepos = conf->reshape_progress;
4136 sector_div(writepos, new_data_disks);
4137 readpos = conf->reshape_progress;
4138 sector_div(readpos, data_disks);
4139 safepos = conf->reshape_safe;
4140 sector_div(safepos, data_disks);
4141 if (mddev->delta_disks < 0) {
4142 writepos -= min_t(sector_t, reshape_sectors, writepos);
4143 readpos += reshape_sectors;
4144 safepos += reshape_sectors;
4145 } else {
4146 writepos += reshape_sectors;
4147 readpos -= min_t(sector_t, reshape_sectors, readpos);
4148 safepos -= min_t(sector_t, reshape_sectors, safepos);
4151 /* 'writepos' is the most advanced device address we might write.
4152 * 'readpos' is the least advanced device address we might read.
4153 * 'safepos' is the least address recorded in the metadata as having
4154 * been reshaped.
4155 * If 'readpos' is behind 'writepos', then there is no way that we can
4156 * ensure safety in the face of a crash - that must be done by userspace
4157 * making a backup of the data. So in that case there is no particular
4158 * rush to update metadata.
4159 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4160 * update the metadata to advance 'safepos' to match 'readpos' so that
4161 * we can be safe in the event of a crash.
4162 * So we insist on updating metadata if safepos is behind writepos and
4163 * readpos is beyond writepos.
4164 * In any case, update the metadata every 10 seconds.
4165 * Maybe that number should be configurable, but I'm not sure it is
4166 * worth it.... maybe it could be a multiple of safemode_delay???
4168 if ((mddev->delta_disks < 0
4169 ? (safepos > writepos && readpos < writepos)
4170 : (safepos < writepos && readpos > writepos)) ||
4171 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4172 /* Cannot proceed until we've updated the superblock... */
4173 wait_event(conf->wait_for_overlap,
4174 atomic_read(&conf->reshape_stripes)==0);
4175 mddev->reshape_position = conf->reshape_progress;
4176 mddev->curr_resync_completed = sector_nr;
4177 conf->reshape_checkpoint = jiffies;
4178 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4179 md_wakeup_thread(mddev->thread);
4180 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4181 kthread_should_stop());
4182 spin_lock_irq(&conf->device_lock);
4183 conf->reshape_safe = mddev->reshape_position;
4184 spin_unlock_irq(&conf->device_lock);
4185 wake_up(&conf->wait_for_overlap);
4186 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4189 if (mddev->delta_disks < 0) {
4190 BUG_ON(conf->reshape_progress == 0);
4191 stripe_addr = writepos;
4192 BUG_ON((mddev->dev_sectors &
4193 ~((sector_t)reshape_sectors - 1))
4194 - reshape_sectors - stripe_addr
4195 != sector_nr);
4196 } else {
4197 BUG_ON(writepos != sector_nr + reshape_sectors);
4198 stripe_addr = sector_nr;
4200 INIT_LIST_HEAD(&stripes);
4201 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4202 int j;
4203 int skipped_disk = 0;
4204 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4205 set_bit(STRIPE_EXPANDING, &sh->state);
4206 atomic_inc(&conf->reshape_stripes);
4207 /* If any of this stripe is beyond the end of the old
4208 * array, then we need to zero those blocks
4210 for (j=sh->disks; j--;) {
4211 sector_t s;
4212 if (j == sh->pd_idx)
4213 continue;
4214 if (conf->level == 6 &&
4215 j == sh->qd_idx)
4216 continue;
4217 s = compute_blocknr(sh, j, 0);
4218 if (s < raid5_size(mddev, 0, 0)) {
4219 skipped_disk = 1;
4220 continue;
4222 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4223 set_bit(R5_Expanded, &sh->dev[j].flags);
4224 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4226 if (!skipped_disk) {
4227 set_bit(STRIPE_EXPAND_READY, &sh->state);
4228 set_bit(STRIPE_HANDLE, &sh->state);
4230 list_add(&sh->lru, &stripes);
4232 spin_lock_irq(&conf->device_lock);
4233 if (mddev->delta_disks < 0)
4234 conf->reshape_progress -= reshape_sectors * new_data_disks;
4235 else
4236 conf->reshape_progress += reshape_sectors * new_data_disks;
4237 spin_unlock_irq(&conf->device_lock);
4238 /* Ok, those stripe are ready. We can start scheduling
4239 * reads on the source stripes.
4240 * The source stripes are determined by mapping the first and last
4241 * block on the destination stripes.
4243 first_sector =
4244 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4245 1, &dd_idx, NULL);
4246 last_sector =
4247 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4248 * new_data_disks - 1),
4249 1, &dd_idx, NULL);
4250 if (last_sector >= mddev->dev_sectors)
4251 last_sector = mddev->dev_sectors - 1;
4252 while (first_sector <= last_sector) {
4253 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4254 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4255 set_bit(STRIPE_HANDLE, &sh->state);
4256 release_stripe(sh);
4257 first_sector += STRIPE_SECTORS;
4259 /* Now that the sources are clearly marked, we can release
4260 * the destination stripes
4262 while (!list_empty(&stripes)) {
4263 sh = list_entry(stripes.next, struct stripe_head, lru);
4264 list_del_init(&sh->lru);
4265 release_stripe(sh);
4267 /* If this takes us to the resync_max point where we have to pause,
4268 * then we need to write out the superblock.
4270 sector_nr += reshape_sectors;
4271 if ((sector_nr - mddev->curr_resync_completed) * 2
4272 >= mddev->resync_max - mddev->curr_resync_completed) {
4273 /* Cannot proceed until we've updated the superblock... */
4274 wait_event(conf->wait_for_overlap,
4275 atomic_read(&conf->reshape_stripes) == 0);
4276 mddev->reshape_position = conf->reshape_progress;
4277 mddev->curr_resync_completed = sector_nr;
4278 conf->reshape_checkpoint = jiffies;
4279 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4280 md_wakeup_thread(mddev->thread);
4281 wait_event(mddev->sb_wait,
4282 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4283 || kthread_should_stop());
4284 spin_lock_irq(&conf->device_lock);
4285 conf->reshape_safe = mddev->reshape_position;
4286 spin_unlock_irq(&conf->device_lock);
4287 wake_up(&conf->wait_for_overlap);
4288 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4290 return reshape_sectors;
4293 /* FIXME go_faster isn't used */
4294 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4296 raid5_conf_t *conf = mddev->private;
4297 struct stripe_head *sh;
4298 sector_t max_sector = mddev->dev_sectors;
4299 sector_t sync_blocks;
4300 int still_degraded = 0;
4301 int i;
4303 if (sector_nr >= max_sector) {
4304 /* just being told to finish up .. nothing much to do */
4306 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4307 end_reshape(conf);
4308 return 0;
4311 if (mddev->curr_resync < max_sector) /* aborted */
4312 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4313 &sync_blocks, 1);
4314 else /* completed sync */
4315 conf->fullsync = 0;
4316 bitmap_close_sync(mddev->bitmap);
4318 return 0;
4321 /* Allow raid5_quiesce to complete */
4322 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4324 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4325 return reshape_request(mddev, sector_nr, skipped);
4327 /* No need to check resync_max as we never do more than one
4328 * stripe, and as resync_max will always be on a chunk boundary,
4329 * if the check in md_do_sync didn't fire, there is no chance
4330 * of overstepping resync_max here
4333 /* if there is too many failed drives and we are trying
4334 * to resync, then assert that we are finished, because there is
4335 * nothing we can do.
4337 if (mddev->degraded >= conf->max_degraded &&
4338 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4339 sector_t rv = mddev->dev_sectors - sector_nr;
4340 *skipped = 1;
4341 return rv;
4343 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4344 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4345 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4346 /* we can skip this block, and probably more */
4347 sync_blocks /= STRIPE_SECTORS;
4348 *skipped = 1;
4349 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4353 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4355 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4356 if (sh == NULL) {
4357 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4358 /* make sure we don't swamp the stripe cache if someone else
4359 * is trying to get access
4361 schedule_timeout_uninterruptible(1);
4363 /* Need to check if array will still be degraded after recovery/resync
4364 * We don't need to check the 'failed' flag as when that gets set,
4365 * recovery aborts.
4367 for (i = 0; i < conf->raid_disks; i++)
4368 if (conf->disks[i].rdev == NULL)
4369 still_degraded = 1;
4371 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4373 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4375 handle_stripe(sh);
4376 release_stripe(sh);
4378 return STRIPE_SECTORS;
4381 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4383 /* We may not be able to submit a whole bio at once as there
4384 * may not be enough stripe_heads available.
4385 * We cannot pre-allocate enough stripe_heads as we may need
4386 * more than exist in the cache (if we allow ever large chunks).
4387 * So we do one stripe head at a time and record in
4388 * ->bi_hw_segments how many have been done.
4390 * We *know* that this entire raid_bio is in one chunk, so
4391 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4393 struct stripe_head *sh;
4394 int dd_idx;
4395 sector_t sector, logical_sector, last_sector;
4396 int scnt = 0;
4397 int remaining;
4398 int handled = 0;
4400 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4401 sector = raid5_compute_sector(conf, logical_sector,
4402 0, &dd_idx, NULL);
4403 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4405 for (; logical_sector < last_sector;
4406 logical_sector += STRIPE_SECTORS,
4407 sector += STRIPE_SECTORS,
4408 scnt++) {
4410 if (scnt < raid5_bi_hw_segments(raid_bio))
4411 /* already done this stripe */
4412 continue;
4414 sh = get_active_stripe(conf, sector, 0, 1, 0);
4416 if (!sh) {
4417 /* failed to get a stripe - must wait */
4418 raid5_set_bi_hw_segments(raid_bio, scnt);
4419 conf->retry_read_aligned = raid_bio;
4420 return handled;
4423 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4424 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4425 release_stripe(sh);
4426 raid5_set_bi_hw_segments(raid_bio, scnt);
4427 conf->retry_read_aligned = raid_bio;
4428 return handled;
4431 handle_stripe(sh);
4432 release_stripe(sh);
4433 handled++;
4435 spin_lock_irq(&conf->device_lock);
4436 remaining = raid5_dec_bi_phys_segments(raid_bio);
4437 spin_unlock_irq(&conf->device_lock);
4438 if (remaining == 0)
4439 bio_endio(raid_bio, 0);
4440 if (atomic_dec_and_test(&conf->active_aligned_reads))
4441 wake_up(&conf->wait_for_stripe);
4442 return handled;
4447 * This is our raid5 kernel thread.
4449 * We scan the hash table for stripes which can be handled now.
4450 * During the scan, completed stripes are saved for us by the interrupt
4451 * handler, so that they will not have to wait for our next wakeup.
4453 static void raid5d(mddev_t *mddev)
4455 struct stripe_head *sh;
4456 raid5_conf_t *conf = mddev->private;
4457 int handled;
4458 struct blk_plug plug;
4460 pr_debug("+++ raid5d active\n");
4462 md_check_recovery(mddev);
4464 blk_start_plug(&plug);
4465 handled = 0;
4466 spin_lock_irq(&conf->device_lock);
4467 while (1) {
4468 struct bio *bio;
4470 if (atomic_read(&mddev->plug_cnt) == 0 &&
4471 !list_empty(&conf->bitmap_list)) {
4472 /* Now is a good time to flush some bitmap updates */
4473 conf->seq_flush++;
4474 spin_unlock_irq(&conf->device_lock);
4475 bitmap_unplug(mddev->bitmap);
4476 spin_lock_irq(&conf->device_lock);
4477 conf->seq_write = conf->seq_flush;
4478 activate_bit_delay(conf);
4480 if (atomic_read(&mddev->plug_cnt) == 0)
4481 raid5_activate_delayed(conf);
4483 while ((bio = remove_bio_from_retry(conf))) {
4484 int ok;
4485 spin_unlock_irq(&conf->device_lock);
4486 ok = retry_aligned_read(conf, bio);
4487 spin_lock_irq(&conf->device_lock);
4488 if (!ok)
4489 break;
4490 handled++;
4493 sh = __get_priority_stripe(conf);
4495 if (!sh)
4496 break;
4497 spin_unlock_irq(&conf->device_lock);
4499 handled++;
4500 handle_stripe(sh);
4501 release_stripe(sh);
4502 cond_resched();
4504 spin_lock_irq(&conf->device_lock);
4506 pr_debug("%d stripes handled\n", handled);
4508 spin_unlock_irq(&conf->device_lock);
4510 async_tx_issue_pending_all();
4511 blk_finish_plug(&plug);
4513 pr_debug("--- raid5d inactive\n");
4516 static ssize_t
4517 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4519 raid5_conf_t *conf = mddev->private;
4520 if (conf)
4521 return sprintf(page, "%d\n", conf->max_nr_stripes);
4522 else
4523 return 0;
4527 raid5_set_cache_size(mddev_t *mddev, int size)
4529 raid5_conf_t *conf = mddev->private;
4530 int err;
4532 if (size <= 16 || size > 32768)
4533 return -EINVAL;
4534 while (size < conf->max_nr_stripes) {
4535 if (drop_one_stripe(conf))
4536 conf->max_nr_stripes--;
4537 else
4538 break;
4540 err = md_allow_write(mddev);
4541 if (err)
4542 return err;
4543 while (size > conf->max_nr_stripes) {
4544 if (grow_one_stripe(conf))
4545 conf->max_nr_stripes++;
4546 else break;
4548 return 0;
4550 EXPORT_SYMBOL(raid5_set_cache_size);
4552 static ssize_t
4553 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4555 raid5_conf_t *conf = mddev->private;
4556 unsigned long new;
4557 int err;
4559 if (len >= PAGE_SIZE)
4560 return -EINVAL;
4561 if (!conf)
4562 return -ENODEV;
4564 if (strict_strtoul(page, 10, &new))
4565 return -EINVAL;
4566 err = raid5_set_cache_size(mddev, new);
4567 if (err)
4568 return err;
4569 return len;
4572 static struct md_sysfs_entry
4573 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4574 raid5_show_stripe_cache_size,
4575 raid5_store_stripe_cache_size);
4577 static ssize_t
4578 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4580 raid5_conf_t *conf = mddev->private;
4581 if (conf)
4582 return sprintf(page, "%d\n", conf->bypass_threshold);
4583 else
4584 return 0;
4587 static ssize_t
4588 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4590 raid5_conf_t *conf = mddev->private;
4591 unsigned long new;
4592 if (len >= PAGE_SIZE)
4593 return -EINVAL;
4594 if (!conf)
4595 return -ENODEV;
4597 if (strict_strtoul(page, 10, &new))
4598 return -EINVAL;
4599 if (new > conf->max_nr_stripes)
4600 return -EINVAL;
4601 conf->bypass_threshold = new;
4602 return len;
4605 static struct md_sysfs_entry
4606 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4607 S_IRUGO | S_IWUSR,
4608 raid5_show_preread_threshold,
4609 raid5_store_preread_threshold);
4611 static ssize_t
4612 stripe_cache_active_show(mddev_t *mddev, char *page)
4614 raid5_conf_t *conf = mddev->private;
4615 if (conf)
4616 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4617 else
4618 return 0;
4621 static struct md_sysfs_entry
4622 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4624 static struct attribute *raid5_attrs[] = {
4625 &raid5_stripecache_size.attr,
4626 &raid5_stripecache_active.attr,
4627 &raid5_preread_bypass_threshold.attr,
4628 NULL,
4630 static struct attribute_group raid5_attrs_group = {
4631 .name = NULL,
4632 .attrs = raid5_attrs,
4635 static sector_t
4636 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4638 raid5_conf_t *conf = mddev->private;
4640 if (!sectors)
4641 sectors = mddev->dev_sectors;
4642 if (!raid_disks)
4643 /* size is defined by the smallest of previous and new size */
4644 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4646 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4647 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4648 return sectors * (raid_disks - conf->max_degraded);
4651 static void raid5_free_percpu(raid5_conf_t *conf)
4653 struct raid5_percpu *percpu;
4654 unsigned long cpu;
4656 if (!conf->percpu)
4657 return;
4659 get_online_cpus();
4660 for_each_possible_cpu(cpu) {
4661 percpu = per_cpu_ptr(conf->percpu, cpu);
4662 safe_put_page(percpu->spare_page);
4663 kfree(percpu->scribble);
4665 #ifdef CONFIG_HOTPLUG_CPU
4666 unregister_cpu_notifier(&conf->cpu_notify);
4667 #endif
4668 put_online_cpus();
4670 free_percpu(conf->percpu);
4673 static void free_conf(raid5_conf_t *conf)
4675 shrink_stripes(conf);
4676 raid5_free_percpu(conf);
4677 kfree(conf->disks);
4678 kfree(conf->stripe_hashtbl);
4679 kfree(conf);
4682 #ifdef CONFIG_HOTPLUG_CPU
4683 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4684 void *hcpu)
4686 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4687 long cpu = (long)hcpu;
4688 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4690 switch (action) {
4691 case CPU_UP_PREPARE:
4692 case CPU_UP_PREPARE_FROZEN:
4693 if (conf->level == 6 && !percpu->spare_page)
4694 percpu->spare_page = alloc_page(GFP_KERNEL);
4695 if (!percpu->scribble)
4696 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4698 if (!percpu->scribble ||
4699 (conf->level == 6 && !percpu->spare_page)) {
4700 safe_put_page(percpu->spare_page);
4701 kfree(percpu->scribble);
4702 pr_err("%s: failed memory allocation for cpu%ld\n",
4703 __func__, cpu);
4704 return notifier_from_errno(-ENOMEM);
4706 break;
4707 case CPU_DEAD:
4708 case CPU_DEAD_FROZEN:
4709 safe_put_page(percpu->spare_page);
4710 kfree(percpu->scribble);
4711 percpu->spare_page = NULL;
4712 percpu->scribble = NULL;
4713 break;
4714 default:
4715 break;
4717 return NOTIFY_OK;
4719 #endif
4721 static int raid5_alloc_percpu(raid5_conf_t *conf)
4723 unsigned long cpu;
4724 struct page *spare_page;
4725 struct raid5_percpu __percpu *allcpus;
4726 void *scribble;
4727 int err;
4729 allcpus = alloc_percpu(struct raid5_percpu);
4730 if (!allcpus)
4731 return -ENOMEM;
4732 conf->percpu = allcpus;
4734 get_online_cpus();
4735 err = 0;
4736 for_each_present_cpu(cpu) {
4737 if (conf->level == 6) {
4738 spare_page = alloc_page(GFP_KERNEL);
4739 if (!spare_page) {
4740 err = -ENOMEM;
4741 break;
4743 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4745 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4746 if (!scribble) {
4747 err = -ENOMEM;
4748 break;
4750 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4752 #ifdef CONFIG_HOTPLUG_CPU
4753 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4754 conf->cpu_notify.priority = 0;
4755 if (err == 0)
4756 err = register_cpu_notifier(&conf->cpu_notify);
4757 #endif
4758 put_online_cpus();
4760 return err;
4763 static raid5_conf_t *setup_conf(mddev_t *mddev)
4765 raid5_conf_t *conf;
4766 int raid_disk, memory, max_disks;
4767 mdk_rdev_t *rdev;
4768 struct disk_info *disk;
4770 if (mddev->new_level != 5
4771 && mddev->new_level != 4
4772 && mddev->new_level != 6) {
4773 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4774 mdname(mddev), mddev->new_level);
4775 return ERR_PTR(-EIO);
4777 if ((mddev->new_level == 5
4778 && !algorithm_valid_raid5(mddev->new_layout)) ||
4779 (mddev->new_level == 6
4780 && !algorithm_valid_raid6(mddev->new_layout))) {
4781 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4782 mdname(mddev), mddev->new_layout);
4783 return ERR_PTR(-EIO);
4785 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4786 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4787 mdname(mddev), mddev->raid_disks);
4788 return ERR_PTR(-EINVAL);
4791 if (!mddev->new_chunk_sectors ||
4792 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4793 !is_power_of_2(mddev->new_chunk_sectors)) {
4794 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4795 mdname(mddev), mddev->new_chunk_sectors << 9);
4796 return ERR_PTR(-EINVAL);
4799 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4800 if (conf == NULL)
4801 goto abort;
4802 spin_lock_init(&conf->device_lock);
4803 init_waitqueue_head(&conf->wait_for_stripe);
4804 init_waitqueue_head(&conf->wait_for_overlap);
4805 INIT_LIST_HEAD(&conf->handle_list);
4806 INIT_LIST_HEAD(&conf->hold_list);
4807 INIT_LIST_HEAD(&conf->delayed_list);
4808 INIT_LIST_HEAD(&conf->bitmap_list);
4809 INIT_LIST_HEAD(&conf->inactive_list);
4810 atomic_set(&conf->active_stripes, 0);
4811 atomic_set(&conf->preread_active_stripes, 0);
4812 atomic_set(&conf->active_aligned_reads, 0);
4813 conf->bypass_threshold = BYPASS_THRESHOLD;
4815 conf->raid_disks = mddev->raid_disks;
4816 if (mddev->reshape_position == MaxSector)
4817 conf->previous_raid_disks = mddev->raid_disks;
4818 else
4819 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4820 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4821 conf->scribble_len = scribble_len(max_disks);
4823 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4824 GFP_KERNEL);
4825 if (!conf->disks)
4826 goto abort;
4828 conf->mddev = mddev;
4830 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4831 goto abort;
4833 conf->level = mddev->new_level;
4834 if (raid5_alloc_percpu(conf) != 0)
4835 goto abort;
4837 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4839 list_for_each_entry(rdev, &mddev->disks, same_set) {
4840 raid_disk = rdev->raid_disk;
4841 if (raid_disk >= max_disks
4842 || raid_disk < 0)
4843 continue;
4844 disk = conf->disks + raid_disk;
4846 disk->rdev = rdev;
4848 if (test_bit(In_sync, &rdev->flags)) {
4849 char b[BDEVNAME_SIZE];
4850 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4851 " disk %d\n",
4852 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4853 } else if (rdev->saved_raid_disk != raid_disk)
4854 /* Cannot rely on bitmap to complete recovery */
4855 conf->fullsync = 1;
4858 conf->chunk_sectors = mddev->new_chunk_sectors;
4859 conf->level = mddev->new_level;
4860 if (conf->level == 6)
4861 conf->max_degraded = 2;
4862 else
4863 conf->max_degraded = 1;
4864 conf->algorithm = mddev->new_layout;
4865 conf->max_nr_stripes = NR_STRIPES;
4866 conf->reshape_progress = mddev->reshape_position;
4867 if (conf->reshape_progress != MaxSector) {
4868 conf->prev_chunk_sectors = mddev->chunk_sectors;
4869 conf->prev_algo = mddev->layout;
4872 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4873 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4874 if (grow_stripes(conf, conf->max_nr_stripes)) {
4875 printk(KERN_ERR
4876 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4877 mdname(mddev), memory);
4878 goto abort;
4879 } else
4880 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4881 mdname(mddev), memory);
4883 conf->thread = md_register_thread(raid5d, mddev, NULL);
4884 if (!conf->thread) {
4885 printk(KERN_ERR
4886 "md/raid:%s: couldn't allocate thread.\n",
4887 mdname(mddev));
4888 goto abort;
4891 return conf;
4893 abort:
4894 if (conf) {
4895 free_conf(conf);
4896 return ERR_PTR(-EIO);
4897 } else
4898 return ERR_PTR(-ENOMEM);
4902 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4904 switch (algo) {
4905 case ALGORITHM_PARITY_0:
4906 if (raid_disk < max_degraded)
4907 return 1;
4908 break;
4909 case ALGORITHM_PARITY_N:
4910 if (raid_disk >= raid_disks - max_degraded)
4911 return 1;
4912 break;
4913 case ALGORITHM_PARITY_0_6:
4914 if (raid_disk == 0 ||
4915 raid_disk == raid_disks - 1)
4916 return 1;
4917 break;
4918 case ALGORITHM_LEFT_ASYMMETRIC_6:
4919 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4920 case ALGORITHM_LEFT_SYMMETRIC_6:
4921 case ALGORITHM_RIGHT_SYMMETRIC_6:
4922 if (raid_disk == raid_disks - 1)
4923 return 1;
4925 return 0;
4928 static int run(mddev_t *mddev)
4930 raid5_conf_t *conf;
4931 int working_disks = 0;
4932 int dirty_parity_disks = 0;
4933 mdk_rdev_t *rdev;
4934 sector_t reshape_offset = 0;
4936 if (mddev->recovery_cp != MaxSector)
4937 printk(KERN_NOTICE "md/raid:%s: not clean"
4938 " -- starting background reconstruction\n",
4939 mdname(mddev));
4940 if (mddev->reshape_position != MaxSector) {
4941 /* Check that we can continue the reshape.
4942 * Currently only disks can change, it must
4943 * increase, and we must be past the point where
4944 * a stripe over-writes itself
4946 sector_t here_new, here_old;
4947 int old_disks;
4948 int max_degraded = (mddev->level == 6 ? 2 : 1);
4950 if (mddev->new_level != mddev->level) {
4951 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4952 "required - aborting.\n",
4953 mdname(mddev));
4954 return -EINVAL;
4956 old_disks = mddev->raid_disks - mddev->delta_disks;
4957 /* reshape_position must be on a new-stripe boundary, and one
4958 * further up in new geometry must map after here in old
4959 * geometry.
4961 here_new = mddev->reshape_position;
4962 if (sector_div(here_new, mddev->new_chunk_sectors *
4963 (mddev->raid_disks - max_degraded))) {
4964 printk(KERN_ERR "md/raid:%s: reshape_position not "
4965 "on a stripe boundary\n", mdname(mddev));
4966 return -EINVAL;
4968 reshape_offset = here_new * mddev->new_chunk_sectors;
4969 /* here_new is the stripe we will write to */
4970 here_old = mddev->reshape_position;
4971 sector_div(here_old, mddev->chunk_sectors *
4972 (old_disks-max_degraded));
4973 /* here_old is the first stripe that we might need to read
4974 * from */
4975 if (mddev->delta_disks == 0) {
4976 /* We cannot be sure it is safe to start an in-place
4977 * reshape. It is only safe if user-space if monitoring
4978 * and taking constant backups.
4979 * mdadm always starts a situation like this in
4980 * readonly mode so it can take control before
4981 * allowing any writes. So just check for that.
4983 if ((here_new * mddev->new_chunk_sectors !=
4984 here_old * mddev->chunk_sectors) ||
4985 mddev->ro == 0) {
4986 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4987 " in read-only mode - aborting\n",
4988 mdname(mddev));
4989 return -EINVAL;
4991 } else if (mddev->delta_disks < 0
4992 ? (here_new * mddev->new_chunk_sectors <=
4993 here_old * mddev->chunk_sectors)
4994 : (here_new * mddev->new_chunk_sectors >=
4995 here_old * mddev->chunk_sectors)) {
4996 /* Reading from the same stripe as writing to - bad */
4997 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4998 "auto-recovery - aborting.\n",
4999 mdname(mddev));
5000 return -EINVAL;
5002 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5003 mdname(mddev));
5004 /* OK, we should be able to continue; */
5005 } else {
5006 BUG_ON(mddev->level != mddev->new_level);
5007 BUG_ON(mddev->layout != mddev->new_layout);
5008 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5009 BUG_ON(mddev->delta_disks != 0);
5012 if (mddev->private == NULL)
5013 conf = setup_conf(mddev);
5014 else
5015 conf = mddev->private;
5017 if (IS_ERR(conf))
5018 return PTR_ERR(conf);
5020 mddev->thread = conf->thread;
5021 conf->thread = NULL;
5022 mddev->private = conf;
5025 * 0 for a fully functional array, 1 or 2 for a degraded array.
5027 list_for_each_entry(rdev, &mddev->disks, same_set) {
5028 if (rdev->raid_disk < 0)
5029 continue;
5030 if (test_bit(In_sync, &rdev->flags)) {
5031 working_disks++;
5032 continue;
5034 /* This disc is not fully in-sync. However if it
5035 * just stored parity (beyond the recovery_offset),
5036 * when we don't need to be concerned about the
5037 * array being dirty.
5038 * When reshape goes 'backwards', we never have
5039 * partially completed devices, so we only need
5040 * to worry about reshape going forwards.
5042 /* Hack because v0.91 doesn't store recovery_offset properly. */
5043 if (mddev->major_version == 0 &&
5044 mddev->minor_version > 90)
5045 rdev->recovery_offset = reshape_offset;
5047 if (rdev->recovery_offset < reshape_offset) {
5048 /* We need to check old and new layout */
5049 if (!only_parity(rdev->raid_disk,
5050 conf->algorithm,
5051 conf->raid_disks,
5052 conf->max_degraded))
5053 continue;
5055 if (!only_parity(rdev->raid_disk,
5056 conf->prev_algo,
5057 conf->previous_raid_disks,
5058 conf->max_degraded))
5059 continue;
5060 dirty_parity_disks++;
5063 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5064 - working_disks);
5066 if (has_failed(conf)) {
5067 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5068 " (%d/%d failed)\n",
5069 mdname(mddev), mddev->degraded, conf->raid_disks);
5070 goto abort;
5073 /* device size must be a multiple of chunk size */
5074 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5075 mddev->resync_max_sectors = mddev->dev_sectors;
5077 if (mddev->degraded > dirty_parity_disks &&
5078 mddev->recovery_cp != MaxSector) {
5079 if (mddev->ok_start_degraded)
5080 printk(KERN_WARNING
5081 "md/raid:%s: starting dirty degraded array"
5082 " - data corruption possible.\n",
5083 mdname(mddev));
5084 else {
5085 printk(KERN_ERR
5086 "md/raid:%s: cannot start dirty degraded array.\n",
5087 mdname(mddev));
5088 goto abort;
5092 if (mddev->degraded == 0)
5093 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5094 " devices, algorithm %d\n", mdname(mddev), conf->level,
5095 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5096 mddev->new_layout);
5097 else
5098 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5099 " out of %d devices, algorithm %d\n",
5100 mdname(mddev), conf->level,
5101 mddev->raid_disks - mddev->degraded,
5102 mddev->raid_disks, mddev->new_layout);
5104 print_raid5_conf(conf);
5106 if (conf->reshape_progress != MaxSector) {
5107 conf->reshape_safe = conf->reshape_progress;
5108 atomic_set(&conf->reshape_stripes, 0);
5109 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5110 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5111 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5112 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5113 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5114 "reshape");
5118 /* Ok, everything is just fine now */
5119 if (mddev->to_remove == &raid5_attrs_group)
5120 mddev->to_remove = NULL;
5121 else if (mddev->kobj.sd &&
5122 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5123 printk(KERN_WARNING
5124 "raid5: failed to create sysfs attributes for %s\n",
5125 mdname(mddev));
5126 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5128 if (mddev->queue) {
5129 int chunk_size;
5130 /* read-ahead size must cover two whole stripes, which
5131 * is 2 * (datadisks) * chunksize where 'n' is the
5132 * number of raid devices
5134 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5135 int stripe = data_disks *
5136 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5137 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5138 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5140 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5142 mddev->queue->backing_dev_info.congested_data = mddev;
5143 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5145 chunk_size = mddev->chunk_sectors << 9;
5146 blk_queue_io_min(mddev->queue, chunk_size);
5147 blk_queue_io_opt(mddev->queue, chunk_size *
5148 (conf->raid_disks - conf->max_degraded));
5150 list_for_each_entry(rdev, &mddev->disks, same_set)
5151 disk_stack_limits(mddev->gendisk, rdev->bdev,
5152 rdev->data_offset << 9);
5155 return 0;
5156 abort:
5157 md_unregister_thread(mddev->thread);
5158 mddev->thread = NULL;
5159 if (conf) {
5160 print_raid5_conf(conf);
5161 free_conf(conf);
5163 mddev->private = NULL;
5164 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5165 return -EIO;
5168 static int stop(mddev_t *mddev)
5170 raid5_conf_t *conf = mddev->private;
5172 md_unregister_thread(mddev->thread);
5173 mddev->thread = NULL;
5174 if (mddev->queue)
5175 mddev->queue->backing_dev_info.congested_fn = NULL;
5176 free_conf(conf);
5177 mddev->private = NULL;
5178 mddev->to_remove = &raid5_attrs_group;
5179 return 0;
5182 #ifdef DEBUG
5183 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5185 int i;
5187 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5188 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5189 seq_printf(seq, "sh %llu, count %d.\n",
5190 (unsigned long long)sh->sector, atomic_read(&sh->count));
5191 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5192 for (i = 0; i < sh->disks; i++) {
5193 seq_printf(seq, "(cache%d: %p %ld) ",
5194 i, sh->dev[i].page, sh->dev[i].flags);
5196 seq_printf(seq, "\n");
5199 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5201 struct stripe_head *sh;
5202 struct hlist_node *hn;
5203 int i;
5205 spin_lock_irq(&conf->device_lock);
5206 for (i = 0; i < NR_HASH; i++) {
5207 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5208 if (sh->raid_conf != conf)
5209 continue;
5210 print_sh(seq, sh);
5213 spin_unlock_irq(&conf->device_lock);
5215 #endif
5217 static void status(struct seq_file *seq, mddev_t *mddev)
5219 raid5_conf_t *conf = mddev->private;
5220 int i;
5222 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5223 mddev->chunk_sectors / 2, mddev->layout);
5224 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5225 for (i = 0; i < conf->raid_disks; i++)
5226 seq_printf (seq, "%s",
5227 conf->disks[i].rdev &&
5228 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5229 seq_printf (seq, "]");
5230 #ifdef DEBUG
5231 seq_printf (seq, "\n");
5232 printall(seq, conf);
5233 #endif
5236 static void print_raid5_conf (raid5_conf_t *conf)
5238 int i;
5239 struct disk_info *tmp;
5241 printk(KERN_DEBUG "RAID conf printout:\n");
5242 if (!conf) {
5243 printk("(conf==NULL)\n");
5244 return;
5246 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5247 conf->raid_disks,
5248 conf->raid_disks - conf->mddev->degraded);
5250 for (i = 0; i < conf->raid_disks; i++) {
5251 char b[BDEVNAME_SIZE];
5252 tmp = conf->disks + i;
5253 if (tmp->rdev)
5254 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5255 i, !test_bit(Faulty, &tmp->rdev->flags),
5256 bdevname(tmp->rdev->bdev, b));
5260 static int raid5_spare_active(mddev_t *mddev)
5262 int i;
5263 raid5_conf_t *conf = mddev->private;
5264 struct disk_info *tmp;
5265 int count = 0;
5266 unsigned long flags;
5268 for (i = 0; i < conf->raid_disks; i++) {
5269 tmp = conf->disks + i;
5270 if (tmp->rdev
5271 && tmp->rdev->recovery_offset == MaxSector
5272 && !test_bit(Faulty, &tmp->rdev->flags)
5273 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5274 count++;
5275 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5278 spin_lock_irqsave(&conf->device_lock, flags);
5279 mddev->degraded -= count;
5280 spin_unlock_irqrestore(&conf->device_lock, flags);
5281 print_raid5_conf(conf);
5282 return count;
5285 static int raid5_remove_disk(mddev_t *mddev, int number)
5287 raid5_conf_t *conf = mddev->private;
5288 int err = 0;
5289 mdk_rdev_t *rdev;
5290 struct disk_info *p = conf->disks + number;
5292 print_raid5_conf(conf);
5293 rdev = p->rdev;
5294 if (rdev) {
5295 if (number >= conf->raid_disks &&
5296 conf->reshape_progress == MaxSector)
5297 clear_bit(In_sync, &rdev->flags);
5299 if (test_bit(In_sync, &rdev->flags) ||
5300 atomic_read(&rdev->nr_pending)) {
5301 err = -EBUSY;
5302 goto abort;
5304 /* Only remove non-faulty devices if recovery
5305 * isn't possible.
5307 if (!test_bit(Faulty, &rdev->flags) &&
5308 !has_failed(conf) &&
5309 number < conf->raid_disks) {
5310 err = -EBUSY;
5311 goto abort;
5313 p->rdev = NULL;
5314 synchronize_rcu();
5315 if (atomic_read(&rdev->nr_pending)) {
5316 /* lost the race, try later */
5317 err = -EBUSY;
5318 p->rdev = rdev;
5321 abort:
5323 print_raid5_conf(conf);
5324 return err;
5327 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5329 raid5_conf_t *conf = mddev->private;
5330 int err = -EEXIST;
5331 int disk;
5332 struct disk_info *p;
5333 int first = 0;
5334 int last = conf->raid_disks - 1;
5336 if (has_failed(conf))
5337 /* no point adding a device */
5338 return -EINVAL;
5340 if (rdev->raid_disk >= 0)
5341 first = last = rdev->raid_disk;
5344 * find the disk ... but prefer rdev->saved_raid_disk
5345 * if possible.
5347 if (rdev->saved_raid_disk >= 0 &&
5348 rdev->saved_raid_disk >= first &&
5349 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5350 disk = rdev->saved_raid_disk;
5351 else
5352 disk = first;
5353 for ( ; disk <= last ; disk++)
5354 if ((p=conf->disks + disk)->rdev == NULL) {
5355 clear_bit(In_sync, &rdev->flags);
5356 rdev->raid_disk = disk;
5357 err = 0;
5358 if (rdev->saved_raid_disk != disk)
5359 conf->fullsync = 1;
5360 rcu_assign_pointer(p->rdev, rdev);
5361 break;
5363 print_raid5_conf(conf);
5364 return err;
5367 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5369 /* no resync is happening, and there is enough space
5370 * on all devices, so we can resize.
5371 * We need to make sure resync covers any new space.
5372 * If the array is shrinking we should possibly wait until
5373 * any io in the removed space completes, but it hardly seems
5374 * worth it.
5376 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5377 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5378 mddev->raid_disks));
5379 if (mddev->array_sectors >
5380 raid5_size(mddev, sectors, mddev->raid_disks))
5381 return -EINVAL;
5382 set_capacity(mddev->gendisk, mddev->array_sectors);
5383 revalidate_disk(mddev->gendisk);
5384 if (sectors > mddev->dev_sectors &&
5385 mddev->recovery_cp > mddev->dev_sectors) {
5386 mddev->recovery_cp = mddev->dev_sectors;
5387 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5389 mddev->dev_sectors = sectors;
5390 mddev->resync_max_sectors = sectors;
5391 return 0;
5394 static int check_stripe_cache(mddev_t *mddev)
5396 /* Can only proceed if there are plenty of stripe_heads.
5397 * We need a minimum of one full stripe,, and for sensible progress
5398 * it is best to have about 4 times that.
5399 * If we require 4 times, then the default 256 4K stripe_heads will
5400 * allow for chunk sizes up to 256K, which is probably OK.
5401 * If the chunk size is greater, user-space should request more
5402 * stripe_heads first.
5404 raid5_conf_t *conf = mddev->private;
5405 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5406 > conf->max_nr_stripes ||
5407 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5408 > conf->max_nr_stripes) {
5409 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5410 mdname(mddev),
5411 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5412 / STRIPE_SIZE)*4);
5413 return 0;
5415 return 1;
5418 static int check_reshape(mddev_t *mddev)
5420 raid5_conf_t *conf = mddev->private;
5422 if (mddev->delta_disks == 0 &&
5423 mddev->new_layout == mddev->layout &&
5424 mddev->new_chunk_sectors == mddev->chunk_sectors)
5425 return 0; /* nothing to do */
5426 if (mddev->bitmap)
5427 /* Cannot grow a bitmap yet */
5428 return -EBUSY;
5429 if (has_failed(conf))
5430 return -EINVAL;
5431 if (mddev->delta_disks < 0) {
5432 /* We might be able to shrink, but the devices must
5433 * be made bigger first.
5434 * For raid6, 4 is the minimum size.
5435 * Otherwise 2 is the minimum
5437 int min = 2;
5438 if (mddev->level == 6)
5439 min = 4;
5440 if (mddev->raid_disks + mddev->delta_disks < min)
5441 return -EINVAL;
5444 if (!check_stripe_cache(mddev))
5445 return -ENOSPC;
5447 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5450 static int raid5_start_reshape(mddev_t *mddev)
5452 raid5_conf_t *conf = mddev->private;
5453 mdk_rdev_t *rdev;
5454 int spares = 0;
5455 unsigned long flags;
5457 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5458 return -EBUSY;
5460 if (!check_stripe_cache(mddev))
5461 return -ENOSPC;
5463 list_for_each_entry(rdev, &mddev->disks, same_set)
5464 if (!test_bit(In_sync, &rdev->flags)
5465 && !test_bit(Faulty, &rdev->flags))
5466 spares++;
5468 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5469 /* Not enough devices even to make a degraded array
5470 * of that size
5472 return -EINVAL;
5474 /* Refuse to reduce size of the array. Any reductions in
5475 * array size must be through explicit setting of array_size
5476 * attribute.
5478 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5479 < mddev->array_sectors) {
5480 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5481 "before number of disks\n", mdname(mddev));
5482 return -EINVAL;
5485 atomic_set(&conf->reshape_stripes, 0);
5486 spin_lock_irq(&conf->device_lock);
5487 conf->previous_raid_disks = conf->raid_disks;
5488 conf->raid_disks += mddev->delta_disks;
5489 conf->prev_chunk_sectors = conf->chunk_sectors;
5490 conf->chunk_sectors = mddev->new_chunk_sectors;
5491 conf->prev_algo = conf->algorithm;
5492 conf->algorithm = mddev->new_layout;
5493 if (mddev->delta_disks < 0)
5494 conf->reshape_progress = raid5_size(mddev, 0, 0);
5495 else
5496 conf->reshape_progress = 0;
5497 conf->reshape_safe = conf->reshape_progress;
5498 conf->generation++;
5499 spin_unlock_irq(&conf->device_lock);
5501 /* Add some new drives, as many as will fit.
5502 * We know there are enough to make the newly sized array work.
5503 * Don't add devices if we are reducing the number of
5504 * devices in the array. This is because it is not possible
5505 * to correctly record the "partially reconstructed" state of
5506 * such devices during the reshape and confusion could result.
5508 if (mddev->delta_disks >= 0) {
5509 int added_devices = 0;
5510 list_for_each_entry(rdev, &mddev->disks, same_set)
5511 if (rdev->raid_disk < 0 &&
5512 !test_bit(Faulty, &rdev->flags)) {
5513 if (raid5_add_disk(mddev, rdev) == 0) {
5514 char nm[20];
5515 if (rdev->raid_disk
5516 >= conf->previous_raid_disks) {
5517 set_bit(In_sync, &rdev->flags);
5518 added_devices++;
5519 } else
5520 rdev->recovery_offset = 0;
5521 sprintf(nm, "rd%d", rdev->raid_disk);
5522 if (sysfs_create_link(&mddev->kobj,
5523 &rdev->kobj, nm))
5524 /* Failure here is OK */;
5526 } else if (rdev->raid_disk >= conf->previous_raid_disks
5527 && !test_bit(Faulty, &rdev->flags)) {
5528 /* This is a spare that was manually added */
5529 set_bit(In_sync, &rdev->flags);
5530 added_devices++;
5533 /* When a reshape changes the number of devices,
5534 * ->degraded is measured against the larger of the
5535 * pre and post number of devices.
5537 spin_lock_irqsave(&conf->device_lock, flags);
5538 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5539 - added_devices;
5540 spin_unlock_irqrestore(&conf->device_lock, flags);
5542 mddev->raid_disks = conf->raid_disks;
5543 mddev->reshape_position = conf->reshape_progress;
5544 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5546 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5547 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5548 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5549 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5550 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5551 "reshape");
5552 if (!mddev->sync_thread) {
5553 mddev->recovery = 0;
5554 spin_lock_irq(&conf->device_lock);
5555 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5556 conf->reshape_progress = MaxSector;
5557 spin_unlock_irq(&conf->device_lock);
5558 return -EAGAIN;
5560 conf->reshape_checkpoint = jiffies;
5561 md_wakeup_thread(mddev->sync_thread);
5562 md_new_event(mddev);
5563 return 0;
5566 /* This is called from the reshape thread and should make any
5567 * changes needed in 'conf'
5569 static void end_reshape(raid5_conf_t *conf)
5572 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5574 spin_lock_irq(&conf->device_lock);
5575 conf->previous_raid_disks = conf->raid_disks;
5576 conf->reshape_progress = MaxSector;
5577 spin_unlock_irq(&conf->device_lock);
5578 wake_up(&conf->wait_for_overlap);
5580 /* read-ahead size must cover two whole stripes, which is
5581 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5583 if (conf->mddev->queue) {
5584 int data_disks = conf->raid_disks - conf->max_degraded;
5585 int stripe = data_disks * ((conf->chunk_sectors << 9)
5586 / PAGE_SIZE);
5587 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5588 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5593 /* This is called from the raid5d thread with mddev_lock held.
5594 * It makes config changes to the device.
5596 static void raid5_finish_reshape(mddev_t *mddev)
5598 raid5_conf_t *conf = mddev->private;
5600 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5602 if (mddev->delta_disks > 0) {
5603 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5604 set_capacity(mddev->gendisk, mddev->array_sectors);
5605 revalidate_disk(mddev->gendisk);
5606 } else {
5607 int d;
5608 mddev->degraded = conf->raid_disks;
5609 for (d = 0; d < conf->raid_disks ; d++)
5610 if (conf->disks[d].rdev &&
5611 test_bit(In_sync,
5612 &conf->disks[d].rdev->flags))
5613 mddev->degraded--;
5614 for (d = conf->raid_disks ;
5615 d < conf->raid_disks - mddev->delta_disks;
5616 d++) {
5617 mdk_rdev_t *rdev = conf->disks[d].rdev;
5618 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5619 char nm[20];
5620 sprintf(nm, "rd%d", rdev->raid_disk);
5621 sysfs_remove_link(&mddev->kobj, nm);
5622 rdev->raid_disk = -1;
5626 mddev->layout = conf->algorithm;
5627 mddev->chunk_sectors = conf->chunk_sectors;
5628 mddev->reshape_position = MaxSector;
5629 mddev->delta_disks = 0;
5633 static void raid5_quiesce(mddev_t *mddev, int state)
5635 raid5_conf_t *conf = mddev->private;
5637 switch(state) {
5638 case 2: /* resume for a suspend */
5639 wake_up(&conf->wait_for_overlap);
5640 break;
5642 case 1: /* stop all writes */
5643 spin_lock_irq(&conf->device_lock);
5644 /* '2' tells resync/reshape to pause so that all
5645 * active stripes can drain
5647 conf->quiesce = 2;
5648 wait_event_lock_irq(conf->wait_for_stripe,
5649 atomic_read(&conf->active_stripes) == 0 &&
5650 atomic_read(&conf->active_aligned_reads) == 0,
5651 conf->device_lock, /* nothing */);
5652 conf->quiesce = 1;
5653 spin_unlock_irq(&conf->device_lock);
5654 /* allow reshape to continue */
5655 wake_up(&conf->wait_for_overlap);
5656 break;
5658 case 0: /* re-enable writes */
5659 spin_lock_irq(&conf->device_lock);
5660 conf->quiesce = 0;
5661 wake_up(&conf->wait_for_stripe);
5662 wake_up(&conf->wait_for_overlap);
5663 spin_unlock_irq(&conf->device_lock);
5664 break;
5669 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5671 struct raid0_private_data *raid0_priv = mddev->private;
5672 sector_t sectors;
5674 /* for raid0 takeover only one zone is supported */
5675 if (raid0_priv->nr_strip_zones > 1) {
5676 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5677 mdname(mddev));
5678 return ERR_PTR(-EINVAL);
5681 sectors = raid0_priv->strip_zone[0].zone_end;
5682 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5683 mddev->dev_sectors = sectors;
5684 mddev->new_level = level;
5685 mddev->new_layout = ALGORITHM_PARITY_N;
5686 mddev->new_chunk_sectors = mddev->chunk_sectors;
5687 mddev->raid_disks += 1;
5688 mddev->delta_disks = 1;
5689 /* make sure it will be not marked as dirty */
5690 mddev->recovery_cp = MaxSector;
5692 return setup_conf(mddev);
5696 static void *raid5_takeover_raid1(mddev_t *mddev)
5698 int chunksect;
5700 if (mddev->raid_disks != 2 ||
5701 mddev->degraded > 1)
5702 return ERR_PTR(-EINVAL);
5704 /* Should check if there are write-behind devices? */
5706 chunksect = 64*2; /* 64K by default */
5708 /* The array must be an exact multiple of chunksize */
5709 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5710 chunksect >>= 1;
5712 if ((chunksect<<9) < STRIPE_SIZE)
5713 /* array size does not allow a suitable chunk size */
5714 return ERR_PTR(-EINVAL);
5716 mddev->new_level = 5;
5717 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5718 mddev->new_chunk_sectors = chunksect;
5720 return setup_conf(mddev);
5723 static void *raid5_takeover_raid6(mddev_t *mddev)
5725 int new_layout;
5727 switch (mddev->layout) {
5728 case ALGORITHM_LEFT_ASYMMETRIC_6:
5729 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5730 break;
5731 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5732 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5733 break;
5734 case ALGORITHM_LEFT_SYMMETRIC_6:
5735 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5736 break;
5737 case ALGORITHM_RIGHT_SYMMETRIC_6:
5738 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5739 break;
5740 case ALGORITHM_PARITY_0_6:
5741 new_layout = ALGORITHM_PARITY_0;
5742 break;
5743 case ALGORITHM_PARITY_N:
5744 new_layout = ALGORITHM_PARITY_N;
5745 break;
5746 default:
5747 return ERR_PTR(-EINVAL);
5749 mddev->new_level = 5;
5750 mddev->new_layout = new_layout;
5751 mddev->delta_disks = -1;
5752 mddev->raid_disks -= 1;
5753 return setup_conf(mddev);
5757 static int raid5_check_reshape(mddev_t *mddev)
5759 /* For a 2-drive array, the layout and chunk size can be changed
5760 * immediately as not restriping is needed.
5761 * For larger arrays we record the new value - after validation
5762 * to be used by a reshape pass.
5764 raid5_conf_t *conf = mddev->private;
5765 int new_chunk = mddev->new_chunk_sectors;
5767 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5768 return -EINVAL;
5769 if (new_chunk > 0) {
5770 if (!is_power_of_2(new_chunk))
5771 return -EINVAL;
5772 if (new_chunk < (PAGE_SIZE>>9))
5773 return -EINVAL;
5774 if (mddev->array_sectors & (new_chunk-1))
5775 /* not factor of array size */
5776 return -EINVAL;
5779 /* They look valid */
5781 if (mddev->raid_disks == 2) {
5782 /* can make the change immediately */
5783 if (mddev->new_layout >= 0) {
5784 conf->algorithm = mddev->new_layout;
5785 mddev->layout = mddev->new_layout;
5787 if (new_chunk > 0) {
5788 conf->chunk_sectors = new_chunk ;
5789 mddev->chunk_sectors = new_chunk;
5791 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5792 md_wakeup_thread(mddev->thread);
5794 return check_reshape(mddev);
5797 static int raid6_check_reshape(mddev_t *mddev)
5799 int new_chunk = mddev->new_chunk_sectors;
5801 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5802 return -EINVAL;
5803 if (new_chunk > 0) {
5804 if (!is_power_of_2(new_chunk))
5805 return -EINVAL;
5806 if (new_chunk < (PAGE_SIZE >> 9))
5807 return -EINVAL;
5808 if (mddev->array_sectors & (new_chunk-1))
5809 /* not factor of array size */
5810 return -EINVAL;
5813 /* They look valid */
5814 return check_reshape(mddev);
5817 static void *raid5_takeover(mddev_t *mddev)
5819 /* raid5 can take over:
5820 * raid0 - if there is only one strip zone - make it a raid4 layout
5821 * raid1 - if there are two drives. We need to know the chunk size
5822 * raid4 - trivial - just use a raid4 layout.
5823 * raid6 - Providing it is a *_6 layout
5825 if (mddev->level == 0)
5826 return raid45_takeover_raid0(mddev, 5);
5827 if (mddev->level == 1)
5828 return raid5_takeover_raid1(mddev);
5829 if (mddev->level == 4) {
5830 mddev->new_layout = ALGORITHM_PARITY_N;
5831 mddev->new_level = 5;
5832 return setup_conf(mddev);
5834 if (mddev->level == 6)
5835 return raid5_takeover_raid6(mddev);
5837 return ERR_PTR(-EINVAL);
5840 static void *raid4_takeover(mddev_t *mddev)
5842 /* raid4 can take over:
5843 * raid0 - if there is only one strip zone
5844 * raid5 - if layout is right
5846 if (mddev->level == 0)
5847 return raid45_takeover_raid0(mddev, 4);
5848 if (mddev->level == 5 &&
5849 mddev->layout == ALGORITHM_PARITY_N) {
5850 mddev->new_layout = 0;
5851 mddev->new_level = 4;
5852 return setup_conf(mddev);
5854 return ERR_PTR(-EINVAL);
5857 static struct mdk_personality raid5_personality;
5859 static void *raid6_takeover(mddev_t *mddev)
5861 /* Currently can only take over a raid5. We map the
5862 * personality to an equivalent raid6 personality
5863 * with the Q block at the end.
5865 int new_layout;
5867 if (mddev->pers != &raid5_personality)
5868 return ERR_PTR(-EINVAL);
5869 if (mddev->degraded > 1)
5870 return ERR_PTR(-EINVAL);
5871 if (mddev->raid_disks > 253)
5872 return ERR_PTR(-EINVAL);
5873 if (mddev->raid_disks < 3)
5874 return ERR_PTR(-EINVAL);
5876 switch (mddev->layout) {
5877 case ALGORITHM_LEFT_ASYMMETRIC:
5878 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5879 break;
5880 case ALGORITHM_RIGHT_ASYMMETRIC:
5881 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5882 break;
5883 case ALGORITHM_LEFT_SYMMETRIC:
5884 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5885 break;
5886 case ALGORITHM_RIGHT_SYMMETRIC:
5887 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5888 break;
5889 case ALGORITHM_PARITY_0:
5890 new_layout = ALGORITHM_PARITY_0_6;
5891 break;
5892 case ALGORITHM_PARITY_N:
5893 new_layout = ALGORITHM_PARITY_N;
5894 break;
5895 default:
5896 return ERR_PTR(-EINVAL);
5898 mddev->new_level = 6;
5899 mddev->new_layout = new_layout;
5900 mddev->delta_disks = 1;
5901 mddev->raid_disks += 1;
5902 return setup_conf(mddev);
5906 static struct mdk_personality raid6_personality =
5908 .name = "raid6",
5909 .level = 6,
5910 .owner = THIS_MODULE,
5911 .make_request = make_request,
5912 .run = run,
5913 .stop = stop,
5914 .status = status,
5915 .error_handler = error,
5916 .hot_add_disk = raid5_add_disk,
5917 .hot_remove_disk= raid5_remove_disk,
5918 .spare_active = raid5_spare_active,
5919 .sync_request = sync_request,
5920 .resize = raid5_resize,
5921 .size = raid5_size,
5922 .check_reshape = raid6_check_reshape,
5923 .start_reshape = raid5_start_reshape,
5924 .finish_reshape = raid5_finish_reshape,
5925 .quiesce = raid5_quiesce,
5926 .takeover = raid6_takeover,
5928 static struct mdk_personality raid5_personality =
5930 .name = "raid5",
5931 .level = 5,
5932 .owner = THIS_MODULE,
5933 .make_request = make_request,
5934 .run = run,
5935 .stop = stop,
5936 .status = status,
5937 .error_handler = error,
5938 .hot_add_disk = raid5_add_disk,
5939 .hot_remove_disk= raid5_remove_disk,
5940 .spare_active = raid5_spare_active,
5941 .sync_request = sync_request,
5942 .resize = raid5_resize,
5943 .size = raid5_size,
5944 .check_reshape = raid5_check_reshape,
5945 .start_reshape = raid5_start_reshape,
5946 .finish_reshape = raid5_finish_reshape,
5947 .quiesce = raid5_quiesce,
5948 .takeover = raid5_takeover,
5951 static struct mdk_personality raid4_personality =
5953 .name = "raid4",
5954 .level = 4,
5955 .owner = THIS_MODULE,
5956 .make_request = make_request,
5957 .run = run,
5958 .stop = stop,
5959 .status = status,
5960 .error_handler = error,
5961 .hot_add_disk = raid5_add_disk,
5962 .hot_remove_disk= raid5_remove_disk,
5963 .spare_active = raid5_spare_active,
5964 .sync_request = sync_request,
5965 .resize = raid5_resize,
5966 .size = raid5_size,
5967 .check_reshape = raid5_check_reshape,
5968 .start_reshape = raid5_start_reshape,
5969 .finish_reshape = raid5_finish_reshape,
5970 .quiesce = raid5_quiesce,
5971 .takeover = raid4_takeover,
5974 static int __init raid5_init(void)
5976 register_md_personality(&raid6_personality);
5977 register_md_personality(&raid5_personality);
5978 register_md_personality(&raid4_personality);
5979 return 0;
5982 static void raid5_exit(void)
5984 unregister_md_personality(&raid6_personality);
5985 unregister_md_personality(&raid5_personality);
5986 unregister_md_personality(&raid4_personality);
5989 module_init(raid5_init);
5990 module_exit(raid5_exit);
5991 MODULE_LICENSE("GPL");
5992 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5993 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5994 MODULE_ALIAS("md-raid5");
5995 MODULE_ALIAS("md-raid4");
5996 MODULE_ALIAS("md-level-5");
5997 MODULE_ALIAS("md-level-4");
5998 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5999 MODULE_ALIAS("md-raid6");
6000 MODULE_ALIAS("md-level-6");
6002 /* This used to be two separate modules, they were: */
6003 MODULE_ALIAS("raid5");
6004 MODULE_ALIAS("raid6");