beceem: use kernel print_hex_dump function
[linux-2.6/x86.git] / drivers / spi / spidev.c
blob4e6245e67995b0b41395b63207e8edda43638b4b
1 /*
2 * spidev.c -- simple synchronous userspace interface to SPI devices
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
26 #include <linux/fs.h>
27 #include <linux/device.h>
28 #include <linux/err.h>
29 #include <linux/list.h>
30 #include <linux/errno.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spidev.h>
37 #include <asm/uaccess.h>
41 * This supports acccess to SPI devices using normal userspace I/O calls.
42 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
43 * and often mask message boundaries, full SPI support requires full duplex
44 * transfers. There are several kinds of internal message boundaries to
45 * handle chipselect management and other protocol options.
47 * SPI has a character major number assigned. We allocate minor numbers
48 * dynamically using a bitmask. You must use hotplug tools, such as udev
49 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
50 * nodes, since there is no fixed association of minor numbers with any
51 * particular SPI bus or device.
53 #define SPIDEV_MAJOR 153 /* assigned */
54 #define N_SPI_MINORS 32 /* ... up to 256 */
56 static DECLARE_BITMAP(minors, N_SPI_MINORS);
59 /* Bit masks for spi_device.mode management. Note that incorrect
60 * settings for some settings can cause *lots* of trouble for other
61 * devices on a shared bus:
63 * - CS_HIGH ... this device will be active when it shouldn't be
64 * - 3WIRE ... when active, it won't behave as it should
65 * - NO_CS ... there will be no explicit message boundaries; this
66 * is completely incompatible with the shared bus model
67 * - READY ... transfers may proceed when they shouldn't.
69 * REVISIT should changing those flags be privileged?
71 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
72 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
73 | SPI_NO_CS | SPI_READY)
75 struct spidev_data {
76 dev_t devt;
77 spinlock_t spi_lock;
78 struct spi_device *spi;
79 struct list_head device_entry;
81 /* buffer is NULL unless this device is open (users > 0) */
82 struct mutex buf_lock;
83 unsigned users;
84 u8 *buffer;
87 static LIST_HEAD(device_list);
88 static DEFINE_MUTEX(device_list_lock);
90 static unsigned bufsiz = 4096;
91 module_param(bufsiz, uint, S_IRUGO);
92 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
94 /*-------------------------------------------------------------------------*/
97 * We can't use the standard synchronous wrappers for file I/O; we
98 * need to protect against async removal of the underlying spi_device.
100 static void spidev_complete(void *arg)
102 complete(arg);
105 static ssize_t
106 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
108 DECLARE_COMPLETION_ONSTACK(done);
109 int status;
111 message->complete = spidev_complete;
112 message->context = &done;
114 spin_lock_irq(&spidev->spi_lock);
115 if (spidev->spi == NULL)
116 status = -ESHUTDOWN;
117 else
118 status = spi_async(spidev->spi, message);
119 spin_unlock_irq(&spidev->spi_lock);
121 if (status == 0) {
122 wait_for_completion(&done);
123 status = message->status;
124 if (status == 0)
125 status = message->actual_length;
127 return status;
130 static inline ssize_t
131 spidev_sync_write(struct spidev_data *spidev, size_t len)
133 struct spi_transfer t = {
134 .tx_buf = spidev->buffer,
135 .len = len,
137 struct spi_message m;
139 spi_message_init(&m);
140 spi_message_add_tail(&t, &m);
141 return spidev_sync(spidev, &m);
144 static inline ssize_t
145 spidev_sync_read(struct spidev_data *spidev, size_t len)
147 struct spi_transfer t = {
148 .rx_buf = spidev->buffer,
149 .len = len,
151 struct spi_message m;
153 spi_message_init(&m);
154 spi_message_add_tail(&t, &m);
155 return spidev_sync(spidev, &m);
158 /*-------------------------------------------------------------------------*/
160 /* Read-only message with current device setup */
161 static ssize_t
162 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
164 struct spidev_data *spidev;
165 ssize_t status = 0;
167 /* chipselect only toggles at start or end of operation */
168 if (count > bufsiz)
169 return -EMSGSIZE;
171 spidev = filp->private_data;
173 mutex_lock(&spidev->buf_lock);
174 status = spidev_sync_read(spidev, count);
175 if (status > 0) {
176 unsigned long missing;
178 missing = copy_to_user(buf, spidev->buffer, status);
179 if (missing == status)
180 status = -EFAULT;
181 else
182 status = status - missing;
184 mutex_unlock(&spidev->buf_lock);
186 return status;
189 /* Write-only message with current device setup */
190 static ssize_t
191 spidev_write(struct file *filp, const char __user *buf,
192 size_t count, loff_t *f_pos)
194 struct spidev_data *spidev;
195 ssize_t status = 0;
196 unsigned long missing;
198 /* chipselect only toggles at start or end of operation */
199 if (count > bufsiz)
200 return -EMSGSIZE;
202 spidev = filp->private_data;
204 mutex_lock(&spidev->buf_lock);
205 missing = copy_from_user(spidev->buffer, buf, count);
206 if (missing == 0) {
207 status = spidev_sync_write(spidev, count);
208 } else
209 status = -EFAULT;
210 mutex_unlock(&spidev->buf_lock);
212 return status;
215 static int spidev_message(struct spidev_data *spidev,
216 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
218 struct spi_message msg;
219 struct spi_transfer *k_xfers;
220 struct spi_transfer *k_tmp;
221 struct spi_ioc_transfer *u_tmp;
222 unsigned n, total;
223 u8 *buf;
224 int status = -EFAULT;
226 spi_message_init(&msg);
227 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
228 if (k_xfers == NULL)
229 return -ENOMEM;
231 /* Construct spi_message, copying any tx data to bounce buffer.
232 * We walk the array of user-provided transfers, using each one
233 * to initialize a kernel version of the same transfer.
235 buf = spidev->buffer;
236 total = 0;
237 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
239 n--, k_tmp++, u_tmp++) {
240 k_tmp->len = u_tmp->len;
242 total += k_tmp->len;
243 if (total > bufsiz) {
244 status = -EMSGSIZE;
245 goto done;
248 if (u_tmp->rx_buf) {
249 k_tmp->rx_buf = buf;
250 if (!access_ok(VERIFY_WRITE, (u8 __user *)
251 (uintptr_t) u_tmp->rx_buf,
252 u_tmp->len))
253 goto done;
255 if (u_tmp->tx_buf) {
256 k_tmp->tx_buf = buf;
257 if (copy_from_user(buf, (const u8 __user *)
258 (uintptr_t) u_tmp->tx_buf,
259 u_tmp->len))
260 goto done;
262 buf += k_tmp->len;
264 k_tmp->cs_change = !!u_tmp->cs_change;
265 k_tmp->bits_per_word = u_tmp->bits_per_word;
266 k_tmp->delay_usecs = u_tmp->delay_usecs;
267 k_tmp->speed_hz = u_tmp->speed_hz;
268 #ifdef VERBOSE
269 dev_dbg(&spidev->spi->dev,
270 " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
271 u_tmp->len,
272 u_tmp->rx_buf ? "rx " : "",
273 u_tmp->tx_buf ? "tx " : "",
274 u_tmp->cs_change ? "cs " : "",
275 u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
276 u_tmp->delay_usecs,
277 u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
278 #endif
279 spi_message_add_tail(k_tmp, &msg);
282 status = spidev_sync(spidev, &msg);
283 if (status < 0)
284 goto done;
286 /* copy any rx data out of bounce buffer */
287 buf = spidev->buffer;
288 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
289 if (u_tmp->rx_buf) {
290 if (__copy_to_user((u8 __user *)
291 (uintptr_t) u_tmp->rx_buf, buf,
292 u_tmp->len)) {
293 status = -EFAULT;
294 goto done;
297 buf += u_tmp->len;
299 status = total;
301 done:
302 kfree(k_xfers);
303 return status;
306 static long
307 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
309 int err = 0;
310 int retval = 0;
311 struct spidev_data *spidev;
312 struct spi_device *spi;
313 u32 tmp;
314 unsigned n_ioc;
315 struct spi_ioc_transfer *ioc;
317 /* Check type and command number */
318 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
319 return -ENOTTY;
321 /* Check access direction once here; don't repeat below.
322 * IOC_DIR is from the user perspective, while access_ok is
323 * from the kernel perspective; so they look reversed.
325 if (_IOC_DIR(cmd) & _IOC_READ)
326 err = !access_ok(VERIFY_WRITE,
327 (void __user *)arg, _IOC_SIZE(cmd));
328 if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
329 err = !access_ok(VERIFY_READ,
330 (void __user *)arg, _IOC_SIZE(cmd));
331 if (err)
332 return -EFAULT;
334 /* guard against device removal before, or while,
335 * we issue this ioctl.
337 spidev = filp->private_data;
338 spin_lock_irq(&spidev->spi_lock);
339 spi = spi_dev_get(spidev->spi);
340 spin_unlock_irq(&spidev->spi_lock);
342 if (spi == NULL)
343 return -ESHUTDOWN;
345 /* use the buffer lock here for triple duty:
346 * - prevent I/O (from us) so calling spi_setup() is safe;
347 * - prevent concurrent SPI_IOC_WR_* from morphing
348 * data fields while SPI_IOC_RD_* reads them;
349 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
351 mutex_lock(&spidev->buf_lock);
353 switch (cmd) {
354 /* read requests */
355 case SPI_IOC_RD_MODE:
356 retval = __put_user(spi->mode & SPI_MODE_MASK,
357 (__u8 __user *)arg);
358 break;
359 case SPI_IOC_RD_LSB_FIRST:
360 retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
361 (__u8 __user *)arg);
362 break;
363 case SPI_IOC_RD_BITS_PER_WORD:
364 retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
365 break;
366 case SPI_IOC_RD_MAX_SPEED_HZ:
367 retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
368 break;
370 /* write requests */
371 case SPI_IOC_WR_MODE:
372 retval = __get_user(tmp, (u8 __user *)arg);
373 if (retval == 0) {
374 u8 save = spi->mode;
376 if (tmp & ~SPI_MODE_MASK) {
377 retval = -EINVAL;
378 break;
381 tmp |= spi->mode & ~SPI_MODE_MASK;
382 spi->mode = (u8)tmp;
383 retval = spi_setup(spi);
384 if (retval < 0)
385 spi->mode = save;
386 else
387 dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
389 break;
390 case SPI_IOC_WR_LSB_FIRST:
391 retval = __get_user(tmp, (__u8 __user *)arg);
392 if (retval == 0) {
393 u8 save = spi->mode;
395 if (tmp)
396 spi->mode |= SPI_LSB_FIRST;
397 else
398 spi->mode &= ~SPI_LSB_FIRST;
399 retval = spi_setup(spi);
400 if (retval < 0)
401 spi->mode = save;
402 else
403 dev_dbg(&spi->dev, "%csb first\n",
404 tmp ? 'l' : 'm');
406 break;
407 case SPI_IOC_WR_BITS_PER_WORD:
408 retval = __get_user(tmp, (__u8 __user *)arg);
409 if (retval == 0) {
410 u8 save = spi->bits_per_word;
412 spi->bits_per_word = tmp;
413 retval = spi_setup(spi);
414 if (retval < 0)
415 spi->bits_per_word = save;
416 else
417 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
419 break;
420 case SPI_IOC_WR_MAX_SPEED_HZ:
421 retval = __get_user(tmp, (__u32 __user *)arg);
422 if (retval == 0) {
423 u32 save = spi->max_speed_hz;
425 spi->max_speed_hz = tmp;
426 retval = spi_setup(spi);
427 if (retval < 0)
428 spi->max_speed_hz = save;
429 else
430 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
432 break;
434 default:
435 /* segmented and/or full-duplex I/O request */
436 if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
437 || _IOC_DIR(cmd) != _IOC_WRITE) {
438 retval = -ENOTTY;
439 break;
442 tmp = _IOC_SIZE(cmd);
443 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
444 retval = -EINVAL;
445 break;
447 n_ioc = tmp / sizeof(struct spi_ioc_transfer);
448 if (n_ioc == 0)
449 break;
451 /* copy into scratch area */
452 ioc = kmalloc(tmp, GFP_KERNEL);
453 if (!ioc) {
454 retval = -ENOMEM;
455 break;
457 if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
458 kfree(ioc);
459 retval = -EFAULT;
460 break;
463 /* translate to spi_message, execute */
464 retval = spidev_message(spidev, ioc, n_ioc);
465 kfree(ioc);
466 break;
469 mutex_unlock(&spidev->buf_lock);
470 spi_dev_put(spi);
471 return retval;
474 static int spidev_open(struct inode *inode, struct file *filp)
476 struct spidev_data *spidev;
477 int status = -ENXIO;
479 mutex_lock(&device_list_lock);
481 list_for_each_entry(spidev, &device_list, device_entry) {
482 if (spidev->devt == inode->i_rdev) {
483 status = 0;
484 break;
487 if (status == 0) {
488 if (!spidev->buffer) {
489 spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
490 if (!spidev->buffer) {
491 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
492 status = -ENOMEM;
495 if (status == 0) {
496 spidev->users++;
497 filp->private_data = spidev;
498 nonseekable_open(inode, filp);
500 } else
501 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
503 mutex_unlock(&device_list_lock);
504 return status;
507 static int spidev_release(struct inode *inode, struct file *filp)
509 struct spidev_data *spidev;
510 int status = 0;
512 mutex_lock(&device_list_lock);
513 spidev = filp->private_data;
514 filp->private_data = NULL;
516 /* last close? */
517 spidev->users--;
518 if (!spidev->users) {
519 int dofree;
521 kfree(spidev->buffer);
522 spidev->buffer = NULL;
524 /* ... after we unbound from the underlying device? */
525 spin_lock_irq(&spidev->spi_lock);
526 dofree = (spidev->spi == NULL);
527 spin_unlock_irq(&spidev->spi_lock);
529 if (dofree)
530 kfree(spidev);
532 mutex_unlock(&device_list_lock);
534 return status;
537 static const struct file_operations spidev_fops = {
538 .owner = THIS_MODULE,
539 /* REVISIT switch to aio primitives, so that userspace
540 * gets more complete API coverage. It'll simplify things
541 * too, except for the locking.
543 .write = spidev_write,
544 .read = spidev_read,
545 .unlocked_ioctl = spidev_ioctl,
546 .open = spidev_open,
547 .release = spidev_release,
548 .llseek = no_llseek,
551 /*-------------------------------------------------------------------------*/
553 /* The main reason to have this class is to make mdev/udev create the
554 * /dev/spidevB.C character device nodes exposing our userspace API.
555 * It also simplifies memory management.
558 static struct class *spidev_class;
560 /*-------------------------------------------------------------------------*/
562 static int __devinit spidev_probe(struct spi_device *spi)
564 struct spidev_data *spidev;
565 int status;
566 unsigned long minor;
568 /* Allocate driver data */
569 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
570 if (!spidev)
571 return -ENOMEM;
573 /* Initialize the driver data */
574 spidev->spi = spi;
575 spin_lock_init(&spidev->spi_lock);
576 mutex_init(&spidev->buf_lock);
578 INIT_LIST_HEAD(&spidev->device_entry);
580 /* If we can allocate a minor number, hook up this device.
581 * Reusing minors is fine so long as udev or mdev is working.
583 mutex_lock(&device_list_lock);
584 minor = find_first_zero_bit(minors, N_SPI_MINORS);
585 if (minor < N_SPI_MINORS) {
586 struct device *dev;
588 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
589 dev = device_create(spidev_class, &spi->dev, spidev->devt,
590 spidev, "spidev%d.%d",
591 spi->master->bus_num, spi->chip_select);
592 status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
593 } else {
594 dev_dbg(&spi->dev, "no minor number available!\n");
595 status = -ENODEV;
597 if (status == 0) {
598 set_bit(minor, minors);
599 list_add(&spidev->device_entry, &device_list);
601 mutex_unlock(&device_list_lock);
603 if (status == 0)
604 spi_set_drvdata(spi, spidev);
605 else
606 kfree(spidev);
608 return status;
611 static int __devexit spidev_remove(struct spi_device *spi)
613 struct spidev_data *spidev = spi_get_drvdata(spi);
615 /* make sure ops on existing fds can abort cleanly */
616 spin_lock_irq(&spidev->spi_lock);
617 spidev->spi = NULL;
618 spi_set_drvdata(spi, NULL);
619 spin_unlock_irq(&spidev->spi_lock);
621 /* prevent new opens */
622 mutex_lock(&device_list_lock);
623 list_del(&spidev->device_entry);
624 device_destroy(spidev_class, spidev->devt);
625 clear_bit(MINOR(spidev->devt), minors);
626 if (spidev->users == 0)
627 kfree(spidev);
628 mutex_unlock(&device_list_lock);
630 return 0;
633 static struct spi_driver spidev_spi_driver = {
634 .driver = {
635 .name = "spidev",
636 .owner = THIS_MODULE,
638 .probe = spidev_probe,
639 .remove = __devexit_p(spidev_remove),
641 /* NOTE: suspend/resume methods are not necessary here.
642 * We don't do anything except pass the requests to/from
643 * the underlying controller. The refrigerator handles
644 * most issues; the controller driver handles the rest.
648 /*-------------------------------------------------------------------------*/
650 static int __init spidev_init(void)
652 int status;
654 /* Claim our 256 reserved device numbers. Then register a class
655 * that will key udev/mdev to add/remove /dev nodes. Last, register
656 * the driver which manages those device numbers.
658 BUILD_BUG_ON(N_SPI_MINORS > 256);
659 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
660 if (status < 0)
661 return status;
663 spidev_class = class_create(THIS_MODULE, "spidev");
664 if (IS_ERR(spidev_class)) {
665 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
666 return PTR_ERR(spidev_class);
669 status = spi_register_driver(&spidev_spi_driver);
670 if (status < 0) {
671 class_destroy(spidev_class);
672 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
674 return status;
676 module_init(spidev_init);
678 static void __exit spidev_exit(void)
680 spi_unregister_driver(&spidev_spi_driver);
681 class_destroy(spidev_class);
682 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
684 module_exit(spidev_exit);
686 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
687 MODULE_DESCRIPTION("User mode SPI device interface");
688 MODULE_LICENSE("GPL");
689 MODULE_ALIAS("spi:spidev");