fs: remove all rcu head initializations, except on_stack initializations
[linux-2.6/x86.git] / fs / fs-writeback.c
blobaf92100a7411c62cb614709fbe783541c73fd2da
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
34 * We don't actually have pdflush, but this one is exported though /proc...
36 int nr_pdflush_threads;
39 * Passed into wb_writeback(), essentially a subset of writeback_control
41 struct wb_writeback_args {
42 long nr_pages;
43 struct super_block *sb;
44 enum writeback_sync_modes sync_mode;
45 unsigned int for_kupdate:1;
46 unsigned int range_cyclic:1;
47 unsigned int for_background:1;
51 * Work items for the bdi_writeback threads
53 struct bdi_work {
54 struct list_head list; /* pending work list */
55 struct rcu_head rcu_head; /* for RCU free/clear of work */
57 unsigned long seen; /* threads that have seen this work */
58 atomic_t pending; /* number of threads still to do work */
60 struct wb_writeback_args args; /* writeback arguments */
62 unsigned long state; /* flag bits, see WS_* */
65 enum {
66 WS_USED_B = 0,
67 WS_ONSTACK_B,
70 #define WS_USED (1 << WS_USED_B)
71 #define WS_ONSTACK (1 << WS_ONSTACK_B)
73 static inline bool bdi_work_on_stack(struct bdi_work *work)
75 return test_bit(WS_ONSTACK_B, &work->state);
78 static inline void __bdi_work_init(struct bdi_work *work,
79 struct wb_writeback_args *args,
80 int on_stack)
82 work->args = *args;
83 work->state = WS_USED;
84 if (on_stack) {
85 work->state |= WS_ONSTACK;
86 init_rcu_head_on_stack(&work->rcu_head);
90 static inline void bdi_work_init(struct bdi_work *work,
91 struct wb_writeback_args *args)
93 __bdi_work_init(work, args, false);
96 static inline void bdi_work_init_on_stack(struct bdi_work *work,
97 struct wb_writeback_args *args)
99 __bdi_work_init(work, args, true);
102 static inline void bdi_destroy_work_on_stack(struct bdi_work *work)
104 destroy_rcu_head_on_stack(&work->rcu_head);
108 * writeback_in_progress - determine whether there is writeback in progress
109 * @bdi: the device's backing_dev_info structure.
111 * Determine whether there is writeback waiting to be handled against a
112 * backing device.
114 int writeback_in_progress(struct backing_dev_info *bdi)
116 return !list_empty(&bdi->work_list);
119 static void bdi_work_clear(struct bdi_work *work)
121 clear_bit(WS_USED_B, &work->state);
122 smp_mb__after_clear_bit();
124 * work can have disappeared at this point. bit waitq functions
125 * should be able to tolerate this, provided bdi_sched_wait does
126 * not dereference it's pointer argument.
128 wake_up_bit(&work->state, WS_USED_B);
131 static void bdi_work_free(struct rcu_head *head)
133 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
135 if (!bdi_work_on_stack(work))
136 kfree(work);
137 else
138 bdi_work_clear(work);
141 static void wb_work_complete(struct bdi_work *work)
143 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
144 int onstack = bdi_work_on_stack(work);
147 * For allocated work, we can clear the done/seen bit right here.
148 * For on-stack work, we need to postpone both the clear and free
149 * to after the RCU grace period, since the stack could be invalidated
150 * as soon as bdi_work_clear() has done the wakeup.
152 if (!onstack)
153 bdi_work_clear(work);
154 if (sync_mode == WB_SYNC_NONE || onstack)
155 call_rcu(&work->rcu_head, bdi_work_free);
158 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
161 * The caller has retrieved the work arguments from this work,
162 * drop our reference. If this is the last ref, delete and free it
164 if (atomic_dec_and_test(&work->pending)) {
165 struct backing_dev_info *bdi = wb->bdi;
167 spin_lock(&bdi->wb_lock);
168 list_del_rcu(&work->list);
169 spin_unlock(&bdi->wb_lock);
171 wb_work_complete(work);
175 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
177 work->seen = bdi->wb_mask;
178 BUG_ON(!work->seen);
179 atomic_set(&work->pending, bdi->wb_cnt);
180 BUG_ON(!bdi->wb_cnt);
183 * list_add_tail_rcu() contains the necessary barriers to
184 * make sure the above stores are seen before the item is
185 * noticed on the list
187 spin_lock(&bdi->wb_lock);
188 list_add_tail_rcu(&work->list, &bdi->work_list);
189 spin_unlock(&bdi->wb_lock);
192 * If the default thread isn't there, make sure we add it. When
193 * it gets created and wakes up, we'll run this work.
195 if (unlikely(list_empty_careful(&bdi->wb_list)))
196 wake_up_process(default_backing_dev_info.wb.task);
197 else {
198 struct bdi_writeback *wb = &bdi->wb;
200 if (wb->task)
201 wake_up_process(wb->task);
206 * Used for on-stack allocated work items. The caller needs to wait until
207 * the wb threads have acked the work before it's safe to continue.
209 static void bdi_wait_on_work_clear(struct bdi_work *work)
211 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
212 TASK_UNINTERRUPTIBLE);
215 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
216 struct wb_writeback_args *args)
218 struct bdi_work *work;
221 * This is WB_SYNC_NONE writeback, so if allocation fails just
222 * wakeup the thread for old dirty data writeback
224 work = kmalloc(sizeof(*work), GFP_ATOMIC);
225 if (work) {
226 bdi_work_init(work, args);
227 bdi_queue_work(bdi, work);
228 } else {
229 struct bdi_writeback *wb = &bdi->wb;
231 if (wb->task)
232 wake_up_process(wb->task);
237 * bdi_sync_writeback - start and wait for writeback
238 * @bdi: the backing device to write from
239 * @sb: write inodes from this super_block
241 * Description:
242 * This does WB_SYNC_ALL data integrity writeback and waits for the
243 * IO to complete. Callers must hold the sb s_umount semaphore for
244 * reading, to avoid having the super disappear before we are done.
246 static void bdi_sync_writeback(struct backing_dev_info *bdi,
247 struct super_block *sb)
249 struct wb_writeback_args args = {
250 .sb = sb,
251 .sync_mode = WB_SYNC_ALL,
252 .nr_pages = LONG_MAX,
253 .range_cyclic = 0,
255 struct bdi_work work;
257 bdi_work_init_on_stack(&work, &args);
259 bdi_queue_work(bdi, &work);
260 bdi_wait_on_work_clear(&work);
261 bdi_destroy_work_on_stack(&work);
265 * bdi_start_writeback - start writeback
266 * @bdi: the backing device to write from
267 * @sb: write inodes from this super_block
268 * @nr_pages: the number of pages to write
270 * Description:
271 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
272 * started when this function returns, we make no guarentees on
273 * completion. Caller need not hold sb s_umount semaphore.
276 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
277 long nr_pages)
279 struct wb_writeback_args args = {
280 .sb = sb,
281 .sync_mode = WB_SYNC_NONE,
282 .nr_pages = nr_pages,
283 .range_cyclic = 1,
287 * We treat @nr_pages=0 as the special case to do background writeback,
288 * ie. to sync pages until the background dirty threshold is reached.
290 if (!nr_pages) {
291 args.nr_pages = LONG_MAX;
292 args.for_background = 1;
295 bdi_alloc_queue_work(bdi, &args);
299 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
300 * furthest end of its superblock's dirty-inode list.
302 * Before stamping the inode's ->dirtied_when, we check to see whether it is
303 * already the most-recently-dirtied inode on the b_dirty list. If that is
304 * the case then the inode must have been redirtied while it was being written
305 * out and we don't reset its dirtied_when.
307 static void redirty_tail(struct inode *inode)
309 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
311 if (!list_empty(&wb->b_dirty)) {
312 struct inode *tail;
314 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
315 if (time_before(inode->dirtied_when, tail->dirtied_when))
316 inode->dirtied_when = jiffies;
318 list_move(&inode->i_list, &wb->b_dirty);
322 * requeue inode for re-scanning after bdi->b_io list is exhausted.
324 static void requeue_io(struct inode *inode)
326 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
328 list_move(&inode->i_list, &wb->b_more_io);
331 static void inode_sync_complete(struct inode *inode)
334 * Prevent speculative execution through spin_unlock(&inode_lock);
336 smp_mb();
337 wake_up_bit(&inode->i_state, __I_SYNC);
340 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
342 bool ret = time_after(inode->dirtied_when, t);
343 #ifndef CONFIG_64BIT
345 * For inodes being constantly redirtied, dirtied_when can get stuck.
346 * It _appears_ to be in the future, but is actually in distant past.
347 * This test is necessary to prevent such wrapped-around relative times
348 * from permanently stopping the whole bdi writeback.
350 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
351 #endif
352 return ret;
356 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
358 static void move_expired_inodes(struct list_head *delaying_queue,
359 struct list_head *dispatch_queue,
360 unsigned long *older_than_this)
362 LIST_HEAD(tmp);
363 struct list_head *pos, *node;
364 struct super_block *sb = NULL;
365 struct inode *inode;
366 int do_sb_sort = 0;
368 while (!list_empty(delaying_queue)) {
369 inode = list_entry(delaying_queue->prev, struct inode, i_list);
370 if (older_than_this &&
371 inode_dirtied_after(inode, *older_than_this))
372 break;
373 if (sb && sb != inode->i_sb)
374 do_sb_sort = 1;
375 sb = inode->i_sb;
376 list_move(&inode->i_list, &tmp);
379 /* just one sb in list, splice to dispatch_queue and we're done */
380 if (!do_sb_sort) {
381 list_splice(&tmp, dispatch_queue);
382 return;
385 /* Move inodes from one superblock together */
386 while (!list_empty(&tmp)) {
387 inode = list_entry(tmp.prev, struct inode, i_list);
388 sb = inode->i_sb;
389 list_for_each_prev_safe(pos, node, &tmp) {
390 inode = list_entry(pos, struct inode, i_list);
391 if (inode->i_sb == sb)
392 list_move(&inode->i_list, dispatch_queue);
398 * Queue all expired dirty inodes for io, eldest first.
400 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
402 list_splice_init(&wb->b_more_io, wb->b_io.prev);
403 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
406 static int write_inode(struct inode *inode, struct writeback_control *wbc)
408 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
409 return inode->i_sb->s_op->write_inode(inode, wbc);
410 return 0;
414 * Wait for writeback on an inode to complete.
416 static void inode_wait_for_writeback(struct inode *inode)
418 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
419 wait_queue_head_t *wqh;
421 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
422 while (inode->i_state & I_SYNC) {
423 spin_unlock(&inode_lock);
424 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
425 spin_lock(&inode_lock);
430 * Write out an inode's dirty pages. Called under inode_lock. Either the
431 * caller has ref on the inode (either via __iget or via syscall against an fd)
432 * or the inode has I_WILL_FREE set (via generic_forget_inode)
434 * If `wait' is set, wait on the writeout.
436 * The whole writeout design is quite complex and fragile. We want to avoid
437 * starvation of particular inodes when others are being redirtied, prevent
438 * livelocks, etc.
440 * Called under inode_lock.
442 static int
443 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
445 struct address_space *mapping = inode->i_mapping;
446 unsigned dirty;
447 int ret;
449 if (!atomic_read(&inode->i_count))
450 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
451 else
452 WARN_ON(inode->i_state & I_WILL_FREE);
454 if (inode->i_state & I_SYNC) {
456 * If this inode is locked for writeback and we are not doing
457 * writeback-for-data-integrity, move it to b_more_io so that
458 * writeback can proceed with the other inodes on s_io.
460 * We'll have another go at writing back this inode when we
461 * completed a full scan of b_io.
463 if (wbc->sync_mode != WB_SYNC_ALL) {
464 requeue_io(inode);
465 return 0;
469 * It's a data-integrity sync. We must wait.
471 inode_wait_for_writeback(inode);
474 BUG_ON(inode->i_state & I_SYNC);
476 /* Set I_SYNC, reset I_DIRTY_PAGES */
477 inode->i_state |= I_SYNC;
478 inode->i_state &= ~I_DIRTY_PAGES;
479 spin_unlock(&inode_lock);
481 ret = do_writepages(mapping, wbc);
484 * Make sure to wait on the data before writing out the metadata.
485 * This is important for filesystems that modify metadata on data
486 * I/O completion.
488 if (wbc->sync_mode == WB_SYNC_ALL) {
489 int err = filemap_fdatawait(mapping);
490 if (ret == 0)
491 ret = err;
495 * Some filesystems may redirty the inode during the writeback
496 * due to delalloc, clear dirty metadata flags right before
497 * write_inode()
499 spin_lock(&inode_lock);
500 dirty = inode->i_state & I_DIRTY;
501 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
502 spin_unlock(&inode_lock);
503 /* Don't write the inode if only I_DIRTY_PAGES was set */
504 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
505 int err = write_inode(inode, wbc);
506 if (ret == 0)
507 ret = err;
510 spin_lock(&inode_lock);
511 inode->i_state &= ~I_SYNC;
512 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
513 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
515 * More pages get dirtied by a fast dirtier.
517 goto select_queue;
518 } else if (inode->i_state & I_DIRTY) {
520 * At least XFS will redirty the inode during the
521 * writeback (delalloc) and on io completion (isize).
523 redirty_tail(inode);
524 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
526 * We didn't write back all the pages. nfs_writepages()
527 * sometimes bales out without doing anything. Redirty
528 * the inode; Move it from b_io onto b_more_io/b_dirty.
531 * akpm: if the caller was the kupdate function we put
532 * this inode at the head of b_dirty so it gets first
533 * consideration. Otherwise, move it to the tail, for
534 * the reasons described there. I'm not really sure
535 * how much sense this makes. Presumably I had a good
536 * reasons for doing it this way, and I'd rather not
537 * muck with it at present.
539 if (wbc->for_kupdate) {
541 * For the kupdate function we move the inode
542 * to b_more_io so it will get more writeout as
543 * soon as the queue becomes uncongested.
545 inode->i_state |= I_DIRTY_PAGES;
546 select_queue:
547 if (wbc->nr_to_write <= 0) {
549 * slice used up: queue for next turn
551 requeue_io(inode);
552 } else {
554 * somehow blocked: retry later
556 redirty_tail(inode);
558 } else {
560 * Otherwise fully redirty the inode so that
561 * other inodes on this superblock will get some
562 * writeout. Otherwise heavy writing to one
563 * file would indefinitely suspend writeout of
564 * all the other files.
566 inode->i_state |= I_DIRTY_PAGES;
567 redirty_tail(inode);
569 } else if (atomic_read(&inode->i_count)) {
571 * The inode is clean, inuse
573 list_move(&inode->i_list, &inode_in_use);
574 } else {
576 * The inode is clean, unused
578 list_move(&inode->i_list, &inode_unused);
581 inode_sync_complete(inode);
582 return ret;
585 static void unpin_sb_for_writeback(struct super_block *sb)
587 up_read(&sb->s_umount);
588 put_super(sb);
591 enum sb_pin_state {
592 SB_PINNED,
593 SB_NOT_PINNED,
594 SB_PIN_FAILED
598 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
599 * before calling writeback. So make sure that we do pin it, so it doesn't
600 * go away while we are writing inodes from it.
602 static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
603 struct super_block *sb)
606 * Caller must already hold the ref for this
608 if (wbc->sync_mode == WB_SYNC_ALL) {
609 WARN_ON(!rwsem_is_locked(&sb->s_umount));
610 return SB_NOT_PINNED;
612 spin_lock(&sb_lock);
613 sb->s_count++;
614 if (down_read_trylock(&sb->s_umount)) {
615 if (sb->s_root) {
616 spin_unlock(&sb_lock);
617 return SB_PINNED;
620 * umounted, drop rwsem again and fall through to failure
622 up_read(&sb->s_umount);
624 sb->s_count--;
625 spin_unlock(&sb_lock);
626 return SB_PIN_FAILED;
630 * Write a portion of b_io inodes which belong to @sb.
631 * If @wbc->sb != NULL, then find and write all such
632 * inodes. Otherwise write only ones which go sequentially
633 * in reverse order.
634 * Return 1, if the caller writeback routine should be
635 * interrupted. Otherwise return 0.
637 static int writeback_sb_inodes(struct super_block *sb,
638 struct bdi_writeback *wb,
639 struct writeback_control *wbc)
641 while (!list_empty(&wb->b_io)) {
642 long pages_skipped;
643 struct inode *inode = list_entry(wb->b_io.prev,
644 struct inode, i_list);
645 if (wbc->sb && sb != inode->i_sb) {
646 /* super block given and doesn't
647 match, skip this inode */
648 redirty_tail(inode);
649 continue;
651 if (sb != inode->i_sb)
652 /* finish with this superblock */
653 return 0;
654 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
655 requeue_io(inode);
656 continue;
659 * Was this inode dirtied after sync_sb_inodes was called?
660 * This keeps sync from extra jobs and livelock.
662 if (inode_dirtied_after(inode, wbc->wb_start))
663 return 1;
665 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
666 __iget(inode);
667 pages_skipped = wbc->pages_skipped;
668 writeback_single_inode(inode, wbc);
669 if (wbc->pages_skipped != pages_skipped) {
671 * writeback is not making progress due to locked
672 * buffers. Skip this inode for now.
674 redirty_tail(inode);
676 spin_unlock(&inode_lock);
677 iput(inode);
678 cond_resched();
679 spin_lock(&inode_lock);
680 if (wbc->nr_to_write <= 0) {
681 wbc->more_io = 1;
682 return 1;
684 if (!list_empty(&wb->b_more_io))
685 wbc->more_io = 1;
687 /* b_io is empty */
688 return 1;
691 static void writeback_inodes_wb(struct bdi_writeback *wb,
692 struct writeback_control *wbc)
694 int ret = 0;
696 wbc->wb_start = jiffies; /* livelock avoidance */
697 spin_lock(&inode_lock);
698 if (!wbc->for_kupdate || list_empty(&wb->b_io))
699 queue_io(wb, wbc->older_than_this);
701 while (!list_empty(&wb->b_io)) {
702 struct inode *inode = list_entry(wb->b_io.prev,
703 struct inode, i_list);
704 struct super_block *sb = inode->i_sb;
705 enum sb_pin_state state;
707 if (wbc->sb && sb != wbc->sb) {
708 /* super block given and doesn't
709 match, skip this inode */
710 redirty_tail(inode);
711 continue;
713 state = pin_sb_for_writeback(wbc, sb);
715 if (state == SB_PIN_FAILED) {
716 requeue_io(inode);
717 continue;
719 ret = writeback_sb_inodes(sb, wb, wbc);
721 if (state == SB_PINNED)
722 unpin_sb_for_writeback(sb);
723 if (ret)
724 break;
726 spin_unlock(&inode_lock);
727 /* Leave any unwritten inodes on b_io */
730 void writeback_inodes_wbc(struct writeback_control *wbc)
732 struct backing_dev_info *bdi = wbc->bdi;
734 writeback_inodes_wb(&bdi->wb, wbc);
738 * The maximum number of pages to writeout in a single bdi flush/kupdate
739 * operation. We do this so we don't hold I_SYNC against an inode for
740 * enormous amounts of time, which would block a userspace task which has
741 * been forced to throttle against that inode. Also, the code reevaluates
742 * the dirty each time it has written this many pages.
744 #define MAX_WRITEBACK_PAGES 1024
746 static inline bool over_bground_thresh(void)
748 unsigned long background_thresh, dirty_thresh;
750 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
752 return (global_page_state(NR_FILE_DIRTY) +
753 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
757 * Explicit flushing or periodic writeback of "old" data.
759 * Define "old": the first time one of an inode's pages is dirtied, we mark the
760 * dirtying-time in the inode's address_space. So this periodic writeback code
761 * just walks the superblock inode list, writing back any inodes which are
762 * older than a specific point in time.
764 * Try to run once per dirty_writeback_interval. But if a writeback event
765 * takes longer than a dirty_writeback_interval interval, then leave a
766 * one-second gap.
768 * older_than_this takes precedence over nr_to_write. So we'll only write back
769 * all dirty pages if they are all attached to "old" mappings.
771 static long wb_writeback(struct bdi_writeback *wb,
772 struct wb_writeback_args *args)
774 struct writeback_control wbc = {
775 .bdi = wb->bdi,
776 .sb = args->sb,
777 .sync_mode = args->sync_mode,
778 .older_than_this = NULL,
779 .for_kupdate = args->for_kupdate,
780 .for_background = args->for_background,
781 .range_cyclic = args->range_cyclic,
783 unsigned long oldest_jif;
784 long wrote = 0;
785 struct inode *inode;
787 if (wbc.for_kupdate) {
788 wbc.older_than_this = &oldest_jif;
789 oldest_jif = jiffies -
790 msecs_to_jiffies(dirty_expire_interval * 10);
792 if (!wbc.range_cyclic) {
793 wbc.range_start = 0;
794 wbc.range_end = LLONG_MAX;
797 for (;;) {
799 * Stop writeback when nr_pages has been consumed
801 if (args->nr_pages <= 0)
802 break;
805 * For background writeout, stop when we are below the
806 * background dirty threshold
808 if (args->for_background && !over_bground_thresh())
809 break;
811 wbc.more_io = 0;
812 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
813 wbc.pages_skipped = 0;
814 writeback_inodes_wb(wb, &wbc);
815 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
816 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
819 * If we consumed everything, see if we have more
821 if (wbc.nr_to_write <= 0)
822 continue;
824 * Didn't write everything and we don't have more IO, bail
826 if (!wbc.more_io)
827 break;
829 * Did we write something? Try for more
831 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
832 continue;
834 * Nothing written. Wait for some inode to
835 * become available for writeback. Otherwise
836 * we'll just busyloop.
838 spin_lock(&inode_lock);
839 if (!list_empty(&wb->b_more_io)) {
840 inode = list_entry(wb->b_more_io.prev,
841 struct inode, i_list);
842 inode_wait_for_writeback(inode);
844 spin_unlock(&inode_lock);
847 return wrote;
851 * Return the next bdi_work struct that hasn't been processed by this
852 * wb thread yet. ->seen is initially set for each thread that exists
853 * for this device, when a thread first notices a piece of work it
854 * clears its bit. Depending on writeback type, the thread will notify
855 * completion on either receiving the work (WB_SYNC_NONE) or after
856 * it is done (WB_SYNC_ALL).
858 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
859 struct bdi_writeback *wb)
861 struct bdi_work *work, *ret = NULL;
863 rcu_read_lock();
865 list_for_each_entry_rcu(work, &bdi->work_list, list) {
866 if (!test_bit(wb->nr, &work->seen))
867 continue;
868 clear_bit(wb->nr, &work->seen);
870 ret = work;
871 break;
874 rcu_read_unlock();
875 return ret;
878 static long wb_check_old_data_flush(struct bdi_writeback *wb)
880 unsigned long expired;
881 long nr_pages;
884 * When set to zero, disable periodic writeback
886 if (!dirty_writeback_interval)
887 return 0;
889 expired = wb->last_old_flush +
890 msecs_to_jiffies(dirty_writeback_interval * 10);
891 if (time_before(jiffies, expired))
892 return 0;
894 wb->last_old_flush = jiffies;
895 nr_pages = global_page_state(NR_FILE_DIRTY) +
896 global_page_state(NR_UNSTABLE_NFS) +
897 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
899 if (nr_pages) {
900 struct wb_writeback_args args = {
901 .nr_pages = nr_pages,
902 .sync_mode = WB_SYNC_NONE,
903 .for_kupdate = 1,
904 .range_cyclic = 1,
907 return wb_writeback(wb, &args);
910 return 0;
914 * Retrieve work items and do the writeback they describe
916 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
918 struct backing_dev_info *bdi = wb->bdi;
919 struct bdi_work *work;
920 long wrote = 0;
922 while ((work = get_next_work_item(bdi, wb)) != NULL) {
923 struct wb_writeback_args args = work->args;
926 * Override sync mode, in case we must wait for completion
928 if (force_wait)
929 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
932 * If this isn't a data integrity operation, just notify
933 * that we have seen this work and we are now starting it.
935 if (args.sync_mode == WB_SYNC_NONE)
936 wb_clear_pending(wb, work);
938 wrote += wb_writeback(wb, &args);
941 * This is a data integrity writeback, so only do the
942 * notification when we have completed the work.
944 if (args.sync_mode == WB_SYNC_ALL)
945 wb_clear_pending(wb, work);
949 * Check for periodic writeback, kupdated() style
951 wrote += wb_check_old_data_flush(wb);
953 return wrote;
957 * Handle writeback of dirty data for the device backed by this bdi. Also
958 * wakes up periodically and does kupdated style flushing.
960 int bdi_writeback_task(struct bdi_writeback *wb)
962 unsigned long last_active = jiffies;
963 unsigned long wait_jiffies = -1UL;
964 long pages_written;
966 while (!kthread_should_stop()) {
967 pages_written = wb_do_writeback(wb, 0);
969 if (pages_written)
970 last_active = jiffies;
971 else if (wait_jiffies != -1UL) {
972 unsigned long max_idle;
975 * Longest period of inactivity that we tolerate. If we
976 * see dirty data again later, the task will get
977 * recreated automatically.
979 max_idle = max(5UL * 60 * HZ, wait_jiffies);
980 if (time_after(jiffies, max_idle + last_active))
981 break;
984 if (dirty_writeback_interval) {
985 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
986 schedule_timeout_interruptible(wait_jiffies);
987 } else {
988 set_current_state(TASK_INTERRUPTIBLE);
989 if (list_empty_careful(&wb->bdi->work_list) &&
990 !kthread_should_stop())
991 schedule();
992 __set_current_state(TASK_RUNNING);
995 try_to_freeze();
998 return 0;
1002 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
1003 * writeback, for integrity writeback see bdi_sync_writeback().
1005 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
1007 struct wb_writeback_args args = {
1008 .sb = sb,
1009 .nr_pages = nr_pages,
1010 .sync_mode = WB_SYNC_NONE,
1012 struct backing_dev_info *bdi;
1014 rcu_read_lock();
1016 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1017 if (!bdi_has_dirty_io(bdi))
1018 continue;
1020 bdi_alloc_queue_work(bdi, &args);
1023 rcu_read_unlock();
1027 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1028 * the whole world.
1030 void wakeup_flusher_threads(long nr_pages)
1032 if (nr_pages == 0)
1033 nr_pages = global_page_state(NR_FILE_DIRTY) +
1034 global_page_state(NR_UNSTABLE_NFS);
1035 bdi_writeback_all(NULL, nr_pages);
1038 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1040 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1041 struct dentry *dentry;
1042 const char *name = "?";
1044 dentry = d_find_alias(inode);
1045 if (dentry) {
1046 spin_lock(&dentry->d_lock);
1047 name = (const char *) dentry->d_name.name;
1049 printk(KERN_DEBUG
1050 "%s(%d): dirtied inode %lu (%s) on %s\n",
1051 current->comm, task_pid_nr(current), inode->i_ino,
1052 name, inode->i_sb->s_id);
1053 if (dentry) {
1054 spin_unlock(&dentry->d_lock);
1055 dput(dentry);
1061 * __mark_inode_dirty - internal function
1062 * @inode: inode to mark
1063 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1064 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1065 * mark_inode_dirty_sync.
1067 * Put the inode on the super block's dirty list.
1069 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1070 * dirty list only if it is hashed or if it refers to a blockdev.
1071 * If it was not hashed, it will never be added to the dirty list
1072 * even if it is later hashed, as it will have been marked dirty already.
1074 * In short, make sure you hash any inodes _before_ you start marking
1075 * them dirty.
1077 * This function *must* be atomic for the I_DIRTY_PAGES case -
1078 * set_page_dirty() is called under spinlock in several places.
1080 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1081 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1082 * the kernel-internal blockdev inode represents the dirtying time of the
1083 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1084 * page->mapping->host, so the page-dirtying time is recorded in the internal
1085 * blockdev inode.
1087 void __mark_inode_dirty(struct inode *inode, int flags)
1089 struct super_block *sb = inode->i_sb;
1092 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1093 * dirty the inode itself
1095 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1096 if (sb->s_op->dirty_inode)
1097 sb->s_op->dirty_inode(inode);
1101 * make sure that changes are seen by all cpus before we test i_state
1102 * -- mikulas
1104 smp_mb();
1106 /* avoid the locking if we can */
1107 if ((inode->i_state & flags) == flags)
1108 return;
1110 if (unlikely(block_dump))
1111 block_dump___mark_inode_dirty(inode);
1113 spin_lock(&inode_lock);
1114 if ((inode->i_state & flags) != flags) {
1115 const int was_dirty = inode->i_state & I_DIRTY;
1117 inode->i_state |= flags;
1120 * If the inode is being synced, just update its dirty state.
1121 * The unlocker will place the inode on the appropriate
1122 * superblock list, based upon its state.
1124 if (inode->i_state & I_SYNC)
1125 goto out;
1128 * Only add valid (hashed) inodes to the superblock's
1129 * dirty list. Add blockdev inodes as well.
1131 if (!S_ISBLK(inode->i_mode)) {
1132 if (hlist_unhashed(&inode->i_hash))
1133 goto out;
1135 if (inode->i_state & (I_FREEING|I_CLEAR))
1136 goto out;
1139 * If the inode was already on b_dirty/b_io/b_more_io, don't
1140 * reposition it (that would break b_dirty time-ordering).
1142 if (!was_dirty) {
1143 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1144 struct backing_dev_info *bdi = wb->bdi;
1146 if (bdi_cap_writeback_dirty(bdi) &&
1147 !test_bit(BDI_registered, &bdi->state)) {
1148 WARN_ON(1);
1149 printk(KERN_ERR "bdi-%s not registered\n",
1150 bdi->name);
1153 inode->dirtied_when = jiffies;
1154 list_move(&inode->i_list, &wb->b_dirty);
1157 out:
1158 spin_unlock(&inode_lock);
1160 EXPORT_SYMBOL(__mark_inode_dirty);
1163 * Write out a superblock's list of dirty inodes. A wait will be performed
1164 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1166 * If older_than_this is non-NULL, then only write out inodes which
1167 * had their first dirtying at a time earlier than *older_than_this.
1169 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1170 * This function assumes that the blockdev superblock's inodes are backed by
1171 * a variety of queues, so all inodes are searched. For other superblocks,
1172 * assume that all inodes are backed by the same queue.
1174 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1175 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1176 * on the writer throttling path, and we get decent balancing between many
1177 * throttled threads: we don't want them all piling up on inode_sync_wait.
1179 static void wait_sb_inodes(struct super_block *sb)
1181 struct inode *inode, *old_inode = NULL;
1184 * We need to be protected against the filesystem going from
1185 * r/o to r/w or vice versa.
1187 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1189 spin_lock(&inode_lock);
1192 * Data integrity sync. Must wait for all pages under writeback,
1193 * because there may have been pages dirtied before our sync
1194 * call, but which had writeout started before we write it out.
1195 * In which case, the inode may not be on the dirty list, but
1196 * we still have to wait for that writeout.
1198 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1199 struct address_space *mapping;
1201 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1202 continue;
1203 mapping = inode->i_mapping;
1204 if (mapping->nrpages == 0)
1205 continue;
1206 __iget(inode);
1207 spin_unlock(&inode_lock);
1209 * We hold a reference to 'inode' so it couldn't have
1210 * been removed from s_inodes list while we dropped the
1211 * inode_lock. We cannot iput the inode now as we can
1212 * be holding the last reference and we cannot iput it
1213 * under inode_lock. So we keep the reference and iput
1214 * it later.
1216 iput(old_inode);
1217 old_inode = inode;
1219 filemap_fdatawait(mapping);
1221 cond_resched();
1223 spin_lock(&inode_lock);
1225 spin_unlock(&inode_lock);
1226 iput(old_inode);
1230 * writeback_inodes_sb - writeback dirty inodes from given super_block
1231 * @sb: the superblock
1233 * Start writeback on some inodes on this super_block. No guarantees are made
1234 * on how many (if any) will be written, and this function does not wait
1235 * for IO completion of submitted IO. The number of pages submitted is
1236 * returned.
1238 void writeback_inodes_sb(struct super_block *sb)
1240 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1241 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1242 long nr_to_write;
1244 nr_to_write = nr_dirty + nr_unstable +
1245 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1247 bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
1249 EXPORT_SYMBOL(writeback_inodes_sb);
1252 * writeback_inodes_sb_if_idle - start writeback if none underway
1253 * @sb: the superblock
1255 * Invoke writeback_inodes_sb if no writeback is currently underway.
1256 * Returns 1 if writeback was started, 0 if not.
1258 int writeback_inodes_sb_if_idle(struct super_block *sb)
1260 if (!writeback_in_progress(sb->s_bdi)) {
1261 writeback_inodes_sb(sb);
1262 return 1;
1263 } else
1264 return 0;
1266 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1269 * sync_inodes_sb - sync sb inode pages
1270 * @sb: the superblock
1272 * This function writes and waits on any dirty inode belonging to this
1273 * super_block. The number of pages synced is returned.
1275 void sync_inodes_sb(struct super_block *sb)
1277 bdi_sync_writeback(sb->s_bdi, sb);
1278 wait_sb_inodes(sb);
1280 EXPORT_SYMBOL(sync_inodes_sb);
1283 * write_inode_now - write an inode to disk
1284 * @inode: inode to write to disk
1285 * @sync: whether the write should be synchronous or not
1287 * This function commits an inode to disk immediately if it is dirty. This is
1288 * primarily needed by knfsd.
1290 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1292 int write_inode_now(struct inode *inode, int sync)
1294 int ret;
1295 struct writeback_control wbc = {
1296 .nr_to_write = LONG_MAX,
1297 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1298 .range_start = 0,
1299 .range_end = LLONG_MAX,
1302 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1303 wbc.nr_to_write = 0;
1305 might_sleep();
1306 spin_lock(&inode_lock);
1307 ret = writeback_single_inode(inode, &wbc);
1308 spin_unlock(&inode_lock);
1309 if (sync)
1310 inode_sync_wait(inode);
1311 return ret;
1313 EXPORT_SYMBOL(write_inode_now);
1316 * sync_inode - write an inode and its pages to disk.
1317 * @inode: the inode to sync
1318 * @wbc: controls the writeback mode
1320 * sync_inode() will write an inode and its pages to disk. It will also
1321 * correctly update the inode on its superblock's dirty inode lists and will
1322 * update inode->i_state.
1324 * The caller must have a ref on the inode.
1326 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1328 int ret;
1330 spin_lock(&inode_lock);
1331 ret = writeback_single_inode(inode, wbc);
1332 spin_unlock(&inode_lock);
1333 return ret;
1335 EXPORT_SYMBOL(sync_inode);