perf_events: Add event constraints support for Intel processors
[linux-2.6/x86.git] / mm / ksm.c
blobf7edac356f465275031110db70c1e57aafbc5cda
1 /*
2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/mmu_notifier.h>
33 #include <linux/swap.h>
34 #include <linux/ksm.h>
36 #include <asm/tlbflush.h>
39 * A few notes about the KSM scanning process,
40 * to make it easier to understand the data structures below:
42 * In order to reduce excessive scanning, KSM sorts the memory pages by their
43 * contents into a data structure that holds pointers to the pages' locations.
45 * Since the contents of the pages may change at any moment, KSM cannot just
46 * insert the pages into a normal sorted tree and expect it to find anything.
47 * Therefore KSM uses two data structures - the stable and the unstable tree.
49 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
50 * by their contents. Because each such page is write-protected, searching on
51 * this tree is fully assured to be working (except when pages are unmapped),
52 * and therefore this tree is called the stable tree.
54 * In addition to the stable tree, KSM uses a second data structure called the
55 * unstable tree: this tree holds pointers to pages which have been found to
56 * be "unchanged for a period of time". The unstable tree sorts these pages
57 * by their contents, but since they are not write-protected, KSM cannot rely
58 * upon the unstable tree to work correctly - the unstable tree is liable to
59 * be corrupted as its contents are modified, and so it is called unstable.
61 * KSM solves this problem by several techniques:
63 * 1) The unstable tree is flushed every time KSM completes scanning all
64 * memory areas, and then the tree is rebuilt again from the beginning.
65 * 2) KSM will only insert into the unstable tree, pages whose hash value
66 * has not changed since the previous scan of all memory areas.
67 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
68 * colors of the nodes and not on their contents, assuring that even when
69 * the tree gets "corrupted" it won't get out of balance, so scanning time
70 * remains the same (also, searching and inserting nodes in an rbtree uses
71 * the same algorithm, so we have no overhead when we flush and rebuild).
72 * 4) KSM never flushes the stable tree, which means that even if it were to
73 * take 10 attempts to find a page in the unstable tree, once it is found,
74 * it is secured in the stable tree. (When we scan a new page, we first
75 * compare it against the stable tree, and then against the unstable tree.)
78 /**
79 * struct mm_slot - ksm information per mm that is being scanned
80 * @link: link to the mm_slots hash list
81 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
82 * @rmap_list: head for this mm_slot's list of rmap_items
83 * @mm: the mm that this information is valid for
85 struct mm_slot {
86 struct hlist_node link;
87 struct list_head mm_list;
88 struct list_head rmap_list;
89 struct mm_struct *mm;
92 /**
93 * struct ksm_scan - cursor for scanning
94 * @mm_slot: the current mm_slot we are scanning
95 * @address: the next address inside that to be scanned
96 * @rmap_item: the current rmap that we are scanning inside the rmap_list
97 * @seqnr: count of completed full scans (needed when removing unstable node)
99 * There is only the one ksm_scan instance of this cursor structure.
101 struct ksm_scan {
102 struct mm_slot *mm_slot;
103 unsigned long address;
104 struct rmap_item *rmap_item;
105 unsigned long seqnr;
109 * struct rmap_item - reverse mapping item for virtual addresses
110 * @link: link into mm_slot's rmap_list (rmap_list is per mm)
111 * @mm: the memory structure this rmap_item is pointing into
112 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
113 * @oldchecksum: previous checksum of the page at that virtual address
114 * @node: rb_node of this rmap_item in either unstable or stable tree
115 * @next: next rmap_item hanging off the same node of the stable tree
116 * @prev: previous rmap_item hanging off the same node of the stable tree
118 struct rmap_item {
119 struct list_head link;
120 struct mm_struct *mm;
121 unsigned long address; /* + low bits used for flags below */
122 union {
123 unsigned int oldchecksum; /* when unstable */
124 struct rmap_item *next; /* when stable */
126 union {
127 struct rb_node node; /* when tree node */
128 struct rmap_item *prev; /* in stable list */
132 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
133 #define NODE_FLAG 0x100 /* is a node of unstable or stable tree */
134 #define STABLE_FLAG 0x200 /* is a node or list item of stable tree */
136 /* The stable and unstable tree heads */
137 static struct rb_root root_stable_tree = RB_ROOT;
138 static struct rb_root root_unstable_tree = RB_ROOT;
140 #define MM_SLOTS_HASH_HEADS 1024
141 static struct hlist_head *mm_slots_hash;
143 static struct mm_slot ksm_mm_head = {
144 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
146 static struct ksm_scan ksm_scan = {
147 .mm_slot = &ksm_mm_head,
150 static struct kmem_cache *rmap_item_cache;
151 static struct kmem_cache *mm_slot_cache;
153 /* The number of nodes in the stable tree */
154 static unsigned long ksm_pages_shared;
156 /* The number of page slots additionally sharing those nodes */
157 static unsigned long ksm_pages_sharing;
159 /* The number of nodes in the unstable tree */
160 static unsigned long ksm_pages_unshared;
162 /* The number of rmap_items in use: to calculate pages_volatile */
163 static unsigned long ksm_rmap_items;
165 /* Limit on the number of unswappable pages used */
166 static unsigned long ksm_max_kernel_pages;
168 /* Number of pages ksmd should scan in one batch */
169 static unsigned int ksm_thread_pages_to_scan = 100;
171 /* Milliseconds ksmd should sleep between batches */
172 static unsigned int ksm_thread_sleep_millisecs = 20;
174 #define KSM_RUN_STOP 0
175 #define KSM_RUN_MERGE 1
176 #define KSM_RUN_UNMERGE 2
177 static unsigned int ksm_run = KSM_RUN_STOP;
179 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
180 static DEFINE_MUTEX(ksm_thread_mutex);
181 static DEFINE_SPINLOCK(ksm_mmlist_lock);
183 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
184 sizeof(struct __struct), __alignof__(struct __struct),\
185 (__flags), NULL)
187 static void __init ksm_init_max_kernel_pages(void)
189 ksm_max_kernel_pages = nr_free_buffer_pages() / 4;
192 static int __init ksm_slab_init(void)
194 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
195 if (!rmap_item_cache)
196 goto out;
198 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
199 if (!mm_slot_cache)
200 goto out_free;
202 return 0;
204 out_free:
205 kmem_cache_destroy(rmap_item_cache);
206 out:
207 return -ENOMEM;
210 static void __init ksm_slab_free(void)
212 kmem_cache_destroy(mm_slot_cache);
213 kmem_cache_destroy(rmap_item_cache);
214 mm_slot_cache = NULL;
217 static inline struct rmap_item *alloc_rmap_item(void)
219 struct rmap_item *rmap_item;
221 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
222 if (rmap_item)
223 ksm_rmap_items++;
224 return rmap_item;
227 static inline void free_rmap_item(struct rmap_item *rmap_item)
229 ksm_rmap_items--;
230 rmap_item->mm = NULL; /* debug safety */
231 kmem_cache_free(rmap_item_cache, rmap_item);
234 static inline struct mm_slot *alloc_mm_slot(void)
236 if (!mm_slot_cache) /* initialization failed */
237 return NULL;
238 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
241 static inline void free_mm_slot(struct mm_slot *mm_slot)
243 kmem_cache_free(mm_slot_cache, mm_slot);
246 static int __init mm_slots_hash_init(void)
248 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
249 GFP_KERNEL);
250 if (!mm_slots_hash)
251 return -ENOMEM;
252 return 0;
255 static void __init mm_slots_hash_free(void)
257 kfree(mm_slots_hash);
260 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
262 struct mm_slot *mm_slot;
263 struct hlist_head *bucket;
264 struct hlist_node *node;
266 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
267 % MM_SLOTS_HASH_HEADS];
268 hlist_for_each_entry(mm_slot, node, bucket, link) {
269 if (mm == mm_slot->mm)
270 return mm_slot;
272 return NULL;
275 static void insert_to_mm_slots_hash(struct mm_struct *mm,
276 struct mm_slot *mm_slot)
278 struct hlist_head *bucket;
280 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
281 % MM_SLOTS_HASH_HEADS];
282 mm_slot->mm = mm;
283 INIT_LIST_HEAD(&mm_slot->rmap_list);
284 hlist_add_head(&mm_slot->link, bucket);
287 static inline int in_stable_tree(struct rmap_item *rmap_item)
289 return rmap_item->address & STABLE_FLAG;
293 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
294 * page tables after it has passed through ksm_exit() - which, if necessary,
295 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
296 * a special flag: they can just back out as soon as mm_users goes to zero.
297 * ksm_test_exit() is used throughout to make this test for exit: in some
298 * places for correctness, in some places just to avoid unnecessary work.
300 static inline bool ksm_test_exit(struct mm_struct *mm)
302 return atomic_read(&mm->mm_users) == 0;
306 * We use break_ksm to break COW on a ksm page: it's a stripped down
308 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
309 * put_page(page);
311 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
312 * in case the application has unmapped and remapped mm,addr meanwhile.
313 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
314 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
316 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
318 struct page *page;
319 int ret = 0;
321 do {
322 cond_resched();
323 page = follow_page(vma, addr, FOLL_GET);
324 if (!page)
325 break;
326 if (PageKsm(page))
327 ret = handle_mm_fault(vma->vm_mm, vma, addr,
328 FAULT_FLAG_WRITE);
329 else
330 ret = VM_FAULT_WRITE;
331 put_page(page);
332 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
334 * We must loop because handle_mm_fault() may back out if there's
335 * any difficulty e.g. if pte accessed bit gets updated concurrently.
337 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
338 * COW has been broken, even if the vma does not permit VM_WRITE;
339 * but note that a concurrent fault might break PageKsm for us.
341 * VM_FAULT_SIGBUS could occur if we race with truncation of the
342 * backing file, which also invalidates anonymous pages: that's
343 * okay, that truncation will have unmapped the PageKsm for us.
345 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
346 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
347 * current task has TIF_MEMDIE set, and will be OOM killed on return
348 * to user; and ksmd, having no mm, would never be chosen for that.
350 * But if the mm is in a limited mem_cgroup, then the fault may fail
351 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
352 * even ksmd can fail in this way - though it's usually breaking ksm
353 * just to undo a merge it made a moment before, so unlikely to oom.
355 * That's a pity: we might therefore have more kernel pages allocated
356 * than we're counting as nodes in the stable tree; but ksm_do_scan
357 * will retry to break_cow on each pass, so should recover the page
358 * in due course. The important thing is to not let VM_MERGEABLE
359 * be cleared while any such pages might remain in the area.
361 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
364 static void break_cow(struct mm_struct *mm, unsigned long addr)
366 struct vm_area_struct *vma;
368 down_read(&mm->mmap_sem);
369 if (ksm_test_exit(mm))
370 goto out;
371 vma = find_vma(mm, addr);
372 if (!vma || vma->vm_start > addr)
373 goto out;
374 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
375 goto out;
376 break_ksm(vma, addr);
377 out:
378 up_read(&mm->mmap_sem);
381 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
383 struct mm_struct *mm = rmap_item->mm;
384 unsigned long addr = rmap_item->address;
385 struct vm_area_struct *vma;
386 struct page *page;
388 down_read(&mm->mmap_sem);
389 if (ksm_test_exit(mm))
390 goto out;
391 vma = find_vma(mm, addr);
392 if (!vma || vma->vm_start > addr)
393 goto out;
394 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
395 goto out;
397 page = follow_page(vma, addr, FOLL_GET);
398 if (!page)
399 goto out;
400 if (PageAnon(page)) {
401 flush_anon_page(vma, page, addr);
402 flush_dcache_page(page);
403 } else {
404 put_page(page);
405 out: page = NULL;
407 up_read(&mm->mmap_sem);
408 return page;
412 * get_ksm_page: checks if the page at the virtual address in rmap_item
413 * is still PageKsm, in which case we can trust the content of the page,
414 * and it returns the gotten page; but NULL if the page has been zapped.
416 static struct page *get_ksm_page(struct rmap_item *rmap_item)
418 struct page *page;
420 page = get_mergeable_page(rmap_item);
421 if (page && !PageKsm(page)) {
422 put_page(page);
423 page = NULL;
425 return page;
429 * Removing rmap_item from stable or unstable tree.
430 * This function will clean the information from the stable/unstable tree.
432 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
434 if (in_stable_tree(rmap_item)) {
435 struct rmap_item *next_item = rmap_item->next;
437 if (rmap_item->address & NODE_FLAG) {
438 if (next_item) {
439 rb_replace_node(&rmap_item->node,
440 &next_item->node,
441 &root_stable_tree);
442 next_item->address |= NODE_FLAG;
443 ksm_pages_sharing--;
444 } else {
445 rb_erase(&rmap_item->node, &root_stable_tree);
446 ksm_pages_shared--;
448 } else {
449 struct rmap_item *prev_item = rmap_item->prev;
451 BUG_ON(prev_item->next != rmap_item);
452 prev_item->next = next_item;
453 if (next_item) {
454 BUG_ON(next_item->prev != rmap_item);
455 next_item->prev = rmap_item->prev;
457 ksm_pages_sharing--;
460 rmap_item->next = NULL;
462 } else if (rmap_item->address & NODE_FLAG) {
463 unsigned char age;
465 * Usually ksmd can and must skip the rb_erase, because
466 * root_unstable_tree was already reset to RB_ROOT.
467 * But be careful when an mm is exiting: do the rb_erase
468 * if this rmap_item was inserted by this scan, rather
469 * than left over from before.
471 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
472 BUG_ON(age > 1);
473 if (!age)
474 rb_erase(&rmap_item->node, &root_unstable_tree);
475 ksm_pages_unshared--;
478 rmap_item->address &= PAGE_MASK;
480 cond_resched(); /* we're called from many long loops */
483 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
484 struct list_head *cur)
486 struct rmap_item *rmap_item;
488 while (cur != &mm_slot->rmap_list) {
489 rmap_item = list_entry(cur, struct rmap_item, link);
490 cur = cur->next;
491 remove_rmap_item_from_tree(rmap_item);
492 list_del(&rmap_item->link);
493 free_rmap_item(rmap_item);
498 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
499 * than check every pte of a given vma, the locking doesn't quite work for
500 * that - an rmap_item is assigned to the stable tree after inserting ksm
501 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
502 * rmap_items from parent to child at fork time (so as not to waste time
503 * if exit comes before the next scan reaches it).
505 * Similarly, although we'd like to remove rmap_items (so updating counts
506 * and freeing memory) when unmerging an area, it's easier to leave that
507 * to the next pass of ksmd - consider, for example, how ksmd might be
508 * in cmp_and_merge_page on one of the rmap_items we would be removing.
510 static int unmerge_ksm_pages(struct vm_area_struct *vma,
511 unsigned long start, unsigned long end)
513 unsigned long addr;
514 int err = 0;
516 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
517 if (ksm_test_exit(vma->vm_mm))
518 break;
519 if (signal_pending(current))
520 err = -ERESTARTSYS;
521 else
522 err = break_ksm(vma, addr);
524 return err;
527 #ifdef CONFIG_SYSFS
529 * Only called through the sysfs control interface:
531 static int unmerge_and_remove_all_rmap_items(void)
533 struct mm_slot *mm_slot;
534 struct mm_struct *mm;
535 struct vm_area_struct *vma;
536 int err = 0;
538 spin_lock(&ksm_mmlist_lock);
539 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
540 struct mm_slot, mm_list);
541 spin_unlock(&ksm_mmlist_lock);
543 for (mm_slot = ksm_scan.mm_slot;
544 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
545 mm = mm_slot->mm;
546 down_read(&mm->mmap_sem);
547 for (vma = mm->mmap; vma; vma = vma->vm_next) {
548 if (ksm_test_exit(mm))
549 break;
550 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
551 continue;
552 err = unmerge_ksm_pages(vma,
553 vma->vm_start, vma->vm_end);
554 if (err)
555 goto error;
558 remove_trailing_rmap_items(mm_slot, mm_slot->rmap_list.next);
560 spin_lock(&ksm_mmlist_lock);
561 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
562 struct mm_slot, mm_list);
563 if (ksm_test_exit(mm)) {
564 hlist_del(&mm_slot->link);
565 list_del(&mm_slot->mm_list);
566 spin_unlock(&ksm_mmlist_lock);
568 free_mm_slot(mm_slot);
569 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
570 up_read(&mm->mmap_sem);
571 mmdrop(mm);
572 } else {
573 spin_unlock(&ksm_mmlist_lock);
574 up_read(&mm->mmap_sem);
578 ksm_scan.seqnr = 0;
579 return 0;
581 error:
582 up_read(&mm->mmap_sem);
583 spin_lock(&ksm_mmlist_lock);
584 ksm_scan.mm_slot = &ksm_mm_head;
585 spin_unlock(&ksm_mmlist_lock);
586 return err;
588 #endif /* CONFIG_SYSFS */
590 static u32 calc_checksum(struct page *page)
592 u32 checksum;
593 void *addr = kmap_atomic(page, KM_USER0);
594 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
595 kunmap_atomic(addr, KM_USER0);
596 return checksum;
599 static int memcmp_pages(struct page *page1, struct page *page2)
601 char *addr1, *addr2;
602 int ret;
604 addr1 = kmap_atomic(page1, KM_USER0);
605 addr2 = kmap_atomic(page2, KM_USER1);
606 ret = memcmp(addr1, addr2, PAGE_SIZE);
607 kunmap_atomic(addr2, KM_USER1);
608 kunmap_atomic(addr1, KM_USER0);
609 return ret;
612 static inline int pages_identical(struct page *page1, struct page *page2)
614 return !memcmp_pages(page1, page2);
617 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
618 pte_t *orig_pte)
620 struct mm_struct *mm = vma->vm_mm;
621 unsigned long addr;
622 pte_t *ptep;
623 spinlock_t *ptl;
624 int swapped;
625 int err = -EFAULT;
627 addr = page_address_in_vma(page, vma);
628 if (addr == -EFAULT)
629 goto out;
631 ptep = page_check_address(page, mm, addr, &ptl, 0);
632 if (!ptep)
633 goto out;
635 if (pte_write(*ptep)) {
636 pte_t entry;
638 swapped = PageSwapCache(page);
639 flush_cache_page(vma, addr, page_to_pfn(page));
641 * Ok this is tricky, when get_user_pages_fast() run it doesnt
642 * take any lock, therefore the check that we are going to make
643 * with the pagecount against the mapcount is racey and
644 * O_DIRECT can happen right after the check.
645 * So we clear the pte and flush the tlb before the check
646 * this assure us that no O_DIRECT can happen after the check
647 * or in the middle of the check.
649 entry = ptep_clear_flush(vma, addr, ptep);
651 * Check that no O_DIRECT or similar I/O is in progress on the
652 * page
654 if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
655 set_pte_at_notify(mm, addr, ptep, entry);
656 goto out_unlock;
658 entry = pte_wrprotect(entry);
659 set_pte_at_notify(mm, addr, ptep, entry);
661 *orig_pte = *ptep;
662 err = 0;
664 out_unlock:
665 pte_unmap_unlock(ptep, ptl);
666 out:
667 return err;
671 * replace_page - replace page in vma by new ksm page
672 * @vma: vma that holds the pte pointing to oldpage
673 * @oldpage: the page we are replacing by newpage
674 * @newpage: the ksm page we replace oldpage by
675 * @orig_pte: the original value of the pte
677 * Returns 0 on success, -EFAULT on failure.
679 static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
680 struct page *newpage, pte_t orig_pte)
682 struct mm_struct *mm = vma->vm_mm;
683 pgd_t *pgd;
684 pud_t *pud;
685 pmd_t *pmd;
686 pte_t *ptep;
687 spinlock_t *ptl;
688 unsigned long addr;
689 pgprot_t prot;
690 int err = -EFAULT;
692 prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
694 addr = page_address_in_vma(oldpage, vma);
695 if (addr == -EFAULT)
696 goto out;
698 pgd = pgd_offset(mm, addr);
699 if (!pgd_present(*pgd))
700 goto out;
702 pud = pud_offset(pgd, addr);
703 if (!pud_present(*pud))
704 goto out;
706 pmd = pmd_offset(pud, addr);
707 if (!pmd_present(*pmd))
708 goto out;
710 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
711 if (!pte_same(*ptep, orig_pte)) {
712 pte_unmap_unlock(ptep, ptl);
713 goto out;
716 get_page(newpage);
717 page_add_ksm_rmap(newpage);
719 flush_cache_page(vma, addr, pte_pfn(*ptep));
720 ptep_clear_flush(vma, addr, ptep);
721 set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
723 page_remove_rmap(oldpage);
724 put_page(oldpage);
726 pte_unmap_unlock(ptep, ptl);
727 err = 0;
728 out:
729 return err;
733 * try_to_merge_one_page - take two pages and merge them into one
734 * @vma: the vma that hold the pte pointing into oldpage
735 * @oldpage: the page that we want to replace with newpage
736 * @newpage: the page that we want to map instead of oldpage
738 * Note:
739 * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
740 * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
742 * This function returns 0 if the pages were merged, -EFAULT otherwise.
744 static int try_to_merge_one_page(struct vm_area_struct *vma,
745 struct page *oldpage,
746 struct page *newpage)
748 pte_t orig_pte = __pte(0);
749 int err = -EFAULT;
751 if (!(vma->vm_flags & VM_MERGEABLE))
752 goto out;
754 if (!PageAnon(oldpage))
755 goto out;
757 get_page(newpage);
758 get_page(oldpage);
761 * We need the page lock to read a stable PageSwapCache in
762 * write_protect_page(). We use trylock_page() instead of
763 * lock_page() because we don't want to wait here - we
764 * prefer to continue scanning and merging different pages,
765 * then come back to this page when it is unlocked.
767 if (!trylock_page(oldpage))
768 goto out_putpage;
770 * If this anonymous page is mapped only here, its pte may need
771 * to be write-protected. If it's mapped elsewhere, all of its
772 * ptes are necessarily already write-protected. But in either
773 * case, we need to lock and check page_count is not raised.
775 if (write_protect_page(vma, oldpage, &orig_pte)) {
776 unlock_page(oldpage);
777 goto out_putpage;
779 unlock_page(oldpage);
781 if (pages_identical(oldpage, newpage))
782 err = replace_page(vma, oldpage, newpage, orig_pte);
784 out_putpage:
785 put_page(oldpage);
786 put_page(newpage);
787 out:
788 return err;
792 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
793 * but no new kernel page is allocated: kpage must already be a ksm page.
795 static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
796 unsigned long addr1,
797 struct page *page1,
798 struct page *kpage)
800 struct vm_area_struct *vma;
801 int err = -EFAULT;
803 down_read(&mm1->mmap_sem);
804 if (ksm_test_exit(mm1))
805 goto out;
807 vma = find_vma(mm1, addr1);
808 if (!vma || vma->vm_start > addr1)
809 goto out;
811 err = try_to_merge_one_page(vma, page1, kpage);
812 out:
813 up_read(&mm1->mmap_sem);
814 return err;
818 * try_to_merge_two_pages - take two identical pages and prepare them
819 * to be merged into one page.
821 * This function returns 0 if we successfully mapped two identical pages
822 * into one page, -EFAULT otherwise.
824 * Note that this function allocates a new kernel page: if one of the pages
825 * is already a ksm page, try_to_merge_with_ksm_page should be used.
827 static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
828 struct page *page1, struct mm_struct *mm2,
829 unsigned long addr2, struct page *page2)
831 struct vm_area_struct *vma;
832 struct page *kpage;
833 int err = -EFAULT;
836 * The number of nodes in the stable tree
837 * is the number of kernel pages that we hold.
839 if (ksm_max_kernel_pages &&
840 ksm_max_kernel_pages <= ksm_pages_shared)
841 return err;
843 kpage = alloc_page(GFP_HIGHUSER);
844 if (!kpage)
845 return err;
847 down_read(&mm1->mmap_sem);
848 if (ksm_test_exit(mm1)) {
849 up_read(&mm1->mmap_sem);
850 goto out;
852 vma = find_vma(mm1, addr1);
853 if (!vma || vma->vm_start > addr1) {
854 up_read(&mm1->mmap_sem);
855 goto out;
858 copy_user_highpage(kpage, page1, addr1, vma);
859 err = try_to_merge_one_page(vma, page1, kpage);
860 up_read(&mm1->mmap_sem);
862 if (!err) {
863 err = try_to_merge_with_ksm_page(mm2, addr2, page2, kpage);
865 * If that fails, we have a ksm page with only one pte
866 * pointing to it: so break it.
868 if (err)
869 break_cow(mm1, addr1);
871 out:
872 put_page(kpage);
873 return err;
877 * stable_tree_search - search page inside the stable tree
878 * @page: the page that we are searching identical pages to.
879 * @page2: pointer into identical page that we are holding inside the stable
880 * tree that we have found.
881 * @rmap_item: the reverse mapping item
883 * This function checks if there is a page inside the stable tree
884 * with identical content to the page that we are scanning right now.
886 * This function return rmap_item pointer to the identical item if found,
887 * NULL otherwise.
889 static struct rmap_item *stable_tree_search(struct page *page,
890 struct page **page2,
891 struct rmap_item *rmap_item)
893 struct rb_node *node = root_stable_tree.rb_node;
895 while (node) {
896 struct rmap_item *tree_rmap_item, *next_rmap_item;
897 int ret;
899 tree_rmap_item = rb_entry(node, struct rmap_item, node);
900 while (tree_rmap_item) {
901 BUG_ON(!in_stable_tree(tree_rmap_item));
902 cond_resched();
903 page2[0] = get_ksm_page(tree_rmap_item);
904 if (page2[0])
905 break;
906 next_rmap_item = tree_rmap_item->next;
907 remove_rmap_item_from_tree(tree_rmap_item);
908 tree_rmap_item = next_rmap_item;
910 if (!tree_rmap_item)
911 return NULL;
913 ret = memcmp_pages(page, page2[0]);
915 if (ret < 0) {
916 put_page(page2[0]);
917 node = node->rb_left;
918 } else if (ret > 0) {
919 put_page(page2[0]);
920 node = node->rb_right;
921 } else {
922 return tree_rmap_item;
926 return NULL;
930 * stable_tree_insert - insert rmap_item pointing to new ksm page
931 * into the stable tree.
933 * @page: the page that we are searching identical page to inside the stable
934 * tree.
935 * @rmap_item: pointer to the reverse mapping item.
937 * This function returns rmap_item if success, NULL otherwise.
939 static struct rmap_item *stable_tree_insert(struct page *page,
940 struct rmap_item *rmap_item)
942 struct rb_node **new = &root_stable_tree.rb_node;
943 struct rb_node *parent = NULL;
945 while (*new) {
946 struct rmap_item *tree_rmap_item, *next_rmap_item;
947 struct page *tree_page;
948 int ret;
950 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
951 while (tree_rmap_item) {
952 BUG_ON(!in_stable_tree(tree_rmap_item));
953 cond_resched();
954 tree_page = get_ksm_page(tree_rmap_item);
955 if (tree_page)
956 break;
957 next_rmap_item = tree_rmap_item->next;
958 remove_rmap_item_from_tree(tree_rmap_item);
959 tree_rmap_item = next_rmap_item;
961 if (!tree_rmap_item)
962 return NULL;
964 ret = memcmp_pages(page, tree_page);
965 put_page(tree_page);
967 parent = *new;
968 if (ret < 0)
969 new = &parent->rb_left;
970 else if (ret > 0)
971 new = &parent->rb_right;
972 else {
974 * It is not a bug that stable_tree_search() didn't
975 * find this node: because at that time our page was
976 * not yet write-protected, so may have changed since.
978 return NULL;
982 rmap_item->address |= NODE_FLAG | STABLE_FLAG;
983 rmap_item->next = NULL;
984 rb_link_node(&rmap_item->node, parent, new);
985 rb_insert_color(&rmap_item->node, &root_stable_tree);
987 ksm_pages_shared++;
988 return rmap_item;
992 * unstable_tree_search_insert - search and insert items into the unstable tree.
994 * @page: the page that we are going to search for identical page or to insert
995 * into the unstable tree
996 * @page2: pointer into identical page that was found inside the unstable tree
997 * @rmap_item: the reverse mapping item of page
999 * This function searches for a page in the unstable tree identical to the
1000 * page currently being scanned; and if no identical page is found in the
1001 * tree, we insert rmap_item as a new object into the unstable tree.
1003 * This function returns pointer to rmap_item found to be identical
1004 * to the currently scanned page, NULL otherwise.
1006 * This function does both searching and inserting, because they share
1007 * the same walking algorithm in an rbtree.
1009 static struct rmap_item *unstable_tree_search_insert(struct page *page,
1010 struct page **page2,
1011 struct rmap_item *rmap_item)
1013 struct rb_node **new = &root_unstable_tree.rb_node;
1014 struct rb_node *parent = NULL;
1016 while (*new) {
1017 struct rmap_item *tree_rmap_item;
1018 int ret;
1020 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1021 page2[0] = get_mergeable_page(tree_rmap_item);
1022 if (!page2[0])
1023 return NULL;
1026 * Don't substitute an unswappable ksm page
1027 * just for one good swappable forked page.
1029 if (page == page2[0]) {
1030 put_page(page2[0]);
1031 return NULL;
1034 ret = memcmp_pages(page, page2[0]);
1036 parent = *new;
1037 if (ret < 0) {
1038 put_page(page2[0]);
1039 new = &parent->rb_left;
1040 } else if (ret > 0) {
1041 put_page(page2[0]);
1042 new = &parent->rb_right;
1043 } else {
1044 return tree_rmap_item;
1048 rmap_item->address |= NODE_FLAG;
1049 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1050 rb_link_node(&rmap_item->node, parent, new);
1051 rb_insert_color(&rmap_item->node, &root_unstable_tree);
1053 ksm_pages_unshared++;
1054 return NULL;
1058 * stable_tree_append - add another rmap_item to the linked list of
1059 * rmap_items hanging off a given node of the stable tree, all sharing
1060 * the same ksm page.
1062 static void stable_tree_append(struct rmap_item *rmap_item,
1063 struct rmap_item *tree_rmap_item)
1065 rmap_item->next = tree_rmap_item->next;
1066 rmap_item->prev = tree_rmap_item;
1068 if (tree_rmap_item->next)
1069 tree_rmap_item->next->prev = rmap_item;
1071 tree_rmap_item->next = rmap_item;
1072 rmap_item->address |= STABLE_FLAG;
1074 ksm_pages_sharing++;
1078 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1079 * if not, compare checksum to previous and if it's the same, see if page can
1080 * be inserted into the unstable tree, or merged with a page already there and
1081 * both transferred to the stable tree.
1083 * @page: the page that we are searching identical page to.
1084 * @rmap_item: the reverse mapping into the virtual address of this page
1086 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1088 struct page *page2[1];
1089 struct rmap_item *tree_rmap_item;
1090 unsigned int checksum;
1091 int err;
1093 if (in_stable_tree(rmap_item))
1094 remove_rmap_item_from_tree(rmap_item);
1096 /* We first start with searching the page inside the stable tree */
1097 tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1098 if (tree_rmap_item) {
1099 if (page == page2[0]) /* forked */
1100 err = 0;
1101 else
1102 err = try_to_merge_with_ksm_page(rmap_item->mm,
1103 rmap_item->address,
1104 page, page2[0]);
1105 put_page(page2[0]);
1107 if (!err) {
1109 * The page was successfully merged:
1110 * add its rmap_item to the stable tree.
1112 stable_tree_append(rmap_item, tree_rmap_item);
1114 return;
1118 * A ksm page might have got here by fork, but its other
1119 * references have already been removed from the stable tree.
1120 * Or it might be left over from a break_ksm which failed
1121 * when the mem_cgroup had reached its limit: try again now.
1123 if (PageKsm(page))
1124 break_cow(rmap_item->mm, rmap_item->address);
1127 * In case the hash value of the page was changed from the last time we
1128 * have calculated it, this page to be changed frequely, therefore we
1129 * don't want to insert it to the unstable tree, and we don't want to
1130 * waste our time to search if there is something identical to it there.
1132 checksum = calc_checksum(page);
1133 if (rmap_item->oldchecksum != checksum) {
1134 rmap_item->oldchecksum = checksum;
1135 return;
1138 tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1139 if (tree_rmap_item) {
1140 err = try_to_merge_two_pages(rmap_item->mm,
1141 rmap_item->address, page,
1142 tree_rmap_item->mm,
1143 tree_rmap_item->address, page2[0]);
1145 * As soon as we merge this page, we want to remove the
1146 * rmap_item of the page we have merged with from the unstable
1147 * tree, and insert it instead as new node in the stable tree.
1149 if (!err) {
1150 rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1151 tree_rmap_item->address &= ~NODE_FLAG;
1152 ksm_pages_unshared--;
1155 * If we fail to insert the page into the stable tree,
1156 * we will have 2 virtual addresses that are pointing
1157 * to a ksm page left outside the stable tree,
1158 * in which case we need to break_cow on both.
1160 if (stable_tree_insert(page2[0], tree_rmap_item))
1161 stable_tree_append(rmap_item, tree_rmap_item);
1162 else {
1163 break_cow(tree_rmap_item->mm,
1164 tree_rmap_item->address);
1165 break_cow(rmap_item->mm, rmap_item->address);
1169 put_page(page2[0]);
1173 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1174 struct list_head *cur,
1175 unsigned long addr)
1177 struct rmap_item *rmap_item;
1179 while (cur != &mm_slot->rmap_list) {
1180 rmap_item = list_entry(cur, struct rmap_item, link);
1181 if ((rmap_item->address & PAGE_MASK) == addr) {
1182 if (!in_stable_tree(rmap_item))
1183 remove_rmap_item_from_tree(rmap_item);
1184 return rmap_item;
1186 if (rmap_item->address > addr)
1187 break;
1188 cur = cur->next;
1189 remove_rmap_item_from_tree(rmap_item);
1190 list_del(&rmap_item->link);
1191 free_rmap_item(rmap_item);
1194 rmap_item = alloc_rmap_item();
1195 if (rmap_item) {
1196 /* It has already been zeroed */
1197 rmap_item->mm = mm_slot->mm;
1198 rmap_item->address = addr;
1199 list_add_tail(&rmap_item->link, cur);
1201 return rmap_item;
1204 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1206 struct mm_struct *mm;
1207 struct mm_slot *slot;
1208 struct vm_area_struct *vma;
1209 struct rmap_item *rmap_item;
1211 if (list_empty(&ksm_mm_head.mm_list))
1212 return NULL;
1214 slot = ksm_scan.mm_slot;
1215 if (slot == &ksm_mm_head) {
1216 root_unstable_tree = RB_ROOT;
1218 spin_lock(&ksm_mmlist_lock);
1219 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1220 ksm_scan.mm_slot = slot;
1221 spin_unlock(&ksm_mmlist_lock);
1222 next_mm:
1223 ksm_scan.address = 0;
1224 ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1225 struct rmap_item, link);
1228 mm = slot->mm;
1229 down_read(&mm->mmap_sem);
1230 if (ksm_test_exit(mm))
1231 vma = NULL;
1232 else
1233 vma = find_vma(mm, ksm_scan.address);
1235 for (; vma; vma = vma->vm_next) {
1236 if (!(vma->vm_flags & VM_MERGEABLE))
1237 continue;
1238 if (ksm_scan.address < vma->vm_start)
1239 ksm_scan.address = vma->vm_start;
1240 if (!vma->anon_vma)
1241 ksm_scan.address = vma->vm_end;
1243 while (ksm_scan.address < vma->vm_end) {
1244 if (ksm_test_exit(mm))
1245 break;
1246 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1247 if (*page && PageAnon(*page)) {
1248 flush_anon_page(vma, *page, ksm_scan.address);
1249 flush_dcache_page(*page);
1250 rmap_item = get_next_rmap_item(slot,
1251 ksm_scan.rmap_item->link.next,
1252 ksm_scan.address);
1253 if (rmap_item) {
1254 ksm_scan.rmap_item = rmap_item;
1255 ksm_scan.address += PAGE_SIZE;
1256 } else
1257 put_page(*page);
1258 up_read(&mm->mmap_sem);
1259 return rmap_item;
1261 if (*page)
1262 put_page(*page);
1263 ksm_scan.address += PAGE_SIZE;
1264 cond_resched();
1268 if (ksm_test_exit(mm)) {
1269 ksm_scan.address = 0;
1270 ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1271 struct rmap_item, link);
1274 * Nuke all the rmap_items that are above this current rmap:
1275 * because there were no VM_MERGEABLE vmas with such addresses.
1277 remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1279 spin_lock(&ksm_mmlist_lock);
1280 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1281 struct mm_slot, mm_list);
1282 if (ksm_scan.address == 0) {
1284 * We've completed a full scan of all vmas, holding mmap_sem
1285 * throughout, and found no VM_MERGEABLE: so do the same as
1286 * __ksm_exit does to remove this mm from all our lists now.
1287 * This applies either when cleaning up after __ksm_exit
1288 * (but beware: we can reach here even before __ksm_exit),
1289 * or when all VM_MERGEABLE areas have been unmapped (and
1290 * mmap_sem then protects against race with MADV_MERGEABLE).
1292 hlist_del(&slot->link);
1293 list_del(&slot->mm_list);
1294 spin_unlock(&ksm_mmlist_lock);
1296 free_mm_slot(slot);
1297 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1298 up_read(&mm->mmap_sem);
1299 mmdrop(mm);
1300 } else {
1301 spin_unlock(&ksm_mmlist_lock);
1302 up_read(&mm->mmap_sem);
1305 /* Repeat until we've completed scanning the whole list */
1306 slot = ksm_scan.mm_slot;
1307 if (slot != &ksm_mm_head)
1308 goto next_mm;
1310 ksm_scan.seqnr++;
1311 return NULL;
1315 * ksm_do_scan - the ksm scanner main worker function.
1316 * @scan_npages - number of pages we want to scan before we return.
1318 static void ksm_do_scan(unsigned int scan_npages)
1320 struct rmap_item *rmap_item;
1321 struct page *page;
1323 while (scan_npages--) {
1324 cond_resched();
1325 rmap_item = scan_get_next_rmap_item(&page);
1326 if (!rmap_item)
1327 return;
1328 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1329 cmp_and_merge_page(page, rmap_item);
1330 else if (page_mapcount(page) == 1) {
1332 * Replace now-unshared ksm page by ordinary page.
1334 break_cow(rmap_item->mm, rmap_item->address);
1335 remove_rmap_item_from_tree(rmap_item);
1336 rmap_item->oldchecksum = calc_checksum(page);
1338 put_page(page);
1342 static int ksmd_should_run(void)
1344 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1347 static int ksm_scan_thread(void *nothing)
1349 set_user_nice(current, 5);
1351 while (!kthread_should_stop()) {
1352 mutex_lock(&ksm_thread_mutex);
1353 if (ksmd_should_run())
1354 ksm_do_scan(ksm_thread_pages_to_scan);
1355 mutex_unlock(&ksm_thread_mutex);
1357 if (ksmd_should_run()) {
1358 schedule_timeout_interruptible(
1359 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1360 } else {
1361 wait_event_interruptible(ksm_thread_wait,
1362 ksmd_should_run() || kthread_should_stop());
1365 return 0;
1368 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1369 unsigned long end, int advice, unsigned long *vm_flags)
1371 struct mm_struct *mm = vma->vm_mm;
1372 int err;
1374 switch (advice) {
1375 case MADV_MERGEABLE:
1377 * Be somewhat over-protective for now!
1379 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1380 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1381 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1382 VM_MIXEDMAP | VM_SAO))
1383 return 0; /* just ignore the advice */
1385 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1386 err = __ksm_enter(mm);
1387 if (err)
1388 return err;
1391 *vm_flags |= VM_MERGEABLE;
1392 break;
1394 case MADV_UNMERGEABLE:
1395 if (!(*vm_flags & VM_MERGEABLE))
1396 return 0; /* just ignore the advice */
1398 if (vma->anon_vma) {
1399 err = unmerge_ksm_pages(vma, start, end);
1400 if (err)
1401 return err;
1404 *vm_flags &= ~VM_MERGEABLE;
1405 break;
1408 return 0;
1411 int __ksm_enter(struct mm_struct *mm)
1413 struct mm_slot *mm_slot;
1414 int needs_wakeup;
1416 mm_slot = alloc_mm_slot();
1417 if (!mm_slot)
1418 return -ENOMEM;
1420 /* Check ksm_run too? Would need tighter locking */
1421 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1423 spin_lock(&ksm_mmlist_lock);
1424 insert_to_mm_slots_hash(mm, mm_slot);
1426 * Insert just behind the scanning cursor, to let the area settle
1427 * down a little; when fork is followed by immediate exec, we don't
1428 * want ksmd to waste time setting up and tearing down an rmap_list.
1430 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1431 spin_unlock(&ksm_mmlist_lock);
1433 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1434 atomic_inc(&mm->mm_count);
1436 if (needs_wakeup)
1437 wake_up_interruptible(&ksm_thread_wait);
1439 return 0;
1442 void __ksm_exit(struct mm_struct *mm)
1444 struct mm_slot *mm_slot;
1445 int easy_to_free = 0;
1448 * This process is exiting: if it's straightforward (as is the
1449 * case when ksmd was never running), free mm_slot immediately.
1450 * But if it's at the cursor or has rmap_items linked to it, use
1451 * mmap_sem to synchronize with any break_cows before pagetables
1452 * are freed, and leave the mm_slot on the list for ksmd to free.
1453 * Beware: ksm may already have noticed it exiting and freed the slot.
1456 spin_lock(&ksm_mmlist_lock);
1457 mm_slot = get_mm_slot(mm);
1458 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1459 if (list_empty(&mm_slot->rmap_list)) {
1460 hlist_del(&mm_slot->link);
1461 list_del(&mm_slot->mm_list);
1462 easy_to_free = 1;
1463 } else {
1464 list_move(&mm_slot->mm_list,
1465 &ksm_scan.mm_slot->mm_list);
1468 spin_unlock(&ksm_mmlist_lock);
1470 if (easy_to_free) {
1471 free_mm_slot(mm_slot);
1472 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1473 mmdrop(mm);
1474 } else if (mm_slot) {
1475 down_write(&mm->mmap_sem);
1476 up_write(&mm->mmap_sem);
1480 #ifdef CONFIG_SYSFS
1482 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1485 #define KSM_ATTR_RO(_name) \
1486 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1487 #define KSM_ATTR(_name) \
1488 static struct kobj_attribute _name##_attr = \
1489 __ATTR(_name, 0644, _name##_show, _name##_store)
1491 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1492 struct kobj_attribute *attr, char *buf)
1494 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1497 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1498 struct kobj_attribute *attr,
1499 const char *buf, size_t count)
1501 unsigned long msecs;
1502 int err;
1504 err = strict_strtoul(buf, 10, &msecs);
1505 if (err || msecs > UINT_MAX)
1506 return -EINVAL;
1508 ksm_thread_sleep_millisecs = msecs;
1510 return count;
1512 KSM_ATTR(sleep_millisecs);
1514 static ssize_t pages_to_scan_show(struct kobject *kobj,
1515 struct kobj_attribute *attr, char *buf)
1517 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1520 static ssize_t pages_to_scan_store(struct kobject *kobj,
1521 struct kobj_attribute *attr,
1522 const char *buf, size_t count)
1524 int err;
1525 unsigned long nr_pages;
1527 err = strict_strtoul(buf, 10, &nr_pages);
1528 if (err || nr_pages > UINT_MAX)
1529 return -EINVAL;
1531 ksm_thread_pages_to_scan = nr_pages;
1533 return count;
1535 KSM_ATTR(pages_to_scan);
1537 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1538 char *buf)
1540 return sprintf(buf, "%u\n", ksm_run);
1543 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1544 const char *buf, size_t count)
1546 int err;
1547 unsigned long flags;
1549 err = strict_strtoul(buf, 10, &flags);
1550 if (err || flags > UINT_MAX)
1551 return -EINVAL;
1552 if (flags > KSM_RUN_UNMERGE)
1553 return -EINVAL;
1556 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1557 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1558 * breaking COW to free the unswappable pages_shared (but leaves
1559 * mm_slots on the list for when ksmd may be set running again).
1562 mutex_lock(&ksm_thread_mutex);
1563 if (ksm_run != flags) {
1564 ksm_run = flags;
1565 if (flags & KSM_RUN_UNMERGE) {
1566 current->flags |= PF_OOM_ORIGIN;
1567 err = unmerge_and_remove_all_rmap_items();
1568 current->flags &= ~PF_OOM_ORIGIN;
1569 if (err) {
1570 ksm_run = KSM_RUN_STOP;
1571 count = err;
1575 mutex_unlock(&ksm_thread_mutex);
1577 if (flags & KSM_RUN_MERGE)
1578 wake_up_interruptible(&ksm_thread_wait);
1580 return count;
1582 KSM_ATTR(run);
1584 static ssize_t max_kernel_pages_store(struct kobject *kobj,
1585 struct kobj_attribute *attr,
1586 const char *buf, size_t count)
1588 int err;
1589 unsigned long nr_pages;
1591 err = strict_strtoul(buf, 10, &nr_pages);
1592 if (err)
1593 return -EINVAL;
1595 ksm_max_kernel_pages = nr_pages;
1597 return count;
1600 static ssize_t max_kernel_pages_show(struct kobject *kobj,
1601 struct kobj_attribute *attr, char *buf)
1603 return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1605 KSM_ATTR(max_kernel_pages);
1607 static ssize_t pages_shared_show(struct kobject *kobj,
1608 struct kobj_attribute *attr, char *buf)
1610 return sprintf(buf, "%lu\n", ksm_pages_shared);
1612 KSM_ATTR_RO(pages_shared);
1614 static ssize_t pages_sharing_show(struct kobject *kobj,
1615 struct kobj_attribute *attr, char *buf)
1617 return sprintf(buf, "%lu\n", ksm_pages_sharing);
1619 KSM_ATTR_RO(pages_sharing);
1621 static ssize_t pages_unshared_show(struct kobject *kobj,
1622 struct kobj_attribute *attr, char *buf)
1624 return sprintf(buf, "%lu\n", ksm_pages_unshared);
1626 KSM_ATTR_RO(pages_unshared);
1628 static ssize_t pages_volatile_show(struct kobject *kobj,
1629 struct kobj_attribute *attr, char *buf)
1631 long ksm_pages_volatile;
1633 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1634 - ksm_pages_sharing - ksm_pages_unshared;
1636 * It was not worth any locking to calculate that statistic,
1637 * but it might therefore sometimes be negative: conceal that.
1639 if (ksm_pages_volatile < 0)
1640 ksm_pages_volatile = 0;
1641 return sprintf(buf, "%ld\n", ksm_pages_volatile);
1643 KSM_ATTR_RO(pages_volatile);
1645 static ssize_t full_scans_show(struct kobject *kobj,
1646 struct kobj_attribute *attr, char *buf)
1648 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1650 KSM_ATTR_RO(full_scans);
1652 static struct attribute *ksm_attrs[] = {
1653 &sleep_millisecs_attr.attr,
1654 &pages_to_scan_attr.attr,
1655 &run_attr.attr,
1656 &max_kernel_pages_attr.attr,
1657 &pages_shared_attr.attr,
1658 &pages_sharing_attr.attr,
1659 &pages_unshared_attr.attr,
1660 &pages_volatile_attr.attr,
1661 &full_scans_attr.attr,
1662 NULL,
1665 static struct attribute_group ksm_attr_group = {
1666 .attrs = ksm_attrs,
1667 .name = "ksm",
1669 #endif /* CONFIG_SYSFS */
1671 static int __init ksm_init(void)
1673 struct task_struct *ksm_thread;
1674 int err;
1676 ksm_init_max_kernel_pages();
1678 err = ksm_slab_init();
1679 if (err)
1680 goto out;
1682 err = mm_slots_hash_init();
1683 if (err)
1684 goto out_free1;
1686 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1687 if (IS_ERR(ksm_thread)) {
1688 printk(KERN_ERR "ksm: creating kthread failed\n");
1689 err = PTR_ERR(ksm_thread);
1690 goto out_free2;
1693 #ifdef CONFIG_SYSFS
1694 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1695 if (err) {
1696 printk(KERN_ERR "ksm: register sysfs failed\n");
1697 kthread_stop(ksm_thread);
1698 goto out_free2;
1700 #endif /* CONFIG_SYSFS */
1702 return 0;
1704 out_free2:
1705 mm_slots_hash_free();
1706 out_free1:
1707 ksm_slab_free();
1708 out:
1709 return err;
1711 module_init(ksm_init)