x86: remove nx_enabled from fault.c
[linux-2.6/x86.git] / arch / x86 / mm / fault.c
blob99d273dbc758a43212a8faf3874e4ad5adf6a5e6
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mman.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/tty.h>
19 #include <linux/vt_kern.h> /* For unblank_screen() */
20 #include <linux/compiler.h>
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h> /* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
29 #include <asm/system.h>
30 #include <asm/desc.h>
31 #include <asm/segment.h>
32 #include <asm/pgalloc.h>
33 #include <asm/smp.h>
34 #include <asm/tlbflush.h>
35 #include <asm/proto.h>
36 #include <asm-generic/sections.h>
39 * Page fault error code bits
40 * bit 0 == 0 means no page found, 1 means protection fault
41 * bit 1 == 0 means read, 1 means write
42 * bit 2 == 0 means kernel, 1 means user-mode
43 * bit 3 == 1 means use of reserved bit detected
44 * bit 4 == 1 means fault was an instruction fetch
46 #define PF_PROT (1<<0)
47 #define PF_WRITE (1<<1)
48 #define PF_USER (1<<2)
49 #define PF_RSVD (1<<3)
50 #define PF_INSTR (1<<4)
52 static inline int notify_page_fault(struct pt_regs *regs)
54 #ifdef CONFIG_KPROBES
55 int ret = 0;
57 /* kprobe_running() needs smp_processor_id() */
58 #ifdef CONFIG_X86_32
59 if (!user_mode_vm(regs)) {
60 #else
61 if (!user_mode(regs)) {
62 #endif
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
69 return ret;
70 #else
71 return 0;
72 #endif
76 * X86_32
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
80 * X86_64
81 * Sometimes the CPU reports invalid exceptions on prefetch.
82 * Check that here and ignore it.
84 * Opcode checker based on code by Richard Brunner
86 static int is_prefetch(struct pt_regs *regs, unsigned long addr,
87 unsigned long error_code)
89 unsigned char *instr;
90 int scan_more = 1;
91 int prefetch = 0;
92 unsigned char *max_instr;
94 #ifdef CONFIG_X86_32
95 if (!(__supported_pte_mask & _PAGE_NX))
96 return 0;
97 #endif
99 /* If it was a exec fault on NX page, ignore */
100 if (error_code & PF_INSTR)
101 return 0;
103 instr = (unsigned char *)convert_ip_to_linear(current, regs);
104 max_instr = instr + 15;
106 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
107 return 0;
109 while (scan_more && instr < max_instr) {
110 unsigned char opcode;
111 unsigned char instr_hi;
112 unsigned char instr_lo;
114 if (probe_kernel_address(instr, opcode))
115 break;
117 instr_hi = opcode & 0xf0;
118 instr_lo = opcode & 0x0f;
119 instr++;
121 switch (instr_hi) {
122 case 0x20:
123 case 0x30:
125 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
126 * In X86_64 long mode, the CPU will signal invalid
127 * opcode if some of these prefixes are present so
128 * X86_64 will never get here anyway
130 scan_more = ((instr_lo & 7) == 0x6);
131 break;
132 #ifdef CONFIG_X86_64
133 case 0x40:
135 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
136 * Need to figure out under what instruction mode the
137 * instruction was issued. Could check the LDT for lm,
138 * but for now it's good enough to assume that long
139 * mode only uses well known segments or kernel.
141 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
142 break;
143 #endif
144 case 0x60:
145 /* 0x64 thru 0x67 are valid prefixes in all modes. */
146 scan_more = (instr_lo & 0xC) == 0x4;
147 break;
148 case 0xF0:
149 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
150 scan_more = !instr_lo || (instr_lo>>1) == 1;
151 break;
152 case 0x00:
153 /* Prefetch instruction is 0x0F0D or 0x0F18 */
154 scan_more = 0;
156 if (probe_kernel_address(instr, opcode))
157 break;
158 prefetch = (instr_lo == 0xF) &&
159 (opcode == 0x0D || opcode == 0x18);
160 break;
161 default:
162 scan_more = 0;
163 break;
166 return prefetch;
169 static void force_sig_info_fault(int si_signo, int si_code,
170 unsigned long address, struct task_struct *tsk)
172 siginfo_t info;
174 info.si_signo = si_signo;
175 info.si_errno = 0;
176 info.si_code = si_code;
177 info.si_addr = (void __user *)address;
178 force_sig_info(si_signo, &info, tsk);
181 #ifdef CONFIG_X86_64
182 static int bad_address(void *p)
184 unsigned long dummy;
185 return probe_kernel_address((unsigned long *)p, dummy);
187 #endif
189 void dump_pagetable(unsigned long address)
191 #ifdef CONFIG_X86_32
192 __typeof__(pte_val(__pte(0))) page;
194 page = read_cr3();
195 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
196 #ifdef CONFIG_X86_PAE
197 printk("*pdpt = %016Lx ", page);
198 if ((page >> PAGE_SHIFT) < max_low_pfn
199 && page & _PAGE_PRESENT) {
200 page &= PAGE_MASK;
201 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
202 & (PTRS_PER_PMD - 1)];
203 printk(KERN_CONT "*pde = %016Lx ", page);
204 page &= ~_PAGE_NX;
206 #else
207 printk("*pde = %08lx ", page);
208 #endif
211 * We must not directly access the pte in the highpte
212 * case if the page table is located in highmem.
213 * And let's rather not kmap-atomic the pte, just in case
214 * it's allocated already.
216 if ((page >> PAGE_SHIFT) < max_low_pfn
217 && (page & _PAGE_PRESENT)
218 && !(page & _PAGE_PSE)) {
219 page &= PAGE_MASK;
220 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
221 & (PTRS_PER_PTE - 1)];
222 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
225 printk("\n");
226 #else /* CONFIG_X86_64 */
227 pgd_t *pgd;
228 pud_t *pud;
229 pmd_t *pmd;
230 pte_t *pte;
232 pgd = (pgd_t *)read_cr3();
234 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
235 pgd += pgd_index(address);
236 if (bad_address(pgd)) goto bad;
237 printk("PGD %lx ", pgd_val(*pgd));
238 if (!pgd_present(*pgd)) goto ret;
240 pud = pud_offset(pgd, address);
241 if (bad_address(pud)) goto bad;
242 printk("PUD %lx ", pud_val(*pud));
243 if (!pud_present(*pud)) goto ret;
245 pmd = pmd_offset(pud, address);
246 if (bad_address(pmd)) goto bad;
247 printk("PMD %lx ", pmd_val(*pmd));
248 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
250 pte = pte_offset_kernel(pmd, address);
251 if (bad_address(pte)) goto bad;
252 printk("PTE %lx", pte_val(*pte));
253 ret:
254 printk("\n");
255 return;
256 bad:
257 printk("BAD\n");
258 #endif
261 #ifdef CONFIG_X86_32
262 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
264 unsigned index = pgd_index(address);
265 pgd_t *pgd_k;
266 pud_t *pud, *pud_k;
267 pmd_t *pmd, *pmd_k;
269 pgd += index;
270 pgd_k = init_mm.pgd + index;
272 if (!pgd_present(*pgd_k))
273 return NULL;
276 * set_pgd(pgd, *pgd_k); here would be useless on PAE
277 * and redundant with the set_pmd() on non-PAE. As would
278 * set_pud.
281 pud = pud_offset(pgd, address);
282 pud_k = pud_offset(pgd_k, address);
283 if (!pud_present(*pud_k))
284 return NULL;
286 pmd = pmd_offset(pud, address);
287 pmd_k = pmd_offset(pud_k, address);
288 if (!pmd_present(*pmd_k))
289 return NULL;
290 if (!pmd_present(*pmd)) {
291 set_pmd(pmd, *pmd_k);
292 arch_flush_lazy_mmu_mode();
293 } else
294 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
295 return pmd_k;
297 #endif
299 #ifdef CONFIG_X86_64
300 static const char errata93_warning[] =
301 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
302 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
303 KERN_ERR "******* Please consider a BIOS update.\n"
304 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
305 #endif
307 /* Workaround for K8 erratum #93 & buggy BIOS.
308 BIOS SMM functions are required to use a specific workaround
309 to avoid corruption of the 64bit RIP register on C stepping K8.
310 A lot of BIOS that didn't get tested properly miss this.
311 The OS sees this as a page fault with the upper 32bits of RIP cleared.
312 Try to work around it here.
313 Note we only handle faults in kernel here.
314 Does nothing for X86_32
316 static int is_errata93(struct pt_regs *regs, unsigned long address)
318 #ifdef CONFIG_X86_64
319 static int warned;
320 if (address != regs->ip)
321 return 0;
322 if ((address >> 32) != 0)
323 return 0;
324 address |= 0xffffffffUL << 32;
325 if ((address >= (u64)_stext && address <= (u64)_etext) ||
326 (address >= MODULES_VADDR && address <= MODULES_END)) {
327 if (!warned) {
328 printk(errata93_warning);
329 warned = 1;
331 regs->ip = address;
332 return 1;
334 #endif
335 return 0;
339 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
340 * addresses >4GB. We catch this in the page fault handler because these
341 * addresses are not reachable. Just detect this case and return. Any code
342 * segment in LDT is compatibility mode.
344 static int is_errata100(struct pt_regs *regs, unsigned long address)
346 #ifdef CONFIG_X86_64
347 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
348 (address >> 32))
349 return 1;
350 #endif
351 return 0;
354 void do_invalid_op(struct pt_regs *, unsigned long);
356 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
358 #ifdef CONFIG_X86_F00F_BUG
359 unsigned long nr;
361 * Pentium F0 0F C7 C8 bug workaround.
363 if (boot_cpu_data.f00f_bug) {
364 nr = (address - idt_descr.address) >> 3;
366 if (nr == 6) {
367 do_invalid_op(regs, 0);
368 return 1;
371 #endif
372 return 0;
375 static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
376 unsigned long address)
378 #ifdef CONFIG_X86_32
379 if (!oops_may_print())
380 return;
382 #ifdef CONFIG_X86_PAE
383 if (error_code & PF_INSTR) {
384 int level;
385 pte_t *pte = lookup_address(address, &level);
387 if (pte && pte_present(*pte) && !pte_exec(*pte))
388 printk(KERN_CRIT "kernel tried to execute "
389 "NX-protected page - exploit attempt? "
390 "(uid: %d)\n", current->uid);
392 #endif
393 printk(KERN_ALERT "BUG: unable to handle kernel ");
394 if (address < PAGE_SIZE)
395 printk(KERN_CONT "NULL pointer dereference");
396 else
397 printk(KERN_CONT "paging request");
398 printk(KERN_CONT " at %08lx\n", address);
400 printk(KERN_ALERT "IP:");
401 printk_address(regs->ip, 1);
402 dump_pagetable(address);
403 #else /* CONFIG_X86_64 */
404 printk(KERN_ALERT "BUG: unable to handle kernel ");
405 if (address < PAGE_SIZE)
406 printk(KERN_CONT "NULL pointer dereference");
407 else
408 printk(KERN_CONT "paging request");
409 printk(KERN_CONT " at %016lx\n", address);
411 printk(KERN_ALERT "IP:");
412 printk_address(regs->ip, 1);
413 dump_pagetable(address);
414 #endif
417 #ifdef CONFIG_X86_64
418 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
419 unsigned long error_code)
421 unsigned long flags = oops_begin();
422 struct task_struct *tsk;
424 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
425 current->comm, address);
426 dump_pagetable(address);
427 tsk = current;
428 tsk->thread.cr2 = address;
429 tsk->thread.trap_no = 14;
430 tsk->thread.error_code = error_code;
431 if (__die("Bad pagetable", regs, error_code))
432 regs = NULL;
433 oops_end(flags, regs, SIGKILL);
435 #endif
438 * X86_32
439 * Handle a fault on the vmalloc or module mapping area
441 * X86_64
442 * Handle a fault on the vmalloc area
444 * This assumes no large pages in there.
446 static int vmalloc_fault(unsigned long address)
448 #ifdef CONFIG_X86_32
449 unsigned long pgd_paddr;
450 pmd_t *pmd_k;
451 pte_t *pte_k;
453 * Synchronize this task's top level page-table
454 * with the 'reference' page table.
456 * Do _not_ use "current" here. We might be inside
457 * an interrupt in the middle of a task switch..
459 pgd_paddr = read_cr3();
460 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
461 if (!pmd_k)
462 return -1;
463 pte_k = pte_offset_kernel(pmd_k, address);
464 if (!pte_present(*pte_k))
465 return -1;
466 return 0;
467 #else
468 pgd_t *pgd, *pgd_ref;
469 pud_t *pud, *pud_ref;
470 pmd_t *pmd, *pmd_ref;
471 pte_t *pte, *pte_ref;
473 /* Copy kernel mappings over when needed. This can also
474 happen within a race in page table update. In the later
475 case just flush. */
477 pgd = pgd_offset(current->mm ?: &init_mm, address);
478 pgd_ref = pgd_offset_k(address);
479 if (pgd_none(*pgd_ref))
480 return -1;
481 if (pgd_none(*pgd))
482 set_pgd(pgd, *pgd_ref);
483 else
484 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
486 /* Below here mismatches are bugs because these lower tables
487 are shared */
489 pud = pud_offset(pgd, address);
490 pud_ref = pud_offset(pgd_ref, address);
491 if (pud_none(*pud_ref))
492 return -1;
493 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
494 BUG();
495 pmd = pmd_offset(pud, address);
496 pmd_ref = pmd_offset(pud_ref, address);
497 if (pmd_none(*pmd_ref))
498 return -1;
499 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
500 BUG();
501 pte_ref = pte_offset_kernel(pmd_ref, address);
502 if (!pte_present(*pte_ref))
503 return -1;
504 pte = pte_offset_kernel(pmd, address);
505 /* Don't use pte_page here, because the mappings can point
506 outside mem_map, and the NUMA hash lookup cannot handle
507 that. */
508 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
509 BUG();
510 return 0;
511 #endif
514 int show_unhandled_signals = 1;
517 * This routine handles page faults. It determines the address,
518 * and the problem, and then passes it off to one of the appropriate
519 * routines.
521 #ifdef CONFIG_X86_64
522 asmlinkage
523 #endif
524 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
526 struct task_struct *tsk;
527 struct mm_struct *mm;
528 struct vm_area_struct *vma;
529 unsigned long address;
530 int write, si_code;
531 int fault;
532 #ifdef CONFIG_X86_64
533 unsigned long flags;
534 #endif
537 * We can fault from pretty much anywhere, with unknown IRQ state.
539 trace_hardirqs_fixup();
541 tsk = current;
542 mm = tsk->mm;
543 prefetchw(&mm->mmap_sem);
545 /* get the address */
546 address = read_cr2();
548 si_code = SEGV_MAPERR;
550 if (notify_page_fault(regs))
551 return;
554 * We fault-in kernel-space virtual memory on-demand. The
555 * 'reference' page table is init_mm.pgd.
557 * NOTE! We MUST NOT take any locks for this case. We may
558 * be in an interrupt or a critical region, and should
559 * only copy the information from the master page table,
560 * nothing more.
562 * This verifies that the fault happens in kernel space
563 * (error_code & 4) == 0, and that the fault was not a
564 * protection error (error_code & 9) == 0.
566 #ifdef CONFIG_X86_32
567 if (unlikely(address >= TASK_SIZE)) {
568 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
569 vmalloc_fault(address) >= 0)
570 return;
572 * Don't take the mm semaphore here. If we fixup a prefetch
573 * fault we could otherwise deadlock.
575 goto bad_area_nosemaphore;
578 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
579 fault has been handled. */
580 if (regs->flags & (X86_EFLAGS_IF|VM_MASK))
581 local_irq_enable();
584 * If we're in an interrupt, have no user context or are running in an
585 * atomic region then we must not take the fault.
587 if (in_atomic() || !mm)
588 goto bad_area_nosemaphore;
589 #else /* CONFIG_X86_64 */
590 if (unlikely(address >= TASK_SIZE64)) {
592 * Don't check for the module range here: its PML4
593 * is always initialized because it's shared with the main
594 * kernel text. Only vmalloc may need PML4 syncups.
596 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
597 ((address >= VMALLOC_START && address < VMALLOC_END))) {
598 if (vmalloc_fault(address) >= 0)
599 return;
602 * Don't take the mm semaphore here. If we fixup a prefetch
603 * fault we could otherwise deadlock.
605 goto bad_area_nosemaphore;
607 if (likely(regs->flags & X86_EFLAGS_IF))
608 local_irq_enable();
610 if (unlikely(error_code & PF_RSVD))
611 pgtable_bad(address, regs, error_code);
614 * If we're in an interrupt, have no user context or are running in an
615 * atomic region then we must not take the fault.
617 if (unlikely(in_atomic() || !mm))
618 goto bad_area_nosemaphore;
621 * User-mode registers count as a user access even for any
622 * potential system fault or CPU buglet.
624 if (user_mode_vm(regs))
625 error_code |= PF_USER;
626 again:
627 #endif
628 /* When running in the kernel we expect faults to occur only to
629 * addresses in user space. All other faults represent errors in the
630 * kernel and should generate an OOPS. Unfortunately, in the case of an
631 * erroneous fault occurring in a code path which already holds mmap_sem
632 * we will deadlock attempting to validate the fault against the
633 * address space. Luckily the kernel only validly references user
634 * space from well defined areas of code, which are listed in the
635 * exceptions table.
637 * As the vast majority of faults will be valid we will only perform
638 * the source reference check when there is a possibility of a deadlock.
639 * Attempt to lock the address space, if we cannot we then validate the
640 * source. If this is invalid we can skip the address space check,
641 * thus avoiding the deadlock.
643 if (!down_read_trylock(&mm->mmap_sem)) {
644 if ((error_code & PF_USER) == 0 &&
645 !search_exception_tables(regs->ip))
646 goto bad_area_nosemaphore;
647 down_read(&mm->mmap_sem);
650 vma = find_vma(mm, address);
651 if (!vma)
652 goto bad_area;
653 #ifdef CONFIG_X86_32
654 if (vma->vm_start <= address)
655 #else
656 if (likely(vma->vm_start <= address))
657 #endif
658 goto good_area;
659 if (!(vma->vm_flags & VM_GROWSDOWN))
660 goto bad_area;
661 if (error_code & PF_USER) {
663 * Accessing the stack below %sp is always a bug.
664 * The large cushion allows instructions like enter
665 * and pusha to work. ("enter $65535,$31" pushes
666 * 32 pointers and then decrements %sp by 65535.)
668 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
669 goto bad_area;
671 if (expand_stack(vma, address))
672 goto bad_area;
674 * Ok, we have a good vm_area for this memory access, so
675 * we can handle it..
677 good_area:
678 si_code = SEGV_ACCERR;
679 write = 0;
680 switch (error_code & (PF_PROT|PF_WRITE)) {
681 default: /* 3: write, present */
682 /* fall through */
683 case PF_WRITE: /* write, not present */
684 if (!(vma->vm_flags & VM_WRITE))
685 goto bad_area;
686 write++;
687 break;
688 case PF_PROT: /* read, present */
689 goto bad_area;
690 case 0: /* read, not present */
691 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
692 goto bad_area;
695 #ifdef CONFIG_X86_32
696 survive:
697 #endif
699 * If for any reason at all we couldn't handle the fault,
700 * make sure we exit gracefully rather than endlessly redo
701 * the fault.
703 fault = handle_mm_fault(mm, vma, address, write);
704 if (unlikely(fault & VM_FAULT_ERROR)) {
705 if (fault & VM_FAULT_OOM)
706 goto out_of_memory;
707 else if (fault & VM_FAULT_SIGBUS)
708 goto do_sigbus;
709 BUG();
711 if (fault & VM_FAULT_MAJOR)
712 tsk->maj_flt++;
713 else
714 tsk->min_flt++;
716 #ifdef CONFIG_X86_32
718 * Did it hit the DOS screen memory VA from vm86 mode?
720 if (v8086_mode(regs)) {
721 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
722 if (bit < 32)
723 tsk->thread.screen_bitmap |= 1 << bit;
725 #endif
726 up_read(&mm->mmap_sem);
727 return;
730 * Something tried to access memory that isn't in our memory map..
731 * Fix it, but check if it's kernel or user first..
733 bad_area:
734 up_read(&mm->mmap_sem);
736 bad_area_nosemaphore:
737 /* User mode accesses just cause a SIGSEGV */
738 if (error_code & PF_USER) {
740 * It's possible to have interrupts off here.
742 local_irq_enable();
745 * Valid to do another page fault here because this one came
746 * from user space.
748 if (is_prefetch(regs, address, error_code))
749 return;
751 if (is_errata100(regs, address))
752 return;
754 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
755 printk_ratelimit()) {
756 printk(
757 #ifdef CONFIG_X86_32
758 "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx",
759 #else
760 "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx",
761 #endif
762 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
763 tsk->comm, task_pid_nr(tsk), address, regs->ip,
764 regs->sp, error_code);
765 print_vma_addr(" in ", regs->ip);
766 printk("\n");
769 tsk->thread.cr2 = address;
770 /* Kernel addresses are always protection faults */
771 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
772 tsk->thread.trap_no = 14;
773 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
774 return;
777 if (is_f00f_bug(regs, address))
778 return;
780 no_context:
781 /* Are we prepared to handle this kernel fault? */
782 if (fixup_exception(regs))
783 return;
786 * X86_32
787 * Valid to do another page fault here, because if this fault
788 * had been triggered by is_prefetch fixup_exception would have
789 * handled it.
791 * X86_64
792 * Hall of shame of CPU/BIOS bugs.
794 if (is_prefetch(regs, address, error_code))
795 return;
797 if (is_errata93(regs, address))
798 return;
801 * Oops. The kernel tried to access some bad page. We'll have to
802 * terminate things with extreme prejudice.
804 #ifdef CONFIG_X86_32
805 bust_spinlocks(1);
807 show_fault_oops(regs, error_code, address);
809 tsk->thread.cr2 = address;
810 tsk->thread.trap_no = 14;
811 tsk->thread.error_code = error_code;
812 die("Oops", regs, error_code);
813 bust_spinlocks(0);
814 do_exit(SIGKILL);
815 #else /* CONFIG_X86_64 */
816 flags = oops_begin();
818 show_fault_oops(regs, error_code, address);
820 tsk->thread.cr2 = address;
821 tsk->thread.trap_no = 14;
822 tsk->thread.error_code = error_code;
823 if (__die("Oops", regs, error_code))
824 regs = NULL;
825 /* Executive summary in case the body of the oops scrolled away */
826 printk(KERN_EMERG "CR2: %016lx\n", address);
827 oops_end(flags, regs, SIGKILL);
828 #endif
831 * We ran out of memory, or some other thing happened to us that made
832 * us unable to handle the page fault gracefully.
834 out_of_memory:
835 up_read(&mm->mmap_sem);
836 #ifdef CONFIG_X86_32
837 if (is_global_init(tsk)) {
838 yield();
839 down_read(&mm->mmap_sem);
840 goto survive;
842 #else
843 if (is_global_init(current)) {
844 yield();
845 goto again;
847 #endif
848 printk("VM: killing process %s\n", tsk->comm);
849 if (error_code & PF_USER)
850 do_group_exit(SIGKILL);
851 goto no_context;
853 do_sigbus:
854 up_read(&mm->mmap_sem);
856 /* Kernel mode? Handle exceptions or die */
857 if (!(error_code & PF_USER))
858 goto no_context;
859 #ifdef CONFIG_X86_32
860 /* User space => ok to do another page fault */
861 if (is_prefetch(regs, address, error_code))
862 return;
863 #endif
864 tsk->thread.cr2 = address;
865 tsk->thread.error_code = error_code;
866 tsk->thread.trap_no = 14;
867 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
870 #ifdef CONFIG_X86_64
871 DEFINE_SPINLOCK(pgd_lock);
872 LIST_HEAD(pgd_list);
873 #endif
875 void vmalloc_sync_all(void)
877 #ifdef CONFIG_X86_32
879 * Note that races in the updates of insync and start aren't
880 * problematic: insync can only get set bits added, and updates to
881 * start are only improving performance (without affecting correctness
882 * if undone).
884 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
885 static unsigned long start = TASK_SIZE;
886 unsigned long address;
888 if (SHARED_KERNEL_PMD)
889 return;
891 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
892 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
893 if (!test_bit(pgd_index(address), insync)) {
894 unsigned long flags;
895 struct page *page;
897 spin_lock_irqsave(&pgd_lock, flags);
898 for (page = pgd_list; page; page =
899 (struct page *)page->index)
900 if (!vmalloc_sync_one(page_address(page),
901 address)) {
902 BUG_ON(page != pgd_list);
903 break;
905 spin_unlock_irqrestore(&pgd_lock, flags);
906 if (!page)
907 set_bit(pgd_index(address), insync);
909 if (address == start && test_bit(pgd_index(address), insync))
910 start = address + PGDIR_SIZE;
912 #else /* CONFIG_X86_64 */
914 * Note that races in the updates of insync and start aren't
915 * problematic: insync can only get set bits added, and updates to
916 * start are only improving performance (without affecting correctness
917 * if undone).
919 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
920 static unsigned long start = VMALLOC_START & PGDIR_MASK;
921 unsigned long address;
923 for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
924 if (!test_bit(pgd_index(address), insync)) {
925 const pgd_t *pgd_ref = pgd_offset_k(address);
926 struct page *page;
928 if (pgd_none(*pgd_ref))
929 continue;
930 spin_lock(&pgd_lock);
931 list_for_each_entry(page, &pgd_list, lru) {
932 pgd_t *pgd;
933 pgd = (pgd_t *)page_address(page) + pgd_index(address);
934 if (pgd_none(*pgd))
935 set_pgd(pgd, *pgd_ref);
936 else
937 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
939 spin_unlock(&pgd_lock);
940 set_bit(pgd_index(address), insync);
942 if (address == start)
943 start = address + PGDIR_SIZE;
945 /* Check that there is no need to do the same for the modules area. */
946 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
947 BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
948 (__START_KERNEL & PGDIR_MASK)));
949 #endif