4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
105 * Helpers for converting nanosecond timing to jiffy resolution
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
113 * These are the 'tuning knobs' of the scheduler:
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
118 #define DEF_TIMESLICE (100 * HZ / 1000)
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int rt_policy(int policy
)
127 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
132 static inline int task_has_rt_policy(struct task_struct
*p
)
134 return rt_policy(p
->policy
);
138 * This is the priority-queue data structure of the RT scheduling class:
140 struct rt_prio_array
{
141 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
142 struct list_head queue
[MAX_RT_PRIO
];
145 struct rt_bandwidth
{
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock
;
150 struct hrtimer rt_period_timer
;
153 static struct rt_bandwidth def_rt_bandwidth
;
155 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
157 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
159 struct rt_bandwidth
*rt_b
=
160 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
166 now
= hrtimer_cb_get_time(timer
);
167 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
172 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
175 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
179 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
181 rt_b
->rt_period
= ns_to_ktime(period
);
182 rt_b
->rt_runtime
= runtime
;
184 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
186 hrtimer_init(&rt_b
->rt_period_timer
,
187 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
188 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
191 static inline int rt_bandwidth_enabled(void)
193 return sysctl_sched_rt_runtime
>= 0;
196 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
200 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
203 if (hrtimer_active(&rt_b
->rt_period_timer
))
206 raw_spin_lock(&rt_b
->rt_runtime_lock
);
211 if (hrtimer_active(&rt_b
->rt_period_timer
))
214 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
215 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
217 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
218 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
219 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
220 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
221 HRTIMER_MODE_ABS_PINNED
, 0);
223 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
229 hrtimer_cancel(&rt_b
->rt_period_timer
);
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
237 static DEFINE_MUTEX(sched_domains_mutex
);
239 #ifdef CONFIG_CGROUP_SCHED
241 #include <linux/cgroup.h>
245 static LIST_HEAD(task_groups
);
247 /* task group related information */
249 struct cgroup_subsys_state css
;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity
**se
;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq
**cfs_rq
;
256 unsigned long shares
;
258 atomic_t load_weight
;
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity
**rt_se
;
263 struct rt_rq
**rt_rq
;
265 struct rt_bandwidth rt_bandwidth
;
269 struct list_head list
;
271 struct task_group
*parent
;
272 struct list_head siblings
;
273 struct list_head children
;
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup
*autogroup
;
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock
);
283 #ifdef CONFIG_FAIR_GROUP_SCHED
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
296 #define MAX_SHARES (1UL << 18)
298 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
304 struct task_group root_task_group
;
306 #endif /* CONFIG_CGROUP_SCHED */
308 /* CFS-related fields in a runqueue */
310 struct load_weight load
;
311 unsigned long nr_running
;
316 struct rb_root tasks_timeline
;
317 struct rb_node
*rb_leftmost
;
319 struct list_head tasks
;
320 struct list_head
*balance_iterator
;
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
326 struct sched_entity
*curr
, *next
, *last
, *skip
;
328 unsigned int nr_spread_over
;
330 #ifdef CONFIG_FAIR_GROUP_SCHED
331 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
342 struct list_head leaf_cfs_rq_list
;
343 struct task_group
*tg
; /* group that "owns" this runqueue */
347 * the part of load.weight contributed by tasks
349 unsigned long task_weight
;
352 * h_load = weight * f(tg)
354 * Where f(tg) is the recursive weight fraction assigned to
357 unsigned long h_load
;
360 * Maintaining per-cpu shares distribution for group scheduling
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
368 u64 load_stamp
, load_last
, load_unacc_exec_time
;
370 unsigned long load_contribution
;
375 /* Real-Time classes' related field in a runqueue: */
377 struct rt_prio_array active
;
378 unsigned long rt_nr_running
;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 int curr
; /* highest queued rt task prio */
383 int next
; /* next highest */
388 unsigned long rt_nr_migratory
;
389 unsigned long rt_nr_total
;
391 struct plist_head pushable_tasks
;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock
;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted
;
403 struct list_head leaf_rt_rq_list
;
404 struct task_group
*tg
;
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
421 cpumask_var_t online
;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask
;
429 struct cpupri cpupri
;
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
436 static struct root_domain def_root_domain
;
438 #endif /* CONFIG_SMP */
441 * This is the main, per-CPU runqueue data structure.
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
455 unsigned long nr_running
;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
458 unsigned long last_load_update_tick
;
461 unsigned char nohz_balance_kick
;
463 unsigned int skip_clock_update
;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load
;
467 unsigned long nr_load_updates
;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list
;
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list
;
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible
;
489 struct task_struct
*curr
, *idle
, *stop
;
490 unsigned long next_balance
;
491 struct mm_struct
*prev_mm
;
499 struct root_domain
*rd
;
500 struct sched_domain
*sd
;
502 unsigned long cpu_power
;
504 unsigned char idle_at_tick
;
505 /* For active balancing */
509 struct cpu_stop_work active_balance_work
;
510 /* cpu of this runqueue: */
514 unsigned long avg_load_per_task
;
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 /* calc_load related fields */
527 unsigned long calc_load_update
;
528 long calc_load_active
;
530 #ifdef CONFIG_SCHED_HRTICK
532 int hrtick_csd_pending
;
533 struct call_single_data hrtick_csd
;
535 struct hrtimer hrtick_timer
;
538 #ifdef CONFIG_SCHEDSTATS
540 struct sched_info rq_sched_info
;
541 unsigned long long rq_cpu_time
;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544 /* sys_sched_yield() stats */
545 unsigned int yld_count
;
547 /* schedule() stats */
548 unsigned int sched_switch
;
549 unsigned int sched_count
;
550 unsigned int sched_goidle
;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count
;
554 unsigned int ttwu_local
;
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
561 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
563 static inline int cpu_of(struct rq
*rq
)
572 #define rcu_dereference_check_sched_domain(p) \
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
579 * See detach_destroy_domains: synchronize_sched for details.
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
584 #define for_each_domain(cpu, __sd) \
585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
587 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588 #define this_rq() (&__get_cpu_var(runqueues))
589 #define task_rq(p) cpu_rq(task_cpu(p))
590 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
591 #define raw_rq() (&__raw_get_cpu_var(runqueues))
593 #ifdef CONFIG_CGROUP_SCHED
596 * Return the group to which this tasks belongs.
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
603 static inline struct task_group
*task_group(struct task_struct
*p
)
605 struct task_group
*tg
;
606 struct cgroup_subsys_state
*css
;
608 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
609 lockdep_is_held(&task_rq(p
)->lock
));
610 tg
= container_of(css
, struct task_group
, css
);
612 return autogroup_task_group(p
, tg
);
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
620 p
->se
.parent
= task_group(p
)->se
[cpu
];
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
625 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
629 #else /* CONFIG_CGROUP_SCHED */
631 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
632 static inline struct task_group
*task_group(struct task_struct
*p
)
637 #endif /* CONFIG_CGROUP_SCHED */
639 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
641 static void update_rq_clock(struct rq
*rq
)
645 if (rq
->skip_clock_update
)
648 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
650 update_rq_clock_task(rq
, delta
);
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
659 # define const_debug static const
663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
664 * @cpu: the processor in question.
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
669 int runqueue_is_locked(int cpu
)
671 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
675 * Debugging: various feature bits
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
682 #include "sched_features.h"
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
690 const_debug
unsigned int sysctl_sched_features
=
691 #include "sched_features.h"
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
700 static __read_mostly
char *sched_feat_names
[] = {
701 #include "sched_features.h"
707 static int sched_feat_show(struct seq_file
*m
, void *v
)
711 for (i
= 0; sched_feat_names
[i
]; i
++) {
712 if (!(sysctl_sched_features
& (1UL << i
)))
714 seq_printf(m
, "%s ", sched_feat_names
[i
]);
722 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
723 size_t cnt
, loff_t
*ppos
)
733 if (copy_from_user(&buf
, ubuf
, cnt
))
739 if (strncmp(cmp
, "NO_", 3) == 0) {
744 for (i
= 0; sched_feat_names
[i
]; i
++) {
745 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
747 sysctl_sched_features
&= ~(1UL << i
);
749 sysctl_sched_features
|= (1UL << i
);
754 if (!sched_feat_names
[i
])
762 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
764 return single_open(filp
, sched_feat_show
, NULL
);
767 static const struct file_operations sched_feat_fops
= {
768 .open
= sched_feat_open
,
769 .write
= sched_feat_write
,
772 .release
= single_release
,
775 static __init
int sched_init_debug(void)
777 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
782 late_initcall(sched_init_debug
);
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
792 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
795 * period over which we average the RT time consumption, measured
800 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
803 * period over which we measure -rt task cpu usage in us.
806 unsigned int sysctl_sched_rt_period
= 1000000;
808 static __read_mostly
int scheduler_running
;
811 * part of the period that we allow rt tasks to run in us.
814 int sysctl_sched_rt_runtime
= 950000;
816 static inline u64
global_rt_period(void)
818 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
821 static inline u64
global_rt_runtime(void)
823 if (sysctl_sched_rt_runtime
< 0)
826 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
829 #ifndef prepare_arch_switch
830 # define prepare_arch_switch(next) do { } while (0)
832 #ifndef finish_arch_switch
833 # define finish_arch_switch(prev) do { } while (0)
836 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
838 return rq
->curr
== p
;
841 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
842 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
844 return task_current(rq
, p
);
847 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
851 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
853 #ifdef CONFIG_DEBUG_SPINLOCK
854 /* this is a valid case when another task releases the spinlock */
855 rq
->lock
.owner
= current
;
858 * If we are tracking spinlock dependencies then we have to
859 * fix up the runqueue lock - which gets 'carried over' from
862 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
864 raw_spin_unlock_irq(&rq
->lock
);
867 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
868 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
873 return task_current(rq
, p
);
877 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
881 * We can optimise this out completely for !SMP, because the
882 * SMP rebalancing from interrupt is the only thing that cares
887 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
888 raw_spin_unlock_irq(&rq
->lock
);
890 raw_spin_unlock(&rq
->lock
);
894 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
898 * After ->oncpu is cleared, the task can be moved to a different CPU.
899 * We must ensure this doesn't happen until the switch is completely
905 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
909 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
912 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
915 static inline int task_is_waking(struct task_struct
*p
)
917 return unlikely(p
->state
== TASK_WAKING
);
921 * __task_rq_lock - lock the runqueue a given task resides on.
922 * Must be called interrupts disabled.
924 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
931 raw_spin_lock(&rq
->lock
);
932 if (likely(rq
== task_rq(p
)))
934 raw_spin_unlock(&rq
->lock
);
939 * task_rq_lock - lock the runqueue a given task resides on and disable
940 * interrupts. Note the ordering: we can safely lookup the task_rq without
941 * explicitly disabling preemption.
943 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
949 local_irq_save(*flags
);
951 raw_spin_lock(&rq
->lock
);
952 if (likely(rq
== task_rq(p
)))
954 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
958 static void __task_rq_unlock(struct rq
*rq
)
961 raw_spin_unlock(&rq
->lock
);
964 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
967 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
971 * this_rq_lock - lock this runqueue and disable interrupts.
973 static struct rq
*this_rq_lock(void)
980 raw_spin_lock(&rq
->lock
);
985 #ifdef CONFIG_SCHED_HRTICK
987 * Use HR-timers to deliver accurate preemption points.
989 * Its all a bit involved since we cannot program an hrt while holding the
990 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
993 * When we get rescheduled we reprogram the hrtick_timer outside of the
999 * - enabled by features
1000 * - hrtimer is actually high res
1002 static inline int hrtick_enabled(struct rq
*rq
)
1004 if (!sched_feat(HRTICK
))
1006 if (!cpu_active(cpu_of(rq
)))
1008 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1011 static void hrtick_clear(struct rq
*rq
)
1013 if (hrtimer_active(&rq
->hrtick_timer
))
1014 hrtimer_cancel(&rq
->hrtick_timer
);
1018 * High-resolution timer tick.
1019 * Runs from hardirq context with interrupts disabled.
1021 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1023 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1025 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1027 raw_spin_lock(&rq
->lock
);
1028 update_rq_clock(rq
);
1029 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1030 raw_spin_unlock(&rq
->lock
);
1032 return HRTIMER_NORESTART
;
1037 * called from hardirq (IPI) context
1039 static void __hrtick_start(void *arg
)
1041 struct rq
*rq
= arg
;
1043 raw_spin_lock(&rq
->lock
);
1044 hrtimer_restart(&rq
->hrtick_timer
);
1045 rq
->hrtick_csd_pending
= 0;
1046 raw_spin_unlock(&rq
->lock
);
1050 * Called to set the hrtick timer state.
1052 * called with rq->lock held and irqs disabled
1054 static void hrtick_start(struct rq
*rq
, u64 delay
)
1056 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1057 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1059 hrtimer_set_expires(timer
, time
);
1061 if (rq
== this_rq()) {
1062 hrtimer_restart(timer
);
1063 } else if (!rq
->hrtick_csd_pending
) {
1064 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1065 rq
->hrtick_csd_pending
= 1;
1070 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1072 int cpu
= (int)(long)hcpu
;
1075 case CPU_UP_CANCELED
:
1076 case CPU_UP_CANCELED_FROZEN
:
1077 case CPU_DOWN_PREPARE
:
1078 case CPU_DOWN_PREPARE_FROZEN
:
1080 case CPU_DEAD_FROZEN
:
1081 hrtick_clear(cpu_rq(cpu
));
1088 static __init
void init_hrtick(void)
1090 hotcpu_notifier(hotplug_hrtick
, 0);
1094 * Called to set the hrtick timer state.
1096 * called with rq->lock held and irqs disabled
1098 static void hrtick_start(struct rq
*rq
, u64 delay
)
1100 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1101 HRTIMER_MODE_REL_PINNED
, 0);
1104 static inline void init_hrtick(void)
1107 #endif /* CONFIG_SMP */
1109 static void init_rq_hrtick(struct rq
*rq
)
1112 rq
->hrtick_csd_pending
= 0;
1114 rq
->hrtick_csd
.flags
= 0;
1115 rq
->hrtick_csd
.func
= __hrtick_start
;
1116 rq
->hrtick_csd
.info
= rq
;
1119 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1120 rq
->hrtick_timer
.function
= hrtick
;
1122 #else /* CONFIG_SCHED_HRTICK */
1123 static inline void hrtick_clear(struct rq
*rq
)
1127 static inline void init_rq_hrtick(struct rq
*rq
)
1131 static inline void init_hrtick(void)
1134 #endif /* CONFIG_SCHED_HRTICK */
1137 * resched_task - mark a task 'to be rescheduled now'.
1139 * On UP this means the setting of the need_resched flag, on SMP it
1140 * might also involve a cross-CPU call to trigger the scheduler on
1145 #ifndef tsk_is_polling
1146 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1149 static void resched_task(struct task_struct
*p
)
1153 assert_raw_spin_locked(&task_rq(p
)->lock
);
1155 if (test_tsk_need_resched(p
))
1158 set_tsk_need_resched(p
);
1161 if (cpu
== smp_processor_id())
1164 /* NEED_RESCHED must be visible before we test polling */
1166 if (!tsk_is_polling(p
))
1167 smp_send_reschedule(cpu
);
1170 static void resched_cpu(int cpu
)
1172 struct rq
*rq
= cpu_rq(cpu
);
1173 unsigned long flags
;
1175 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1177 resched_task(cpu_curr(cpu
));
1178 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1183 * In the semi idle case, use the nearest busy cpu for migrating timers
1184 * from an idle cpu. This is good for power-savings.
1186 * We don't do similar optimization for completely idle system, as
1187 * selecting an idle cpu will add more delays to the timers than intended
1188 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1190 int get_nohz_timer_target(void)
1192 int cpu
= smp_processor_id();
1194 struct sched_domain
*sd
;
1196 for_each_domain(cpu
, sd
) {
1197 for_each_cpu(i
, sched_domain_span(sd
))
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1213 void wake_up_idle_cpu(int cpu
)
1215 struct rq
*rq
= cpu_rq(cpu
);
1217 if (cpu
== smp_processor_id())
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1227 if (rq
->curr
!= rq
->idle
)
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1235 set_tsk_need_resched(rq
->idle
);
1237 /* NEED_RESCHED must be visible before we test polling */
1239 if (!tsk_is_polling(rq
->idle
))
1240 smp_send_reschedule(cpu
);
1243 #endif /* CONFIG_NO_HZ */
1245 static u64
sched_avg_period(void)
1247 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1250 static void sched_avg_update(struct rq
*rq
)
1252 s64 period
= sched_avg_period();
1254 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1256 * Inline assembly required to prevent the compiler
1257 * optimising this loop into a divmod call.
1258 * See __iter_div_u64_rem() for another example of this.
1260 asm("" : "+rm" (rq
->age_stamp
));
1261 rq
->age_stamp
+= period
;
1266 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1268 rq
->rt_avg
+= rt_delta
;
1269 sched_avg_update(rq
);
1272 #else /* !CONFIG_SMP */
1273 static void resched_task(struct task_struct
*p
)
1275 assert_raw_spin_locked(&task_rq(p
)->lock
);
1276 set_tsk_need_resched(p
);
1279 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1283 static void sched_avg_update(struct rq
*rq
)
1286 #endif /* CONFIG_SMP */
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1291 # define WMULT_CONST (1UL << 32)
1294 #define WMULT_SHIFT 32
1297 * Shift right and round:
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302 * delta *= weight / lw
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1306 struct load_weight
*lw
)
1310 if (!lw
->inv_weight
) {
1311 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1314 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1318 tmp
= (u64
)delta_exec
* weight
;
1320 * Check whether we'd overflow the 64-bit multiplication:
1322 if (unlikely(tmp
> WMULT_CONST
))
1323 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1326 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1328 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1331 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1337 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1343 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 * scaled version of the new time slice allocation that they receive on time
1358 #define WEIGHT_IDLEPRIO 3
1359 #define WMULT_IDLEPRIO 1431655765
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
1373 static const int prio_to_weight
[40] = {
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1391 static const u32 prio_to_wmult
[40] = {
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1402 /* Time spent by the tasks of the cpu accounting group executing in ... */
1403 enum cpuacct_stat_index
{
1404 CPUACCT_STAT_USER
, /* ... user mode */
1405 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1407 CPUACCT_STAT_NSTATS
,
1410 #ifdef CONFIG_CGROUP_CPUACCT
1411 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1412 static void cpuacct_update_stats(struct task_struct
*tsk
,
1413 enum cpuacct_stat_index idx
, cputime_t val
);
1415 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1416 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1417 enum cpuacct_stat_index idx
, cputime_t val
) {}
1420 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1422 update_load_add(&rq
->load
, load
);
1425 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1427 update_load_sub(&rq
->load
, load
);
1430 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1431 typedef int (*tg_visitor
)(struct task_group
*, void *);
1434 * Iterate the full tree, calling @down when first entering a node and @up when
1435 * leaving it for the final time.
1437 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1439 struct task_group
*parent
, *child
;
1443 parent
= &root_task_group
;
1445 ret
= (*down
)(parent
, data
);
1448 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1455 ret
= (*up
)(parent
, data
);
1460 parent
= parent
->parent
;
1469 static int tg_nop(struct task_group
*tg
, void *data
)
1476 /* Used instead of source_load when we know the type == 0 */
1477 static unsigned long weighted_cpuload(const int cpu
)
1479 return cpu_rq(cpu
)->load
.weight
;
1483 * Return a low guess at the load of a migration-source cpu weighted
1484 * according to the scheduling class and "nice" value.
1486 * We want to under-estimate the load of migration sources, to
1487 * balance conservatively.
1489 static unsigned long source_load(int cpu
, int type
)
1491 struct rq
*rq
= cpu_rq(cpu
);
1492 unsigned long total
= weighted_cpuload(cpu
);
1494 if (type
== 0 || !sched_feat(LB_BIAS
))
1497 return min(rq
->cpu_load
[type
-1], total
);
1501 * Return a high guess at the load of a migration-target cpu weighted
1502 * according to the scheduling class and "nice" value.
1504 static unsigned long target_load(int cpu
, int type
)
1506 struct rq
*rq
= cpu_rq(cpu
);
1507 unsigned long total
= weighted_cpuload(cpu
);
1509 if (type
== 0 || !sched_feat(LB_BIAS
))
1512 return max(rq
->cpu_load
[type
-1], total
);
1515 static unsigned long power_of(int cpu
)
1517 return cpu_rq(cpu
)->cpu_power
;
1520 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1522 static unsigned long cpu_avg_load_per_task(int cpu
)
1524 struct rq
*rq
= cpu_rq(cpu
);
1525 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1528 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1530 rq
->avg_load_per_task
= 0;
1532 return rq
->avg_load_per_task
;
1535 #ifdef CONFIG_FAIR_GROUP_SCHED
1538 * Compute the cpu's hierarchical load factor for each task group.
1539 * This needs to be done in a top-down fashion because the load of a child
1540 * group is a fraction of its parents load.
1542 static int tg_load_down(struct task_group
*tg
, void *data
)
1545 long cpu
= (long)data
;
1548 load
= cpu_rq(cpu
)->load
.weight
;
1550 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1551 load
*= tg
->se
[cpu
]->load
.weight
;
1552 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1555 tg
->cfs_rq
[cpu
]->h_load
= load
;
1560 static void update_h_load(long cpu
)
1562 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1567 #ifdef CONFIG_PREEMPT
1569 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1572 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1573 * way at the expense of forcing extra atomic operations in all
1574 * invocations. This assures that the double_lock is acquired using the
1575 * same underlying policy as the spinlock_t on this architecture, which
1576 * reduces latency compared to the unfair variant below. However, it
1577 * also adds more overhead and therefore may reduce throughput.
1579 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1580 __releases(this_rq
->lock
)
1581 __acquires(busiest
->lock
)
1582 __acquires(this_rq
->lock
)
1584 raw_spin_unlock(&this_rq
->lock
);
1585 double_rq_lock(this_rq
, busiest
);
1592 * Unfair double_lock_balance: Optimizes throughput at the expense of
1593 * latency by eliminating extra atomic operations when the locks are
1594 * already in proper order on entry. This favors lower cpu-ids and will
1595 * grant the double lock to lower cpus over higher ids under contention,
1596 * regardless of entry order into the function.
1598 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1599 __releases(this_rq
->lock
)
1600 __acquires(busiest
->lock
)
1601 __acquires(this_rq
->lock
)
1605 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1606 if (busiest
< this_rq
) {
1607 raw_spin_unlock(&this_rq
->lock
);
1608 raw_spin_lock(&busiest
->lock
);
1609 raw_spin_lock_nested(&this_rq
->lock
,
1610 SINGLE_DEPTH_NESTING
);
1613 raw_spin_lock_nested(&busiest
->lock
,
1614 SINGLE_DEPTH_NESTING
);
1619 #endif /* CONFIG_PREEMPT */
1622 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1624 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1626 if (unlikely(!irqs_disabled())) {
1627 /* printk() doesn't work good under rq->lock */
1628 raw_spin_unlock(&this_rq
->lock
);
1632 return _double_lock_balance(this_rq
, busiest
);
1635 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1636 __releases(busiest
->lock
)
1638 raw_spin_unlock(&busiest
->lock
);
1639 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1643 * double_rq_lock - safely lock two runqueues
1645 * Note this does not disable interrupts like task_rq_lock,
1646 * you need to do so manually before calling.
1648 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1649 __acquires(rq1
->lock
)
1650 __acquires(rq2
->lock
)
1652 BUG_ON(!irqs_disabled());
1654 raw_spin_lock(&rq1
->lock
);
1655 __acquire(rq2
->lock
); /* Fake it out ;) */
1658 raw_spin_lock(&rq1
->lock
);
1659 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1661 raw_spin_lock(&rq2
->lock
);
1662 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1668 * double_rq_unlock - safely unlock two runqueues
1670 * Note this does not restore interrupts like task_rq_unlock,
1671 * you need to do so manually after calling.
1673 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1674 __releases(rq1
->lock
)
1675 __releases(rq2
->lock
)
1677 raw_spin_unlock(&rq1
->lock
);
1679 raw_spin_unlock(&rq2
->lock
);
1681 __release(rq2
->lock
);
1684 #else /* CONFIG_SMP */
1687 * double_rq_lock - safely lock two runqueues
1689 * Note this does not disable interrupts like task_rq_lock,
1690 * you need to do so manually before calling.
1692 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1693 __acquires(rq1
->lock
)
1694 __acquires(rq2
->lock
)
1696 BUG_ON(!irqs_disabled());
1698 raw_spin_lock(&rq1
->lock
);
1699 __acquire(rq2
->lock
); /* Fake it out ;) */
1703 * double_rq_unlock - safely unlock two runqueues
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1708 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1709 __releases(rq1
->lock
)
1710 __releases(rq2
->lock
)
1713 raw_spin_unlock(&rq1
->lock
);
1714 __release(rq2
->lock
);
1719 static void calc_load_account_idle(struct rq
*this_rq
);
1720 static void update_sysctl(void);
1721 static int get_update_sysctl_factor(void);
1722 static void update_cpu_load(struct rq
*this_rq
);
1724 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1726 set_task_rq(p
, cpu
);
1729 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1730 * successfuly executed on another CPU. We must ensure that updates of
1731 * per-task data have been completed by this moment.
1734 task_thread_info(p
)->cpu
= cpu
;
1738 static const struct sched_class rt_sched_class
;
1740 #define sched_class_highest (&stop_sched_class)
1741 #define for_each_class(class) \
1742 for (class = sched_class_highest; class; class = class->next)
1744 #include "sched_stats.h"
1746 static void inc_nr_running(struct rq
*rq
)
1751 static void dec_nr_running(struct rq
*rq
)
1756 static void set_load_weight(struct task_struct
*p
)
1759 * SCHED_IDLE tasks get minimal weight:
1761 if (p
->policy
== SCHED_IDLE
) {
1762 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1763 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1767 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1768 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1771 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1773 update_rq_clock(rq
);
1774 sched_info_queued(p
);
1775 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1779 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1781 update_rq_clock(rq
);
1782 sched_info_dequeued(p
);
1783 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1788 * activate_task - move a task to the runqueue.
1790 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1792 if (task_contributes_to_load(p
))
1793 rq
->nr_uninterruptible
--;
1795 enqueue_task(rq
, p
, flags
);
1800 * deactivate_task - remove a task from the runqueue.
1802 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1804 if (task_contributes_to_load(p
))
1805 rq
->nr_uninterruptible
++;
1807 dequeue_task(rq
, p
, flags
);
1811 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1814 * There are no locks covering percpu hardirq/softirq time.
1815 * They are only modified in account_system_vtime, on corresponding CPU
1816 * with interrupts disabled. So, writes are safe.
1817 * They are read and saved off onto struct rq in update_rq_clock().
1818 * This may result in other CPU reading this CPU's irq time and can
1819 * race with irq/account_system_vtime on this CPU. We would either get old
1820 * or new value with a side effect of accounting a slice of irq time to wrong
1821 * task when irq is in progress while we read rq->clock. That is a worthy
1822 * compromise in place of having locks on each irq in account_system_time.
1824 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1825 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1827 static DEFINE_PER_CPU(u64
, irq_start_time
);
1828 static int sched_clock_irqtime
;
1830 void enable_sched_clock_irqtime(void)
1832 sched_clock_irqtime
= 1;
1835 void disable_sched_clock_irqtime(void)
1837 sched_clock_irqtime
= 0;
1840 #ifndef CONFIG_64BIT
1841 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
1843 static inline void irq_time_write_begin(void)
1845 __this_cpu_inc(irq_time_seq
.sequence
);
1849 static inline void irq_time_write_end(void)
1852 __this_cpu_inc(irq_time_seq
.sequence
);
1855 static inline u64
irq_time_read(int cpu
)
1861 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1862 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1863 per_cpu(cpu_hardirq_time
, cpu
);
1864 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1868 #else /* CONFIG_64BIT */
1869 static inline void irq_time_write_begin(void)
1873 static inline void irq_time_write_end(void)
1877 static inline u64
irq_time_read(int cpu
)
1879 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1881 #endif /* CONFIG_64BIT */
1884 * Called before incrementing preempt_count on {soft,}irq_enter
1885 * and before decrementing preempt_count on {soft,}irq_exit.
1887 void account_system_vtime(struct task_struct
*curr
)
1889 unsigned long flags
;
1893 if (!sched_clock_irqtime
)
1896 local_irq_save(flags
);
1898 cpu
= smp_processor_id();
1899 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
1900 __this_cpu_add(irq_start_time
, delta
);
1902 irq_time_write_begin();
1904 * We do not account for softirq time from ksoftirqd here.
1905 * We want to continue accounting softirq time to ksoftirqd thread
1906 * in that case, so as not to confuse scheduler with a special task
1907 * that do not consume any time, but still wants to run.
1909 if (hardirq_count())
1910 __this_cpu_add(cpu_hardirq_time
, delta
);
1911 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
1912 __this_cpu_add(cpu_softirq_time
, delta
);
1914 irq_time_write_end();
1915 local_irq_restore(flags
);
1917 EXPORT_SYMBOL_GPL(account_system_vtime
);
1919 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1923 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
1926 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1927 * this case when a previous update_rq_clock() happened inside a
1928 * {soft,}irq region.
1930 * When this happens, we stop ->clock_task and only update the
1931 * prev_irq_time stamp to account for the part that fit, so that a next
1932 * update will consume the rest. This ensures ->clock_task is
1935 * It does however cause some slight miss-attribution of {soft,}irq
1936 * time, a more accurate solution would be to update the irq_time using
1937 * the current rq->clock timestamp, except that would require using
1940 if (irq_delta
> delta
)
1943 rq
->prev_irq_time
+= irq_delta
;
1945 rq
->clock_task
+= delta
;
1947 if (irq_delta
&& sched_feat(NONIRQ_POWER
))
1948 sched_rt_avg_update(rq
, irq_delta
);
1951 static int irqtime_account_hi_update(void)
1953 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
1954 unsigned long flags
;
1958 local_irq_save(flags
);
1959 latest_ns
= this_cpu_read(cpu_hardirq_time
);
1960 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->irq
))
1962 local_irq_restore(flags
);
1966 static int irqtime_account_si_update(void)
1968 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
1969 unsigned long flags
;
1973 local_irq_save(flags
);
1974 latest_ns
= this_cpu_read(cpu_softirq_time
);
1975 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->softirq
))
1977 local_irq_restore(flags
);
1981 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1983 #define sched_clock_irqtime (0)
1985 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1987 rq
->clock_task
+= delta
;
1990 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1992 #include "sched_idletask.c"
1993 #include "sched_fair.c"
1994 #include "sched_rt.c"
1995 #include "sched_autogroup.c"
1996 #include "sched_stoptask.c"
1997 #ifdef CONFIG_SCHED_DEBUG
1998 # include "sched_debug.c"
2001 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2003 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2004 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2008 * Make it appear like a SCHED_FIFO task, its something
2009 * userspace knows about and won't get confused about.
2011 * Also, it will make PI more or less work without too
2012 * much confusion -- but then, stop work should not
2013 * rely on PI working anyway.
2015 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2017 stop
->sched_class
= &stop_sched_class
;
2020 cpu_rq(cpu
)->stop
= stop
;
2024 * Reset it back to a normal scheduling class so that
2025 * it can die in pieces.
2027 old_stop
->sched_class
= &rt_sched_class
;
2032 * __normal_prio - return the priority that is based on the static prio
2034 static inline int __normal_prio(struct task_struct
*p
)
2036 return p
->static_prio
;
2040 * Calculate the expected normal priority: i.e. priority
2041 * without taking RT-inheritance into account. Might be
2042 * boosted by interactivity modifiers. Changes upon fork,
2043 * setprio syscalls, and whenever the interactivity
2044 * estimator recalculates.
2046 static inline int normal_prio(struct task_struct
*p
)
2050 if (task_has_rt_policy(p
))
2051 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2053 prio
= __normal_prio(p
);
2058 * Calculate the current priority, i.e. the priority
2059 * taken into account by the scheduler. This value might
2060 * be boosted by RT tasks, or might be boosted by
2061 * interactivity modifiers. Will be RT if the task got
2062 * RT-boosted. If not then it returns p->normal_prio.
2064 static int effective_prio(struct task_struct
*p
)
2066 p
->normal_prio
= normal_prio(p
);
2068 * If we are RT tasks or we were boosted to RT priority,
2069 * keep the priority unchanged. Otherwise, update priority
2070 * to the normal priority:
2072 if (!rt_prio(p
->prio
))
2073 return p
->normal_prio
;
2078 * task_curr - is this task currently executing on a CPU?
2079 * @p: the task in question.
2081 inline int task_curr(const struct task_struct
*p
)
2083 return cpu_curr(task_cpu(p
)) == p
;
2086 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2087 const struct sched_class
*prev_class
,
2090 if (prev_class
!= p
->sched_class
) {
2091 if (prev_class
->switched_from
)
2092 prev_class
->switched_from(rq
, p
);
2093 p
->sched_class
->switched_to(rq
, p
);
2094 } else if (oldprio
!= p
->prio
)
2095 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
2098 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2100 const struct sched_class
*class;
2102 if (p
->sched_class
== rq
->curr
->sched_class
) {
2103 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2105 for_each_class(class) {
2106 if (class == rq
->curr
->sched_class
)
2108 if (class == p
->sched_class
) {
2109 resched_task(rq
->curr
);
2116 * A queue event has occurred, and we're going to schedule. In
2117 * this case, we can save a useless back to back clock update.
2119 if (rq
->curr
->se
.on_rq
&& test_tsk_need_resched(rq
->curr
))
2120 rq
->skip_clock_update
= 1;
2125 * Is this task likely cache-hot:
2128 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2132 if (p
->sched_class
!= &fair_sched_class
)
2135 if (unlikely(p
->policy
== SCHED_IDLE
))
2139 * Buddy candidates are cache hot:
2141 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2142 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2143 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2146 if (sysctl_sched_migration_cost
== -1)
2148 if (sysctl_sched_migration_cost
== 0)
2151 delta
= now
- p
->se
.exec_start
;
2153 return delta
< (s64
)sysctl_sched_migration_cost
;
2156 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2158 #ifdef CONFIG_SCHED_DEBUG
2160 * We should never call set_task_cpu() on a blocked task,
2161 * ttwu() will sort out the placement.
2163 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2164 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2167 trace_sched_migrate_task(p
, new_cpu
);
2169 if (task_cpu(p
) != new_cpu
) {
2170 p
->se
.nr_migrations
++;
2171 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2174 __set_task_cpu(p
, new_cpu
);
2177 struct migration_arg
{
2178 struct task_struct
*task
;
2182 static int migration_cpu_stop(void *data
);
2185 * The task's runqueue lock must be held.
2186 * Returns true if you have to wait for migration thread.
2188 static bool migrate_task(struct task_struct
*p
, struct rq
*rq
)
2191 * If the task is not on a runqueue (and not running), then
2192 * the next wake-up will properly place the task.
2194 return p
->se
.on_rq
|| task_running(rq
, p
);
2198 * wait_task_inactive - wait for a thread to unschedule.
2200 * If @match_state is nonzero, it's the @p->state value just checked and
2201 * not expected to change. If it changes, i.e. @p might have woken up,
2202 * then return zero. When we succeed in waiting for @p to be off its CPU,
2203 * we return a positive number (its total switch count). If a second call
2204 * a short while later returns the same number, the caller can be sure that
2205 * @p has remained unscheduled the whole time.
2207 * The caller must ensure that the task *will* unschedule sometime soon,
2208 * else this function might spin for a *long* time. This function can't
2209 * be called with interrupts off, or it may introduce deadlock with
2210 * smp_call_function() if an IPI is sent by the same process we are
2211 * waiting to become inactive.
2213 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2215 unsigned long flags
;
2222 * We do the initial early heuristics without holding
2223 * any task-queue locks at all. We'll only try to get
2224 * the runqueue lock when things look like they will
2230 * If the task is actively running on another CPU
2231 * still, just relax and busy-wait without holding
2234 * NOTE! Since we don't hold any locks, it's not
2235 * even sure that "rq" stays as the right runqueue!
2236 * But we don't care, since "task_running()" will
2237 * return false if the runqueue has changed and p
2238 * is actually now running somewhere else!
2240 while (task_running(rq
, p
)) {
2241 if (match_state
&& unlikely(p
->state
!= match_state
))
2247 * Ok, time to look more closely! We need the rq
2248 * lock now, to be *sure*. If we're wrong, we'll
2249 * just go back and repeat.
2251 rq
= task_rq_lock(p
, &flags
);
2252 trace_sched_wait_task(p
);
2253 running
= task_running(rq
, p
);
2254 on_rq
= p
->se
.on_rq
;
2256 if (!match_state
|| p
->state
== match_state
)
2257 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2258 task_rq_unlock(rq
, &flags
);
2261 * If it changed from the expected state, bail out now.
2263 if (unlikely(!ncsw
))
2267 * Was it really running after all now that we
2268 * checked with the proper locks actually held?
2270 * Oops. Go back and try again..
2272 if (unlikely(running
)) {
2278 * It's not enough that it's not actively running,
2279 * it must be off the runqueue _entirely_, and not
2282 * So if it was still runnable (but just not actively
2283 * running right now), it's preempted, and we should
2284 * yield - it could be a while.
2286 if (unlikely(on_rq
)) {
2287 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
2289 set_current_state(TASK_UNINTERRUPTIBLE
);
2290 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2295 * Ahh, all good. It wasn't running, and it wasn't
2296 * runnable, which means that it will never become
2297 * running in the future either. We're all done!
2306 * kick_process - kick a running thread to enter/exit the kernel
2307 * @p: the to-be-kicked thread
2309 * Cause a process which is running on another CPU to enter
2310 * kernel-mode, without any delay. (to get signals handled.)
2312 * NOTE: this function doesnt have to take the runqueue lock,
2313 * because all it wants to ensure is that the remote task enters
2314 * the kernel. If the IPI races and the task has been migrated
2315 * to another CPU then no harm is done and the purpose has been
2318 void kick_process(struct task_struct
*p
)
2324 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2325 smp_send_reschedule(cpu
);
2328 EXPORT_SYMBOL_GPL(kick_process
);
2329 #endif /* CONFIG_SMP */
2333 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2335 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2338 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2340 /* Look for allowed, online CPU in same node. */
2341 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2342 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2345 /* Any allowed, online CPU? */
2346 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2347 if (dest_cpu
< nr_cpu_ids
)
2350 /* No more Mr. Nice Guy. */
2351 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2353 * Don't tell them about moving exiting tasks or
2354 * kernel threads (both mm NULL), since they never
2357 if (p
->mm
&& printk_ratelimit()) {
2358 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2359 task_pid_nr(p
), p
->comm
, cpu
);
2366 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2369 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2371 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2374 * In order not to call set_task_cpu() on a blocking task we need
2375 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2378 * Since this is common to all placement strategies, this lives here.
2380 * [ this allows ->select_task() to simply return task_cpu(p) and
2381 * not worry about this generic constraint ]
2383 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2385 cpu
= select_fallback_rq(task_cpu(p
), p
);
2390 static void update_avg(u64
*avg
, u64 sample
)
2392 s64 diff
= sample
- *avg
;
2397 static inline void ttwu_activate(struct task_struct
*p
, struct rq
*rq
,
2398 bool is_sync
, bool is_migrate
, bool is_local
,
2399 unsigned long en_flags
)
2401 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2403 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2405 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2407 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2409 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2411 activate_task(rq
, p
, en_flags
);
2414 static inline void ttwu_post_activation(struct task_struct
*p
, struct rq
*rq
,
2415 int wake_flags
, bool success
)
2417 trace_sched_wakeup(p
, success
);
2418 check_preempt_curr(rq
, p
, wake_flags
);
2420 p
->state
= TASK_RUNNING
;
2422 if (p
->sched_class
->task_woken
)
2423 p
->sched_class
->task_woken(rq
, p
);
2425 if (unlikely(rq
->idle_stamp
)) {
2426 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2427 u64 max
= 2*sysctl_sched_migration_cost
;
2432 update_avg(&rq
->avg_idle
, delta
);
2436 /* if a worker is waking up, notify workqueue */
2437 if ((p
->flags
& PF_WQ_WORKER
) && success
)
2438 wq_worker_waking_up(p
, cpu_of(rq
));
2442 * try_to_wake_up - wake up a thread
2443 * @p: the thread to be awakened
2444 * @state: the mask of task states that can be woken
2445 * @wake_flags: wake modifier flags (WF_*)
2447 * Put it on the run-queue if it's not already there. The "current"
2448 * thread is always on the run-queue (except when the actual
2449 * re-schedule is in progress), and as such you're allowed to do
2450 * the simpler "current->state = TASK_RUNNING" to mark yourself
2451 * runnable without the overhead of this.
2453 * Returns %true if @p was woken up, %false if it was already running
2454 * or @state didn't match @p's state.
2456 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2459 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2460 unsigned long flags
;
2461 unsigned long en_flags
= ENQUEUE_WAKEUP
;
2464 this_cpu
= get_cpu();
2467 rq
= task_rq_lock(p
, &flags
);
2468 if (!(p
->state
& state
))
2478 if (unlikely(task_running(rq
, p
)))
2482 * In order to handle concurrent wakeups and release the rq->lock
2483 * we put the task in TASK_WAKING state.
2485 * First fix up the nr_uninterruptible count:
2487 if (task_contributes_to_load(p
)) {
2488 if (likely(cpu_online(orig_cpu
)))
2489 rq
->nr_uninterruptible
--;
2491 this_rq()->nr_uninterruptible
--;
2493 p
->state
= TASK_WAKING
;
2495 if (p
->sched_class
->task_waking
) {
2496 p
->sched_class
->task_waking(rq
, p
);
2497 en_flags
|= ENQUEUE_WAKING
;
2500 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2501 if (cpu
!= orig_cpu
)
2502 set_task_cpu(p
, cpu
);
2503 __task_rq_unlock(rq
);
2506 raw_spin_lock(&rq
->lock
);
2509 * We migrated the task without holding either rq->lock, however
2510 * since the task is not on the task list itself, nobody else
2511 * will try and migrate the task, hence the rq should match the
2512 * cpu we just moved it to.
2514 WARN_ON(task_cpu(p
) != cpu
);
2515 WARN_ON(p
->state
!= TASK_WAKING
);
2517 #ifdef CONFIG_SCHEDSTATS
2518 schedstat_inc(rq
, ttwu_count
);
2519 if (cpu
== this_cpu
)
2520 schedstat_inc(rq
, ttwu_local
);
2522 struct sched_domain
*sd
;
2523 for_each_domain(this_cpu
, sd
) {
2524 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2525 schedstat_inc(sd
, ttwu_wake_remote
);
2530 #endif /* CONFIG_SCHEDSTATS */
2533 #endif /* CONFIG_SMP */
2534 ttwu_activate(p
, rq
, wake_flags
& WF_SYNC
, orig_cpu
!= cpu
,
2535 cpu
== this_cpu
, en_flags
);
2538 ttwu_post_activation(p
, rq
, wake_flags
, success
);
2540 task_rq_unlock(rq
, &flags
);
2547 * try_to_wake_up_local - try to wake up a local task with rq lock held
2548 * @p: the thread to be awakened
2550 * Put @p on the run-queue if it's not already there. The caller must
2551 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2552 * the current task. this_rq() stays locked over invocation.
2554 static void try_to_wake_up_local(struct task_struct
*p
)
2556 struct rq
*rq
= task_rq(p
);
2557 bool success
= false;
2559 BUG_ON(rq
!= this_rq());
2560 BUG_ON(p
== current
);
2561 lockdep_assert_held(&rq
->lock
);
2563 if (!(p
->state
& TASK_NORMAL
))
2567 if (likely(!task_running(rq
, p
))) {
2568 schedstat_inc(rq
, ttwu_count
);
2569 schedstat_inc(rq
, ttwu_local
);
2571 ttwu_activate(p
, rq
, false, false, true, ENQUEUE_WAKEUP
);
2574 ttwu_post_activation(p
, rq
, 0, success
);
2578 * wake_up_process - Wake up a specific process
2579 * @p: The process to be woken up.
2581 * Attempt to wake up the nominated process and move it to the set of runnable
2582 * processes. Returns 1 if the process was woken up, 0 if it was already
2585 * It may be assumed that this function implies a write memory barrier before
2586 * changing the task state if and only if any tasks are woken up.
2588 int wake_up_process(struct task_struct
*p
)
2590 return try_to_wake_up(p
, TASK_ALL
, 0);
2592 EXPORT_SYMBOL(wake_up_process
);
2594 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2596 return try_to_wake_up(p
, state
, 0);
2600 * Perform scheduler related setup for a newly forked process p.
2601 * p is forked by current.
2603 * __sched_fork() is basic setup used by init_idle() too:
2605 static void __sched_fork(struct task_struct
*p
)
2607 p
->se
.exec_start
= 0;
2608 p
->se
.sum_exec_runtime
= 0;
2609 p
->se
.prev_sum_exec_runtime
= 0;
2610 p
->se
.nr_migrations
= 0;
2613 #ifdef CONFIG_SCHEDSTATS
2614 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2617 INIT_LIST_HEAD(&p
->rt
.run_list
);
2619 INIT_LIST_HEAD(&p
->se
.group_node
);
2621 #ifdef CONFIG_PREEMPT_NOTIFIERS
2622 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2627 * fork()/clone()-time setup:
2629 void sched_fork(struct task_struct
*p
, int clone_flags
)
2631 int cpu
= get_cpu();
2635 * We mark the process as running here. This guarantees that
2636 * nobody will actually run it, and a signal or other external
2637 * event cannot wake it up and insert it on the runqueue either.
2639 p
->state
= TASK_RUNNING
;
2642 * Revert to default priority/policy on fork if requested.
2644 if (unlikely(p
->sched_reset_on_fork
)) {
2645 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2646 p
->policy
= SCHED_NORMAL
;
2647 p
->normal_prio
= p
->static_prio
;
2650 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2651 p
->static_prio
= NICE_TO_PRIO(0);
2652 p
->normal_prio
= p
->static_prio
;
2657 * We don't need the reset flag anymore after the fork. It has
2658 * fulfilled its duty:
2660 p
->sched_reset_on_fork
= 0;
2664 * Make sure we do not leak PI boosting priority to the child.
2666 p
->prio
= current
->normal_prio
;
2668 if (!rt_prio(p
->prio
))
2669 p
->sched_class
= &fair_sched_class
;
2671 if (p
->sched_class
->task_fork
)
2672 p
->sched_class
->task_fork(p
);
2675 * The child is not yet in the pid-hash so no cgroup attach races,
2676 * and the cgroup is pinned to this child due to cgroup_fork()
2677 * is ran before sched_fork().
2679 * Silence PROVE_RCU.
2682 set_task_cpu(p
, cpu
);
2685 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2686 if (likely(sched_info_on()))
2687 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2689 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2692 #ifdef CONFIG_PREEMPT
2693 /* Want to start with kernel preemption disabled. */
2694 task_thread_info(p
)->preempt_count
= 1;
2697 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2704 * wake_up_new_task - wake up a newly created task for the first time.
2706 * This function will do some initial scheduler statistics housekeeping
2707 * that must be done for every newly created context, then puts the task
2708 * on the runqueue and wakes it.
2710 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2712 unsigned long flags
;
2714 int cpu __maybe_unused
= get_cpu();
2717 rq
= task_rq_lock(p
, &flags
);
2718 p
->state
= TASK_WAKING
;
2721 * Fork balancing, do it here and not earlier because:
2722 * - cpus_allowed can change in the fork path
2723 * - any previously selected cpu might disappear through hotplug
2725 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2726 * without people poking at ->cpus_allowed.
2728 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2729 set_task_cpu(p
, cpu
);
2731 p
->state
= TASK_RUNNING
;
2732 task_rq_unlock(rq
, &flags
);
2735 rq
= task_rq_lock(p
, &flags
);
2736 activate_task(rq
, p
, 0);
2737 trace_sched_wakeup_new(p
, 1);
2738 check_preempt_curr(rq
, p
, WF_FORK
);
2740 if (p
->sched_class
->task_woken
)
2741 p
->sched_class
->task_woken(rq
, p
);
2743 task_rq_unlock(rq
, &flags
);
2747 #ifdef CONFIG_PREEMPT_NOTIFIERS
2750 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2751 * @notifier: notifier struct to register
2753 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2755 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2757 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2760 * preempt_notifier_unregister - no longer interested in preemption notifications
2761 * @notifier: notifier struct to unregister
2763 * This is safe to call from within a preemption notifier.
2765 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2767 hlist_del(¬ifier
->link
);
2769 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2771 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2773 struct preempt_notifier
*notifier
;
2774 struct hlist_node
*node
;
2776 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2777 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2781 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2782 struct task_struct
*next
)
2784 struct preempt_notifier
*notifier
;
2785 struct hlist_node
*node
;
2787 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2788 notifier
->ops
->sched_out(notifier
, next
);
2791 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2793 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2798 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2799 struct task_struct
*next
)
2803 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2806 * prepare_task_switch - prepare to switch tasks
2807 * @rq: the runqueue preparing to switch
2808 * @prev: the current task that is being switched out
2809 * @next: the task we are going to switch to.
2811 * This is called with the rq lock held and interrupts off. It must
2812 * be paired with a subsequent finish_task_switch after the context
2815 * prepare_task_switch sets up locking and calls architecture specific
2819 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2820 struct task_struct
*next
)
2822 sched_info_switch(prev
, next
);
2823 perf_event_task_sched_out(prev
, next
);
2824 fire_sched_out_preempt_notifiers(prev
, next
);
2825 prepare_lock_switch(rq
, next
);
2826 prepare_arch_switch(next
);
2827 trace_sched_switch(prev
, next
);
2831 * finish_task_switch - clean up after a task-switch
2832 * @rq: runqueue associated with task-switch
2833 * @prev: the thread we just switched away from.
2835 * finish_task_switch must be called after the context switch, paired
2836 * with a prepare_task_switch call before the context switch.
2837 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2838 * and do any other architecture-specific cleanup actions.
2840 * Note that we may have delayed dropping an mm in context_switch(). If
2841 * so, we finish that here outside of the runqueue lock. (Doing it
2842 * with the lock held can cause deadlocks; see schedule() for
2845 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2846 __releases(rq
->lock
)
2848 struct mm_struct
*mm
= rq
->prev_mm
;
2854 * A task struct has one reference for the use as "current".
2855 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2856 * schedule one last time. The schedule call will never return, and
2857 * the scheduled task must drop that reference.
2858 * The test for TASK_DEAD must occur while the runqueue locks are
2859 * still held, otherwise prev could be scheduled on another cpu, die
2860 * there before we look at prev->state, and then the reference would
2862 * Manfred Spraul <manfred@colorfullife.com>
2864 prev_state
= prev
->state
;
2865 finish_arch_switch(prev
);
2866 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2867 local_irq_disable();
2868 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2869 perf_event_task_sched_in(current
);
2870 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2872 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2873 finish_lock_switch(rq
, prev
);
2875 fire_sched_in_preempt_notifiers(current
);
2878 if (unlikely(prev_state
== TASK_DEAD
)) {
2880 * Remove function-return probe instances associated with this
2881 * task and put them back on the free list.
2883 kprobe_flush_task(prev
);
2884 put_task_struct(prev
);
2890 /* assumes rq->lock is held */
2891 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2893 if (prev
->sched_class
->pre_schedule
)
2894 prev
->sched_class
->pre_schedule(rq
, prev
);
2897 /* rq->lock is NOT held, but preemption is disabled */
2898 static inline void post_schedule(struct rq
*rq
)
2900 if (rq
->post_schedule
) {
2901 unsigned long flags
;
2903 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2904 if (rq
->curr
->sched_class
->post_schedule
)
2905 rq
->curr
->sched_class
->post_schedule(rq
);
2906 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2908 rq
->post_schedule
= 0;
2914 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2918 static inline void post_schedule(struct rq
*rq
)
2925 * schedule_tail - first thing a freshly forked thread must call.
2926 * @prev: the thread we just switched away from.
2928 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2929 __releases(rq
->lock
)
2931 struct rq
*rq
= this_rq();
2933 finish_task_switch(rq
, prev
);
2936 * FIXME: do we need to worry about rq being invalidated by the
2941 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2942 /* In this case, finish_task_switch does not reenable preemption */
2945 if (current
->set_child_tid
)
2946 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2950 * context_switch - switch to the new MM and the new
2951 * thread's register state.
2954 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2955 struct task_struct
*next
)
2957 struct mm_struct
*mm
, *oldmm
;
2959 prepare_task_switch(rq
, prev
, next
);
2962 oldmm
= prev
->active_mm
;
2964 * For paravirt, this is coupled with an exit in switch_to to
2965 * combine the page table reload and the switch backend into
2968 arch_start_context_switch(prev
);
2971 next
->active_mm
= oldmm
;
2972 atomic_inc(&oldmm
->mm_count
);
2973 enter_lazy_tlb(oldmm
, next
);
2975 switch_mm(oldmm
, mm
, next
);
2978 prev
->active_mm
= NULL
;
2979 rq
->prev_mm
= oldmm
;
2982 * Since the runqueue lock will be released by the next
2983 * task (which is an invalid locking op but in the case
2984 * of the scheduler it's an obvious special-case), so we
2985 * do an early lockdep release here:
2987 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2988 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2991 /* Here we just switch the register state and the stack. */
2992 switch_to(prev
, next
, prev
);
2996 * this_rq must be evaluated again because prev may have moved
2997 * CPUs since it called schedule(), thus the 'rq' on its stack
2998 * frame will be invalid.
3000 finish_task_switch(this_rq(), prev
);
3004 * nr_running, nr_uninterruptible and nr_context_switches:
3006 * externally visible scheduler statistics: current number of runnable
3007 * threads, current number of uninterruptible-sleeping threads, total
3008 * number of context switches performed since bootup.
3010 unsigned long nr_running(void)
3012 unsigned long i
, sum
= 0;
3014 for_each_online_cpu(i
)
3015 sum
+= cpu_rq(i
)->nr_running
;
3020 unsigned long nr_uninterruptible(void)
3022 unsigned long i
, sum
= 0;
3024 for_each_possible_cpu(i
)
3025 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3028 * Since we read the counters lockless, it might be slightly
3029 * inaccurate. Do not allow it to go below zero though:
3031 if (unlikely((long)sum
< 0))
3037 unsigned long long nr_context_switches(void)
3040 unsigned long long sum
= 0;
3042 for_each_possible_cpu(i
)
3043 sum
+= cpu_rq(i
)->nr_switches
;
3048 unsigned long nr_iowait(void)
3050 unsigned long i
, sum
= 0;
3052 for_each_possible_cpu(i
)
3053 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3058 unsigned long nr_iowait_cpu(int cpu
)
3060 struct rq
*this = cpu_rq(cpu
);
3061 return atomic_read(&this->nr_iowait
);
3064 unsigned long this_cpu_load(void)
3066 struct rq
*this = this_rq();
3067 return this->cpu_load
[0];
3071 /* Variables and functions for calc_load */
3072 static atomic_long_t calc_load_tasks
;
3073 static unsigned long calc_load_update
;
3074 unsigned long avenrun
[3];
3075 EXPORT_SYMBOL(avenrun
);
3077 static long calc_load_fold_active(struct rq
*this_rq
)
3079 long nr_active
, delta
= 0;
3081 nr_active
= this_rq
->nr_running
;
3082 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3084 if (nr_active
!= this_rq
->calc_load_active
) {
3085 delta
= nr_active
- this_rq
->calc_load_active
;
3086 this_rq
->calc_load_active
= nr_active
;
3092 static unsigned long
3093 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3096 load
+= active
* (FIXED_1
- exp
);
3097 load
+= 1UL << (FSHIFT
- 1);
3098 return load
>> FSHIFT
;
3103 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3105 * When making the ILB scale, we should try to pull this in as well.
3107 static atomic_long_t calc_load_tasks_idle
;
3109 static void calc_load_account_idle(struct rq
*this_rq
)
3113 delta
= calc_load_fold_active(this_rq
);
3115 atomic_long_add(delta
, &calc_load_tasks_idle
);
3118 static long calc_load_fold_idle(void)
3123 * Its got a race, we don't care...
3125 if (atomic_long_read(&calc_load_tasks_idle
))
3126 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3132 * fixed_power_int - compute: x^n, in O(log n) time
3134 * @x: base of the power
3135 * @frac_bits: fractional bits of @x
3136 * @n: power to raise @x to.
3138 * By exploiting the relation between the definition of the natural power
3139 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3140 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3141 * (where: n_i \elem {0, 1}, the binary vector representing n),
3142 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3143 * of course trivially computable in O(log_2 n), the length of our binary
3146 static unsigned long
3147 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3149 unsigned long result
= 1UL << frac_bits
;
3154 result
+= 1UL << (frac_bits
- 1);
3155 result
>>= frac_bits
;
3161 x
+= 1UL << (frac_bits
- 1);
3169 * a1 = a0 * e + a * (1 - e)
3171 * a2 = a1 * e + a * (1 - e)
3172 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3173 * = a0 * e^2 + a * (1 - e) * (1 + e)
3175 * a3 = a2 * e + a * (1 - e)
3176 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3177 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3181 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3182 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3183 * = a0 * e^n + a * (1 - e^n)
3185 * [1] application of the geometric series:
3188 * S_n := \Sum x^i = -------------
3191 static unsigned long
3192 calc_load_n(unsigned long load
, unsigned long exp
,
3193 unsigned long active
, unsigned int n
)
3196 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3200 * NO_HZ can leave us missing all per-cpu ticks calling
3201 * calc_load_account_active(), but since an idle CPU folds its delta into
3202 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3203 * in the pending idle delta if our idle period crossed a load cycle boundary.
3205 * Once we've updated the global active value, we need to apply the exponential
3206 * weights adjusted to the number of cycles missed.
3208 static void calc_global_nohz(unsigned long ticks
)
3210 long delta
, active
, n
;
3212 if (time_before(jiffies
, calc_load_update
))
3216 * If we crossed a calc_load_update boundary, make sure to fold
3217 * any pending idle changes, the respective CPUs might have
3218 * missed the tick driven calc_load_account_active() update
3221 delta
= calc_load_fold_idle();
3223 atomic_long_add(delta
, &calc_load_tasks
);
3226 * If we were idle for multiple load cycles, apply them.
3228 if (ticks
>= LOAD_FREQ
) {
3229 n
= ticks
/ LOAD_FREQ
;
3231 active
= atomic_long_read(&calc_load_tasks
);
3232 active
= active
> 0 ? active
* FIXED_1
: 0;
3234 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3235 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3236 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3238 calc_load_update
+= n
* LOAD_FREQ
;
3242 * Its possible the remainder of the above division also crosses
3243 * a LOAD_FREQ period, the regular check in calc_global_load()
3244 * which comes after this will take care of that.
3246 * Consider us being 11 ticks before a cycle completion, and us
3247 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3248 * age us 4 cycles, and the test in calc_global_load() will
3249 * pick up the final one.
3253 static void calc_load_account_idle(struct rq
*this_rq
)
3257 static inline long calc_load_fold_idle(void)
3262 static void calc_global_nohz(unsigned long ticks
)
3268 * get_avenrun - get the load average array
3269 * @loads: pointer to dest load array
3270 * @offset: offset to add
3271 * @shift: shift count to shift the result left
3273 * These values are estimates at best, so no need for locking.
3275 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3277 loads
[0] = (avenrun
[0] + offset
) << shift
;
3278 loads
[1] = (avenrun
[1] + offset
) << shift
;
3279 loads
[2] = (avenrun
[2] + offset
) << shift
;
3283 * calc_load - update the avenrun load estimates 10 ticks after the
3284 * CPUs have updated calc_load_tasks.
3286 void calc_global_load(unsigned long ticks
)
3290 calc_global_nohz(ticks
);
3292 if (time_before(jiffies
, calc_load_update
+ 10))
3295 active
= atomic_long_read(&calc_load_tasks
);
3296 active
= active
> 0 ? active
* FIXED_1
: 0;
3298 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3299 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3300 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3302 calc_load_update
+= LOAD_FREQ
;
3306 * Called from update_cpu_load() to periodically update this CPU's
3309 static void calc_load_account_active(struct rq
*this_rq
)
3313 if (time_before(jiffies
, this_rq
->calc_load_update
))
3316 delta
= calc_load_fold_active(this_rq
);
3317 delta
+= calc_load_fold_idle();
3319 atomic_long_add(delta
, &calc_load_tasks
);
3321 this_rq
->calc_load_update
+= LOAD_FREQ
;
3325 * The exact cpuload at various idx values, calculated at every tick would be
3326 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3328 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3329 * on nth tick when cpu may be busy, then we have:
3330 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3331 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3333 * decay_load_missed() below does efficient calculation of
3334 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3335 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3337 * The calculation is approximated on a 128 point scale.
3338 * degrade_zero_ticks is the number of ticks after which load at any
3339 * particular idx is approximated to be zero.
3340 * degrade_factor is a precomputed table, a row for each load idx.
3341 * Each column corresponds to degradation factor for a power of two ticks,
3342 * based on 128 point scale.
3344 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3345 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3347 * With this power of 2 load factors, we can degrade the load n times
3348 * by looking at 1 bits in n and doing as many mult/shift instead of
3349 * n mult/shifts needed by the exact degradation.
3351 #define DEGRADE_SHIFT 7
3352 static const unsigned char
3353 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3354 static const unsigned char
3355 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3356 {0, 0, 0, 0, 0, 0, 0, 0},
3357 {64, 32, 8, 0, 0, 0, 0, 0},
3358 {96, 72, 40, 12, 1, 0, 0},
3359 {112, 98, 75, 43, 15, 1, 0},
3360 {120, 112, 98, 76, 45, 16, 2} };
3363 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3364 * would be when CPU is idle and so we just decay the old load without
3365 * adding any new load.
3367 static unsigned long
3368 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3372 if (!missed_updates
)
3375 if (missed_updates
>= degrade_zero_ticks
[idx
])
3379 return load
>> missed_updates
;
3381 while (missed_updates
) {
3382 if (missed_updates
% 2)
3383 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3385 missed_updates
>>= 1;
3392 * Update rq->cpu_load[] statistics. This function is usually called every
3393 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3394 * every tick. We fix it up based on jiffies.
3396 static void update_cpu_load(struct rq
*this_rq
)
3398 unsigned long this_load
= this_rq
->load
.weight
;
3399 unsigned long curr_jiffies
= jiffies
;
3400 unsigned long pending_updates
;
3403 this_rq
->nr_load_updates
++;
3405 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3406 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3409 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3410 this_rq
->last_load_update_tick
= curr_jiffies
;
3412 /* Update our load: */
3413 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3414 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3415 unsigned long old_load
, new_load
;
3417 /* scale is effectively 1 << i now, and >> i divides by scale */
3419 old_load
= this_rq
->cpu_load
[i
];
3420 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3421 new_load
= this_load
;
3423 * Round up the averaging division if load is increasing. This
3424 * prevents us from getting stuck on 9 if the load is 10, for
3427 if (new_load
> old_load
)
3428 new_load
+= scale
- 1;
3430 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3433 sched_avg_update(this_rq
);
3436 static void update_cpu_load_active(struct rq
*this_rq
)
3438 update_cpu_load(this_rq
);
3440 calc_load_account_active(this_rq
);
3446 * sched_exec - execve() is a valuable balancing opportunity, because at
3447 * this point the task has the smallest effective memory and cache footprint.
3449 void sched_exec(void)
3451 struct task_struct
*p
= current
;
3452 unsigned long flags
;
3456 rq
= task_rq_lock(p
, &flags
);
3457 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3458 if (dest_cpu
== smp_processor_id())
3462 * select_task_rq() can race against ->cpus_allowed
3464 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3465 likely(cpu_active(dest_cpu
)) && migrate_task(p
, rq
)) {
3466 struct migration_arg arg
= { p
, dest_cpu
};
3468 task_rq_unlock(rq
, &flags
);
3469 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
3473 task_rq_unlock(rq
, &flags
);
3478 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3480 EXPORT_PER_CPU_SYMBOL(kstat
);
3483 * Return any ns on the sched_clock that have not yet been accounted in
3484 * @p in case that task is currently running.
3486 * Called with task_rq_lock() held on @rq.
3488 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3492 if (task_current(rq
, p
)) {
3493 update_rq_clock(rq
);
3494 ns
= rq
->clock_task
- p
->se
.exec_start
;
3502 unsigned long long task_delta_exec(struct task_struct
*p
)
3504 unsigned long flags
;
3508 rq
= task_rq_lock(p
, &flags
);
3509 ns
= do_task_delta_exec(p
, rq
);
3510 task_rq_unlock(rq
, &flags
);
3516 * Return accounted runtime for the task.
3517 * In case the task is currently running, return the runtime plus current's
3518 * pending runtime that have not been accounted yet.
3520 unsigned long long task_sched_runtime(struct task_struct
*p
)
3522 unsigned long flags
;
3526 rq
= task_rq_lock(p
, &flags
);
3527 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3528 task_rq_unlock(rq
, &flags
);
3534 * Return sum_exec_runtime for the thread group.
3535 * In case the task is currently running, return the sum plus current's
3536 * pending runtime that have not been accounted yet.
3538 * Note that the thread group might have other running tasks as well,
3539 * so the return value not includes other pending runtime that other
3540 * running tasks might have.
3542 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3544 struct task_cputime totals
;
3545 unsigned long flags
;
3549 rq
= task_rq_lock(p
, &flags
);
3550 thread_group_cputime(p
, &totals
);
3551 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3552 task_rq_unlock(rq
, &flags
);
3558 * Account user cpu time to a process.
3559 * @p: the process that the cpu time gets accounted to
3560 * @cputime: the cpu time spent in user space since the last update
3561 * @cputime_scaled: cputime scaled by cpu frequency
3563 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3564 cputime_t cputime_scaled
)
3566 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3569 /* Add user time to process. */
3570 p
->utime
= cputime_add(p
->utime
, cputime
);
3571 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3572 account_group_user_time(p
, cputime
);
3574 /* Add user time to cpustat. */
3575 tmp
= cputime_to_cputime64(cputime
);
3576 if (TASK_NICE(p
) > 0)
3577 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3579 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3581 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3582 /* Account for user time used */
3583 acct_update_integrals(p
);
3587 * Account guest cpu time to a process.
3588 * @p: the process that the cpu time gets accounted to
3589 * @cputime: the cpu time spent in virtual machine since the last update
3590 * @cputime_scaled: cputime scaled by cpu frequency
3592 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3593 cputime_t cputime_scaled
)
3596 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3598 tmp
= cputime_to_cputime64(cputime
);
3600 /* Add guest time to process. */
3601 p
->utime
= cputime_add(p
->utime
, cputime
);
3602 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3603 account_group_user_time(p
, cputime
);
3604 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3606 /* Add guest time to cpustat. */
3607 if (TASK_NICE(p
) > 0) {
3608 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3609 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3611 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3612 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3617 * Account system cpu time to a process and desired cpustat field
3618 * @p: the process that the cpu time gets accounted to
3619 * @cputime: the cpu time spent in kernel space since the last update
3620 * @cputime_scaled: cputime scaled by cpu frequency
3621 * @target_cputime64: pointer to cpustat field that has to be updated
3624 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
3625 cputime_t cputime_scaled
, cputime64_t
*target_cputime64
)
3627 cputime64_t tmp
= cputime_to_cputime64(cputime
);
3629 /* Add system time to process. */
3630 p
->stime
= cputime_add(p
->stime
, cputime
);
3631 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3632 account_group_system_time(p
, cputime
);
3634 /* Add system time to cpustat. */
3635 *target_cputime64
= cputime64_add(*target_cputime64
, tmp
);
3636 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3638 /* Account for system time used */
3639 acct_update_integrals(p
);
3643 * Account system cpu time to a process.
3644 * @p: the process that the cpu time gets accounted to
3645 * @hardirq_offset: the offset to subtract from hardirq_count()
3646 * @cputime: the cpu time spent in kernel space since the last update
3647 * @cputime_scaled: cputime scaled by cpu frequency
3649 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3650 cputime_t cputime
, cputime_t cputime_scaled
)
3652 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3653 cputime64_t
*target_cputime64
;
3655 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3656 account_guest_time(p
, cputime
, cputime_scaled
);
3660 if (hardirq_count() - hardirq_offset
)
3661 target_cputime64
= &cpustat
->irq
;
3662 else if (in_serving_softirq())
3663 target_cputime64
= &cpustat
->softirq
;
3665 target_cputime64
= &cpustat
->system
;
3667 __account_system_time(p
, cputime
, cputime_scaled
, target_cputime64
);
3671 * Account for involuntary wait time.
3672 * @cputime: the cpu time spent in involuntary wait
3674 void account_steal_time(cputime_t cputime
)
3676 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3677 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3679 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3683 * Account for idle time.
3684 * @cputime: the cpu time spent in idle wait
3686 void account_idle_time(cputime_t cputime
)
3688 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3689 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3690 struct rq
*rq
= this_rq();
3692 if (atomic_read(&rq
->nr_iowait
) > 0)
3693 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3695 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3698 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3700 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3702 * Account a tick to a process and cpustat
3703 * @p: the process that the cpu time gets accounted to
3704 * @user_tick: is the tick from userspace
3705 * @rq: the pointer to rq
3707 * Tick demultiplexing follows the order
3708 * - pending hardirq update
3709 * - pending softirq update
3713 * - check for guest_time
3714 * - else account as system_time
3716 * Check for hardirq is done both for system and user time as there is
3717 * no timer going off while we are on hardirq and hence we may never get an
3718 * opportunity to update it solely in system time.
3719 * p->stime and friends are only updated on system time and not on irq
3720 * softirq as those do not count in task exec_runtime any more.
3722 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3725 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3726 cputime64_t tmp
= cputime_to_cputime64(cputime_one_jiffy
);
3727 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3729 if (irqtime_account_hi_update()) {
3730 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3731 } else if (irqtime_account_si_update()) {
3732 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3733 } else if (this_cpu_ksoftirqd() == p
) {
3735 * ksoftirqd time do not get accounted in cpu_softirq_time.
3736 * So, we have to handle it separately here.
3737 * Also, p->stime needs to be updated for ksoftirqd.
3739 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3741 } else if (user_tick
) {
3742 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3743 } else if (p
== rq
->idle
) {
3744 account_idle_time(cputime_one_jiffy
);
3745 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
3746 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3748 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3753 static void irqtime_account_idle_ticks(int ticks
)
3756 struct rq
*rq
= this_rq();
3758 for (i
= 0; i
< ticks
; i
++)
3759 irqtime_account_process_tick(current
, 0, rq
);
3761 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3762 static void irqtime_account_idle_ticks(int ticks
) {}
3763 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3765 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3768 * Account a single tick of cpu time.
3769 * @p: the process that the cpu time gets accounted to
3770 * @user_tick: indicates if the tick is a user or a system tick
3772 void account_process_tick(struct task_struct
*p
, int user_tick
)
3774 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3775 struct rq
*rq
= this_rq();
3777 if (sched_clock_irqtime
) {
3778 irqtime_account_process_tick(p
, user_tick
, rq
);
3783 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3784 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3785 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3788 account_idle_time(cputime_one_jiffy
);
3792 * Account multiple ticks of steal time.
3793 * @p: the process from which the cpu time has been stolen
3794 * @ticks: number of stolen ticks
3796 void account_steal_ticks(unsigned long ticks
)
3798 account_steal_time(jiffies_to_cputime(ticks
));
3802 * Account multiple ticks of idle time.
3803 * @ticks: number of stolen ticks
3805 void account_idle_ticks(unsigned long ticks
)
3808 if (sched_clock_irqtime
) {
3809 irqtime_account_idle_ticks(ticks
);
3813 account_idle_time(jiffies_to_cputime(ticks
));
3819 * Use precise platform statistics if available:
3821 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3822 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3828 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3830 struct task_cputime cputime
;
3832 thread_group_cputime(p
, &cputime
);
3834 *ut
= cputime
.utime
;
3835 *st
= cputime
.stime
;
3839 #ifndef nsecs_to_cputime
3840 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3843 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3845 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3848 * Use CFS's precise accounting:
3850 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3856 do_div(temp
, total
);
3857 utime
= (cputime_t
)temp
;
3862 * Compare with previous values, to keep monotonicity:
3864 p
->prev_utime
= max(p
->prev_utime
, utime
);
3865 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3867 *ut
= p
->prev_utime
;
3868 *st
= p
->prev_stime
;
3872 * Must be called with siglock held.
3874 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3876 struct signal_struct
*sig
= p
->signal
;
3877 struct task_cputime cputime
;
3878 cputime_t rtime
, utime
, total
;
3880 thread_group_cputime(p
, &cputime
);
3882 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3883 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3888 temp
*= cputime
.utime
;
3889 do_div(temp
, total
);
3890 utime
= (cputime_t
)temp
;
3894 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3895 sig
->prev_stime
= max(sig
->prev_stime
,
3896 cputime_sub(rtime
, sig
->prev_utime
));
3898 *ut
= sig
->prev_utime
;
3899 *st
= sig
->prev_stime
;
3904 * This function gets called by the timer code, with HZ frequency.
3905 * We call it with interrupts disabled.
3907 * It also gets called by the fork code, when changing the parent's
3910 void scheduler_tick(void)
3912 int cpu
= smp_processor_id();
3913 struct rq
*rq
= cpu_rq(cpu
);
3914 struct task_struct
*curr
= rq
->curr
;
3918 raw_spin_lock(&rq
->lock
);
3919 update_rq_clock(rq
);
3920 update_cpu_load_active(rq
);
3921 curr
->sched_class
->task_tick(rq
, curr
, 0);
3922 raw_spin_unlock(&rq
->lock
);
3924 perf_event_task_tick();
3927 rq
->idle_at_tick
= idle_cpu(cpu
);
3928 trigger_load_balance(rq
, cpu
);
3932 notrace
unsigned long get_parent_ip(unsigned long addr
)
3934 if (in_lock_functions(addr
)) {
3935 addr
= CALLER_ADDR2
;
3936 if (in_lock_functions(addr
))
3937 addr
= CALLER_ADDR3
;
3942 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3943 defined(CONFIG_PREEMPT_TRACER))
3945 void __kprobes
add_preempt_count(int val
)
3947 #ifdef CONFIG_DEBUG_PREEMPT
3951 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3954 preempt_count() += val
;
3955 #ifdef CONFIG_DEBUG_PREEMPT
3957 * Spinlock count overflowing soon?
3959 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3962 if (preempt_count() == val
)
3963 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3965 EXPORT_SYMBOL(add_preempt_count
);
3967 void __kprobes
sub_preempt_count(int val
)
3969 #ifdef CONFIG_DEBUG_PREEMPT
3973 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3976 * Is the spinlock portion underflowing?
3978 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3979 !(preempt_count() & PREEMPT_MASK
)))
3983 if (preempt_count() == val
)
3984 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3985 preempt_count() -= val
;
3987 EXPORT_SYMBOL(sub_preempt_count
);
3992 * Print scheduling while atomic bug:
3994 static noinline
void __schedule_bug(struct task_struct
*prev
)
3996 struct pt_regs
*regs
= get_irq_regs();
3998 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3999 prev
->comm
, prev
->pid
, preempt_count());
4001 debug_show_held_locks(prev
);
4003 if (irqs_disabled())
4004 print_irqtrace_events(prev
);
4013 * Various schedule()-time debugging checks and statistics:
4015 static inline void schedule_debug(struct task_struct
*prev
)
4018 * Test if we are atomic. Since do_exit() needs to call into
4019 * schedule() atomically, we ignore that path for now.
4020 * Otherwise, whine if we are scheduling when we should not be.
4022 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4023 __schedule_bug(prev
);
4025 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4027 schedstat_inc(this_rq(), sched_count
);
4028 #ifdef CONFIG_SCHEDSTATS
4029 if (unlikely(prev
->lock_depth
>= 0)) {
4030 schedstat_inc(this_rq(), rq_sched_info
.bkl_count
);
4031 schedstat_inc(prev
, sched_info
.bkl_count
);
4036 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4039 update_rq_clock(rq
);
4040 prev
->sched_class
->put_prev_task(rq
, prev
);
4044 * Pick up the highest-prio task:
4046 static inline struct task_struct
*
4047 pick_next_task(struct rq
*rq
)
4049 const struct sched_class
*class;
4050 struct task_struct
*p
;
4053 * Optimization: we know that if all tasks are in
4054 * the fair class we can call that function directly:
4056 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4057 p
= fair_sched_class
.pick_next_task(rq
);
4062 for_each_class(class) {
4063 p
= class->pick_next_task(rq
);
4068 BUG(); /* the idle class will always have a runnable task */
4072 * schedule() is the main scheduler function.
4074 asmlinkage
void __sched
schedule(void)
4076 struct task_struct
*prev
, *next
;
4077 unsigned long *switch_count
;
4083 cpu
= smp_processor_id();
4085 rcu_note_context_switch(cpu
);
4088 schedule_debug(prev
);
4090 if (sched_feat(HRTICK
))
4093 raw_spin_lock_irq(&rq
->lock
);
4095 switch_count
= &prev
->nivcsw
;
4096 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4097 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4098 prev
->state
= TASK_RUNNING
;
4101 * If a worker is going to sleep, notify and
4102 * ask workqueue whether it wants to wake up a
4103 * task to maintain concurrency. If so, wake
4106 if (prev
->flags
& PF_WQ_WORKER
) {
4107 struct task_struct
*to_wakeup
;
4109 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4111 try_to_wake_up_local(to_wakeup
);
4113 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4115 switch_count
= &prev
->nvcsw
;
4119 * If we are going to sleep and we have plugged IO queued, make
4120 * sure to submit it to avoid deadlocks.
4122 if (prev
->state
!= TASK_RUNNING
&& blk_needs_flush_plug(prev
)) {
4123 raw_spin_unlock(&rq
->lock
);
4124 blk_flush_plug(prev
);
4125 raw_spin_lock(&rq
->lock
);
4128 pre_schedule(rq
, prev
);
4130 if (unlikely(!rq
->nr_running
))
4131 idle_balance(cpu
, rq
);
4133 put_prev_task(rq
, prev
);
4134 next
= pick_next_task(rq
);
4135 clear_tsk_need_resched(prev
);
4136 rq
->skip_clock_update
= 0;
4138 if (likely(prev
!= next
)) {
4143 context_switch(rq
, prev
, next
); /* unlocks the rq */
4145 * The context switch have flipped the stack from under us
4146 * and restored the local variables which were saved when
4147 * this task called schedule() in the past. prev == current
4148 * is still correct, but it can be moved to another cpu/rq.
4150 cpu
= smp_processor_id();
4153 raw_spin_unlock_irq(&rq
->lock
);
4157 preempt_enable_no_resched();
4161 EXPORT_SYMBOL(schedule
);
4163 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4165 * Look out! "owner" is an entirely speculative pointer
4166 * access and not reliable.
4168 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
4173 if (!sched_feat(OWNER_SPIN
))
4176 #ifdef CONFIG_DEBUG_PAGEALLOC
4178 * Need to access the cpu field knowing that
4179 * DEBUG_PAGEALLOC could have unmapped it if
4180 * the mutex owner just released it and exited.
4182 if (probe_kernel_address(&owner
->cpu
, cpu
))
4189 * Even if the access succeeded (likely case),
4190 * the cpu field may no longer be valid.
4192 if (cpu
>= nr_cpumask_bits
)
4196 * We need to validate that we can do a
4197 * get_cpu() and that we have the percpu area.
4199 if (!cpu_online(cpu
))
4206 * Owner changed, break to re-assess state.
4208 if (lock
->owner
!= owner
) {
4210 * If the lock has switched to a different owner,
4211 * we likely have heavy contention. Return 0 to quit
4212 * optimistic spinning and not contend further:
4220 * Is that owner really running on that cpu?
4222 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
4225 arch_mutex_cpu_relax();
4232 #ifdef CONFIG_PREEMPT
4234 * this is the entry point to schedule() from in-kernel preemption
4235 * off of preempt_enable. Kernel preemptions off return from interrupt
4236 * occur there and call schedule directly.
4238 asmlinkage
void __sched notrace
preempt_schedule(void)
4240 struct thread_info
*ti
= current_thread_info();
4243 * If there is a non-zero preempt_count or interrupts are disabled,
4244 * we do not want to preempt the current task. Just return..
4246 if (likely(ti
->preempt_count
|| irqs_disabled()))
4250 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4252 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4255 * Check again in case we missed a preemption opportunity
4256 * between schedule and now.
4259 } while (need_resched());
4261 EXPORT_SYMBOL(preempt_schedule
);
4264 * this is the entry point to schedule() from kernel preemption
4265 * off of irq context.
4266 * Note, that this is called and return with irqs disabled. This will
4267 * protect us against recursive calling from irq.
4269 asmlinkage
void __sched
preempt_schedule_irq(void)
4271 struct thread_info
*ti
= current_thread_info();
4273 /* Catch callers which need to be fixed */
4274 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4277 add_preempt_count(PREEMPT_ACTIVE
);
4280 local_irq_disable();
4281 sub_preempt_count(PREEMPT_ACTIVE
);
4284 * Check again in case we missed a preemption opportunity
4285 * between schedule and now.
4288 } while (need_resched());
4291 #endif /* CONFIG_PREEMPT */
4293 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4296 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4298 EXPORT_SYMBOL(default_wake_function
);
4301 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4302 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4303 * number) then we wake all the non-exclusive tasks and one exclusive task.
4305 * There are circumstances in which we can try to wake a task which has already
4306 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4307 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4309 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4310 int nr_exclusive
, int wake_flags
, void *key
)
4312 wait_queue_t
*curr
, *next
;
4314 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4315 unsigned flags
= curr
->flags
;
4317 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4318 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4324 * __wake_up - wake up threads blocked on a waitqueue.
4326 * @mode: which threads
4327 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4328 * @key: is directly passed to the wakeup function
4330 * It may be assumed that this function implies a write memory barrier before
4331 * changing the task state if and only if any tasks are woken up.
4333 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4334 int nr_exclusive
, void *key
)
4336 unsigned long flags
;
4338 spin_lock_irqsave(&q
->lock
, flags
);
4339 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4340 spin_unlock_irqrestore(&q
->lock
, flags
);
4342 EXPORT_SYMBOL(__wake_up
);
4345 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4347 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4349 __wake_up_common(q
, mode
, 1, 0, NULL
);
4351 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4353 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4355 __wake_up_common(q
, mode
, 1, 0, key
);
4357 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4360 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4362 * @mode: which threads
4363 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4364 * @key: opaque value to be passed to wakeup targets
4366 * The sync wakeup differs that the waker knows that it will schedule
4367 * away soon, so while the target thread will be woken up, it will not
4368 * be migrated to another CPU - ie. the two threads are 'synchronized'
4369 * with each other. This can prevent needless bouncing between CPUs.
4371 * On UP it can prevent extra preemption.
4373 * It may be assumed that this function implies a write memory barrier before
4374 * changing the task state if and only if any tasks are woken up.
4376 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4377 int nr_exclusive
, void *key
)
4379 unsigned long flags
;
4380 int wake_flags
= WF_SYNC
;
4385 if (unlikely(!nr_exclusive
))
4388 spin_lock_irqsave(&q
->lock
, flags
);
4389 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4390 spin_unlock_irqrestore(&q
->lock
, flags
);
4392 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4395 * __wake_up_sync - see __wake_up_sync_key()
4397 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4399 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4401 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4404 * complete: - signals a single thread waiting on this completion
4405 * @x: holds the state of this particular completion
4407 * This will wake up a single thread waiting on this completion. Threads will be
4408 * awakened in the same order in which they were queued.
4410 * See also complete_all(), wait_for_completion() and related routines.
4412 * It may be assumed that this function implies a write memory barrier before
4413 * changing the task state if and only if any tasks are woken up.
4415 void complete(struct completion
*x
)
4417 unsigned long flags
;
4419 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4421 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4422 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4424 EXPORT_SYMBOL(complete
);
4427 * complete_all: - signals all threads waiting on this completion
4428 * @x: holds the state of this particular completion
4430 * This will wake up all threads waiting on this particular completion event.
4432 * It may be assumed that this function implies a write memory barrier before
4433 * changing the task state if and only if any tasks are woken up.
4435 void complete_all(struct completion
*x
)
4437 unsigned long flags
;
4439 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4440 x
->done
+= UINT_MAX
/2;
4441 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4442 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4444 EXPORT_SYMBOL(complete_all
);
4446 static inline long __sched
4447 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4450 DECLARE_WAITQUEUE(wait
, current
);
4452 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4454 if (signal_pending_state(state
, current
)) {
4455 timeout
= -ERESTARTSYS
;
4458 __set_current_state(state
);
4459 spin_unlock_irq(&x
->wait
.lock
);
4460 timeout
= schedule_timeout(timeout
);
4461 spin_lock_irq(&x
->wait
.lock
);
4462 } while (!x
->done
&& timeout
);
4463 __remove_wait_queue(&x
->wait
, &wait
);
4468 return timeout
?: 1;
4472 wait_for_common(struct completion
*x
, long timeout
, int state
)
4476 spin_lock_irq(&x
->wait
.lock
);
4477 timeout
= do_wait_for_common(x
, timeout
, state
);
4478 spin_unlock_irq(&x
->wait
.lock
);
4483 * wait_for_completion: - waits for completion of a task
4484 * @x: holds the state of this particular completion
4486 * This waits to be signaled for completion of a specific task. It is NOT
4487 * interruptible and there is no timeout.
4489 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4490 * and interrupt capability. Also see complete().
4492 void __sched
wait_for_completion(struct completion
*x
)
4494 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4496 EXPORT_SYMBOL(wait_for_completion
);
4499 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4500 * @x: holds the state of this particular completion
4501 * @timeout: timeout value in jiffies
4503 * This waits for either a completion of a specific task to be signaled or for a
4504 * specified timeout to expire. The timeout is in jiffies. It is not
4507 unsigned long __sched
4508 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4510 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4512 EXPORT_SYMBOL(wait_for_completion_timeout
);
4515 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4516 * @x: holds the state of this particular completion
4518 * This waits for completion of a specific task to be signaled. It is
4521 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4523 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4524 if (t
== -ERESTARTSYS
)
4528 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4531 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4532 * @x: holds the state of this particular completion
4533 * @timeout: timeout value in jiffies
4535 * This waits for either a completion of a specific task to be signaled or for a
4536 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4539 wait_for_completion_interruptible_timeout(struct completion
*x
,
4540 unsigned long timeout
)
4542 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4544 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4547 * wait_for_completion_killable: - waits for completion of a task (killable)
4548 * @x: holds the state of this particular completion
4550 * This waits to be signaled for completion of a specific task. It can be
4551 * interrupted by a kill signal.
4553 int __sched
wait_for_completion_killable(struct completion
*x
)
4555 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4556 if (t
== -ERESTARTSYS
)
4560 EXPORT_SYMBOL(wait_for_completion_killable
);
4563 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4564 * @x: holds the state of this particular completion
4565 * @timeout: timeout value in jiffies
4567 * This waits for either a completion of a specific task to be
4568 * signaled or for a specified timeout to expire. It can be
4569 * interrupted by a kill signal. The timeout is in jiffies.
4572 wait_for_completion_killable_timeout(struct completion
*x
,
4573 unsigned long timeout
)
4575 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4577 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4580 * try_wait_for_completion - try to decrement a completion without blocking
4581 * @x: completion structure
4583 * Returns: 0 if a decrement cannot be done without blocking
4584 * 1 if a decrement succeeded.
4586 * If a completion is being used as a counting completion,
4587 * attempt to decrement the counter without blocking. This
4588 * enables us to avoid waiting if the resource the completion
4589 * is protecting is not available.
4591 bool try_wait_for_completion(struct completion
*x
)
4593 unsigned long flags
;
4596 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4601 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4604 EXPORT_SYMBOL(try_wait_for_completion
);
4607 * completion_done - Test to see if a completion has any waiters
4608 * @x: completion structure
4610 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4611 * 1 if there are no waiters.
4614 bool completion_done(struct completion
*x
)
4616 unsigned long flags
;
4619 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4622 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4625 EXPORT_SYMBOL(completion_done
);
4628 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4630 unsigned long flags
;
4633 init_waitqueue_entry(&wait
, current
);
4635 __set_current_state(state
);
4637 spin_lock_irqsave(&q
->lock
, flags
);
4638 __add_wait_queue(q
, &wait
);
4639 spin_unlock(&q
->lock
);
4640 timeout
= schedule_timeout(timeout
);
4641 spin_lock_irq(&q
->lock
);
4642 __remove_wait_queue(q
, &wait
);
4643 spin_unlock_irqrestore(&q
->lock
, flags
);
4648 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4650 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4652 EXPORT_SYMBOL(interruptible_sleep_on
);
4655 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4657 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4659 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4661 void __sched
sleep_on(wait_queue_head_t
*q
)
4663 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4665 EXPORT_SYMBOL(sleep_on
);
4667 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4669 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4671 EXPORT_SYMBOL(sleep_on_timeout
);
4673 #ifdef CONFIG_RT_MUTEXES
4676 * rt_mutex_setprio - set the current priority of a task
4678 * @prio: prio value (kernel-internal form)
4680 * This function changes the 'effective' priority of a task. It does
4681 * not touch ->normal_prio like __setscheduler().
4683 * Used by the rt_mutex code to implement priority inheritance logic.
4685 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4687 unsigned long flags
;
4688 int oldprio
, on_rq
, running
;
4690 const struct sched_class
*prev_class
;
4692 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4694 rq
= task_rq_lock(p
, &flags
);
4696 trace_sched_pi_setprio(p
, prio
);
4698 prev_class
= p
->sched_class
;
4699 on_rq
= p
->se
.on_rq
;
4700 running
= task_current(rq
, p
);
4702 dequeue_task(rq
, p
, 0);
4704 p
->sched_class
->put_prev_task(rq
, p
);
4707 p
->sched_class
= &rt_sched_class
;
4709 p
->sched_class
= &fair_sched_class
;
4714 p
->sched_class
->set_curr_task(rq
);
4716 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4718 check_class_changed(rq
, p
, prev_class
, oldprio
);
4719 task_rq_unlock(rq
, &flags
);
4724 void set_user_nice(struct task_struct
*p
, long nice
)
4726 int old_prio
, delta
, on_rq
;
4727 unsigned long flags
;
4730 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4733 * We have to be careful, if called from sys_setpriority(),
4734 * the task might be in the middle of scheduling on another CPU.
4736 rq
= task_rq_lock(p
, &flags
);
4738 * The RT priorities are set via sched_setscheduler(), but we still
4739 * allow the 'normal' nice value to be set - but as expected
4740 * it wont have any effect on scheduling until the task is
4741 * SCHED_FIFO/SCHED_RR:
4743 if (task_has_rt_policy(p
)) {
4744 p
->static_prio
= NICE_TO_PRIO(nice
);
4747 on_rq
= p
->se
.on_rq
;
4749 dequeue_task(rq
, p
, 0);
4751 p
->static_prio
= NICE_TO_PRIO(nice
);
4754 p
->prio
= effective_prio(p
);
4755 delta
= p
->prio
- old_prio
;
4758 enqueue_task(rq
, p
, 0);
4760 * If the task increased its priority or is running and
4761 * lowered its priority, then reschedule its CPU:
4763 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4764 resched_task(rq
->curr
);
4767 task_rq_unlock(rq
, &flags
);
4769 EXPORT_SYMBOL(set_user_nice
);
4772 * can_nice - check if a task can reduce its nice value
4776 int can_nice(const struct task_struct
*p
, const int nice
)
4778 /* convert nice value [19,-20] to rlimit style value [1,40] */
4779 int nice_rlim
= 20 - nice
;
4781 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4782 capable(CAP_SYS_NICE
));
4785 #ifdef __ARCH_WANT_SYS_NICE
4788 * sys_nice - change the priority of the current process.
4789 * @increment: priority increment
4791 * sys_setpriority is a more generic, but much slower function that
4792 * does similar things.
4794 SYSCALL_DEFINE1(nice
, int, increment
)
4799 * Setpriority might change our priority at the same moment.
4800 * We don't have to worry. Conceptually one call occurs first
4801 * and we have a single winner.
4803 if (increment
< -40)
4808 nice
= TASK_NICE(current
) + increment
;
4814 if (increment
< 0 && !can_nice(current
, nice
))
4817 retval
= security_task_setnice(current
, nice
);
4821 set_user_nice(current
, nice
);
4828 * task_prio - return the priority value of a given task.
4829 * @p: the task in question.
4831 * This is the priority value as seen by users in /proc.
4832 * RT tasks are offset by -200. Normal tasks are centered
4833 * around 0, value goes from -16 to +15.
4835 int task_prio(const struct task_struct
*p
)
4837 return p
->prio
- MAX_RT_PRIO
;
4841 * task_nice - return the nice value of a given task.
4842 * @p: the task in question.
4844 int task_nice(const struct task_struct
*p
)
4846 return TASK_NICE(p
);
4848 EXPORT_SYMBOL(task_nice
);
4851 * idle_cpu - is a given cpu idle currently?
4852 * @cpu: the processor in question.
4854 int idle_cpu(int cpu
)
4856 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4860 * idle_task - return the idle task for a given cpu.
4861 * @cpu: the processor in question.
4863 struct task_struct
*idle_task(int cpu
)
4865 return cpu_rq(cpu
)->idle
;
4869 * find_process_by_pid - find a process with a matching PID value.
4870 * @pid: the pid in question.
4872 static struct task_struct
*find_process_by_pid(pid_t pid
)
4874 return pid
? find_task_by_vpid(pid
) : current
;
4877 /* Actually do priority change: must hold rq lock. */
4879 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4881 BUG_ON(p
->se
.on_rq
);
4884 p
->rt_priority
= prio
;
4885 p
->normal_prio
= normal_prio(p
);
4886 /* we are holding p->pi_lock already */
4887 p
->prio
= rt_mutex_getprio(p
);
4888 if (rt_prio(p
->prio
))
4889 p
->sched_class
= &rt_sched_class
;
4891 p
->sched_class
= &fair_sched_class
;
4896 * check the target process has a UID that matches the current process's
4898 static bool check_same_owner(struct task_struct
*p
)
4900 const struct cred
*cred
= current_cred(), *pcred
;
4904 pcred
= __task_cred(p
);
4905 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
4906 match
= (cred
->euid
== pcred
->euid
||
4907 cred
->euid
== pcred
->uid
);
4914 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4915 const struct sched_param
*param
, bool user
)
4917 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4918 unsigned long flags
;
4919 const struct sched_class
*prev_class
;
4923 /* may grab non-irq protected spin_locks */
4924 BUG_ON(in_interrupt());
4926 /* double check policy once rq lock held */
4928 reset_on_fork
= p
->sched_reset_on_fork
;
4929 policy
= oldpolicy
= p
->policy
;
4931 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4932 policy
&= ~SCHED_RESET_ON_FORK
;
4934 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4935 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4936 policy
!= SCHED_IDLE
)
4941 * Valid priorities for SCHED_FIFO and SCHED_RR are
4942 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4943 * SCHED_BATCH and SCHED_IDLE is 0.
4945 if (param
->sched_priority
< 0 ||
4946 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4947 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4949 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4953 * Allow unprivileged RT tasks to decrease priority:
4955 if (user
&& !capable(CAP_SYS_NICE
)) {
4956 if (rt_policy(policy
)) {
4957 unsigned long rlim_rtprio
=
4958 task_rlimit(p
, RLIMIT_RTPRIO
);
4960 /* can't set/change the rt policy */
4961 if (policy
!= p
->policy
&& !rlim_rtprio
)
4964 /* can't increase priority */
4965 if (param
->sched_priority
> p
->rt_priority
&&
4966 param
->sched_priority
> rlim_rtprio
)
4971 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4972 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4974 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
4975 if (!can_nice(p
, TASK_NICE(p
)))
4979 /* can't change other user's priorities */
4980 if (!check_same_owner(p
))
4983 /* Normal users shall not reset the sched_reset_on_fork flag */
4984 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4989 retval
= security_task_setscheduler(p
);
4995 * make sure no PI-waiters arrive (or leave) while we are
4996 * changing the priority of the task:
4998 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
5000 * To be able to change p->policy safely, the apropriate
5001 * runqueue lock must be held.
5003 rq
= __task_rq_lock(p
);
5006 * Changing the policy of the stop threads its a very bad idea
5008 if (p
== rq
->stop
) {
5009 __task_rq_unlock(rq
);
5010 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5014 #ifdef CONFIG_RT_GROUP_SCHED
5017 * Do not allow realtime tasks into groups that have no runtime
5020 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5021 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5022 !task_group_is_autogroup(task_group(p
))) {
5023 __task_rq_unlock(rq
);
5024 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5030 /* recheck policy now with rq lock held */
5031 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5032 policy
= oldpolicy
= -1;
5033 __task_rq_unlock(rq
);
5034 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5037 on_rq
= p
->se
.on_rq
;
5038 running
= task_current(rq
, p
);
5040 deactivate_task(rq
, p
, 0);
5042 p
->sched_class
->put_prev_task(rq
, p
);
5044 p
->sched_reset_on_fork
= reset_on_fork
;
5047 prev_class
= p
->sched_class
;
5048 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5051 p
->sched_class
->set_curr_task(rq
);
5053 activate_task(rq
, p
, 0);
5055 check_class_changed(rq
, p
, prev_class
, oldprio
);
5056 __task_rq_unlock(rq
);
5057 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5059 rt_mutex_adjust_pi(p
);
5065 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5066 * @p: the task in question.
5067 * @policy: new policy.
5068 * @param: structure containing the new RT priority.
5070 * NOTE that the task may be already dead.
5072 int sched_setscheduler(struct task_struct
*p
, int policy
,
5073 const struct sched_param
*param
)
5075 return __sched_setscheduler(p
, policy
, param
, true);
5077 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5080 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5081 * @p: the task in question.
5082 * @policy: new policy.
5083 * @param: structure containing the new RT priority.
5085 * Just like sched_setscheduler, only don't bother checking if the
5086 * current context has permission. For example, this is needed in
5087 * stop_machine(): we create temporary high priority worker threads,
5088 * but our caller might not have that capability.
5090 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5091 const struct sched_param
*param
)
5093 return __sched_setscheduler(p
, policy
, param
, false);
5097 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5099 struct sched_param lparam
;
5100 struct task_struct
*p
;
5103 if (!param
|| pid
< 0)
5105 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5110 p
= find_process_by_pid(pid
);
5112 retval
= sched_setscheduler(p
, policy
, &lparam
);
5119 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5120 * @pid: the pid in question.
5121 * @policy: new policy.
5122 * @param: structure containing the new RT priority.
5124 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5125 struct sched_param __user
*, param
)
5127 /* negative values for policy are not valid */
5131 return do_sched_setscheduler(pid
, policy
, param
);
5135 * sys_sched_setparam - set/change the RT priority of a thread
5136 * @pid: the pid in question.
5137 * @param: structure containing the new RT priority.
5139 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5141 return do_sched_setscheduler(pid
, -1, param
);
5145 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5146 * @pid: the pid in question.
5148 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5150 struct task_struct
*p
;
5158 p
= find_process_by_pid(pid
);
5160 retval
= security_task_getscheduler(p
);
5163 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5170 * sys_sched_getparam - get the RT priority of a thread
5171 * @pid: the pid in question.
5172 * @param: structure containing the RT priority.
5174 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5176 struct sched_param lp
;
5177 struct task_struct
*p
;
5180 if (!param
|| pid
< 0)
5184 p
= find_process_by_pid(pid
);
5189 retval
= security_task_getscheduler(p
);
5193 lp
.sched_priority
= p
->rt_priority
;
5197 * This one might sleep, we cannot do it with a spinlock held ...
5199 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5208 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5210 cpumask_var_t cpus_allowed
, new_mask
;
5211 struct task_struct
*p
;
5217 p
= find_process_by_pid(pid
);
5224 /* Prevent p going away */
5228 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5232 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5234 goto out_free_cpus_allowed
;
5237 if (!check_same_owner(p
) && !task_ns_capable(p
, CAP_SYS_NICE
))
5240 retval
= security_task_setscheduler(p
);
5244 cpuset_cpus_allowed(p
, cpus_allowed
);
5245 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5247 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5250 cpuset_cpus_allowed(p
, cpus_allowed
);
5251 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5253 * We must have raced with a concurrent cpuset
5254 * update. Just reset the cpus_allowed to the
5255 * cpuset's cpus_allowed
5257 cpumask_copy(new_mask
, cpus_allowed
);
5262 free_cpumask_var(new_mask
);
5263 out_free_cpus_allowed
:
5264 free_cpumask_var(cpus_allowed
);
5271 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5272 struct cpumask
*new_mask
)
5274 if (len
< cpumask_size())
5275 cpumask_clear(new_mask
);
5276 else if (len
> cpumask_size())
5277 len
= cpumask_size();
5279 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5283 * sys_sched_setaffinity - set the cpu affinity of a process
5284 * @pid: pid of the process
5285 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5286 * @user_mask_ptr: user-space pointer to the new cpu mask
5288 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5289 unsigned long __user
*, user_mask_ptr
)
5291 cpumask_var_t new_mask
;
5294 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5297 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5299 retval
= sched_setaffinity(pid
, new_mask
);
5300 free_cpumask_var(new_mask
);
5304 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5306 struct task_struct
*p
;
5307 unsigned long flags
;
5315 p
= find_process_by_pid(pid
);
5319 retval
= security_task_getscheduler(p
);
5323 rq
= task_rq_lock(p
, &flags
);
5324 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5325 task_rq_unlock(rq
, &flags
);
5335 * sys_sched_getaffinity - get the cpu affinity of a process
5336 * @pid: pid of the process
5337 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5338 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5340 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5341 unsigned long __user
*, user_mask_ptr
)
5346 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5348 if (len
& (sizeof(unsigned long)-1))
5351 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5354 ret
= sched_getaffinity(pid
, mask
);
5356 size_t retlen
= min_t(size_t, len
, cpumask_size());
5358 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5363 free_cpumask_var(mask
);
5369 * sys_sched_yield - yield the current processor to other threads.
5371 * This function yields the current CPU to other tasks. If there are no
5372 * other threads running on this CPU then this function will return.
5374 SYSCALL_DEFINE0(sched_yield
)
5376 struct rq
*rq
= this_rq_lock();
5378 schedstat_inc(rq
, yld_count
);
5379 current
->sched_class
->yield_task(rq
);
5382 * Since we are going to call schedule() anyway, there's
5383 * no need to preempt or enable interrupts:
5385 __release(rq
->lock
);
5386 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5387 do_raw_spin_unlock(&rq
->lock
);
5388 preempt_enable_no_resched();
5395 static inline int should_resched(void)
5397 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5400 static void __cond_resched(void)
5402 add_preempt_count(PREEMPT_ACTIVE
);
5404 sub_preempt_count(PREEMPT_ACTIVE
);
5407 int __sched
_cond_resched(void)
5409 if (should_resched()) {
5415 EXPORT_SYMBOL(_cond_resched
);
5418 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5419 * call schedule, and on return reacquire the lock.
5421 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5422 * operations here to prevent schedule() from being called twice (once via
5423 * spin_unlock(), once by hand).
5425 int __cond_resched_lock(spinlock_t
*lock
)
5427 int resched
= should_resched();
5430 lockdep_assert_held(lock
);
5432 if (spin_needbreak(lock
) || resched
) {
5443 EXPORT_SYMBOL(__cond_resched_lock
);
5445 int __sched
__cond_resched_softirq(void)
5447 BUG_ON(!in_softirq());
5449 if (should_resched()) {
5457 EXPORT_SYMBOL(__cond_resched_softirq
);
5460 * yield - yield the current processor to other threads.
5462 * This is a shortcut for kernel-space yielding - it marks the
5463 * thread runnable and calls sys_sched_yield().
5465 void __sched
yield(void)
5467 set_current_state(TASK_RUNNING
);
5470 EXPORT_SYMBOL(yield
);
5473 * yield_to - yield the current processor to another thread in
5474 * your thread group, or accelerate that thread toward the
5475 * processor it's on.
5477 * @preempt: whether task preemption is allowed or not
5479 * It's the caller's job to ensure that the target task struct
5480 * can't go away on us before we can do any checks.
5482 * Returns true if we indeed boosted the target task.
5484 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
5486 struct task_struct
*curr
= current
;
5487 struct rq
*rq
, *p_rq
;
5488 unsigned long flags
;
5491 local_irq_save(flags
);
5496 double_rq_lock(rq
, p_rq
);
5497 while (task_rq(p
) != p_rq
) {
5498 double_rq_unlock(rq
, p_rq
);
5502 if (!curr
->sched_class
->yield_to_task
)
5505 if (curr
->sched_class
!= p
->sched_class
)
5508 if (task_running(p_rq
, p
) || p
->state
)
5511 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5513 schedstat_inc(rq
, yld_count
);
5515 * Make p's CPU reschedule; pick_next_entity takes care of
5518 if (preempt
&& rq
!= p_rq
)
5519 resched_task(p_rq
->curr
);
5523 double_rq_unlock(rq
, p_rq
);
5524 local_irq_restore(flags
);
5531 EXPORT_SYMBOL_GPL(yield_to
);
5534 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5535 * that process accounting knows that this is a task in IO wait state.
5537 void __sched
io_schedule(void)
5539 struct rq
*rq
= raw_rq();
5541 delayacct_blkio_start();
5542 atomic_inc(&rq
->nr_iowait
);
5543 blk_flush_plug(current
);
5544 current
->in_iowait
= 1;
5546 current
->in_iowait
= 0;
5547 atomic_dec(&rq
->nr_iowait
);
5548 delayacct_blkio_end();
5550 EXPORT_SYMBOL(io_schedule
);
5552 long __sched
io_schedule_timeout(long timeout
)
5554 struct rq
*rq
= raw_rq();
5557 delayacct_blkio_start();
5558 atomic_inc(&rq
->nr_iowait
);
5559 blk_flush_plug(current
);
5560 current
->in_iowait
= 1;
5561 ret
= schedule_timeout(timeout
);
5562 current
->in_iowait
= 0;
5563 atomic_dec(&rq
->nr_iowait
);
5564 delayacct_blkio_end();
5569 * sys_sched_get_priority_max - return maximum RT priority.
5570 * @policy: scheduling class.
5572 * this syscall returns the maximum rt_priority that can be used
5573 * by a given scheduling class.
5575 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5582 ret
= MAX_USER_RT_PRIO
-1;
5594 * sys_sched_get_priority_min - return minimum RT priority.
5595 * @policy: scheduling class.
5597 * this syscall returns the minimum rt_priority that can be used
5598 * by a given scheduling class.
5600 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5618 * sys_sched_rr_get_interval - return the default timeslice of a process.
5619 * @pid: pid of the process.
5620 * @interval: userspace pointer to the timeslice value.
5622 * this syscall writes the default timeslice value of a given process
5623 * into the user-space timespec buffer. A value of '0' means infinity.
5625 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5626 struct timespec __user
*, interval
)
5628 struct task_struct
*p
;
5629 unsigned int time_slice
;
5630 unsigned long flags
;
5640 p
= find_process_by_pid(pid
);
5644 retval
= security_task_getscheduler(p
);
5648 rq
= task_rq_lock(p
, &flags
);
5649 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5650 task_rq_unlock(rq
, &flags
);
5653 jiffies_to_timespec(time_slice
, &t
);
5654 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5662 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5664 void sched_show_task(struct task_struct
*p
)
5666 unsigned long free
= 0;
5669 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5670 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
5671 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5672 #if BITS_PER_LONG == 32
5673 if (state
== TASK_RUNNING
)
5674 printk(KERN_CONT
" running ");
5676 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5678 if (state
== TASK_RUNNING
)
5679 printk(KERN_CONT
" running task ");
5681 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5683 #ifdef CONFIG_DEBUG_STACK_USAGE
5684 free
= stack_not_used(p
);
5686 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5687 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5688 (unsigned long)task_thread_info(p
)->flags
);
5690 show_stack(p
, NULL
);
5693 void show_state_filter(unsigned long state_filter
)
5695 struct task_struct
*g
, *p
;
5697 #if BITS_PER_LONG == 32
5699 " task PC stack pid father\n");
5702 " task PC stack pid father\n");
5704 read_lock(&tasklist_lock
);
5705 do_each_thread(g
, p
) {
5707 * reset the NMI-timeout, listing all files on a slow
5708 * console might take alot of time:
5710 touch_nmi_watchdog();
5711 if (!state_filter
|| (p
->state
& state_filter
))
5713 } while_each_thread(g
, p
);
5715 touch_all_softlockup_watchdogs();
5717 #ifdef CONFIG_SCHED_DEBUG
5718 sysrq_sched_debug_show();
5720 read_unlock(&tasklist_lock
);
5722 * Only show locks if all tasks are dumped:
5725 debug_show_all_locks();
5728 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5730 idle
->sched_class
= &idle_sched_class
;
5734 * init_idle - set up an idle thread for a given CPU
5735 * @idle: task in question
5736 * @cpu: cpu the idle task belongs to
5738 * NOTE: this function does not set the idle thread's NEED_RESCHED
5739 * flag, to make booting more robust.
5741 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5743 struct rq
*rq
= cpu_rq(cpu
);
5744 unsigned long flags
;
5746 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5749 idle
->state
= TASK_RUNNING
;
5750 idle
->se
.exec_start
= sched_clock();
5752 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5754 * We're having a chicken and egg problem, even though we are
5755 * holding rq->lock, the cpu isn't yet set to this cpu so the
5756 * lockdep check in task_group() will fail.
5758 * Similar case to sched_fork(). / Alternatively we could
5759 * use task_rq_lock() here and obtain the other rq->lock.
5764 __set_task_cpu(idle
, cpu
);
5767 rq
->curr
= rq
->idle
= idle
;
5768 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5771 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5773 /* Set the preempt count _outside_ the spinlocks! */
5774 #if defined(CONFIG_PREEMPT)
5775 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5777 task_thread_info(idle
)->preempt_count
= 0;
5780 * The idle tasks have their own, simple scheduling class:
5782 idle
->sched_class
= &idle_sched_class
;
5783 ftrace_graph_init_idle_task(idle
, cpu
);
5787 * In a system that switches off the HZ timer nohz_cpu_mask
5788 * indicates which cpus entered this state. This is used
5789 * in the rcu update to wait only for active cpus. For system
5790 * which do not switch off the HZ timer nohz_cpu_mask should
5791 * always be CPU_BITS_NONE.
5793 cpumask_var_t nohz_cpu_mask
;
5796 * Increase the granularity value when there are more CPUs,
5797 * because with more CPUs the 'effective latency' as visible
5798 * to users decreases. But the relationship is not linear,
5799 * so pick a second-best guess by going with the log2 of the
5802 * This idea comes from the SD scheduler of Con Kolivas:
5804 static int get_update_sysctl_factor(void)
5806 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5807 unsigned int factor
;
5809 switch (sysctl_sched_tunable_scaling
) {
5810 case SCHED_TUNABLESCALING_NONE
:
5813 case SCHED_TUNABLESCALING_LINEAR
:
5816 case SCHED_TUNABLESCALING_LOG
:
5818 factor
= 1 + ilog2(cpus
);
5825 static void update_sysctl(void)
5827 unsigned int factor
= get_update_sysctl_factor();
5829 #define SET_SYSCTL(name) \
5830 (sysctl_##name = (factor) * normalized_sysctl_##name)
5831 SET_SYSCTL(sched_min_granularity
);
5832 SET_SYSCTL(sched_latency
);
5833 SET_SYSCTL(sched_wakeup_granularity
);
5837 static inline void sched_init_granularity(void)
5844 * This is how migration works:
5846 * 1) we invoke migration_cpu_stop() on the target CPU using
5848 * 2) stopper starts to run (implicitly forcing the migrated thread
5850 * 3) it checks whether the migrated task is still in the wrong runqueue.
5851 * 4) if it's in the wrong runqueue then the migration thread removes
5852 * it and puts it into the right queue.
5853 * 5) stopper completes and stop_one_cpu() returns and the migration
5858 * Change a given task's CPU affinity. Migrate the thread to a
5859 * proper CPU and schedule it away if the CPU it's executing on
5860 * is removed from the allowed bitmask.
5862 * NOTE: the caller must have a valid reference to the task, the
5863 * task must not exit() & deallocate itself prematurely. The
5864 * call is not atomic; no spinlocks may be held.
5866 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5868 unsigned long flags
;
5870 unsigned int dest_cpu
;
5874 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5875 * drop the rq->lock and still rely on ->cpus_allowed.
5878 while (task_is_waking(p
))
5880 rq
= task_rq_lock(p
, &flags
);
5881 if (task_is_waking(p
)) {
5882 task_rq_unlock(rq
, &flags
);
5886 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5891 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5892 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5897 if (p
->sched_class
->set_cpus_allowed
)
5898 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5900 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5901 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5904 /* Can the task run on the task's current CPU? If so, we're done */
5905 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5908 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5909 if (migrate_task(p
, rq
)) {
5910 struct migration_arg arg
= { p
, dest_cpu
};
5911 /* Need help from migration thread: drop lock and wait. */
5912 task_rq_unlock(rq
, &flags
);
5913 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5914 tlb_migrate_finish(p
->mm
);
5918 task_rq_unlock(rq
, &flags
);
5922 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5925 * Move (not current) task off this cpu, onto dest cpu. We're doing
5926 * this because either it can't run here any more (set_cpus_allowed()
5927 * away from this CPU, or CPU going down), or because we're
5928 * attempting to rebalance this task on exec (sched_exec).
5930 * So we race with normal scheduler movements, but that's OK, as long
5931 * as the task is no longer on this CPU.
5933 * Returns non-zero if task was successfully migrated.
5935 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5937 struct rq
*rq_dest
, *rq_src
;
5940 if (unlikely(!cpu_active(dest_cpu
)))
5943 rq_src
= cpu_rq(src_cpu
);
5944 rq_dest
= cpu_rq(dest_cpu
);
5946 double_rq_lock(rq_src
, rq_dest
);
5947 /* Already moved. */
5948 if (task_cpu(p
) != src_cpu
)
5950 /* Affinity changed (again). */
5951 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5955 * If we're not on a rq, the next wake-up will ensure we're
5959 deactivate_task(rq_src
, p
, 0);
5960 set_task_cpu(p
, dest_cpu
);
5961 activate_task(rq_dest
, p
, 0);
5962 check_preempt_curr(rq_dest
, p
, 0);
5967 double_rq_unlock(rq_src
, rq_dest
);
5972 * migration_cpu_stop - this will be executed by a highprio stopper thread
5973 * and performs thread migration by bumping thread off CPU then
5974 * 'pushing' onto another runqueue.
5976 static int migration_cpu_stop(void *data
)
5978 struct migration_arg
*arg
= data
;
5981 * The original target cpu might have gone down and we might
5982 * be on another cpu but it doesn't matter.
5984 local_irq_disable();
5985 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5990 #ifdef CONFIG_HOTPLUG_CPU
5993 * Ensures that the idle task is using init_mm right before its cpu goes
5996 void idle_task_exit(void)
5998 struct mm_struct
*mm
= current
->active_mm
;
6000 BUG_ON(cpu_online(smp_processor_id()));
6003 switch_mm(mm
, &init_mm
, current
);
6008 * While a dead CPU has no uninterruptible tasks queued at this point,
6009 * it might still have a nonzero ->nr_uninterruptible counter, because
6010 * for performance reasons the counter is not stricly tracking tasks to
6011 * their home CPUs. So we just add the counter to another CPU's counter,
6012 * to keep the global sum constant after CPU-down:
6014 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6016 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
6018 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6019 rq_src
->nr_uninterruptible
= 0;
6023 * remove the tasks which were accounted by rq from calc_load_tasks.
6025 static void calc_global_load_remove(struct rq
*rq
)
6027 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6028 rq
->calc_load_active
= 0;
6032 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6033 * try_to_wake_up()->select_task_rq().
6035 * Called with rq->lock held even though we'er in stop_machine() and
6036 * there's no concurrency possible, we hold the required locks anyway
6037 * because of lock validation efforts.
6039 static void migrate_tasks(unsigned int dead_cpu
)
6041 struct rq
*rq
= cpu_rq(dead_cpu
);
6042 struct task_struct
*next
, *stop
= rq
->stop
;
6046 * Fudge the rq selection such that the below task selection loop
6047 * doesn't get stuck on the currently eligible stop task.
6049 * We're currently inside stop_machine() and the rq is either stuck
6050 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6051 * either way we should never end up calling schedule() until we're
6058 * There's this thread running, bail when that's the only
6061 if (rq
->nr_running
== 1)
6064 next
= pick_next_task(rq
);
6066 next
->sched_class
->put_prev_task(rq
, next
);
6068 /* Find suitable destination for @next, with force if needed. */
6069 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
6070 raw_spin_unlock(&rq
->lock
);
6072 __migrate_task(next
, dead_cpu
, dest_cpu
);
6074 raw_spin_lock(&rq
->lock
);
6080 #endif /* CONFIG_HOTPLUG_CPU */
6082 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6084 static struct ctl_table sd_ctl_dir
[] = {
6086 .procname
= "sched_domain",
6092 static struct ctl_table sd_ctl_root
[] = {
6094 .procname
= "kernel",
6096 .child
= sd_ctl_dir
,
6101 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6103 struct ctl_table
*entry
=
6104 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6109 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6111 struct ctl_table
*entry
;
6114 * In the intermediate directories, both the child directory and
6115 * procname are dynamically allocated and could fail but the mode
6116 * will always be set. In the lowest directory the names are
6117 * static strings and all have proc handlers.
6119 for (entry
= *tablep
; entry
->mode
; entry
++) {
6121 sd_free_ctl_entry(&entry
->child
);
6122 if (entry
->proc_handler
== NULL
)
6123 kfree(entry
->procname
);
6131 set_table_entry(struct ctl_table
*entry
,
6132 const char *procname
, void *data
, int maxlen
,
6133 mode_t mode
, proc_handler
*proc_handler
)
6135 entry
->procname
= procname
;
6137 entry
->maxlen
= maxlen
;
6139 entry
->proc_handler
= proc_handler
;
6142 static struct ctl_table
*
6143 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6145 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6150 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6151 sizeof(long), 0644, proc_doulongvec_minmax
);
6152 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6153 sizeof(long), 0644, proc_doulongvec_minmax
);
6154 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6155 sizeof(int), 0644, proc_dointvec_minmax
);
6156 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6157 sizeof(int), 0644, proc_dointvec_minmax
);
6158 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6159 sizeof(int), 0644, proc_dointvec_minmax
);
6160 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6161 sizeof(int), 0644, proc_dointvec_minmax
);
6162 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6163 sizeof(int), 0644, proc_dointvec_minmax
);
6164 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6165 sizeof(int), 0644, proc_dointvec_minmax
);
6166 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6167 sizeof(int), 0644, proc_dointvec_minmax
);
6168 set_table_entry(&table
[9], "cache_nice_tries",
6169 &sd
->cache_nice_tries
,
6170 sizeof(int), 0644, proc_dointvec_minmax
);
6171 set_table_entry(&table
[10], "flags", &sd
->flags
,
6172 sizeof(int), 0644, proc_dointvec_minmax
);
6173 set_table_entry(&table
[11], "name", sd
->name
,
6174 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6175 /* &table[12] is terminator */
6180 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6182 struct ctl_table
*entry
, *table
;
6183 struct sched_domain
*sd
;
6184 int domain_num
= 0, i
;
6187 for_each_domain(cpu
, sd
)
6189 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6194 for_each_domain(cpu
, sd
) {
6195 snprintf(buf
, 32, "domain%d", i
);
6196 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6198 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6205 static struct ctl_table_header
*sd_sysctl_header
;
6206 static void register_sched_domain_sysctl(void)
6208 int i
, cpu_num
= num_possible_cpus();
6209 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6212 WARN_ON(sd_ctl_dir
[0].child
);
6213 sd_ctl_dir
[0].child
= entry
;
6218 for_each_possible_cpu(i
) {
6219 snprintf(buf
, 32, "cpu%d", i
);
6220 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6222 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6226 WARN_ON(sd_sysctl_header
);
6227 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6230 /* may be called multiple times per register */
6231 static void unregister_sched_domain_sysctl(void)
6233 if (sd_sysctl_header
)
6234 unregister_sysctl_table(sd_sysctl_header
);
6235 sd_sysctl_header
= NULL
;
6236 if (sd_ctl_dir
[0].child
)
6237 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6240 static void register_sched_domain_sysctl(void)
6243 static void unregister_sched_domain_sysctl(void)
6248 static void set_rq_online(struct rq
*rq
)
6251 const struct sched_class
*class;
6253 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6256 for_each_class(class) {
6257 if (class->rq_online
)
6258 class->rq_online(rq
);
6263 static void set_rq_offline(struct rq
*rq
)
6266 const struct sched_class
*class;
6268 for_each_class(class) {
6269 if (class->rq_offline
)
6270 class->rq_offline(rq
);
6273 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6279 * migration_call - callback that gets triggered when a CPU is added.
6280 * Here we can start up the necessary migration thread for the new CPU.
6282 static int __cpuinit
6283 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6285 int cpu
= (long)hcpu
;
6286 unsigned long flags
;
6287 struct rq
*rq
= cpu_rq(cpu
);
6289 switch (action
& ~CPU_TASKS_FROZEN
) {
6291 case CPU_UP_PREPARE
:
6292 rq
->calc_load_update
= calc_load_update
;
6296 /* Update our root-domain */
6297 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6299 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6303 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6306 #ifdef CONFIG_HOTPLUG_CPU
6308 /* Update our root-domain */
6309 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6311 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6315 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6316 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6318 migrate_nr_uninterruptible(rq
);
6319 calc_global_load_remove(rq
);
6327 * Register at high priority so that task migration (migrate_all_tasks)
6328 * happens before everything else. This has to be lower priority than
6329 * the notifier in the perf_event subsystem, though.
6331 static struct notifier_block __cpuinitdata migration_notifier
= {
6332 .notifier_call
= migration_call
,
6333 .priority
= CPU_PRI_MIGRATION
,
6336 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6337 unsigned long action
, void *hcpu
)
6339 switch (action
& ~CPU_TASKS_FROZEN
) {
6341 case CPU_DOWN_FAILED
:
6342 set_cpu_active((long)hcpu
, true);
6349 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6350 unsigned long action
, void *hcpu
)
6352 switch (action
& ~CPU_TASKS_FROZEN
) {
6353 case CPU_DOWN_PREPARE
:
6354 set_cpu_active((long)hcpu
, false);
6361 static int __init
migration_init(void)
6363 void *cpu
= (void *)(long)smp_processor_id();
6366 /* Initialize migration for the boot CPU */
6367 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6368 BUG_ON(err
== NOTIFY_BAD
);
6369 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6370 register_cpu_notifier(&migration_notifier
);
6372 /* Register cpu active notifiers */
6373 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6374 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6378 early_initcall(migration_init
);
6383 #ifdef CONFIG_SCHED_DEBUG
6385 static __read_mostly
int sched_domain_debug_enabled
;
6387 static int __init
sched_domain_debug_setup(char *str
)
6389 sched_domain_debug_enabled
= 1;
6393 early_param("sched_debug", sched_domain_debug_setup
);
6395 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6396 struct cpumask
*groupmask
)
6398 struct sched_group
*group
= sd
->groups
;
6401 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6402 cpumask_clear(groupmask
);
6404 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6406 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6407 printk("does not load-balance\n");
6409 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6414 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6416 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6417 printk(KERN_ERR
"ERROR: domain->span does not contain "
6420 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6421 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6425 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6429 printk(KERN_ERR
"ERROR: group is NULL\n");
6433 if (!group
->cpu_power
) {
6434 printk(KERN_CONT
"\n");
6435 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6440 if (!cpumask_weight(sched_group_cpus(group
))) {
6441 printk(KERN_CONT
"\n");
6442 printk(KERN_ERR
"ERROR: empty group\n");
6446 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6447 printk(KERN_CONT
"\n");
6448 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6452 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6454 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6456 printk(KERN_CONT
" %s", str
);
6457 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
6458 printk(KERN_CONT
" (cpu_power = %d)",
6462 group
= group
->next
;
6463 } while (group
!= sd
->groups
);
6464 printk(KERN_CONT
"\n");
6466 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6467 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6470 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6471 printk(KERN_ERR
"ERROR: parent span is not a superset "
6472 "of domain->span\n");
6476 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6478 cpumask_var_t groupmask
;
6481 if (!sched_domain_debug_enabled
)
6485 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6489 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6491 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6492 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6497 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6504 free_cpumask_var(groupmask
);
6506 #else /* !CONFIG_SCHED_DEBUG */
6507 # define sched_domain_debug(sd, cpu) do { } while (0)
6508 #endif /* CONFIG_SCHED_DEBUG */
6510 static int sd_degenerate(struct sched_domain
*sd
)
6512 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6515 /* Following flags need at least 2 groups */
6516 if (sd
->flags
& (SD_LOAD_BALANCE
|
6517 SD_BALANCE_NEWIDLE
|
6521 SD_SHARE_PKG_RESOURCES
)) {
6522 if (sd
->groups
!= sd
->groups
->next
)
6526 /* Following flags don't use groups */
6527 if (sd
->flags
& (SD_WAKE_AFFINE
))
6534 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6536 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6538 if (sd_degenerate(parent
))
6541 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6544 /* Flags needing groups don't count if only 1 group in parent */
6545 if (parent
->groups
== parent
->groups
->next
) {
6546 pflags
&= ~(SD_LOAD_BALANCE
|
6547 SD_BALANCE_NEWIDLE
|
6551 SD_SHARE_PKG_RESOURCES
);
6552 if (nr_node_ids
== 1)
6553 pflags
&= ~SD_SERIALIZE
;
6555 if (~cflags
& pflags
)
6561 static void free_rootdomain(struct root_domain
*rd
)
6563 synchronize_sched();
6565 cpupri_cleanup(&rd
->cpupri
);
6567 free_cpumask_var(rd
->rto_mask
);
6568 free_cpumask_var(rd
->online
);
6569 free_cpumask_var(rd
->span
);
6573 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6575 struct root_domain
*old_rd
= NULL
;
6576 unsigned long flags
;
6578 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6583 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6586 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6589 * If we dont want to free the old_rt yet then
6590 * set old_rd to NULL to skip the freeing later
6593 if (!atomic_dec_and_test(&old_rd
->refcount
))
6597 atomic_inc(&rd
->refcount
);
6600 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6601 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6604 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6607 free_rootdomain(old_rd
);
6610 static int init_rootdomain(struct root_domain
*rd
)
6612 memset(rd
, 0, sizeof(*rd
));
6614 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6616 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6618 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6621 if (cpupri_init(&rd
->cpupri
) != 0)
6626 free_cpumask_var(rd
->rto_mask
);
6628 free_cpumask_var(rd
->online
);
6630 free_cpumask_var(rd
->span
);
6635 static void init_defrootdomain(void)
6637 init_rootdomain(&def_root_domain
);
6639 atomic_set(&def_root_domain
.refcount
, 1);
6642 static struct root_domain
*alloc_rootdomain(void)
6644 struct root_domain
*rd
;
6646 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6650 if (init_rootdomain(rd
) != 0) {
6659 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6660 * hold the hotplug lock.
6663 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6665 struct rq
*rq
= cpu_rq(cpu
);
6666 struct sched_domain
*tmp
;
6668 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
6669 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
6671 /* Remove the sched domains which do not contribute to scheduling. */
6672 for (tmp
= sd
; tmp
; ) {
6673 struct sched_domain
*parent
= tmp
->parent
;
6677 if (sd_parent_degenerate(tmp
, parent
)) {
6678 tmp
->parent
= parent
->parent
;
6680 parent
->parent
->child
= tmp
;
6685 if (sd
&& sd_degenerate(sd
)) {
6691 sched_domain_debug(sd
, cpu
);
6693 rq_attach_root(rq
, rd
);
6694 rcu_assign_pointer(rq
->sd
, sd
);
6697 /* cpus with isolated domains */
6698 static cpumask_var_t cpu_isolated_map
;
6700 /* Setup the mask of cpus configured for isolated domains */
6701 static int __init
isolated_cpu_setup(char *str
)
6703 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6704 cpulist_parse(str
, cpu_isolated_map
);
6708 __setup("isolcpus=", isolated_cpu_setup
);
6711 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6712 * to a function which identifies what group(along with sched group) a CPU
6713 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6714 * (due to the fact that we keep track of groups covered with a struct cpumask).
6716 * init_sched_build_groups will build a circular linked list of the groups
6717 * covered by the given span, and will set each group's ->cpumask correctly,
6718 * and ->cpu_power to 0.
6721 init_sched_build_groups(const struct cpumask
*span
,
6722 const struct cpumask
*cpu_map
,
6723 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6724 struct sched_group
**sg
,
6725 struct cpumask
*tmpmask
),
6726 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6728 struct sched_group
*first
= NULL
, *last
= NULL
;
6731 cpumask_clear(covered
);
6733 for_each_cpu(i
, span
) {
6734 struct sched_group
*sg
;
6735 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6738 if (cpumask_test_cpu(i
, covered
))
6741 cpumask_clear(sched_group_cpus(sg
));
6744 for_each_cpu(j
, span
) {
6745 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6748 cpumask_set_cpu(j
, covered
);
6749 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6760 #define SD_NODES_PER_DOMAIN 16
6765 * find_next_best_node - find the next node to include in a sched_domain
6766 * @node: node whose sched_domain we're building
6767 * @used_nodes: nodes already in the sched_domain
6769 * Find the next node to include in a given scheduling domain. Simply
6770 * finds the closest node not already in the @used_nodes map.
6772 * Should use nodemask_t.
6774 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6776 int i
, n
, val
, min_val
, best_node
= 0;
6780 for (i
= 0; i
< nr_node_ids
; i
++) {
6781 /* Start at @node */
6782 n
= (node
+ i
) % nr_node_ids
;
6784 if (!nr_cpus_node(n
))
6787 /* Skip already used nodes */
6788 if (node_isset(n
, *used_nodes
))
6791 /* Simple min distance search */
6792 val
= node_distance(node
, n
);
6794 if (val
< min_val
) {
6800 node_set(best_node
, *used_nodes
);
6805 * sched_domain_node_span - get a cpumask for a node's sched_domain
6806 * @node: node whose cpumask we're constructing
6807 * @span: resulting cpumask
6809 * Given a node, construct a good cpumask for its sched_domain to span. It
6810 * should be one that prevents unnecessary balancing, but also spreads tasks
6813 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6815 nodemask_t used_nodes
;
6818 cpumask_clear(span
);
6819 nodes_clear(used_nodes
);
6821 cpumask_or(span
, span
, cpumask_of_node(node
));
6822 node_set(node
, used_nodes
);
6824 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6825 int next_node
= find_next_best_node(node
, &used_nodes
);
6827 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6830 #endif /* CONFIG_NUMA */
6832 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6835 * The cpus mask in sched_group and sched_domain hangs off the end.
6837 * ( See the the comments in include/linux/sched.h:struct sched_group
6838 * and struct sched_domain. )
6840 struct static_sched_group
{
6841 struct sched_group sg
;
6842 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6845 struct static_sched_domain
{
6846 struct sched_domain sd
;
6847 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6853 cpumask_var_t domainspan
;
6854 cpumask_var_t covered
;
6855 cpumask_var_t notcovered
;
6857 cpumask_var_t nodemask
;
6858 cpumask_var_t this_sibling_map
;
6859 cpumask_var_t this_core_map
;
6860 cpumask_var_t this_book_map
;
6861 cpumask_var_t send_covered
;
6862 cpumask_var_t tmpmask
;
6863 struct sched_group
**sched_group_nodes
;
6864 struct root_domain
*rd
;
6868 sa_sched_groups
= 0,
6874 sa_this_sibling_map
,
6876 sa_sched_group_nodes
,
6886 * SMT sched-domains:
6888 #ifdef CONFIG_SCHED_SMT
6889 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6890 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6893 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6894 struct sched_group
**sg
, struct cpumask
*unused
)
6897 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6900 #endif /* CONFIG_SCHED_SMT */
6903 * multi-core sched-domains:
6905 #ifdef CONFIG_SCHED_MC
6906 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6907 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6910 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6911 struct sched_group
**sg
, struct cpumask
*mask
)
6914 #ifdef CONFIG_SCHED_SMT
6915 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6916 group
= cpumask_first(mask
);
6921 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6924 #endif /* CONFIG_SCHED_MC */
6927 * book sched-domains:
6929 #ifdef CONFIG_SCHED_BOOK
6930 static DEFINE_PER_CPU(struct static_sched_domain
, book_domains
);
6931 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_book
);
6934 cpu_to_book_group(int cpu
, const struct cpumask
*cpu_map
,
6935 struct sched_group
**sg
, struct cpumask
*mask
)
6938 #ifdef CONFIG_SCHED_MC
6939 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6940 group
= cpumask_first(mask
);
6941 #elif defined(CONFIG_SCHED_SMT)
6942 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6943 group
= cpumask_first(mask
);
6946 *sg
= &per_cpu(sched_group_book
, group
).sg
;
6949 #endif /* CONFIG_SCHED_BOOK */
6951 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6952 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6955 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6956 struct sched_group
**sg
, struct cpumask
*mask
)
6959 #ifdef CONFIG_SCHED_BOOK
6960 cpumask_and(mask
, cpu_book_mask(cpu
), cpu_map
);
6961 group
= cpumask_first(mask
);
6962 #elif defined(CONFIG_SCHED_MC)
6963 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6964 group
= cpumask_first(mask
);
6965 #elif defined(CONFIG_SCHED_SMT)
6966 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6967 group
= cpumask_first(mask
);
6972 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6978 * The init_sched_build_groups can't handle what we want to do with node
6979 * groups, so roll our own. Now each node has its own list of groups which
6980 * gets dynamically allocated.
6982 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6983 static struct sched_group
***sched_group_nodes_bycpu
;
6985 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6986 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6988 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6989 struct sched_group
**sg
,
6990 struct cpumask
*nodemask
)
6994 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6995 group
= cpumask_first(nodemask
);
6998 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
7002 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7004 struct sched_group
*sg
= group_head
;
7010 for_each_cpu(j
, sched_group_cpus(sg
)) {
7011 struct sched_domain
*sd
;
7013 sd
= &per_cpu(phys_domains
, j
).sd
;
7014 if (j
!= group_first_cpu(sd
->groups
)) {
7016 * Only add "power" once for each
7022 sg
->cpu_power
+= sd
->groups
->cpu_power
;
7025 } while (sg
!= group_head
);
7028 static int build_numa_sched_groups(struct s_data
*d
,
7029 const struct cpumask
*cpu_map
, int num
)
7031 struct sched_domain
*sd
;
7032 struct sched_group
*sg
, *prev
;
7035 cpumask_clear(d
->covered
);
7036 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
7037 if (cpumask_empty(d
->nodemask
)) {
7038 d
->sched_group_nodes
[num
] = NULL
;
7042 sched_domain_node_span(num
, d
->domainspan
);
7043 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
7045 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7048 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
7052 d
->sched_group_nodes
[num
] = sg
;
7054 for_each_cpu(j
, d
->nodemask
) {
7055 sd
= &per_cpu(node_domains
, j
).sd
;
7060 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
7062 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
7065 for (j
= 0; j
< nr_node_ids
; j
++) {
7066 n
= (num
+ j
) % nr_node_ids
;
7067 cpumask_complement(d
->notcovered
, d
->covered
);
7068 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
7069 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
7070 if (cpumask_empty(d
->tmpmask
))
7072 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
7073 if (cpumask_empty(d
->tmpmask
))
7075 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7079 "Can not alloc domain group for node %d\n", j
);
7083 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
7084 sg
->next
= prev
->next
;
7085 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
7092 #endif /* CONFIG_NUMA */
7095 /* Free memory allocated for various sched_group structures */
7096 static void free_sched_groups(const struct cpumask
*cpu_map
,
7097 struct cpumask
*nodemask
)
7101 for_each_cpu(cpu
, cpu_map
) {
7102 struct sched_group
**sched_group_nodes
7103 = sched_group_nodes_bycpu
[cpu
];
7105 if (!sched_group_nodes
)
7108 for (i
= 0; i
< nr_node_ids
; i
++) {
7109 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7111 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7112 if (cpumask_empty(nodemask
))
7122 if (oldsg
!= sched_group_nodes
[i
])
7125 kfree(sched_group_nodes
);
7126 sched_group_nodes_bycpu
[cpu
] = NULL
;
7129 #else /* !CONFIG_NUMA */
7130 static void free_sched_groups(const struct cpumask
*cpu_map
,
7131 struct cpumask
*nodemask
)
7134 #endif /* CONFIG_NUMA */
7137 * Initialize sched groups cpu_power.
7139 * cpu_power indicates the capacity of sched group, which is used while
7140 * distributing the load between different sched groups in a sched domain.
7141 * Typically cpu_power for all the groups in a sched domain will be same unless
7142 * there are asymmetries in the topology. If there are asymmetries, group
7143 * having more cpu_power will pickup more load compared to the group having
7146 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7148 struct sched_domain
*child
;
7149 struct sched_group
*group
;
7153 WARN_ON(!sd
|| !sd
->groups
);
7155 if (cpu
!= group_first_cpu(sd
->groups
))
7158 sd
->groups
->group_weight
= cpumask_weight(sched_group_cpus(sd
->groups
));
7162 sd
->groups
->cpu_power
= 0;
7165 power
= SCHED_LOAD_SCALE
;
7166 weight
= cpumask_weight(sched_domain_span(sd
));
7168 * SMT siblings share the power of a single core.
7169 * Usually multiple threads get a better yield out of
7170 * that one core than a single thread would have,
7171 * reflect that in sd->smt_gain.
7173 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
7174 power
*= sd
->smt_gain
;
7176 power
>>= SCHED_LOAD_SHIFT
;
7178 sd
->groups
->cpu_power
+= power
;
7183 * Add cpu_power of each child group to this groups cpu_power.
7185 group
= child
->groups
;
7187 sd
->groups
->cpu_power
+= group
->cpu_power
;
7188 group
= group
->next
;
7189 } while (group
!= child
->groups
);
7193 * Initializers for schedule domains
7194 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7197 #ifdef CONFIG_SCHED_DEBUG
7198 # define SD_INIT_NAME(sd, type) sd->name = #type
7200 # define SD_INIT_NAME(sd, type) do { } while (0)
7203 #define SD_INIT(sd, type) sd_init_##type(sd)
7205 #define SD_INIT_FUNC(type) \
7206 static noinline void sd_init_##type(struct sched_domain *sd) \
7208 memset(sd, 0, sizeof(*sd)); \
7209 *sd = SD_##type##_INIT; \
7210 sd->level = SD_LV_##type; \
7211 SD_INIT_NAME(sd, type); \
7216 SD_INIT_FUNC(ALLNODES
)
7219 #ifdef CONFIG_SCHED_SMT
7220 SD_INIT_FUNC(SIBLING
)
7222 #ifdef CONFIG_SCHED_MC
7225 #ifdef CONFIG_SCHED_BOOK
7229 static int default_relax_domain_level
= -1;
7231 static int __init
setup_relax_domain_level(char *str
)
7235 val
= simple_strtoul(str
, NULL
, 0);
7236 if (val
< SD_LV_MAX
)
7237 default_relax_domain_level
= val
;
7241 __setup("relax_domain_level=", setup_relax_domain_level
);
7243 static void set_domain_attribute(struct sched_domain
*sd
,
7244 struct sched_domain_attr
*attr
)
7248 if (!attr
|| attr
->relax_domain_level
< 0) {
7249 if (default_relax_domain_level
< 0)
7252 request
= default_relax_domain_level
;
7254 request
= attr
->relax_domain_level
;
7255 if (request
< sd
->level
) {
7256 /* turn off idle balance on this domain */
7257 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7259 /* turn on idle balance on this domain */
7260 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7264 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7265 const struct cpumask
*cpu_map
)
7268 case sa_sched_groups
:
7269 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
7270 d
->sched_group_nodes
= NULL
;
7272 free_rootdomain(d
->rd
); /* fall through */
7274 free_cpumask_var(d
->tmpmask
); /* fall through */
7275 case sa_send_covered
:
7276 free_cpumask_var(d
->send_covered
); /* fall through */
7277 case sa_this_book_map
:
7278 free_cpumask_var(d
->this_book_map
); /* fall through */
7279 case sa_this_core_map
:
7280 free_cpumask_var(d
->this_core_map
); /* fall through */
7281 case sa_this_sibling_map
:
7282 free_cpumask_var(d
->this_sibling_map
); /* fall through */
7284 free_cpumask_var(d
->nodemask
); /* fall through */
7285 case sa_sched_group_nodes
:
7287 kfree(d
->sched_group_nodes
); /* fall through */
7289 free_cpumask_var(d
->notcovered
); /* fall through */
7291 free_cpumask_var(d
->covered
); /* fall through */
7293 free_cpumask_var(d
->domainspan
); /* fall through */
7300 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7301 const struct cpumask
*cpu_map
)
7304 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
7306 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
7307 return sa_domainspan
;
7308 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
7310 /* Allocate the per-node list of sched groups */
7311 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
7312 sizeof(struct sched_group
*), GFP_KERNEL
);
7313 if (!d
->sched_group_nodes
) {
7314 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7315 return sa_notcovered
;
7317 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
7319 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
7320 return sa_sched_group_nodes
;
7321 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
7323 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
7324 return sa_this_sibling_map
;
7325 if (!alloc_cpumask_var(&d
->this_book_map
, GFP_KERNEL
))
7326 return sa_this_core_map
;
7327 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
7328 return sa_this_book_map
;
7329 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
7330 return sa_send_covered
;
7331 d
->rd
= alloc_rootdomain();
7333 printk(KERN_WARNING
"Cannot alloc root domain\n");
7336 return sa_rootdomain
;
7339 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
7340 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
7342 struct sched_domain
*sd
= NULL
;
7344 struct sched_domain
*parent
;
7347 if (cpumask_weight(cpu_map
) >
7348 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
7349 sd
= &per_cpu(allnodes_domains
, i
).sd
;
7350 SD_INIT(sd
, ALLNODES
);
7351 set_domain_attribute(sd
, attr
);
7352 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7353 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7358 sd
= &per_cpu(node_domains
, i
).sd
;
7360 set_domain_attribute(sd
, attr
);
7361 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7362 sd
->parent
= parent
;
7365 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
7370 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
7371 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7372 struct sched_domain
*parent
, int i
)
7374 struct sched_domain
*sd
;
7375 sd
= &per_cpu(phys_domains
, i
).sd
;
7377 set_domain_attribute(sd
, attr
);
7378 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
7379 sd
->parent
= parent
;
7382 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7386 static struct sched_domain
*__build_book_sched_domain(struct s_data
*d
,
7387 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7388 struct sched_domain
*parent
, int i
)
7390 struct sched_domain
*sd
= parent
;
7391 #ifdef CONFIG_SCHED_BOOK
7392 sd
= &per_cpu(book_domains
, i
).sd
;
7394 set_domain_attribute(sd
, attr
);
7395 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_book_mask(i
));
7396 sd
->parent
= parent
;
7398 cpu_to_book_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7403 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
7404 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7405 struct sched_domain
*parent
, int i
)
7407 struct sched_domain
*sd
= parent
;
7408 #ifdef CONFIG_SCHED_MC
7409 sd
= &per_cpu(core_domains
, i
).sd
;
7411 set_domain_attribute(sd
, attr
);
7412 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
7413 sd
->parent
= parent
;
7415 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7420 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
7421 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7422 struct sched_domain
*parent
, int i
)
7424 struct sched_domain
*sd
= parent
;
7425 #ifdef CONFIG_SCHED_SMT
7426 sd
= &per_cpu(cpu_domains
, i
).sd
;
7427 SD_INIT(sd
, SIBLING
);
7428 set_domain_attribute(sd
, attr
);
7429 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
7430 sd
->parent
= parent
;
7432 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7437 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
7438 const struct cpumask
*cpu_map
, int cpu
)
7441 #ifdef CONFIG_SCHED_SMT
7442 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
7443 cpumask_and(d
->this_sibling_map
, cpu_map
,
7444 topology_thread_cpumask(cpu
));
7445 if (cpu
== cpumask_first(d
->this_sibling_map
))
7446 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
7448 d
->send_covered
, d
->tmpmask
);
7451 #ifdef CONFIG_SCHED_MC
7452 case SD_LV_MC
: /* set up multi-core groups */
7453 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
7454 if (cpu
== cpumask_first(d
->this_core_map
))
7455 init_sched_build_groups(d
->this_core_map
, cpu_map
,
7457 d
->send_covered
, d
->tmpmask
);
7460 #ifdef CONFIG_SCHED_BOOK
7461 case SD_LV_BOOK
: /* set up book groups */
7462 cpumask_and(d
->this_book_map
, cpu_map
, cpu_book_mask(cpu
));
7463 if (cpu
== cpumask_first(d
->this_book_map
))
7464 init_sched_build_groups(d
->this_book_map
, cpu_map
,
7466 d
->send_covered
, d
->tmpmask
);
7469 case SD_LV_CPU
: /* set up physical groups */
7470 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
7471 if (!cpumask_empty(d
->nodemask
))
7472 init_sched_build_groups(d
->nodemask
, cpu_map
,
7474 d
->send_covered
, d
->tmpmask
);
7477 case SD_LV_ALLNODES
:
7478 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
7479 d
->send_covered
, d
->tmpmask
);
7488 * Build sched domains for a given set of cpus and attach the sched domains
7489 * to the individual cpus
7491 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7492 struct sched_domain_attr
*attr
)
7494 enum s_alloc alloc_state
= sa_none
;
7496 struct sched_domain
*sd
;
7502 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7503 if (alloc_state
!= sa_rootdomain
)
7505 alloc_state
= sa_sched_groups
;
7508 * Set up domains for cpus specified by the cpu_map.
7510 for_each_cpu(i
, cpu_map
) {
7511 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
7514 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
7515 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7516 sd
= __build_book_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7517 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7518 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7521 for_each_cpu(i
, cpu_map
) {
7522 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
7523 build_sched_groups(&d
, SD_LV_BOOK
, cpu_map
, i
);
7524 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
7527 /* Set up physical groups */
7528 for (i
= 0; i
< nr_node_ids
; i
++)
7529 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
7532 /* Set up node groups */
7534 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
7536 for (i
= 0; i
< nr_node_ids
; i
++)
7537 if (build_numa_sched_groups(&d
, cpu_map
, i
))
7541 /* Calculate CPU power for physical packages and nodes */
7542 #ifdef CONFIG_SCHED_SMT
7543 for_each_cpu(i
, cpu_map
) {
7544 sd
= &per_cpu(cpu_domains
, i
).sd
;
7545 init_sched_groups_power(i
, sd
);
7548 #ifdef CONFIG_SCHED_MC
7549 for_each_cpu(i
, cpu_map
) {
7550 sd
= &per_cpu(core_domains
, i
).sd
;
7551 init_sched_groups_power(i
, sd
);
7554 #ifdef CONFIG_SCHED_BOOK
7555 for_each_cpu(i
, cpu_map
) {
7556 sd
= &per_cpu(book_domains
, i
).sd
;
7557 init_sched_groups_power(i
, sd
);
7561 for_each_cpu(i
, cpu_map
) {
7562 sd
= &per_cpu(phys_domains
, i
).sd
;
7563 init_sched_groups_power(i
, sd
);
7567 for (i
= 0; i
< nr_node_ids
; i
++)
7568 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
7570 if (d
.sd_allnodes
) {
7571 struct sched_group
*sg
;
7573 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7575 init_numa_sched_groups_power(sg
);
7579 /* Attach the domains */
7580 for_each_cpu(i
, cpu_map
) {
7581 #ifdef CONFIG_SCHED_SMT
7582 sd
= &per_cpu(cpu_domains
, i
).sd
;
7583 #elif defined(CONFIG_SCHED_MC)
7584 sd
= &per_cpu(core_domains
, i
).sd
;
7585 #elif defined(CONFIG_SCHED_BOOK)
7586 sd
= &per_cpu(book_domains
, i
).sd
;
7588 sd
= &per_cpu(phys_domains
, i
).sd
;
7590 cpu_attach_domain(sd
, d
.rd
, i
);
7593 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
7594 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
7598 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7602 static int build_sched_domains(const struct cpumask
*cpu_map
)
7604 return __build_sched_domains(cpu_map
, NULL
);
7607 static cpumask_var_t
*doms_cur
; /* current sched domains */
7608 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7609 static struct sched_domain_attr
*dattr_cur
;
7610 /* attribues of custom domains in 'doms_cur' */
7613 * Special case: If a kmalloc of a doms_cur partition (array of
7614 * cpumask) fails, then fallback to a single sched domain,
7615 * as determined by the single cpumask fallback_doms.
7617 static cpumask_var_t fallback_doms
;
7620 * arch_update_cpu_topology lets virtualized architectures update the
7621 * cpu core maps. It is supposed to return 1 if the topology changed
7622 * or 0 if it stayed the same.
7624 int __attribute__((weak
)) arch_update_cpu_topology(void)
7629 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7632 cpumask_var_t
*doms
;
7634 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7637 for (i
= 0; i
< ndoms
; i
++) {
7638 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7639 free_sched_domains(doms
, i
);
7646 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7649 for (i
= 0; i
< ndoms
; i
++)
7650 free_cpumask_var(doms
[i
]);
7655 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7656 * For now this just excludes isolated cpus, but could be used to
7657 * exclude other special cases in the future.
7659 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7663 arch_update_cpu_topology();
7665 doms_cur
= alloc_sched_domains(ndoms_cur
);
7667 doms_cur
= &fallback_doms
;
7668 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7670 err
= build_sched_domains(doms_cur
[0]);
7671 register_sched_domain_sysctl();
7676 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7677 struct cpumask
*tmpmask
)
7679 free_sched_groups(cpu_map
, tmpmask
);
7683 * Detach sched domains from a group of cpus specified in cpu_map
7684 * These cpus will now be attached to the NULL domain
7686 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7688 /* Save because hotplug lock held. */
7689 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7692 for_each_cpu(i
, cpu_map
)
7693 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7694 synchronize_sched();
7695 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7698 /* handle null as "default" */
7699 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7700 struct sched_domain_attr
*new, int idx_new
)
7702 struct sched_domain_attr tmp
;
7709 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7710 new ? (new + idx_new
) : &tmp
,
7711 sizeof(struct sched_domain_attr
));
7715 * Partition sched domains as specified by the 'ndoms_new'
7716 * cpumasks in the array doms_new[] of cpumasks. This compares
7717 * doms_new[] to the current sched domain partitioning, doms_cur[].
7718 * It destroys each deleted domain and builds each new domain.
7720 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7721 * The masks don't intersect (don't overlap.) We should setup one
7722 * sched domain for each mask. CPUs not in any of the cpumasks will
7723 * not be load balanced. If the same cpumask appears both in the
7724 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7727 * The passed in 'doms_new' should be allocated using
7728 * alloc_sched_domains. This routine takes ownership of it and will
7729 * free_sched_domains it when done with it. If the caller failed the
7730 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7731 * and partition_sched_domains() will fallback to the single partition
7732 * 'fallback_doms', it also forces the domains to be rebuilt.
7734 * If doms_new == NULL it will be replaced with cpu_online_mask.
7735 * ndoms_new == 0 is a special case for destroying existing domains,
7736 * and it will not create the default domain.
7738 * Call with hotplug lock held
7740 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7741 struct sched_domain_attr
*dattr_new
)
7746 mutex_lock(&sched_domains_mutex
);
7748 /* always unregister in case we don't destroy any domains */
7749 unregister_sched_domain_sysctl();
7751 /* Let architecture update cpu core mappings. */
7752 new_topology
= arch_update_cpu_topology();
7754 n
= doms_new
? ndoms_new
: 0;
7756 /* Destroy deleted domains */
7757 for (i
= 0; i
< ndoms_cur
; i
++) {
7758 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7759 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7760 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7763 /* no match - a current sched domain not in new doms_new[] */
7764 detach_destroy_domains(doms_cur
[i
]);
7769 if (doms_new
== NULL
) {
7771 doms_new
= &fallback_doms
;
7772 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7773 WARN_ON_ONCE(dattr_new
);
7776 /* Build new domains */
7777 for (i
= 0; i
< ndoms_new
; i
++) {
7778 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7779 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7780 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7783 /* no match - add a new doms_new */
7784 __build_sched_domains(doms_new
[i
],
7785 dattr_new
? dattr_new
+ i
: NULL
);
7790 /* Remember the new sched domains */
7791 if (doms_cur
!= &fallback_doms
)
7792 free_sched_domains(doms_cur
, ndoms_cur
);
7793 kfree(dattr_cur
); /* kfree(NULL) is safe */
7794 doms_cur
= doms_new
;
7795 dattr_cur
= dattr_new
;
7796 ndoms_cur
= ndoms_new
;
7798 register_sched_domain_sysctl();
7800 mutex_unlock(&sched_domains_mutex
);
7803 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7804 static void arch_reinit_sched_domains(void)
7808 /* Destroy domains first to force the rebuild */
7809 partition_sched_domains(0, NULL
, NULL
);
7811 rebuild_sched_domains();
7815 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7817 unsigned int level
= 0;
7819 if (sscanf(buf
, "%u", &level
) != 1)
7823 * level is always be positive so don't check for
7824 * level < POWERSAVINGS_BALANCE_NONE which is 0
7825 * What happens on 0 or 1 byte write,
7826 * need to check for count as well?
7829 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7833 sched_smt_power_savings
= level
;
7835 sched_mc_power_savings
= level
;
7837 arch_reinit_sched_domains();
7842 #ifdef CONFIG_SCHED_MC
7843 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7844 struct sysdev_class_attribute
*attr
,
7847 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7849 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7850 struct sysdev_class_attribute
*attr
,
7851 const char *buf
, size_t count
)
7853 return sched_power_savings_store(buf
, count
, 0);
7855 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7856 sched_mc_power_savings_show
,
7857 sched_mc_power_savings_store
);
7860 #ifdef CONFIG_SCHED_SMT
7861 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7862 struct sysdev_class_attribute
*attr
,
7865 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7867 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7868 struct sysdev_class_attribute
*attr
,
7869 const char *buf
, size_t count
)
7871 return sched_power_savings_store(buf
, count
, 1);
7873 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7874 sched_smt_power_savings_show
,
7875 sched_smt_power_savings_store
);
7878 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7882 #ifdef CONFIG_SCHED_SMT
7884 err
= sysfs_create_file(&cls
->kset
.kobj
,
7885 &attr_sched_smt_power_savings
.attr
);
7887 #ifdef CONFIG_SCHED_MC
7888 if (!err
&& mc_capable())
7889 err
= sysfs_create_file(&cls
->kset
.kobj
,
7890 &attr_sched_mc_power_savings
.attr
);
7894 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7897 * Update cpusets according to cpu_active mask. If cpusets are
7898 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7899 * around partition_sched_domains().
7901 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7904 switch (action
& ~CPU_TASKS_FROZEN
) {
7906 case CPU_DOWN_FAILED
:
7907 cpuset_update_active_cpus();
7914 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7917 switch (action
& ~CPU_TASKS_FROZEN
) {
7918 case CPU_DOWN_PREPARE
:
7919 cpuset_update_active_cpus();
7926 static int update_runtime(struct notifier_block
*nfb
,
7927 unsigned long action
, void *hcpu
)
7929 int cpu
= (int)(long)hcpu
;
7932 case CPU_DOWN_PREPARE
:
7933 case CPU_DOWN_PREPARE_FROZEN
:
7934 disable_runtime(cpu_rq(cpu
));
7937 case CPU_DOWN_FAILED
:
7938 case CPU_DOWN_FAILED_FROZEN
:
7940 case CPU_ONLINE_FROZEN
:
7941 enable_runtime(cpu_rq(cpu
));
7949 void __init
sched_init_smp(void)
7951 cpumask_var_t non_isolated_cpus
;
7953 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7954 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7956 #if defined(CONFIG_NUMA)
7957 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7959 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7962 mutex_lock(&sched_domains_mutex
);
7963 arch_init_sched_domains(cpu_active_mask
);
7964 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7965 if (cpumask_empty(non_isolated_cpus
))
7966 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7967 mutex_unlock(&sched_domains_mutex
);
7970 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7971 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7973 /* RT runtime code needs to handle some hotplug events */
7974 hotcpu_notifier(update_runtime
, 0);
7978 /* Move init over to a non-isolated CPU */
7979 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7981 sched_init_granularity();
7982 free_cpumask_var(non_isolated_cpus
);
7984 init_sched_rt_class();
7987 void __init
sched_init_smp(void)
7989 sched_init_granularity();
7991 #endif /* CONFIG_SMP */
7993 const_debug
unsigned int sysctl_timer_migration
= 1;
7995 int in_sched_functions(unsigned long addr
)
7997 return in_lock_functions(addr
) ||
7998 (addr
>= (unsigned long)__sched_text_start
7999 && addr
< (unsigned long)__sched_text_end
);
8002 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8004 cfs_rq
->tasks_timeline
= RB_ROOT
;
8005 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8006 #ifdef CONFIG_FAIR_GROUP_SCHED
8008 /* allow initial update_cfs_load() to truncate */
8010 cfs_rq
->load_stamp
= 1;
8013 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8016 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8018 struct rt_prio_array
*array
;
8021 array
= &rt_rq
->active
;
8022 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8023 INIT_LIST_HEAD(array
->queue
+ i
);
8024 __clear_bit(i
, array
->bitmap
);
8026 /* delimiter for bitsearch: */
8027 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8029 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8030 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
8032 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
8036 rt_rq
->rt_nr_migratory
= 0;
8037 rt_rq
->overloaded
= 0;
8038 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
8042 rt_rq
->rt_throttled
= 0;
8043 rt_rq
->rt_runtime
= 0;
8044 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
8046 #ifdef CONFIG_RT_GROUP_SCHED
8047 rt_rq
->rt_nr_boosted
= 0;
8052 #ifdef CONFIG_FAIR_GROUP_SCHED
8053 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8054 struct sched_entity
*se
, int cpu
,
8055 struct sched_entity
*parent
)
8057 struct rq
*rq
= cpu_rq(cpu
);
8058 tg
->cfs_rq
[cpu
] = cfs_rq
;
8059 init_cfs_rq(cfs_rq
, rq
);
8063 /* se could be NULL for root_task_group */
8068 se
->cfs_rq
= &rq
->cfs
;
8070 se
->cfs_rq
= parent
->my_q
;
8073 update_load_set(&se
->load
, 0);
8074 se
->parent
= parent
;
8078 #ifdef CONFIG_RT_GROUP_SCHED
8079 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8080 struct sched_rt_entity
*rt_se
, int cpu
,
8081 struct sched_rt_entity
*parent
)
8083 struct rq
*rq
= cpu_rq(cpu
);
8085 tg
->rt_rq
[cpu
] = rt_rq
;
8086 init_rt_rq(rt_rq
, rq
);
8088 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8090 tg
->rt_se
[cpu
] = rt_se
;
8095 rt_se
->rt_rq
= &rq
->rt
;
8097 rt_se
->rt_rq
= parent
->my_q
;
8099 rt_se
->my_q
= rt_rq
;
8100 rt_se
->parent
= parent
;
8101 INIT_LIST_HEAD(&rt_se
->run_list
);
8105 void __init
sched_init(void)
8108 unsigned long alloc_size
= 0, ptr
;
8110 #ifdef CONFIG_FAIR_GROUP_SCHED
8111 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8113 #ifdef CONFIG_RT_GROUP_SCHED
8114 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8116 #ifdef CONFIG_CPUMASK_OFFSTACK
8117 alloc_size
+= num_possible_cpus() * cpumask_size();
8120 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
8122 #ifdef CONFIG_FAIR_GROUP_SCHED
8123 root_task_group
.se
= (struct sched_entity
**)ptr
;
8124 ptr
+= nr_cpu_ids
* sizeof(void **);
8126 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8127 ptr
+= nr_cpu_ids
* sizeof(void **);
8129 #endif /* CONFIG_FAIR_GROUP_SCHED */
8130 #ifdef CONFIG_RT_GROUP_SCHED
8131 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8132 ptr
+= nr_cpu_ids
* sizeof(void **);
8134 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8135 ptr
+= nr_cpu_ids
* sizeof(void **);
8137 #endif /* CONFIG_RT_GROUP_SCHED */
8138 #ifdef CONFIG_CPUMASK_OFFSTACK
8139 for_each_possible_cpu(i
) {
8140 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
8141 ptr
+= cpumask_size();
8143 #endif /* CONFIG_CPUMASK_OFFSTACK */
8147 init_defrootdomain();
8150 init_rt_bandwidth(&def_rt_bandwidth
,
8151 global_rt_period(), global_rt_runtime());
8153 #ifdef CONFIG_RT_GROUP_SCHED
8154 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8155 global_rt_period(), global_rt_runtime());
8156 #endif /* CONFIG_RT_GROUP_SCHED */
8158 #ifdef CONFIG_CGROUP_SCHED
8159 list_add(&root_task_group
.list
, &task_groups
);
8160 INIT_LIST_HEAD(&root_task_group
.children
);
8161 autogroup_init(&init_task
);
8162 #endif /* CONFIG_CGROUP_SCHED */
8164 for_each_possible_cpu(i
) {
8168 raw_spin_lock_init(&rq
->lock
);
8170 rq
->calc_load_active
= 0;
8171 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
8172 init_cfs_rq(&rq
->cfs
, rq
);
8173 init_rt_rq(&rq
->rt
, rq
);
8174 #ifdef CONFIG_FAIR_GROUP_SCHED
8175 root_task_group
.shares
= root_task_group_load
;
8176 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8178 * How much cpu bandwidth does root_task_group get?
8180 * In case of task-groups formed thr' the cgroup filesystem, it
8181 * gets 100% of the cpu resources in the system. This overall
8182 * system cpu resource is divided among the tasks of
8183 * root_task_group and its child task-groups in a fair manner,
8184 * based on each entity's (task or task-group's) weight
8185 * (se->load.weight).
8187 * In other words, if root_task_group has 10 tasks of weight
8188 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8189 * then A0's share of the cpu resource is:
8191 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8193 * We achieve this by letting root_task_group's tasks sit
8194 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8196 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
8197 #endif /* CONFIG_FAIR_GROUP_SCHED */
8199 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8200 #ifdef CONFIG_RT_GROUP_SCHED
8201 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8202 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
8205 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8206 rq
->cpu_load
[j
] = 0;
8208 rq
->last_load_update_tick
= jiffies
;
8213 rq
->cpu_power
= SCHED_LOAD_SCALE
;
8214 rq
->post_schedule
= 0;
8215 rq
->active_balance
= 0;
8216 rq
->next_balance
= jiffies
;
8221 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
8222 rq_attach_root(rq
, &def_root_domain
);
8224 rq
->nohz_balance_kick
= 0;
8225 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
8229 atomic_set(&rq
->nr_iowait
, 0);
8232 set_load_weight(&init_task
);
8234 #ifdef CONFIG_PREEMPT_NOTIFIERS
8235 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8239 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8242 #ifdef CONFIG_RT_MUTEXES
8243 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8247 * The boot idle thread does lazy MMU switching as well:
8249 atomic_inc(&init_mm
.mm_count
);
8250 enter_lazy_tlb(&init_mm
, current
);
8253 * Make us the idle thread. Technically, schedule() should not be
8254 * called from this thread, however somewhere below it might be,
8255 * but because we are the idle thread, we just pick up running again
8256 * when this runqueue becomes "idle".
8258 init_idle(current
, smp_processor_id());
8260 calc_load_update
= jiffies
+ LOAD_FREQ
;
8263 * During early bootup we pretend to be a normal task:
8265 current
->sched_class
= &fair_sched_class
;
8267 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8268 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
8271 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8272 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8273 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8274 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8275 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8277 /* May be allocated at isolcpus cmdline parse time */
8278 if (cpu_isolated_map
== NULL
)
8279 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8282 scheduler_running
= 1;
8285 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8286 static inline int preempt_count_equals(int preempt_offset
)
8288 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8290 return (nested
== preempt_offset
);
8293 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8296 static unsigned long prev_jiffy
; /* ratelimiting */
8298 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8299 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8301 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8303 prev_jiffy
= jiffies
;
8306 "BUG: sleeping function called from invalid context at %s:%d\n",
8309 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8310 in_atomic(), irqs_disabled(),
8311 current
->pid
, current
->comm
);
8313 debug_show_held_locks(current
);
8314 if (irqs_disabled())
8315 print_irqtrace_events(current
);
8319 EXPORT_SYMBOL(__might_sleep
);
8322 #ifdef CONFIG_MAGIC_SYSRQ
8323 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8325 const struct sched_class
*prev_class
= p
->sched_class
;
8326 int old_prio
= p
->prio
;
8329 on_rq
= p
->se
.on_rq
;
8331 deactivate_task(rq
, p
, 0);
8332 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8334 activate_task(rq
, p
, 0);
8335 resched_task(rq
->curr
);
8338 check_class_changed(rq
, p
, prev_class
, old_prio
);
8341 void normalize_rt_tasks(void)
8343 struct task_struct
*g
, *p
;
8344 unsigned long flags
;
8347 read_lock_irqsave(&tasklist_lock
, flags
);
8348 do_each_thread(g
, p
) {
8350 * Only normalize user tasks:
8355 p
->se
.exec_start
= 0;
8356 #ifdef CONFIG_SCHEDSTATS
8357 p
->se
.statistics
.wait_start
= 0;
8358 p
->se
.statistics
.sleep_start
= 0;
8359 p
->se
.statistics
.block_start
= 0;
8364 * Renice negative nice level userspace
8367 if (TASK_NICE(p
) < 0 && p
->mm
)
8368 set_user_nice(p
, 0);
8372 raw_spin_lock(&p
->pi_lock
);
8373 rq
= __task_rq_lock(p
);
8375 normalize_task(rq
, p
);
8377 __task_rq_unlock(rq
);
8378 raw_spin_unlock(&p
->pi_lock
);
8379 } while_each_thread(g
, p
);
8381 read_unlock_irqrestore(&tasklist_lock
, flags
);
8384 #endif /* CONFIG_MAGIC_SYSRQ */
8386 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8388 * These functions are only useful for the IA64 MCA handling, or kdb.
8390 * They can only be called when the whole system has been
8391 * stopped - every CPU needs to be quiescent, and no scheduling
8392 * activity can take place. Using them for anything else would
8393 * be a serious bug, and as a result, they aren't even visible
8394 * under any other configuration.
8398 * curr_task - return the current task for a given cpu.
8399 * @cpu: the processor in question.
8401 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8403 struct task_struct
*curr_task(int cpu
)
8405 return cpu_curr(cpu
);
8408 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8412 * set_curr_task - set the current task for a given cpu.
8413 * @cpu: the processor in question.
8414 * @p: the task pointer to set.
8416 * Description: This function must only be used when non-maskable interrupts
8417 * are serviced on a separate stack. It allows the architecture to switch the
8418 * notion of the current task on a cpu in a non-blocking manner. This function
8419 * must be called with all CPU's synchronized, and interrupts disabled, the
8420 * and caller must save the original value of the current task (see
8421 * curr_task() above) and restore that value before reenabling interrupts and
8422 * re-starting the system.
8424 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8426 void set_curr_task(int cpu
, struct task_struct
*p
)
8433 #ifdef CONFIG_FAIR_GROUP_SCHED
8434 static void free_fair_sched_group(struct task_group
*tg
)
8438 for_each_possible_cpu(i
) {
8440 kfree(tg
->cfs_rq
[i
]);
8450 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8452 struct cfs_rq
*cfs_rq
;
8453 struct sched_entity
*se
;
8456 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8459 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8463 tg
->shares
= NICE_0_LOAD
;
8465 for_each_possible_cpu(i
) {
8466 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8467 GFP_KERNEL
, cpu_to_node(i
));
8471 se
= kzalloc_node(sizeof(struct sched_entity
),
8472 GFP_KERNEL
, cpu_to_node(i
));
8476 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8487 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8489 struct rq
*rq
= cpu_rq(cpu
);
8490 unsigned long flags
;
8493 * Only empty task groups can be destroyed; so we can speculatively
8494 * check on_list without danger of it being re-added.
8496 if (!tg
->cfs_rq
[cpu
]->on_list
)
8499 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8500 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8501 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8503 #else /* !CONFG_FAIR_GROUP_SCHED */
8504 static inline void free_fair_sched_group(struct task_group
*tg
)
8509 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8514 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8517 #endif /* CONFIG_FAIR_GROUP_SCHED */
8519 #ifdef CONFIG_RT_GROUP_SCHED
8520 static void free_rt_sched_group(struct task_group
*tg
)
8524 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8526 for_each_possible_cpu(i
) {
8528 kfree(tg
->rt_rq
[i
]);
8530 kfree(tg
->rt_se
[i
]);
8538 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8540 struct rt_rq
*rt_rq
;
8541 struct sched_rt_entity
*rt_se
;
8545 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8548 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8552 init_rt_bandwidth(&tg
->rt_bandwidth
,
8553 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8555 for_each_possible_cpu(i
) {
8558 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8559 GFP_KERNEL
, cpu_to_node(i
));
8563 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8564 GFP_KERNEL
, cpu_to_node(i
));
8568 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8578 #else /* !CONFIG_RT_GROUP_SCHED */
8579 static inline void free_rt_sched_group(struct task_group
*tg
)
8584 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8588 #endif /* CONFIG_RT_GROUP_SCHED */
8590 #ifdef CONFIG_CGROUP_SCHED
8591 static void free_sched_group(struct task_group
*tg
)
8593 free_fair_sched_group(tg
);
8594 free_rt_sched_group(tg
);
8599 /* allocate runqueue etc for a new task group */
8600 struct task_group
*sched_create_group(struct task_group
*parent
)
8602 struct task_group
*tg
;
8603 unsigned long flags
;
8605 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8607 return ERR_PTR(-ENOMEM
);
8609 if (!alloc_fair_sched_group(tg
, parent
))
8612 if (!alloc_rt_sched_group(tg
, parent
))
8615 spin_lock_irqsave(&task_group_lock
, flags
);
8616 list_add_rcu(&tg
->list
, &task_groups
);
8618 WARN_ON(!parent
); /* root should already exist */
8620 tg
->parent
= parent
;
8621 INIT_LIST_HEAD(&tg
->children
);
8622 list_add_rcu(&tg
->siblings
, &parent
->children
);
8623 spin_unlock_irqrestore(&task_group_lock
, flags
);
8628 free_sched_group(tg
);
8629 return ERR_PTR(-ENOMEM
);
8632 /* rcu callback to free various structures associated with a task group */
8633 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8635 /* now it should be safe to free those cfs_rqs */
8636 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8639 /* Destroy runqueue etc associated with a task group */
8640 void sched_destroy_group(struct task_group
*tg
)
8642 unsigned long flags
;
8645 /* end participation in shares distribution */
8646 for_each_possible_cpu(i
)
8647 unregister_fair_sched_group(tg
, i
);
8649 spin_lock_irqsave(&task_group_lock
, flags
);
8650 list_del_rcu(&tg
->list
);
8651 list_del_rcu(&tg
->siblings
);
8652 spin_unlock_irqrestore(&task_group_lock
, flags
);
8654 /* wait for possible concurrent references to cfs_rqs complete */
8655 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8658 /* change task's runqueue when it moves between groups.
8659 * The caller of this function should have put the task in its new group
8660 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8661 * reflect its new group.
8663 void sched_move_task(struct task_struct
*tsk
)
8666 unsigned long flags
;
8669 rq
= task_rq_lock(tsk
, &flags
);
8671 running
= task_current(rq
, tsk
);
8672 on_rq
= tsk
->se
.on_rq
;
8675 dequeue_task(rq
, tsk
, 0);
8676 if (unlikely(running
))
8677 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8679 #ifdef CONFIG_FAIR_GROUP_SCHED
8680 if (tsk
->sched_class
->task_move_group
)
8681 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8684 set_task_rq(tsk
, task_cpu(tsk
));
8686 if (unlikely(running
))
8687 tsk
->sched_class
->set_curr_task(rq
);
8689 enqueue_task(rq
, tsk
, 0);
8691 task_rq_unlock(rq
, &flags
);
8693 #endif /* CONFIG_CGROUP_SCHED */
8695 #ifdef CONFIG_FAIR_GROUP_SCHED
8696 static DEFINE_MUTEX(shares_mutex
);
8698 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8701 unsigned long flags
;
8704 * We can't change the weight of the root cgroup.
8709 if (shares
< MIN_SHARES
)
8710 shares
= MIN_SHARES
;
8711 else if (shares
> MAX_SHARES
)
8712 shares
= MAX_SHARES
;
8714 mutex_lock(&shares_mutex
);
8715 if (tg
->shares
== shares
)
8718 tg
->shares
= shares
;
8719 for_each_possible_cpu(i
) {
8720 struct rq
*rq
= cpu_rq(i
);
8721 struct sched_entity
*se
;
8724 /* Propagate contribution to hierarchy */
8725 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8726 for_each_sched_entity(se
)
8727 update_cfs_shares(group_cfs_rq(se
));
8728 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8732 mutex_unlock(&shares_mutex
);
8736 unsigned long sched_group_shares(struct task_group
*tg
)
8742 #ifdef CONFIG_RT_GROUP_SCHED
8744 * Ensure that the real time constraints are schedulable.
8746 static DEFINE_MUTEX(rt_constraints_mutex
);
8748 static unsigned long to_ratio(u64 period
, u64 runtime
)
8750 if (runtime
== RUNTIME_INF
)
8753 return div64_u64(runtime
<< 20, period
);
8756 /* Must be called with tasklist_lock held */
8757 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8759 struct task_struct
*g
, *p
;
8761 do_each_thread(g
, p
) {
8762 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8764 } while_each_thread(g
, p
);
8769 struct rt_schedulable_data
{
8770 struct task_group
*tg
;
8775 static int tg_schedulable(struct task_group
*tg
, void *data
)
8777 struct rt_schedulable_data
*d
= data
;
8778 struct task_group
*child
;
8779 unsigned long total
, sum
= 0;
8780 u64 period
, runtime
;
8782 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8783 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8786 period
= d
->rt_period
;
8787 runtime
= d
->rt_runtime
;
8791 * Cannot have more runtime than the period.
8793 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8797 * Ensure we don't starve existing RT tasks.
8799 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8802 total
= to_ratio(period
, runtime
);
8805 * Nobody can have more than the global setting allows.
8807 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8811 * The sum of our children's runtime should not exceed our own.
8813 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8814 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8815 runtime
= child
->rt_bandwidth
.rt_runtime
;
8817 if (child
== d
->tg
) {
8818 period
= d
->rt_period
;
8819 runtime
= d
->rt_runtime
;
8822 sum
+= to_ratio(period
, runtime
);
8831 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8833 struct rt_schedulable_data data
= {
8835 .rt_period
= period
,
8836 .rt_runtime
= runtime
,
8839 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8842 static int tg_set_bandwidth(struct task_group
*tg
,
8843 u64 rt_period
, u64 rt_runtime
)
8847 mutex_lock(&rt_constraints_mutex
);
8848 read_lock(&tasklist_lock
);
8849 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8853 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8854 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8855 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8857 for_each_possible_cpu(i
) {
8858 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8860 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8861 rt_rq
->rt_runtime
= rt_runtime
;
8862 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8864 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8866 read_unlock(&tasklist_lock
);
8867 mutex_unlock(&rt_constraints_mutex
);
8872 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8874 u64 rt_runtime
, rt_period
;
8876 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8877 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8878 if (rt_runtime_us
< 0)
8879 rt_runtime
= RUNTIME_INF
;
8881 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8884 long sched_group_rt_runtime(struct task_group
*tg
)
8888 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8891 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8892 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8893 return rt_runtime_us
;
8896 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8898 u64 rt_runtime
, rt_period
;
8900 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8901 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8906 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8909 long sched_group_rt_period(struct task_group
*tg
)
8913 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8914 do_div(rt_period_us
, NSEC_PER_USEC
);
8915 return rt_period_us
;
8918 static int sched_rt_global_constraints(void)
8920 u64 runtime
, period
;
8923 if (sysctl_sched_rt_period
<= 0)
8926 runtime
= global_rt_runtime();
8927 period
= global_rt_period();
8930 * Sanity check on the sysctl variables.
8932 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8935 mutex_lock(&rt_constraints_mutex
);
8936 read_lock(&tasklist_lock
);
8937 ret
= __rt_schedulable(NULL
, 0, 0);
8938 read_unlock(&tasklist_lock
);
8939 mutex_unlock(&rt_constraints_mutex
);
8944 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8946 /* Don't accept realtime tasks when there is no way for them to run */
8947 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8953 #else /* !CONFIG_RT_GROUP_SCHED */
8954 static int sched_rt_global_constraints(void)
8956 unsigned long flags
;
8959 if (sysctl_sched_rt_period
<= 0)
8963 * There's always some RT tasks in the root group
8964 * -- migration, kstopmachine etc..
8966 if (sysctl_sched_rt_runtime
== 0)
8969 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8970 for_each_possible_cpu(i
) {
8971 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8973 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8974 rt_rq
->rt_runtime
= global_rt_runtime();
8975 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8977 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8981 #endif /* CONFIG_RT_GROUP_SCHED */
8983 int sched_rt_handler(struct ctl_table
*table
, int write
,
8984 void __user
*buffer
, size_t *lenp
,
8988 int old_period
, old_runtime
;
8989 static DEFINE_MUTEX(mutex
);
8992 old_period
= sysctl_sched_rt_period
;
8993 old_runtime
= sysctl_sched_rt_runtime
;
8995 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8997 if (!ret
&& write
) {
8998 ret
= sched_rt_global_constraints();
9000 sysctl_sched_rt_period
= old_period
;
9001 sysctl_sched_rt_runtime
= old_runtime
;
9003 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9004 def_rt_bandwidth
.rt_period
=
9005 ns_to_ktime(global_rt_period());
9008 mutex_unlock(&mutex
);
9013 #ifdef CONFIG_CGROUP_SCHED
9015 /* return corresponding task_group object of a cgroup */
9016 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9018 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9019 struct task_group
, css
);
9022 static struct cgroup_subsys_state
*
9023 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9025 struct task_group
*tg
, *parent
;
9027 if (!cgrp
->parent
) {
9028 /* This is early initialization for the top cgroup */
9029 return &root_task_group
.css
;
9032 parent
= cgroup_tg(cgrp
->parent
);
9033 tg
= sched_create_group(parent
);
9035 return ERR_PTR(-ENOMEM
);
9041 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9043 struct task_group
*tg
= cgroup_tg(cgrp
);
9045 sched_destroy_group(tg
);
9049 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9051 #ifdef CONFIG_RT_GROUP_SCHED
9052 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
9055 /* We don't support RT-tasks being in separate groups */
9056 if (tsk
->sched_class
!= &fair_sched_class
)
9063 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9064 struct task_struct
*tsk
, bool threadgroup
)
9066 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
9070 struct task_struct
*c
;
9072 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
9073 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
9085 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9086 struct cgroup
*old_cont
, struct task_struct
*tsk
,
9089 sched_move_task(tsk
);
9091 struct task_struct
*c
;
9093 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
9101 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9102 struct cgroup
*old_cgrp
, struct task_struct
*task
)
9105 * cgroup_exit() is called in the copy_process() failure path.
9106 * Ignore this case since the task hasn't ran yet, this avoids
9107 * trying to poke a half freed task state from generic code.
9109 if (!(task
->flags
& PF_EXITING
))
9112 sched_move_task(task
);
9115 #ifdef CONFIG_FAIR_GROUP_SCHED
9116 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9119 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9122 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9124 struct task_group
*tg
= cgroup_tg(cgrp
);
9126 return (u64
) tg
->shares
;
9128 #endif /* CONFIG_FAIR_GROUP_SCHED */
9130 #ifdef CONFIG_RT_GROUP_SCHED
9131 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9134 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9137 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9139 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9142 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9145 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9148 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9150 return sched_group_rt_period(cgroup_tg(cgrp
));
9152 #endif /* CONFIG_RT_GROUP_SCHED */
9154 static struct cftype cpu_files
[] = {
9155 #ifdef CONFIG_FAIR_GROUP_SCHED
9158 .read_u64
= cpu_shares_read_u64
,
9159 .write_u64
= cpu_shares_write_u64
,
9162 #ifdef CONFIG_RT_GROUP_SCHED
9164 .name
= "rt_runtime_us",
9165 .read_s64
= cpu_rt_runtime_read
,
9166 .write_s64
= cpu_rt_runtime_write
,
9169 .name
= "rt_period_us",
9170 .read_u64
= cpu_rt_period_read_uint
,
9171 .write_u64
= cpu_rt_period_write_uint
,
9176 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9178 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9181 struct cgroup_subsys cpu_cgroup_subsys
= {
9183 .create
= cpu_cgroup_create
,
9184 .destroy
= cpu_cgroup_destroy
,
9185 .can_attach
= cpu_cgroup_can_attach
,
9186 .attach
= cpu_cgroup_attach
,
9187 .exit
= cpu_cgroup_exit
,
9188 .populate
= cpu_cgroup_populate
,
9189 .subsys_id
= cpu_cgroup_subsys_id
,
9193 #endif /* CONFIG_CGROUP_SCHED */
9195 #ifdef CONFIG_CGROUP_CPUACCT
9198 * CPU accounting code for task groups.
9200 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9201 * (balbir@in.ibm.com).
9204 /* track cpu usage of a group of tasks and its child groups */
9206 struct cgroup_subsys_state css
;
9207 /* cpuusage holds pointer to a u64-type object on every cpu */
9208 u64 __percpu
*cpuusage
;
9209 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
9210 struct cpuacct
*parent
;
9213 struct cgroup_subsys cpuacct_subsys
;
9215 /* return cpu accounting group corresponding to this container */
9216 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9218 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9219 struct cpuacct
, css
);
9222 /* return cpu accounting group to which this task belongs */
9223 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9225 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9226 struct cpuacct
, css
);
9229 /* create a new cpu accounting group */
9230 static struct cgroup_subsys_state
*cpuacct_create(
9231 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9233 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9239 ca
->cpuusage
= alloc_percpu(u64
);
9243 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9244 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
9245 goto out_free_counters
;
9248 ca
->parent
= cgroup_ca(cgrp
->parent
);
9254 percpu_counter_destroy(&ca
->cpustat
[i
]);
9255 free_percpu(ca
->cpuusage
);
9259 return ERR_PTR(-ENOMEM
);
9262 /* destroy an existing cpu accounting group */
9264 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9266 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9269 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9270 percpu_counter_destroy(&ca
->cpustat
[i
]);
9271 free_percpu(ca
->cpuusage
);
9275 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9277 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9280 #ifndef CONFIG_64BIT
9282 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9284 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9286 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9294 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9296 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9298 #ifndef CONFIG_64BIT
9300 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9302 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9304 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9310 /* return total cpu usage (in nanoseconds) of a group */
9311 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9313 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9314 u64 totalcpuusage
= 0;
9317 for_each_present_cpu(i
)
9318 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9320 return totalcpuusage
;
9323 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9326 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9335 for_each_present_cpu(i
)
9336 cpuacct_cpuusage_write(ca
, i
, 0);
9342 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9345 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9349 for_each_present_cpu(i
) {
9350 percpu
= cpuacct_cpuusage_read(ca
, i
);
9351 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9353 seq_printf(m
, "\n");
9357 static const char *cpuacct_stat_desc
[] = {
9358 [CPUACCT_STAT_USER
] = "user",
9359 [CPUACCT_STAT_SYSTEM
] = "system",
9362 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9363 struct cgroup_map_cb
*cb
)
9365 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9368 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9369 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9370 val
= cputime64_to_clock_t(val
);
9371 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9376 static struct cftype files
[] = {
9379 .read_u64
= cpuusage_read
,
9380 .write_u64
= cpuusage_write
,
9383 .name
= "usage_percpu",
9384 .read_seq_string
= cpuacct_percpu_seq_read
,
9388 .read_map
= cpuacct_stats_show
,
9392 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9394 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9398 * charge this task's execution time to its accounting group.
9400 * called with rq->lock held.
9402 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9407 if (unlikely(!cpuacct_subsys
.active
))
9410 cpu
= task_cpu(tsk
);
9416 for (; ca
; ca
= ca
->parent
) {
9417 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9418 *cpuusage
+= cputime
;
9425 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9426 * in cputime_t units. As a result, cpuacct_update_stats calls
9427 * percpu_counter_add with values large enough to always overflow the
9428 * per cpu batch limit causing bad SMP scalability.
9430 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9431 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9432 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9435 #define CPUACCT_BATCH \
9436 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9438 #define CPUACCT_BATCH 0
9442 * Charge the system/user time to the task's accounting group.
9444 static void cpuacct_update_stats(struct task_struct
*tsk
,
9445 enum cpuacct_stat_index idx
, cputime_t val
)
9448 int batch
= CPUACCT_BATCH
;
9450 if (unlikely(!cpuacct_subsys
.active
))
9457 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9463 struct cgroup_subsys cpuacct_subsys
= {
9465 .create
= cpuacct_create
,
9466 .destroy
= cpuacct_destroy
,
9467 .populate
= cpuacct_populate
,
9468 .subsys_id
= cpuacct_subsys_id
,
9470 #endif /* CONFIG_CGROUP_CPUACCT */