USB: xhci: URB cancellation support.
[linux-2.6/x86.git] / drivers / usb / host / xhci-mem.c
blobe81d10a653efc4b1447b046480a0c45236881f51
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
26 #include "xhci.h"
29 * Allocates a generic ring segment from the ring pool, sets the dma address,
30 * initializes the segment to zero, and sets the private next pointer to NULL.
32 * Section 4.11.1.1:
33 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
35 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
37 struct xhci_segment *seg;
38 dma_addr_t dma;
40 seg = kzalloc(sizeof *seg, flags);
41 if (!seg)
42 return 0;
43 xhci_dbg(xhci, "Allocating priv segment structure at 0x%x\n",
44 (unsigned int) seg);
46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47 if (!seg->trbs) {
48 kfree(seg);
49 return 0;
51 xhci_dbg(xhci, "// Allocating segment at 0x%x (virtual) 0x%x (DMA)\n",
52 (unsigned int) seg->trbs, (u32) dma);
54 memset(seg->trbs, 0, SEGMENT_SIZE);
55 seg->dma = dma;
56 seg->next = NULL;
58 return seg;
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 if (!seg)
64 return;
65 if (seg->trbs) {
66 xhci_dbg(xhci, "Freeing DMA segment at 0x%x"
67 " (virtual) 0x%x (DMA)\n",
68 (unsigned int) seg->trbs, (u32) seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
72 xhci_dbg(xhci, "Freeing priv segment structure at 0x%x\n",
73 (unsigned int) seg);
74 kfree(seg);
78 * Make the prev segment point to the next segment.
80 * Change the last TRB in the prev segment to be a Link TRB which points to the
81 * DMA address of the next segment. The caller needs to set any Link TRB
82 * related flags, such as End TRB, Toggle Cycle, and no snoop.
84 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
85 struct xhci_segment *next, bool link_trbs)
87 u32 val;
89 if (!prev || !next)
90 return;
91 prev->next = next;
92 if (link_trbs) {
93 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr[0] = next->dma;
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
97 val &= ~TRB_TYPE_BITMASK;
98 val |= TRB_TYPE(TRB_LINK);
99 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
101 xhci_dbg(xhci, "Linking segment 0x%x to segment 0x%x (DMA)\n",
102 prev->dma, next->dma);
105 /* XXX: Do we need the hcd structure in all these functions? */
106 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
108 struct xhci_segment *seg;
109 struct xhci_segment *first_seg;
111 if (!ring || !ring->first_seg)
112 return;
113 first_seg = ring->first_seg;
114 seg = first_seg->next;
115 xhci_dbg(xhci, "Freeing ring at 0x%x\n", (unsigned int) ring);
116 while (seg != first_seg) {
117 struct xhci_segment *next = seg->next;
118 xhci_segment_free(xhci, seg);
119 seg = next;
121 xhci_segment_free(xhci, first_seg);
122 ring->first_seg = NULL;
123 kfree(ring);
127 * Create a new ring with zero or more segments.
129 * Link each segment together into a ring.
130 * Set the end flag and the cycle toggle bit on the last segment.
131 * See section 4.9.1 and figures 15 and 16.
133 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
134 unsigned int num_segs, bool link_trbs, gfp_t flags)
136 struct xhci_ring *ring;
137 struct xhci_segment *prev;
139 ring = kzalloc(sizeof *(ring), flags);
140 xhci_dbg(xhci, "Allocating ring at 0x%x\n", (unsigned int) ring);
141 if (!ring)
142 return 0;
144 INIT_LIST_HEAD(&ring->td_list);
145 INIT_LIST_HEAD(&ring->cancelled_td_list);
146 if (num_segs == 0)
147 return ring;
149 ring->first_seg = xhci_segment_alloc(xhci, flags);
150 if (!ring->first_seg)
151 goto fail;
152 num_segs--;
154 prev = ring->first_seg;
155 while (num_segs > 0) {
156 struct xhci_segment *next;
158 next = xhci_segment_alloc(xhci, flags);
159 if (!next)
160 goto fail;
161 xhci_link_segments(xhci, prev, next, link_trbs);
163 prev = next;
164 num_segs--;
166 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
168 if (link_trbs) {
169 /* See section 4.9.2.1 and 6.4.4.1 */
170 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
171 xhci_dbg(xhci, "Wrote link toggle flag to"
172 " segment 0x%x (virtual), 0x%x (DMA)\n",
173 (unsigned int) prev, (u32) prev->dma);
175 /* The ring is empty, so the enqueue pointer == dequeue pointer */
176 ring->enqueue = ring->first_seg->trbs;
177 ring->enq_seg = ring->first_seg;
178 ring->dequeue = ring->enqueue;
179 ring->deq_seg = ring->first_seg;
180 /* The ring is initialized to 0. The producer must write 1 to the cycle
181 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
182 * compare CCS to the cycle bit to check ownership, so CCS = 1.
184 ring->cycle_state = 1;
186 return ring;
188 fail:
189 xhci_ring_free(xhci, ring);
190 return 0;
193 /* All the xhci_tds in the ring's TD list should be freed at this point */
194 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
196 struct xhci_virt_device *dev;
197 int i;
199 /* Slot ID 0 is reserved */
200 if (slot_id == 0 || !xhci->devs[slot_id])
201 return;
203 dev = xhci->devs[slot_id];
204 xhci->dcbaa->dev_context_ptrs[2*slot_id] = 0;
205 xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
206 if (!dev)
207 return;
209 for (i = 0; i < 31; ++i)
210 if (dev->ep_rings[i])
211 xhci_ring_free(xhci, dev->ep_rings[i]);
213 if (dev->in_ctx)
214 dma_pool_free(xhci->device_pool,
215 dev->in_ctx, dev->in_ctx_dma);
216 if (dev->out_ctx)
217 dma_pool_free(xhci->device_pool,
218 dev->out_ctx, dev->out_ctx_dma);
219 kfree(xhci->devs[slot_id]);
220 xhci->devs[slot_id] = 0;
223 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
224 struct usb_device *udev, gfp_t flags)
226 dma_addr_t dma;
227 struct xhci_virt_device *dev;
229 /* Slot ID 0 is reserved */
230 if (slot_id == 0 || xhci->devs[slot_id]) {
231 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
232 return 0;
235 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
236 if (!xhci->devs[slot_id])
237 return 0;
238 dev = xhci->devs[slot_id];
240 /* Allocate the (output) device context that will be used in the HC */
241 dev->out_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
242 if (!dev->out_ctx)
243 goto fail;
244 dev->out_ctx_dma = dma;
245 xhci_dbg(xhci, "Slot %d output ctx = 0x%x (dma)\n", slot_id, dma);
246 memset(dev->out_ctx, 0, sizeof(*dev->out_ctx));
248 /* Allocate the (input) device context for address device command */
249 dev->in_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
250 if (!dev->in_ctx)
251 goto fail;
252 dev->in_ctx_dma = dma;
253 xhci_dbg(xhci, "Slot %d input ctx = 0x%x (dma)\n", slot_id, dma);
254 memset(dev->in_ctx, 0, sizeof(*dev->in_ctx));
256 /* Allocate endpoint 0 ring */
257 dev->ep_rings[0] = xhci_ring_alloc(xhci, 1, true, flags);
258 if (!dev->ep_rings[0])
259 goto fail;
261 init_completion(&dev->cmd_completion);
264 * Point to output device context in dcbaa; skip the output control
265 * context, which is eight 32 bit fields (or 32 bytes long)
267 xhci->dcbaa->dev_context_ptrs[2*slot_id] =
268 (u32) dev->out_ctx_dma + (32);
269 xhci_dbg(xhci, "Set slot id %d dcbaa entry 0x%x to 0x%x\n",
270 slot_id,
271 (unsigned int) &xhci->dcbaa->dev_context_ptrs[2*slot_id],
272 dev->out_ctx_dma);
273 xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
275 return 1;
276 fail:
277 xhci_free_virt_device(xhci, slot_id);
278 return 0;
281 /* Setup an xHCI virtual device for a Set Address command */
282 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
284 struct xhci_virt_device *dev;
285 struct xhci_ep_ctx *ep0_ctx;
286 struct usb_device *top_dev;
288 dev = xhci->devs[udev->slot_id];
289 /* Slot ID 0 is reserved */
290 if (udev->slot_id == 0 || !dev) {
291 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
292 udev->slot_id);
293 return -EINVAL;
295 ep0_ctx = &dev->in_ctx->ep[0];
297 /* 2) New slot context and endpoint 0 context are valid*/
298 dev->in_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
300 /* 3) Only the control endpoint is valid - one endpoint context */
301 dev->in_ctx->slot.dev_info |= LAST_CTX(1);
303 switch (udev->speed) {
304 case USB_SPEED_SUPER:
305 dev->in_ctx->slot.dev_info |= (u32) udev->route;
306 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_SS;
307 break;
308 case USB_SPEED_HIGH:
309 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_HS;
310 break;
311 case USB_SPEED_FULL:
312 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_FS;
313 break;
314 case USB_SPEED_LOW:
315 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_LS;
316 break;
317 case USB_SPEED_VARIABLE:
318 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
319 return -EINVAL;
320 break;
321 default:
322 /* Speed was set earlier, this shouldn't happen. */
323 BUG();
325 /* Find the root hub port this device is under */
326 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
327 top_dev = top_dev->parent)
328 /* Found device below root hub */;
329 dev->in_ctx->slot.dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
330 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
332 /* Is this a LS/FS device under a HS hub? */
334 * FIXME: I don't think this is right, where does the TT info for the
335 * roothub or parent hub come from?
337 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
338 udev->tt) {
339 dev->in_ctx->slot.tt_info = udev->tt->hub->slot_id;
340 dev->in_ctx->slot.tt_info |= udev->ttport << 8;
342 xhci_dbg(xhci, "udev->tt = 0x%x\n", (unsigned int) udev->tt);
343 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
345 /* Step 4 - ring already allocated */
346 /* Step 5 */
347 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
349 * See section 4.3 bullet 6:
350 * The default Max Packet size for ep0 is "8 bytes for a USB2
351 * LS/FS/HS device or 512 bytes for a USB3 SS device"
352 * XXX: Not sure about wireless USB devices.
354 if (udev->speed == USB_SPEED_SUPER)
355 ep0_ctx->ep_info2 |= MAX_PACKET(512);
356 else
357 ep0_ctx->ep_info2 |= MAX_PACKET(8);
358 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
359 ep0_ctx->ep_info2 |= MAX_BURST(0);
360 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
362 ep0_ctx->deq[0] =
363 dev->ep_rings[0]->first_seg->dma;
364 ep0_ctx->deq[0] |= dev->ep_rings[0]->cycle_state;
365 ep0_ctx->deq[1] = 0;
367 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
369 return 0;
372 /* Return the polling or NAK interval.
374 * The polling interval is expressed in "microframes". If xHCI's Interval field
375 * is set to N, it will service the endpoint every 2^(Interval)*125us.
377 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
378 * is set to 0.
380 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
381 struct usb_host_endpoint *ep)
383 unsigned int interval = 0;
385 switch (udev->speed) {
386 case USB_SPEED_HIGH:
387 /* Max NAK rate */
388 if (usb_endpoint_xfer_control(&ep->desc) ||
389 usb_endpoint_xfer_bulk(&ep->desc))
390 interval = ep->desc.bInterval;
391 /* Fall through - SS and HS isoc/int have same decoding */
392 case USB_SPEED_SUPER:
393 if (usb_endpoint_xfer_int(&ep->desc) ||
394 usb_endpoint_xfer_isoc(&ep->desc)) {
395 if (ep->desc.bInterval == 0)
396 interval = 0;
397 else
398 interval = ep->desc.bInterval - 1;
399 if (interval > 15)
400 interval = 15;
401 if (interval != ep->desc.bInterval + 1)
402 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
403 ep->desc.bEndpointAddress, 1 << interval);
405 break;
406 /* Convert bInterval (in 1-255 frames) to microframes and round down to
407 * nearest power of 2.
409 case USB_SPEED_FULL:
410 case USB_SPEED_LOW:
411 if (usb_endpoint_xfer_int(&ep->desc) ||
412 usb_endpoint_xfer_isoc(&ep->desc)) {
413 interval = fls(8*ep->desc.bInterval) - 1;
414 if (interval > 10)
415 interval = 10;
416 if (interval < 3)
417 interval = 3;
418 if ((1 << interval) != 8*ep->desc.bInterval)
419 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
420 ep->desc.bEndpointAddress, 1 << interval);
422 break;
423 default:
424 BUG();
426 return EP_INTERVAL(interval);
429 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
430 struct usb_host_endpoint *ep)
432 int in;
433 u32 type;
435 in = usb_endpoint_dir_in(&ep->desc);
436 if (usb_endpoint_xfer_control(&ep->desc)) {
437 type = EP_TYPE(CTRL_EP);
438 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
439 if (in)
440 type = EP_TYPE(BULK_IN_EP);
441 else
442 type = EP_TYPE(BULK_OUT_EP);
443 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
444 if (in)
445 type = EP_TYPE(ISOC_IN_EP);
446 else
447 type = EP_TYPE(ISOC_OUT_EP);
448 } else if (usb_endpoint_xfer_int(&ep->desc)) {
449 if (in)
450 type = EP_TYPE(INT_IN_EP);
451 else
452 type = EP_TYPE(INT_OUT_EP);
453 } else {
454 BUG();
456 return type;
459 int xhci_endpoint_init(struct xhci_hcd *xhci,
460 struct xhci_virt_device *virt_dev,
461 struct usb_device *udev,
462 struct usb_host_endpoint *ep)
464 unsigned int ep_index;
465 struct xhci_ep_ctx *ep_ctx;
466 struct xhci_ring *ep_ring;
467 unsigned int max_packet;
468 unsigned int max_burst;
470 ep_index = xhci_get_endpoint_index(&ep->desc);
471 ep_ctx = &virt_dev->in_ctx->ep[ep_index];
473 /* Set up the endpoint ring */
474 virt_dev->new_ep_rings[ep_index] = xhci_ring_alloc(xhci, 1, true, GFP_KERNEL);
475 if (!virt_dev->new_ep_rings[ep_index])
476 return -ENOMEM;
477 ep_ring = virt_dev->new_ep_rings[ep_index];
478 ep_ctx->deq[1] = 0;
479 ep_ctx->deq[0] = ep_ring->first_seg->dma | ep_ring->cycle_state;
481 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
483 /* FIXME dig Mult and streams info out of ep companion desc */
485 /* Allow 3 retries for everything but isoc */
486 if (!usb_endpoint_xfer_isoc(&ep->desc))
487 ep_ctx->ep_info2 = ERROR_COUNT(3);
488 else
489 ep_ctx->ep_info2 = ERROR_COUNT(0);
491 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
493 /* Set the max packet size and max burst */
494 switch (udev->speed) {
495 case USB_SPEED_SUPER:
496 max_packet = ep->desc.wMaxPacketSize;
497 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
498 /* dig out max burst from ep companion desc */
499 max_packet = ep->ep_comp->desc.bMaxBurst;
500 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
501 break;
502 case USB_SPEED_HIGH:
503 /* bits 11:12 specify the number of additional transaction
504 * opportunities per microframe (USB 2.0, section 9.6.6)
506 if (usb_endpoint_xfer_isoc(&ep->desc) ||
507 usb_endpoint_xfer_int(&ep->desc)) {
508 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
509 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
511 /* Fall through */
512 case USB_SPEED_FULL:
513 case USB_SPEED_LOW:
514 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
515 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
516 break;
517 default:
518 BUG();
520 /* FIXME Debug endpoint context */
521 return 0;
524 void xhci_endpoint_zero(struct xhci_hcd *xhci,
525 struct xhci_virt_device *virt_dev,
526 struct usb_host_endpoint *ep)
528 unsigned int ep_index;
529 struct xhci_ep_ctx *ep_ctx;
531 ep_index = xhci_get_endpoint_index(&ep->desc);
532 ep_ctx = &virt_dev->in_ctx->ep[ep_index];
534 ep_ctx->ep_info = 0;
535 ep_ctx->ep_info2 = 0;
536 ep_ctx->deq[1] = 0;
537 ep_ctx->deq[0] = 0;
538 ep_ctx->tx_info = 0;
539 /* Don't free the endpoint ring until the set interface or configuration
540 * request succeeds.
544 void xhci_mem_cleanup(struct xhci_hcd *xhci)
546 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
547 int size;
548 int i;
550 /* Free the Event Ring Segment Table and the actual Event Ring */
551 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
552 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
553 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[0]);
554 xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[1]);
555 xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[0]);
556 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
557 if (xhci->erst.entries)
558 pci_free_consistent(pdev, size,
559 xhci->erst.entries, xhci->erst.erst_dma_addr);
560 xhci->erst.entries = NULL;
561 xhci_dbg(xhci, "Freed ERST\n");
562 if (xhci->event_ring)
563 xhci_ring_free(xhci, xhci->event_ring);
564 xhci->event_ring = NULL;
565 xhci_dbg(xhci, "Freed event ring\n");
567 xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[1]);
568 xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[0]);
569 if (xhci->cmd_ring)
570 xhci_ring_free(xhci, xhci->cmd_ring);
571 xhci->cmd_ring = NULL;
572 xhci_dbg(xhci, "Freed command ring\n");
574 for (i = 1; i < MAX_HC_SLOTS; ++i)
575 xhci_free_virt_device(xhci, i);
577 if (xhci->segment_pool)
578 dma_pool_destroy(xhci->segment_pool);
579 xhci->segment_pool = NULL;
580 xhci_dbg(xhci, "Freed segment pool\n");
582 if (xhci->device_pool)
583 dma_pool_destroy(xhci->device_pool);
584 xhci->device_pool = NULL;
585 xhci_dbg(xhci, "Freed device context pool\n");
587 xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[1]);
588 xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[0]);
589 if (xhci->dcbaa)
590 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
591 xhci->dcbaa, xhci->dcbaa->dma);
592 xhci->dcbaa = NULL;
594 xhci->page_size = 0;
595 xhci->page_shift = 0;
598 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
600 dma_addr_t dma;
601 struct device *dev = xhci_to_hcd(xhci)->self.controller;
602 unsigned int val, val2;
603 struct xhci_segment *seg;
604 u32 page_size;
605 int i;
607 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
608 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
609 for (i = 0; i < 16; i++) {
610 if ((0x1 & page_size) != 0)
611 break;
612 page_size = page_size >> 1;
614 if (i < 16)
615 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
616 else
617 xhci_warn(xhci, "WARN: no supported page size\n");
618 /* Use 4K pages, since that's common and the minimum the HC supports */
619 xhci->page_shift = 12;
620 xhci->page_size = 1 << xhci->page_shift;
621 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
624 * Program the Number of Device Slots Enabled field in the CONFIG
625 * register with the max value of slots the HC can handle.
627 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
628 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
629 (unsigned int) val);
630 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
631 val |= (val2 & ~HCS_SLOTS_MASK);
632 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
633 (unsigned int) val);
634 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
637 * Section 5.4.8 - doorbell array must be
638 * "physically contiguous and 64-byte (cache line) aligned".
640 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
641 sizeof(*xhci->dcbaa), &dma);
642 if (!xhci->dcbaa)
643 goto fail;
644 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
645 xhci->dcbaa->dma = dma;
646 xhci_dbg(xhci, "// Device context base array address = 0x%x (DMA), 0x%x (virt)\n",
647 xhci->dcbaa->dma, (unsigned int) xhci->dcbaa);
648 xhci_writel(xhci, (u32) 0, &xhci->op_regs->dcbaa_ptr[1]);
649 xhci_writel(xhci, dma, &xhci->op_regs->dcbaa_ptr[0]);
652 * Initialize the ring segment pool. The ring must be a contiguous
653 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
654 * however, the command ring segment needs 64-byte aligned segments,
655 * so we pick the greater alignment need.
657 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
658 SEGMENT_SIZE, 64, xhci->page_size);
659 /* See Table 46 and Note on Figure 55 */
660 /* FIXME support 64-byte contexts */
661 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
662 sizeof(struct xhci_device_control),
663 64, xhci->page_size);
664 if (!xhci->segment_pool || !xhci->device_pool)
665 goto fail;
667 /* Set up the command ring to have one segments for now. */
668 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
669 if (!xhci->cmd_ring)
670 goto fail;
671 xhci_dbg(xhci, "Allocated command ring at 0x%x\n", (unsigned int) xhci->cmd_ring);
672 xhci_dbg(xhci, "First segment DMA is 0x%x\n", (unsigned int) xhci->cmd_ring->first_seg->dma);
674 /* Set the address in the Command Ring Control register */
675 val = xhci_readl(xhci, &xhci->op_regs->cmd_ring[0]);
676 val = (val & ~CMD_RING_ADDR_MASK) |
677 (xhci->cmd_ring->first_seg->dma & CMD_RING_ADDR_MASK) |
678 xhci->cmd_ring->cycle_state;
679 xhci_dbg(xhci, "// Setting command ring address high bits to 0x0\n");
680 xhci_writel(xhci, (u32) 0, &xhci->op_regs->cmd_ring[1]);
681 xhci_dbg(xhci, "// Setting command ring address low bits to 0x%x\n", val);
682 xhci_writel(xhci, val, &xhci->op_regs->cmd_ring[0]);
683 xhci_dbg_cmd_ptrs(xhci);
685 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
686 val &= DBOFF_MASK;
687 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
688 " from cap regs base addr\n", val);
689 xhci->dba = (void *) xhci->cap_regs + val;
690 xhci_dbg_regs(xhci);
691 xhci_print_run_regs(xhci);
692 /* Set ir_set to interrupt register set 0 */
693 xhci->ir_set = (void *) xhci->run_regs->ir_set;
696 * Event ring setup: Allocate a normal ring, but also setup
697 * the event ring segment table (ERST). Section 4.9.3.
699 xhci_dbg(xhci, "// Allocating event ring\n");
700 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
701 if (!xhci->event_ring)
702 goto fail;
704 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
705 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
706 if (!xhci->erst.entries)
707 goto fail;
708 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%x\n", dma);
710 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
711 xhci->erst.num_entries = ERST_NUM_SEGS;
712 xhci->erst.erst_dma_addr = dma;
713 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = 0x%x, dma addr = 0x%x\n",
714 xhci->erst.num_entries,
715 (unsigned int) xhci->erst.entries,
716 xhci->erst.erst_dma_addr);
718 /* set ring base address and size for each segment table entry */
719 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
720 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
721 entry->seg_addr[1] = 0;
722 entry->seg_addr[0] = seg->dma;
723 entry->seg_size = TRBS_PER_SEGMENT;
724 entry->rsvd = 0;
725 seg = seg->next;
728 /* set ERST count with the number of entries in the segment table */
729 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
730 val &= ERST_SIZE_MASK;
731 val |= ERST_NUM_SEGS;
732 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
733 val);
734 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
736 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
737 /* set the segment table base address */
738 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%x\n",
739 xhci->erst.erst_dma_addr);
740 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
741 val = xhci_readl(xhci, &xhci->ir_set->erst_base[0]);
742 val &= ERST_PTR_MASK;
743 val |= (xhci->erst.erst_dma_addr & ~ERST_PTR_MASK);
744 xhci_writel(xhci, val, &xhci->ir_set->erst_base[0]);
746 /* Set the event ring dequeue address */
747 set_hc_event_deq(xhci);
748 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
749 xhci_print_ir_set(xhci, xhci->ir_set, 0);
752 * XXX: Might need to set the Interrupter Moderation Register to
753 * something other than the default (~1ms minimum between interrupts).
754 * See section 5.5.1.2.
756 init_completion(&xhci->addr_dev);
757 for (i = 0; i < MAX_HC_SLOTS; ++i)
758 xhci->devs[i] = 0;
760 return 0;
761 fail:
762 xhci_warn(xhci, "Couldn't initialize memory\n");
763 xhci_mem_cleanup(xhci);
764 return -ENOMEM;