igb: make ethtool use core xmit map and free functionality
[linux-2.6/x86.git] / drivers / net / igb / igb_ethtool.c
blobaa05f00966e2ab4aa3fb792bc38614497fe366e3
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* ethtool support for igb */
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
38 #include "igb.h"
40 enum {NETDEV_STATS, IGB_STATS};
42 struct igb_stats {
43 char stat_string[ETH_GSTRING_LEN];
44 int type;
45 int sizeof_stat;
46 int stat_offset;
49 #define IGB_STAT(m) IGB_STATS, \
50 FIELD_SIZEOF(struct igb_adapter, m), \
51 offsetof(struct igb_adapter, m)
52 #define IGB_NETDEV_STAT(m) NETDEV_STATS, \
53 FIELD_SIZEOF(struct net_device, m), \
54 offsetof(struct net_device, m)
56 static const struct igb_stats igb_gstrings_stats[] = {
57 { "rx_packets", IGB_STAT(stats.gprc) },
58 { "tx_packets", IGB_STAT(stats.gptc) },
59 { "rx_bytes", IGB_STAT(stats.gorc) },
60 { "tx_bytes", IGB_STAT(stats.gotc) },
61 { "rx_broadcast", IGB_STAT(stats.bprc) },
62 { "tx_broadcast", IGB_STAT(stats.bptc) },
63 { "rx_multicast", IGB_STAT(stats.mprc) },
64 { "tx_multicast", IGB_STAT(stats.mptc) },
65 { "rx_errors", IGB_NETDEV_STAT(stats.rx_errors) },
66 { "tx_errors", IGB_NETDEV_STAT(stats.tx_errors) },
67 { "tx_dropped", IGB_NETDEV_STAT(stats.tx_dropped) },
68 { "multicast", IGB_STAT(stats.mprc) },
69 { "collisions", IGB_STAT(stats.colc) },
70 { "rx_length_errors", IGB_NETDEV_STAT(stats.rx_length_errors) },
71 { "rx_over_errors", IGB_NETDEV_STAT(stats.rx_over_errors) },
72 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
73 { "rx_frame_errors", IGB_NETDEV_STAT(stats.rx_frame_errors) },
74 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
75 { "rx_queue_drop_packet_count", IGB_NETDEV_STAT(stats.rx_fifo_errors) },
76 { "rx_missed_errors", IGB_STAT(stats.mpc) },
77 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
78 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
79 { "tx_fifo_errors", IGB_NETDEV_STAT(stats.tx_fifo_errors) },
80 { "tx_heartbeat_errors", IGB_NETDEV_STAT(stats.tx_heartbeat_errors) },
81 { "tx_window_errors", IGB_STAT(stats.latecol) },
82 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
83 { "tx_deferred_ok", IGB_STAT(stats.dc) },
84 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
85 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
86 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
87 { "rx_long_length_errors", IGB_STAT(stats.roc) },
88 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
89 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
90 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
91 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
92 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
93 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
94 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
95 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
96 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
97 { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
98 { "tx_smbus", IGB_STAT(stats.mgptc) },
99 { "rx_smbus", IGB_STAT(stats.mgprc) },
100 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
103 #define IGB_QUEUE_STATS_LEN \
104 (((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues)* \
105 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
106 ((((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
107 (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
108 #define IGB_GLOBAL_STATS_LEN \
109 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
110 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
111 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
112 "Register test (offline)", "Eeprom test (offline)",
113 "Interrupt test (offline)", "Loopback test (offline)",
114 "Link test (on/offline)"
116 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
118 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
120 struct igb_adapter *adapter = netdev_priv(netdev);
121 struct e1000_hw *hw = &adapter->hw;
123 if (hw->phy.media_type == e1000_media_type_copper) {
125 ecmd->supported = (SUPPORTED_10baseT_Half |
126 SUPPORTED_10baseT_Full |
127 SUPPORTED_100baseT_Half |
128 SUPPORTED_100baseT_Full |
129 SUPPORTED_1000baseT_Full|
130 SUPPORTED_Autoneg |
131 SUPPORTED_TP);
132 ecmd->advertising = ADVERTISED_TP;
134 if (hw->mac.autoneg == 1) {
135 ecmd->advertising |= ADVERTISED_Autoneg;
136 /* the e1000 autoneg seems to match ethtool nicely */
137 ecmd->advertising |= hw->phy.autoneg_advertised;
140 ecmd->port = PORT_TP;
141 ecmd->phy_address = hw->phy.addr;
142 } else {
143 ecmd->supported = (SUPPORTED_1000baseT_Full |
144 SUPPORTED_FIBRE |
145 SUPPORTED_Autoneg);
147 ecmd->advertising = (ADVERTISED_1000baseT_Full |
148 ADVERTISED_FIBRE |
149 ADVERTISED_Autoneg);
151 ecmd->port = PORT_FIBRE;
154 ecmd->transceiver = XCVR_INTERNAL;
156 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
158 adapter->hw.mac.ops.get_speed_and_duplex(hw,
159 &adapter->link_speed,
160 &adapter->link_duplex);
161 ecmd->speed = adapter->link_speed;
163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
166 if (adapter->link_duplex == FULL_DUPLEX)
167 ecmd->duplex = DUPLEX_FULL;
168 else
169 ecmd->duplex = DUPLEX_HALF;
170 } else {
171 ecmd->speed = -1;
172 ecmd->duplex = -1;
175 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176 return 0;
179 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
181 struct igb_adapter *adapter = netdev_priv(netdev);
182 struct e1000_hw *hw = &adapter->hw;
184 /* When SoL/IDER sessions are active, autoneg/speed/duplex
185 * cannot be changed */
186 if (igb_check_reset_block(hw)) {
187 dev_err(&adapter->pdev->dev, "Cannot change link "
188 "characteristics when SoL/IDER is active.\n");
189 return -EINVAL;
192 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
193 msleep(1);
195 if (ecmd->autoneg == AUTONEG_ENABLE) {
196 hw->mac.autoneg = 1;
197 hw->phy.autoneg_advertised = ecmd->advertising |
198 ADVERTISED_TP |
199 ADVERTISED_Autoneg;
200 ecmd->advertising = hw->phy.autoneg_advertised;
201 if (adapter->fc_autoneg)
202 hw->fc.requested_mode = e1000_fc_default;
203 } else {
204 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
205 clear_bit(__IGB_RESETTING, &adapter->state);
206 return -EINVAL;
210 /* reset the link */
211 if (netif_running(adapter->netdev)) {
212 igb_down(adapter);
213 igb_up(adapter);
214 } else
215 igb_reset(adapter);
217 clear_bit(__IGB_RESETTING, &adapter->state);
218 return 0;
221 static void igb_get_pauseparam(struct net_device *netdev,
222 struct ethtool_pauseparam *pause)
224 struct igb_adapter *adapter = netdev_priv(netdev);
225 struct e1000_hw *hw = &adapter->hw;
227 pause->autoneg =
228 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
230 if (hw->fc.current_mode == e1000_fc_rx_pause)
231 pause->rx_pause = 1;
232 else if (hw->fc.current_mode == e1000_fc_tx_pause)
233 pause->tx_pause = 1;
234 else if (hw->fc.current_mode == e1000_fc_full) {
235 pause->rx_pause = 1;
236 pause->tx_pause = 1;
240 static int igb_set_pauseparam(struct net_device *netdev,
241 struct ethtool_pauseparam *pause)
243 struct igb_adapter *adapter = netdev_priv(netdev);
244 struct e1000_hw *hw = &adapter->hw;
245 int retval = 0;
247 adapter->fc_autoneg = pause->autoneg;
249 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
250 msleep(1);
252 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
253 hw->fc.requested_mode = e1000_fc_default;
254 if (netif_running(adapter->netdev)) {
255 igb_down(adapter);
256 igb_up(adapter);
257 } else
258 igb_reset(adapter);
259 } else {
260 if (pause->rx_pause && pause->tx_pause)
261 hw->fc.requested_mode = e1000_fc_full;
262 else if (pause->rx_pause && !pause->tx_pause)
263 hw->fc.requested_mode = e1000_fc_rx_pause;
264 else if (!pause->rx_pause && pause->tx_pause)
265 hw->fc.requested_mode = e1000_fc_tx_pause;
266 else if (!pause->rx_pause && !pause->tx_pause)
267 hw->fc.requested_mode = e1000_fc_none;
269 hw->fc.current_mode = hw->fc.requested_mode;
271 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
272 igb_force_mac_fc(hw) : igb_setup_link(hw));
275 clear_bit(__IGB_RESETTING, &adapter->state);
276 return retval;
279 static u32 igb_get_rx_csum(struct net_device *netdev)
281 struct igb_adapter *adapter = netdev_priv(netdev);
282 return !!(adapter->rx_ring[0].flags & IGB_RING_FLAG_RX_CSUM);
285 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
287 struct igb_adapter *adapter = netdev_priv(netdev);
288 int i;
290 for (i = 0; i < adapter->num_rx_queues; i++) {
291 if (data)
292 adapter->rx_ring[i].flags |= IGB_RING_FLAG_RX_CSUM;
293 else
294 adapter->rx_ring[i].flags &= ~IGB_RING_FLAG_RX_CSUM;
297 return 0;
300 static u32 igb_get_tx_csum(struct net_device *netdev)
302 return (netdev->features & NETIF_F_IP_CSUM) != 0;
305 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
307 struct igb_adapter *adapter = netdev_priv(netdev);
309 if (data) {
310 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
311 if (adapter->hw.mac.type == e1000_82576)
312 netdev->features |= NETIF_F_SCTP_CSUM;
313 } else {
314 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
315 NETIF_F_SCTP_CSUM);
318 return 0;
321 static int igb_set_tso(struct net_device *netdev, u32 data)
323 struct igb_adapter *adapter = netdev_priv(netdev);
325 if (data) {
326 netdev->features |= NETIF_F_TSO;
327 netdev->features |= NETIF_F_TSO6;
328 } else {
329 netdev->features &= ~NETIF_F_TSO;
330 netdev->features &= ~NETIF_F_TSO6;
333 dev_info(&adapter->pdev->dev, "TSO is %s\n",
334 data ? "Enabled" : "Disabled");
335 return 0;
338 static u32 igb_get_msglevel(struct net_device *netdev)
340 struct igb_adapter *adapter = netdev_priv(netdev);
341 return adapter->msg_enable;
344 static void igb_set_msglevel(struct net_device *netdev, u32 data)
346 struct igb_adapter *adapter = netdev_priv(netdev);
347 adapter->msg_enable = data;
350 static int igb_get_regs_len(struct net_device *netdev)
352 #define IGB_REGS_LEN 551
353 return IGB_REGS_LEN * sizeof(u32);
356 static void igb_get_regs(struct net_device *netdev,
357 struct ethtool_regs *regs, void *p)
359 struct igb_adapter *adapter = netdev_priv(netdev);
360 struct e1000_hw *hw = &adapter->hw;
361 u32 *regs_buff = p;
362 u8 i;
364 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
366 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
368 /* General Registers */
369 regs_buff[0] = rd32(E1000_CTRL);
370 regs_buff[1] = rd32(E1000_STATUS);
371 regs_buff[2] = rd32(E1000_CTRL_EXT);
372 regs_buff[3] = rd32(E1000_MDIC);
373 regs_buff[4] = rd32(E1000_SCTL);
374 regs_buff[5] = rd32(E1000_CONNSW);
375 regs_buff[6] = rd32(E1000_VET);
376 regs_buff[7] = rd32(E1000_LEDCTL);
377 regs_buff[8] = rd32(E1000_PBA);
378 regs_buff[9] = rd32(E1000_PBS);
379 regs_buff[10] = rd32(E1000_FRTIMER);
380 regs_buff[11] = rd32(E1000_TCPTIMER);
382 /* NVM Register */
383 regs_buff[12] = rd32(E1000_EECD);
385 /* Interrupt */
386 /* Reading EICS for EICR because they read the
387 * same but EICS does not clear on read */
388 regs_buff[13] = rd32(E1000_EICS);
389 regs_buff[14] = rd32(E1000_EICS);
390 regs_buff[15] = rd32(E1000_EIMS);
391 regs_buff[16] = rd32(E1000_EIMC);
392 regs_buff[17] = rd32(E1000_EIAC);
393 regs_buff[18] = rd32(E1000_EIAM);
394 /* Reading ICS for ICR because they read the
395 * same but ICS does not clear on read */
396 regs_buff[19] = rd32(E1000_ICS);
397 regs_buff[20] = rd32(E1000_ICS);
398 regs_buff[21] = rd32(E1000_IMS);
399 regs_buff[22] = rd32(E1000_IMC);
400 regs_buff[23] = rd32(E1000_IAC);
401 regs_buff[24] = rd32(E1000_IAM);
402 regs_buff[25] = rd32(E1000_IMIRVP);
404 /* Flow Control */
405 regs_buff[26] = rd32(E1000_FCAL);
406 regs_buff[27] = rd32(E1000_FCAH);
407 regs_buff[28] = rd32(E1000_FCTTV);
408 regs_buff[29] = rd32(E1000_FCRTL);
409 regs_buff[30] = rd32(E1000_FCRTH);
410 regs_buff[31] = rd32(E1000_FCRTV);
412 /* Receive */
413 regs_buff[32] = rd32(E1000_RCTL);
414 regs_buff[33] = rd32(E1000_RXCSUM);
415 regs_buff[34] = rd32(E1000_RLPML);
416 regs_buff[35] = rd32(E1000_RFCTL);
417 regs_buff[36] = rd32(E1000_MRQC);
418 regs_buff[37] = rd32(E1000_VT_CTL);
420 /* Transmit */
421 regs_buff[38] = rd32(E1000_TCTL);
422 regs_buff[39] = rd32(E1000_TCTL_EXT);
423 regs_buff[40] = rd32(E1000_TIPG);
424 regs_buff[41] = rd32(E1000_DTXCTL);
426 /* Wake Up */
427 regs_buff[42] = rd32(E1000_WUC);
428 regs_buff[43] = rd32(E1000_WUFC);
429 regs_buff[44] = rd32(E1000_WUS);
430 regs_buff[45] = rd32(E1000_IPAV);
431 regs_buff[46] = rd32(E1000_WUPL);
433 /* MAC */
434 regs_buff[47] = rd32(E1000_PCS_CFG0);
435 regs_buff[48] = rd32(E1000_PCS_LCTL);
436 regs_buff[49] = rd32(E1000_PCS_LSTAT);
437 regs_buff[50] = rd32(E1000_PCS_ANADV);
438 regs_buff[51] = rd32(E1000_PCS_LPAB);
439 regs_buff[52] = rd32(E1000_PCS_NPTX);
440 regs_buff[53] = rd32(E1000_PCS_LPABNP);
442 /* Statistics */
443 regs_buff[54] = adapter->stats.crcerrs;
444 regs_buff[55] = adapter->stats.algnerrc;
445 regs_buff[56] = adapter->stats.symerrs;
446 regs_buff[57] = adapter->stats.rxerrc;
447 regs_buff[58] = adapter->stats.mpc;
448 regs_buff[59] = adapter->stats.scc;
449 regs_buff[60] = adapter->stats.ecol;
450 regs_buff[61] = adapter->stats.mcc;
451 regs_buff[62] = adapter->stats.latecol;
452 regs_buff[63] = adapter->stats.colc;
453 regs_buff[64] = adapter->stats.dc;
454 regs_buff[65] = adapter->stats.tncrs;
455 regs_buff[66] = adapter->stats.sec;
456 regs_buff[67] = adapter->stats.htdpmc;
457 regs_buff[68] = adapter->stats.rlec;
458 regs_buff[69] = adapter->stats.xonrxc;
459 regs_buff[70] = adapter->stats.xontxc;
460 regs_buff[71] = adapter->stats.xoffrxc;
461 regs_buff[72] = adapter->stats.xofftxc;
462 regs_buff[73] = adapter->stats.fcruc;
463 regs_buff[74] = adapter->stats.prc64;
464 regs_buff[75] = adapter->stats.prc127;
465 regs_buff[76] = adapter->stats.prc255;
466 regs_buff[77] = adapter->stats.prc511;
467 regs_buff[78] = adapter->stats.prc1023;
468 regs_buff[79] = adapter->stats.prc1522;
469 regs_buff[80] = adapter->stats.gprc;
470 regs_buff[81] = adapter->stats.bprc;
471 regs_buff[82] = adapter->stats.mprc;
472 regs_buff[83] = adapter->stats.gptc;
473 regs_buff[84] = adapter->stats.gorc;
474 regs_buff[86] = adapter->stats.gotc;
475 regs_buff[88] = adapter->stats.rnbc;
476 regs_buff[89] = adapter->stats.ruc;
477 regs_buff[90] = adapter->stats.rfc;
478 regs_buff[91] = adapter->stats.roc;
479 regs_buff[92] = adapter->stats.rjc;
480 regs_buff[93] = adapter->stats.mgprc;
481 regs_buff[94] = adapter->stats.mgpdc;
482 regs_buff[95] = adapter->stats.mgptc;
483 regs_buff[96] = adapter->stats.tor;
484 regs_buff[98] = adapter->stats.tot;
485 regs_buff[100] = adapter->stats.tpr;
486 regs_buff[101] = adapter->stats.tpt;
487 regs_buff[102] = adapter->stats.ptc64;
488 regs_buff[103] = adapter->stats.ptc127;
489 regs_buff[104] = adapter->stats.ptc255;
490 regs_buff[105] = adapter->stats.ptc511;
491 regs_buff[106] = adapter->stats.ptc1023;
492 regs_buff[107] = adapter->stats.ptc1522;
493 regs_buff[108] = adapter->stats.mptc;
494 regs_buff[109] = adapter->stats.bptc;
495 regs_buff[110] = adapter->stats.tsctc;
496 regs_buff[111] = adapter->stats.iac;
497 regs_buff[112] = adapter->stats.rpthc;
498 regs_buff[113] = adapter->stats.hgptc;
499 regs_buff[114] = adapter->stats.hgorc;
500 regs_buff[116] = adapter->stats.hgotc;
501 regs_buff[118] = adapter->stats.lenerrs;
502 regs_buff[119] = adapter->stats.scvpc;
503 regs_buff[120] = adapter->stats.hrmpc;
505 /* These should probably be added to e1000_regs.h instead */
506 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
507 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
508 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
509 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
510 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
511 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
512 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
514 for (i = 0; i < 4; i++)
515 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
516 for (i = 0; i < 4; i++)
517 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
518 for (i = 0; i < 4; i++)
519 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
520 for (i = 0; i < 4; i++)
521 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
522 for (i = 0; i < 4; i++)
523 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
524 for (i = 0; i < 4; i++)
525 regs_buff[141 + i] = rd32(E1000_RDH(i));
526 for (i = 0; i < 4; i++)
527 regs_buff[145 + i] = rd32(E1000_RDT(i));
528 for (i = 0; i < 4; i++)
529 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
531 for (i = 0; i < 10; i++)
532 regs_buff[153 + i] = rd32(E1000_EITR(i));
533 for (i = 0; i < 8; i++)
534 regs_buff[163 + i] = rd32(E1000_IMIR(i));
535 for (i = 0; i < 8; i++)
536 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
537 for (i = 0; i < 16; i++)
538 regs_buff[179 + i] = rd32(E1000_RAL(i));
539 for (i = 0; i < 16; i++)
540 regs_buff[195 + i] = rd32(E1000_RAH(i));
542 for (i = 0; i < 4; i++)
543 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
544 for (i = 0; i < 4; i++)
545 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
546 for (i = 0; i < 4; i++)
547 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
548 for (i = 0; i < 4; i++)
549 regs_buff[223 + i] = rd32(E1000_TDH(i));
550 for (i = 0; i < 4; i++)
551 regs_buff[227 + i] = rd32(E1000_TDT(i));
552 for (i = 0; i < 4; i++)
553 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
554 for (i = 0; i < 4; i++)
555 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
556 for (i = 0; i < 4; i++)
557 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
558 for (i = 0; i < 4; i++)
559 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
561 for (i = 0; i < 4; i++)
562 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
563 for (i = 0; i < 4; i++)
564 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
565 for (i = 0; i < 32; i++)
566 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
567 for (i = 0; i < 128; i++)
568 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
569 for (i = 0; i < 128; i++)
570 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
571 for (i = 0; i < 4; i++)
572 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
574 regs_buff[547] = rd32(E1000_TDFH);
575 regs_buff[548] = rd32(E1000_TDFT);
576 regs_buff[549] = rd32(E1000_TDFHS);
577 regs_buff[550] = rd32(E1000_TDFPC);
581 static int igb_get_eeprom_len(struct net_device *netdev)
583 struct igb_adapter *adapter = netdev_priv(netdev);
584 return adapter->hw.nvm.word_size * 2;
587 static int igb_get_eeprom(struct net_device *netdev,
588 struct ethtool_eeprom *eeprom, u8 *bytes)
590 struct igb_adapter *adapter = netdev_priv(netdev);
591 struct e1000_hw *hw = &adapter->hw;
592 u16 *eeprom_buff;
593 int first_word, last_word;
594 int ret_val = 0;
595 u16 i;
597 if (eeprom->len == 0)
598 return -EINVAL;
600 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
602 first_word = eeprom->offset >> 1;
603 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
605 eeprom_buff = kmalloc(sizeof(u16) *
606 (last_word - first_word + 1), GFP_KERNEL);
607 if (!eeprom_buff)
608 return -ENOMEM;
610 if (hw->nvm.type == e1000_nvm_eeprom_spi)
611 ret_val = hw->nvm.ops.read(hw, first_word,
612 last_word - first_word + 1,
613 eeprom_buff);
614 else {
615 for (i = 0; i < last_word - first_word + 1; i++) {
616 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
617 &eeprom_buff[i]);
618 if (ret_val)
619 break;
623 /* Device's eeprom is always little-endian, word addressable */
624 for (i = 0; i < last_word - first_word + 1; i++)
625 le16_to_cpus(&eeprom_buff[i]);
627 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
628 eeprom->len);
629 kfree(eeprom_buff);
631 return ret_val;
634 static int igb_set_eeprom(struct net_device *netdev,
635 struct ethtool_eeprom *eeprom, u8 *bytes)
637 struct igb_adapter *adapter = netdev_priv(netdev);
638 struct e1000_hw *hw = &adapter->hw;
639 u16 *eeprom_buff;
640 void *ptr;
641 int max_len, first_word, last_word, ret_val = 0;
642 u16 i;
644 if (eeprom->len == 0)
645 return -EOPNOTSUPP;
647 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
648 return -EFAULT;
650 max_len = hw->nvm.word_size * 2;
652 first_word = eeprom->offset >> 1;
653 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
654 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
655 if (!eeprom_buff)
656 return -ENOMEM;
658 ptr = (void *)eeprom_buff;
660 if (eeprom->offset & 1) {
661 /* need read/modify/write of first changed EEPROM word */
662 /* only the second byte of the word is being modified */
663 ret_val = hw->nvm.ops.read(hw, first_word, 1,
664 &eeprom_buff[0]);
665 ptr++;
667 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
668 /* need read/modify/write of last changed EEPROM word */
669 /* only the first byte of the word is being modified */
670 ret_val = hw->nvm.ops.read(hw, last_word, 1,
671 &eeprom_buff[last_word - first_word]);
674 /* Device's eeprom is always little-endian, word addressable */
675 for (i = 0; i < last_word - first_word + 1; i++)
676 le16_to_cpus(&eeprom_buff[i]);
678 memcpy(ptr, bytes, eeprom->len);
680 for (i = 0; i < last_word - first_word + 1; i++)
681 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
683 ret_val = hw->nvm.ops.write(hw, first_word,
684 last_word - first_word + 1, eeprom_buff);
686 /* Update the checksum over the first part of the EEPROM if needed
687 * and flush shadow RAM for 82573 controllers */
688 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
689 igb_update_nvm_checksum(hw);
691 kfree(eeprom_buff);
692 return ret_val;
695 static void igb_get_drvinfo(struct net_device *netdev,
696 struct ethtool_drvinfo *drvinfo)
698 struct igb_adapter *adapter = netdev_priv(netdev);
699 char firmware_version[32];
700 u16 eeprom_data;
702 strncpy(drvinfo->driver, igb_driver_name, 32);
703 strncpy(drvinfo->version, igb_driver_version, 32);
705 /* EEPROM image version # is reported as firmware version # for
706 * 82575 controllers */
707 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
708 sprintf(firmware_version, "%d.%d-%d",
709 (eeprom_data & 0xF000) >> 12,
710 (eeprom_data & 0x0FF0) >> 4,
711 eeprom_data & 0x000F);
713 strncpy(drvinfo->fw_version, firmware_version, 32);
714 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
715 drvinfo->n_stats = IGB_STATS_LEN;
716 drvinfo->testinfo_len = IGB_TEST_LEN;
717 drvinfo->regdump_len = igb_get_regs_len(netdev);
718 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
721 static void igb_get_ringparam(struct net_device *netdev,
722 struct ethtool_ringparam *ring)
724 struct igb_adapter *adapter = netdev_priv(netdev);
726 ring->rx_max_pending = IGB_MAX_RXD;
727 ring->tx_max_pending = IGB_MAX_TXD;
728 ring->rx_mini_max_pending = 0;
729 ring->rx_jumbo_max_pending = 0;
730 ring->rx_pending = adapter->rx_ring_count;
731 ring->tx_pending = adapter->tx_ring_count;
732 ring->rx_mini_pending = 0;
733 ring->rx_jumbo_pending = 0;
736 static int igb_set_ringparam(struct net_device *netdev,
737 struct ethtool_ringparam *ring)
739 struct igb_adapter *adapter = netdev_priv(netdev);
740 struct igb_ring *temp_ring;
741 int i, err = 0;
742 u32 new_rx_count, new_tx_count;
744 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
745 return -EINVAL;
747 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
748 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
749 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
751 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
752 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
753 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
755 if ((new_tx_count == adapter->tx_ring_count) &&
756 (new_rx_count == adapter->rx_ring_count)) {
757 /* nothing to do */
758 return 0;
761 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
762 msleep(1);
764 if (!netif_running(adapter->netdev)) {
765 for (i = 0; i < adapter->num_tx_queues; i++)
766 adapter->tx_ring[i].count = new_tx_count;
767 for (i = 0; i < adapter->num_rx_queues; i++)
768 adapter->rx_ring[i].count = new_rx_count;
769 adapter->tx_ring_count = new_tx_count;
770 adapter->rx_ring_count = new_rx_count;
771 goto clear_reset;
774 if (adapter->num_tx_queues > adapter->num_rx_queues)
775 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
776 else
777 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
779 if (!temp_ring) {
780 err = -ENOMEM;
781 goto clear_reset;
784 igb_down(adapter);
787 * We can't just free everything and then setup again,
788 * because the ISRs in MSI-X mode get passed pointers
789 * to the tx and rx ring structs.
791 if (new_tx_count != adapter->tx_ring_count) {
792 memcpy(temp_ring, adapter->tx_ring,
793 adapter->num_tx_queues * sizeof(struct igb_ring));
795 for (i = 0; i < adapter->num_tx_queues; i++) {
796 temp_ring[i].count = new_tx_count;
797 err = igb_setup_tx_resources(&temp_ring[i]);
798 if (err) {
799 while (i) {
800 i--;
801 igb_free_tx_resources(&temp_ring[i]);
803 goto err_setup;
807 for (i = 0; i < adapter->num_tx_queues; i++)
808 igb_free_tx_resources(&adapter->tx_ring[i]);
810 memcpy(adapter->tx_ring, temp_ring,
811 adapter->num_tx_queues * sizeof(struct igb_ring));
813 adapter->tx_ring_count = new_tx_count;
816 if (new_rx_count != adapter->rx_ring->count) {
817 memcpy(temp_ring, adapter->rx_ring,
818 adapter->num_rx_queues * sizeof(struct igb_ring));
820 for (i = 0; i < adapter->num_rx_queues; i++) {
821 temp_ring[i].count = new_rx_count;
822 err = igb_setup_rx_resources(&temp_ring[i]);
823 if (err) {
824 while (i) {
825 i--;
826 igb_free_rx_resources(&temp_ring[i]);
828 goto err_setup;
833 for (i = 0; i < adapter->num_rx_queues; i++)
834 igb_free_rx_resources(&adapter->rx_ring[i]);
836 memcpy(adapter->rx_ring, temp_ring,
837 adapter->num_rx_queues * sizeof(struct igb_ring));
839 adapter->rx_ring_count = new_rx_count;
841 err_setup:
842 igb_up(adapter);
843 vfree(temp_ring);
844 clear_reset:
845 clear_bit(__IGB_RESETTING, &adapter->state);
846 return err;
849 /* ethtool register test data */
850 struct igb_reg_test {
851 u16 reg;
852 u16 reg_offset;
853 u16 array_len;
854 u16 test_type;
855 u32 mask;
856 u32 write;
859 /* In the hardware, registers are laid out either singly, in arrays
860 * spaced 0x100 bytes apart, or in contiguous tables. We assume
861 * most tests take place on arrays or single registers (handled
862 * as a single-element array) and special-case the tables.
863 * Table tests are always pattern tests.
865 * We also make provision for some required setup steps by specifying
866 * registers to be written without any read-back testing.
869 #define PATTERN_TEST 1
870 #define SET_READ_TEST 2
871 #define WRITE_NO_TEST 3
872 #define TABLE32_TEST 4
873 #define TABLE64_TEST_LO 5
874 #define TABLE64_TEST_HI 6
876 /* 82576 reg test */
877 static struct igb_reg_test reg_test_82576[] = {
878 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
879 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
880 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
881 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
882 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
883 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
884 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
885 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
886 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
887 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
888 /* Enable all RX queues before testing. */
889 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
890 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
891 /* RDH is read-only for 82576, only test RDT. */
892 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
893 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
894 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
895 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
896 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
897 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
898 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
899 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
900 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
901 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
902 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
903 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
904 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
905 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
906 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
907 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
908 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
909 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
910 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
911 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
912 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
913 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
914 { 0, 0, 0, 0 }
917 /* 82575 register test */
918 static struct igb_reg_test reg_test_82575[] = {
919 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
920 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
921 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
922 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
923 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
924 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
925 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
926 /* Enable all four RX queues before testing. */
927 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
928 /* RDH is read-only for 82575, only test RDT. */
929 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
930 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
931 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
932 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
933 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
934 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
935 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
936 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
937 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
938 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
939 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
940 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
941 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
942 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
943 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
944 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
945 { 0, 0, 0, 0 }
948 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
949 int reg, u32 mask, u32 write)
951 struct e1000_hw *hw = &adapter->hw;
952 u32 pat, val;
953 u32 _test[] =
954 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
955 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
956 wr32(reg, (_test[pat] & write));
957 val = rd32(reg);
958 if (val != (_test[pat] & write & mask)) {
959 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
960 "failed: got 0x%08X expected 0x%08X\n",
961 reg, val, (_test[pat] & write & mask));
962 *data = reg;
963 return 1;
966 return 0;
969 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
970 int reg, u32 mask, u32 write)
972 struct e1000_hw *hw = &adapter->hw;
973 u32 val;
974 wr32(reg, write & mask);
975 val = rd32(reg);
976 if ((write & mask) != (val & mask)) {
977 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
978 " got 0x%08X expected 0x%08X\n", reg,
979 (val & mask), (write & mask));
980 *data = reg;
981 return 1;
983 return 0;
986 #define REG_PATTERN_TEST(reg, mask, write) \
987 do { \
988 if (reg_pattern_test(adapter, data, reg, mask, write)) \
989 return 1; \
990 } while (0)
992 #define REG_SET_AND_CHECK(reg, mask, write) \
993 do { \
994 if (reg_set_and_check(adapter, data, reg, mask, write)) \
995 return 1; \
996 } while (0)
998 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1000 struct e1000_hw *hw = &adapter->hw;
1001 struct igb_reg_test *test;
1002 u32 value, before, after;
1003 u32 i, toggle;
1005 toggle = 0x7FFFF3FF;
1007 switch (adapter->hw.mac.type) {
1008 case e1000_82576:
1009 test = reg_test_82576;
1010 break;
1011 default:
1012 test = reg_test_82575;
1013 break;
1016 /* Because the status register is such a special case,
1017 * we handle it separately from the rest of the register
1018 * tests. Some bits are read-only, some toggle, and some
1019 * are writable on newer MACs.
1021 before = rd32(E1000_STATUS);
1022 value = (rd32(E1000_STATUS) & toggle);
1023 wr32(E1000_STATUS, toggle);
1024 after = rd32(E1000_STATUS) & toggle;
1025 if (value != after) {
1026 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1027 "got: 0x%08X expected: 0x%08X\n", after, value);
1028 *data = 1;
1029 return 1;
1031 /* restore previous status */
1032 wr32(E1000_STATUS, before);
1034 /* Perform the remainder of the register test, looping through
1035 * the test table until we either fail or reach the null entry.
1037 while (test->reg) {
1038 for (i = 0; i < test->array_len; i++) {
1039 switch (test->test_type) {
1040 case PATTERN_TEST:
1041 REG_PATTERN_TEST(test->reg +
1042 (i * test->reg_offset),
1043 test->mask,
1044 test->write);
1045 break;
1046 case SET_READ_TEST:
1047 REG_SET_AND_CHECK(test->reg +
1048 (i * test->reg_offset),
1049 test->mask,
1050 test->write);
1051 break;
1052 case WRITE_NO_TEST:
1053 writel(test->write,
1054 (adapter->hw.hw_addr + test->reg)
1055 + (i * test->reg_offset));
1056 break;
1057 case TABLE32_TEST:
1058 REG_PATTERN_TEST(test->reg + (i * 4),
1059 test->mask,
1060 test->write);
1061 break;
1062 case TABLE64_TEST_LO:
1063 REG_PATTERN_TEST(test->reg + (i * 8),
1064 test->mask,
1065 test->write);
1066 break;
1067 case TABLE64_TEST_HI:
1068 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1069 test->mask,
1070 test->write);
1071 break;
1074 test++;
1077 *data = 0;
1078 return 0;
1081 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1083 u16 temp;
1084 u16 checksum = 0;
1085 u16 i;
1087 *data = 0;
1088 /* Read and add up the contents of the EEPROM */
1089 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1090 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
1091 < 0) {
1092 *data = 1;
1093 break;
1095 checksum += temp;
1098 /* If Checksum is not Correct return error else test passed */
1099 if ((checksum != (u16) NVM_SUM) && !(*data))
1100 *data = 2;
1102 return *data;
1105 static irqreturn_t igb_test_intr(int irq, void *data)
1107 struct net_device *netdev = (struct net_device *) data;
1108 struct igb_adapter *adapter = netdev_priv(netdev);
1109 struct e1000_hw *hw = &adapter->hw;
1111 adapter->test_icr |= rd32(E1000_ICR);
1113 return IRQ_HANDLED;
1116 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1118 struct e1000_hw *hw = &adapter->hw;
1119 struct net_device *netdev = adapter->netdev;
1120 u32 mask, ics_mask, i = 0, shared_int = true;
1121 u32 irq = adapter->pdev->irq;
1123 *data = 0;
1125 /* Hook up test interrupt handler just for this test */
1126 if (adapter->msix_entries)
1127 /* NOTE: we don't test MSI-X interrupts here, yet */
1128 return 0;
1130 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1131 shared_int = false;
1132 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1133 *data = 1;
1134 return -1;
1136 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1137 netdev->name, netdev)) {
1138 shared_int = false;
1139 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1140 netdev->name, netdev)) {
1141 *data = 1;
1142 return -1;
1144 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1145 (shared_int ? "shared" : "unshared"));
1146 /* Disable all the interrupts */
1147 wr32(E1000_IMC, 0xFFFFFFFF);
1148 msleep(10);
1150 /* Define all writable bits for ICS */
1151 switch(hw->mac.type) {
1152 case e1000_82575:
1153 ics_mask = 0x37F47EDD;
1154 break;
1155 case e1000_82576:
1156 ics_mask = 0x77D4FBFD;
1157 break;
1158 default:
1159 ics_mask = 0x7FFFFFFF;
1160 break;
1163 /* Test each interrupt */
1164 for (; i < 31; i++) {
1165 /* Interrupt to test */
1166 mask = 1 << i;
1168 if (!(mask & ics_mask))
1169 continue;
1171 if (!shared_int) {
1172 /* Disable the interrupt to be reported in
1173 * the cause register and then force the same
1174 * interrupt and see if one gets posted. If
1175 * an interrupt was posted to the bus, the
1176 * test failed.
1178 adapter->test_icr = 0;
1180 /* Flush any pending interrupts */
1181 wr32(E1000_ICR, ~0);
1183 wr32(E1000_IMC, mask);
1184 wr32(E1000_ICS, mask);
1185 msleep(10);
1187 if (adapter->test_icr & mask) {
1188 *data = 3;
1189 break;
1193 /* Enable the interrupt to be reported in
1194 * the cause register and then force the same
1195 * interrupt and see if one gets posted. If
1196 * an interrupt was not posted to the bus, the
1197 * test failed.
1199 adapter->test_icr = 0;
1201 /* Flush any pending interrupts */
1202 wr32(E1000_ICR, ~0);
1204 wr32(E1000_IMS, mask);
1205 wr32(E1000_ICS, mask);
1206 msleep(10);
1208 if (!(adapter->test_icr & mask)) {
1209 *data = 4;
1210 break;
1213 if (!shared_int) {
1214 /* Disable the other interrupts to be reported in
1215 * the cause register and then force the other
1216 * interrupts and see if any get posted. If
1217 * an interrupt was posted to the bus, the
1218 * test failed.
1220 adapter->test_icr = 0;
1222 /* Flush any pending interrupts */
1223 wr32(E1000_ICR, ~0);
1225 wr32(E1000_IMC, ~mask);
1226 wr32(E1000_ICS, ~mask);
1227 msleep(10);
1229 if (adapter->test_icr & mask) {
1230 *data = 5;
1231 break;
1236 /* Disable all the interrupts */
1237 wr32(E1000_IMC, ~0);
1238 msleep(10);
1240 /* Unhook test interrupt handler */
1241 free_irq(irq, netdev);
1243 return *data;
1246 static void igb_free_desc_rings(struct igb_adapter *adapter)
1248 igb_free_tx_resources(&adapter->test_tx_ring);
1249 igb_free_rx_resources(&adapter->test_rx_ring);
1252 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1254 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1255 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1256 struct e1000_hw *hw = &adapter->hw;
1257 int ret_val;
1259 /* Setup Tx descriptor ring and Tx buffers */
1260 tx_ring->count = IGB_DEFAULT_TXD;
1261 tx_ring->pdev = adapter->pdev;
1262 tx_ring->netdev = adapter->netdev;
1263 tx_ring->reg_idx = adapter->vfs_allocated_count;
1265 if (igb_setup_tx_resources(tx_ring)) {
1266 ret_val = 1;
1267 goto err_nomem;
1270 igb_setup_tctl(adapter);
1271 igb_configure_tx_ring(adapter, tx_ring);
1273 /* Setup Rx descriptor ring and Rx buffers */
1274 rx_ring->count = IGB_DEFAULT_RXD;
1275 rx_ring->pdev = adapter->pdev;
1276 rx_ring->netdev = adapter->netdev;
1277 rx_ring->rx_buffer_len = IGB_RXBUFFER_2048;
1278 rx_ring->reg_idx = adapter->vfs_allocated_count;
1280 if (igb_setup_rx_resources(rx_ring)) {
1281 ret_val = 3;
1282 goto err_nomem;
1285 /* set the default queue to queue 0 of PF */
1286 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1288 /* enable receive ring */
1289 igb_setup_rctl(adapter);
1290 igb_configure_rx_ring(adapter, rx_ring);
1292 igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring));
1294 return 0;
1296 err_nomem:
1297 igb_free_desc_rings(adapter);
1298 return ret_val;
1301 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1303 struct e1000_hw *hw = &adapter->hw;
1305 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1306 igb_write_phy_reg(hw, 29, 0x001F);
1307 igb_write_phy_reg(hw, 30, 0x8FFC);
1308 igb_write_phy_reg(hw, 29, 0x001A);
1309 igb_write_phy_reg(hw, 30, 0x8FF0);
1312 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1314 struct e1000_hw *hw = &adapter->hw;
1315 u32 ctrl_reg = 0;
1317 hw->mac.autoneg = false;
1319 if (hw->phy.type == e1000_phy_m88) {
1320 /* Auto-MDI/MDIX Off */
1321 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1322 /* reset to update Auto-MDI/MDIX */
1323 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1324 /* autoneg off */
1325 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1328 ctrl_reg = rd32(E1000_CTRL);
1330 /* force 1000, set loopback */
1331 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1333 /* Now set up the MAC to the same speed/duplex as the PHY. */
1334 ctrl_reg = rd32(E1000_CTRL);
1335 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1336 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1337 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1338 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1339 E1000_CTRL_FD | /* Force Duplex to FULL */
1340 E1000_CTRL_SLU); /* Set link up enable bit */
1342 if (hw->phy.type == e1000_phy_m88)
1343 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1345 wr32(E1000_CTRL, ctrl_reg);
1347 /* Disable the receiver on the PHY so when a cable is plugged in, the
1348 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1350 if (hw->phy.type == e1000_phy_m88)
1351 igb_phy_disable_receiver(adapter);
1353 udelay(500);
1355 return 0;
1358 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1360 return igb_integrated_phy_loopback(adapter);
1363 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1365 struct e1000_hw *hw = &adapter->hw;
1366 u32 reg;
1368 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1369 reg = rd32(E1000_RCTL);
1370 reg |= E1000_RCTL_LBM_TCVR;
1371 wr32(E1000_RCTL, reg);
1373 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1375 reg = rd32(E1000_CTRL);
1376 reg &= ~(E1000_CTRL_RFCE |
1377 E1000_CTRL_TFCE |
1378 E1000_CTRL_LRST);
1379 reg |= E1000_CTRL_SLU |
1380 E1000_CTRL_FD;
1381 wr32(E1000_CTRL, reg);
1383 /* Unset switch control to serdes energy detect */
1384 reg = rd32(E1000_CONNSW);
1385 reg &= ~E1000_CONNSW_ENRGSRC;
1386 wr32(E1000_CONNSW, reg);
1388 /* Set PCS register for forced speed */
1389 reg = rd32(E1000_PCS_LCTL);
1390 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1391 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1392 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1393 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1394 E1000_PCS_LCTL_FSD | /* Force Speed */
1395 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1396 wr32(E1000_PCS_LCTL, reg);
1398 return 0;
1399 } else if (hw->phy.media_type == e1000_media_type_copper) {
1400 return igb_set_phy_loopback(adapter);
1403 return 7;
1406 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1408 struct e1000_hw *hw = &adapter->hw;
1409 u32 rctl;
1410 u16 phy_reg;
1412 rctl = rd32(E1000_RCTL);
1413 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1414 wr32(E1000_RCTL, rctl);
1416 hw->mac.autoneg = true;
1417 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1418 if (phy_reg & MII_CR_LOOPBACK) {
1419 phy_reg &= ~MII_CR_LOOPBACK;
1420 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1421 igb_phy_sw_reset(hw);
1425 static void igb_create_lbtest_frame(struct sk_buff *skb,
1426 unsigned int frame_size)
1428 memset(skb->data, 0xFF, frame_size);
1429 frame_size &= ~1;
1430 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1431 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1432 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1435 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1437 frame_size &= ~1;
1438 if (*(skb->data + 3) == 0xFF)
1439 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1440 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1441 return 0;
1442 return 13;
1445 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1446 struct igb_ring *tx_ring,
1447 unsigned int size)
1449 union e1000_adv_rx_desc *rx_desc;
1450 struct igb_buffer *buffer_info;
1451 int rx_ntc, tx_ntc, count = 0;
1452 u32 staterr;
1454 /* initialize next to clean and descriptor values */
1455 rx_ntc = rx_ring->next_to_clean;
1456 tx_ntc = tx_ring->next_to_clean;
1457 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1458 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1460 while (staterr & E1000_RXD_STAT_DD) {
1461 /* check rx buffer */
1462 buffer_info = &rx_ring->buffer_info[rx_ntc];
1464 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1465 pci_unmap_single(rx_ring->pdev,
1466 buffer_info->dma,
1467 rx_ring->rx_buffer_len,
1468 PCI_DMA_FROMDEVICE);
1469 buffer_info->dma = 0;
1471 /* verify contents of skb */
1472 if (!igb_check_lbtest_frame(buffer_info->skb, size))
1473 count++;
1475 /* unmap buffer on tx side */
1476 buffer_info = &tx_ring->buffer_info[tx_ntc];
1477 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
1479 /* increment rx/tx next to clean counters */
1480 rx_ntc++;
1481 if (rx_ntc == rx_ring->count)
1482 rx_ntc = 0;
1483 tx_ntc++;
1484 if (tx_ntc == tx_ring->count)
1485 tx_ntc = 0;
1487 /* fetch next descriptor */
1488 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1489 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1492 /* re-map buffers to ring, store next to clean values */
1493 igb_alloc_rx_buffers_adv(rx_ring, count);
1494 rx_ring->next_to_clean = rx_ntc;
1495 tx_ring->next_to_clean = tx_ntc;
1497 return count;
1500 static int igb_run_loopback_test(struct igb_adapter *adapter)
1502 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1503 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1504 int i, j, lc, good_cnt, ret_val = 0;
1505 unsigned int size = 1024;
1506 netdev_tx_t tx_ret_val;
1507 struct sk_buff *skb;
1509 /* allocate test skb */
1510 skb = alloc_skb(size, GFP_KERNEL);
1511 if (!skb)
1512 return 11;
1514 /* place data into test skb */
1515 igb_create_lbtest_frame(skb, size);
1516 skb_put(skb, size);
1518 /* Calculate the loop count based on the largest descriptor ring
1519 * The idea is to wrap the largest ring a number of times using 64
1520 * send/receive pairs during each loop
1523 if (rx_ring->count <= tx_ring->count)
1524 lc = ((tx_ring->count / 64) * 2) + 1;
1525 else
1526 lc = ((rx_ring->count / 64) * 2) + 1;
1528 for (j = 0; j <= lc; j++) { /* loop count loop */
1529 /* reset count of good packets */
1530 good_cnt = 0;
1532 /* place 64 packets on the transmit queue*/
1533 for (i = 0; i < 64; i++) {
1534 skb_get(skb);
1535 tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring);
1536 if (tx_ret_val == NETDEV_TX_OK)
1537 good_cnt++;
1540 if (good_cnt != 64) {
1541 ret_val = 12;
1542 break;
1545 /* allow 200 milliseconds for packets to go from tx to rx */
1546 msleep(200);
1548 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1549 if (good_cnt != 64) {
1550 ret_val = 13;
1551 break;
1553 } /* end loop count loop */
1555 /* free the original skb */
1556 kfree_skb(skb);
1558 return ret_val;
1561 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1563 /* PHY loopback cannot be performed if SoL/IDER
1564 * sessions are active */
1565 if (igb_check_reset_block(&adapter->hw)) {
1566 dev_err(&adapter->pdev->dev,
1567 "Cannot do PHY loopback test "
1568 "when SoL/IDER is active.\n");
1569 *data = 0;
1570 goto out;
1572 *data = igb_setup_desc_rings(adapter);
1573 if (*data)
1574 goto out;
1575 *data = igb_setup_loopback_test(adapter);
1576 if (*data)
1577 goto err_loopback;
1578 *data = igb_run_loopback_test(adapter);
1579 igb_loopback_cleanup(adapter);
1581 err_loopback:
1582 igb_free_desc_rings(adapter);
1583 out:
1584 return *data;
1587 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1589 struct e1000_hw *hw = &adapter->hw;
1590 *data = 0;
1591 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1592 int i = 0;
1593 hw->mac.serdes_has_link = false;
1595 /* On some blade server designs, link establishment
1596 * could take as long as 2-3 minutes */
1597 do {
1598 hw->mac.ops.check_for_link(&adapter->hw);
1599 if (hw->mac.serdes_has_link)
1600 return *data;
1601 msleep(20);
1602 } while (i++ < 3750);
1604 *data = 1;
1605 } else {
1606 hw->mac.ops.check_for_link(&adapter->hw);
1607 if (hw->mac.autoneg)
1608 msleep(4000);
1610 if (!(rd32(E1000_STATUS) &
1611 E1000_STATUS_LU))
1612 *data = 1;
1614 return *data;
1617 static void igb_diag_test(struct net_device *netdev,
1618 struct ethtool_test *eth_test, u64 *data)
1620 struct igb_adapter *adapter = netdev_priv(netdev);
1621 u16 autoneg_advertised;
1622 u8 forced_speed_duplex, autoneg;
1623 bool if_running = netif_running(netdev);
1625 set_bit(__IGB_TESTING, &adapter->state);
1626 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1627 /* Offline tests */
1629 /* save speed, duplex, autoneg settings */
1630 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1631 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1632 autoneg = adapter->hw.mac.autoneg;
1634 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1636 /* Link test performed before hardware reset so autoneg doesn't
1637 * interfere with test result */
1638 if (igb_link_test(adapter, &data[4]))
1639 eth_test->flags |= ETH_TEST_FL_FAILED;
1641 if (if_running)
1642 /* indicate we're in test mode */
1643 dev_close(netdev);
1644 else
1645 igb_reset(adapter);
1647 if (igb_reg_test(adapter, &data[0]))
1648 eth_test->flags |= ETH_TEST_FL_FAILED;
1650 igb_reset(adapter);
1651 if (igb_eeprom_test(adapter, &data[1]))
1652 eth_test->flags |= ETH_TEST_FL_FAILED;
1654 igb_reset(adapter);
1655 if (igb_intr_test(adapter, &data[2]))
1656 eth_test->flags |= ETH_TEST_FL_FAILED;
1658 igb_reset(adapter);
1659 if (igb_loopback_test(adapter, &data[3]))
1660 eth_test->flags |= ETH_TEST_FL_FAILED;
1662 /* restore speed, duplex, autoneg settings */
1663 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1664 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1665 adapter->hw.mac.autoneg = autoneg;
1667 /* force this routine to wait until autoneg complete/timeout */
1668 adapter->hw.phy.autoneg_wait_to_complete = true;
1669 igb_reset(adapter);
1670 adapter->hw.phy.autoneg_wait_to_complete = false;
1672 clear_bit(__IGB_TESTING, &adapter->state);
1673 if (if_running)
1674 dev_open(netdev);
1675 } else {
1676 dev_info(&adapter->pdev->dev, "online testing starting\n");
1677 /* Online tests */
1678 if (igb_link_test(adapter, &data[4]))
1679 eth_test->flags |= ETH_TEST_FL_FAILED;
1681 /* Online tests aren't run; pass by default */
1682 data[0] = 0;
1683 data[1] = 0;
1684 data[2] = 0;
1685 data[3] = 0;
1687 clear_bit(__IGB_TESTING, &adapter->state);
1689 msleep_interruptible(4 * 1000);
1692 static int igb_wol_exclusion(struct igb_adapter *adapter,
1693 struct ethtool_wolinfo *wol)
1695 struct e1000_hw *hw = &adapter->hw;
1696 int retval = 1; /* fail by default */
1698 switch (hw->device_id) {
1699 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1700 /* WoL not supported */
1701 wol->supported = 0;
1702 break;
1703 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1704 case E1000_DEV_ID_82576_FIBER:
1705 case E1000_DEV_ID_82576_SERDES:
1706 /* Wake events not supported on port B */
1707 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1708 wol->supported = 0;
1709 break;
1711 /* return success for non excluded adapter ports */
1712 retval = 0;
1713 break;
1714 case E1000_DEV_ID_82576_QUAD_COPPER:
1715 /* quad port adapters only support WoL on port A */
1716 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1717 wol->supported = 0;
1718 break;
1720 /* return success for non excluded adapter ports */
1721 retval = 0;
1722 break;
1723 default:
1724 /* dual port cards only support WoL on port A from now on
1725 * unless it was enabled in the eeprom for port B
1726 * so exclude FUNC_1 ports from having WoL enabled */
1727 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1728 !adapter->eeprom_wol) {
1729 wol->supported = 0;
1730 break;
1733 retval = 0;
1736 return retval;
1739 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1741 struct igb_adapter *adapter = netdev_priv(netdev);
1743 wol->supported = WAKE_UCAST | WAKE_MCAST |
1744 WAKE_BCAST | WAKE_MAGIC;
1745 wol->wolopts = 0;
1747 /* this function will set ->supported = 0 and return 1 if wol is not
1748 * supported by this hardware */
1749 if (igb_wol_exclusion(adapter, wol) ||
1750 !device_can_wakeup(&adapter->pdev->dev))
1751 return;
1753 /* apply any specific unsupported masks here */
1754 switch (adapter->hw.device_id) {
1755 default:
1756 break;
1759 if (adapter->wol & E1000_WUFC_EX)
1760 wol->wolopts |= WAKE_UCAST;
1761 if (adapter->wol & E1000_WUFC_MC)
1762 wol->wolopts |= WAKE_MCAST;
1763 if (adapter->wol & E1000_WUFC_BC)
1764 wol->wolopts |= WAKE_BCAST;
1765 if (adapter->wol & E1000_WUFC_MAG)
1766 wol->wolopts |= WAKE_MAGIC;
1768 return;
1771 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1773 struct igb_adapter *adapter = netdev_priv(netdev);
1775 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1776 return -EOPNOTSUPP;
1778 if (igb_wol_exclusion(adapter, wol) ||
1779 !device_can_wakeup(&adapter->pdev->dev))
1780 return wol->wolopts ? -EOPNOTSUPP : 0;
1782 /* these settings will always override what we currently have */
1783 adapter->wol = 0;
1785 if (wol->wolopts & WAKE_UCAST)
1786 adapter->wol |= E1000_WUFC_EX;
1787 if (wol->wolopts & WAKE_MCAST)
1788 adapter->wol |= E1000_WUFC_MC;
1789 if (wol->wolopts & WAKE_BCAST)
1790 adapter->wol |= E1000_WUFC_BC;
1791 if (wol->wolopts & WAKE_MAGIC)
1792 adapter->wol |= E1000_WUFC_MAG;
1794 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1796 return 0;
1799 /* bit defines for adapter->led_status */
1800 #define IGB_LED_ON 0
1802 static int igb_phys_id(struct net_device *netdev, u32 data)
1804 struct igb_adapter *adapter = netdev_priv(netdev);
1805 struct e1000_hw *hw = &adapter->hw;
1807 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1808 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1810 igb_blink_led(hw);
1811 msleep_interruptible(data * 1000);
1813 igb_led_off(hw);
1814 clear_bit(IGB_LED_ON, &adapter->led_status);
1815 igb_cleanup_led(hw);
1817 return 0;
1820 static int igb_set_coalesce(struct net_device *netdev,
1821 struct ethtool_coalesce *ec)
1823 struct igb_adapter *adapter = netdev_priv(netdev);
1824 int i;
1826 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1827 ((ec->rx_coalesce_usecs > 3) &&
1828 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1829 (ec->rx_coalesce_usecs == 2))
1830 return -EINVAL;
1832 /* convert to rate of irq's per second */
1833 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1834 adapter->itr_setting = ec->rx_coalesce_usecs;
1835 adapter->itr = IGB_START_ITR;
1836 } else {
1837 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1838 adapter->itr = adapter->itr_setting;
1841 for (i = 0; i < adapter->num_q_vectors; i++) {
1842 struct igb_q_vector *q_vector = adapter->q_vector[i];
1843 q_vector->itr_val = adapter->itr;
1844 q_vector->set_itr = 1;
1847 return 0;
1850 static int igb_get_coalesce(struct net_device *netdev,
1851 struct ethtool_coalesce *ec)
1853 struct igb_adapter *adapter = netdev_priv(netdev);
1855 if (adapter->itr_setting <= 3)
1856 ec->rx_coalesce_usecs = adapter->itr_setting;
1857 else
1858 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1860 return 0;
1864 static int igb_nway_reset(struct net_device *netdev)
1866 struct igb_adapter *adapter = netdev_priv(netdev);
1867 if (netif_running(netdev))
1868 igb_reinit_locked(adapter);
1869 return 0;
1872 static int igb_get_sset_count(struct net_device *netdev, int sset)
1874 switch (sset) {
1875 case ETH_SS_STATS:
1876 return IGB_STATS_LEN;
1877 case ETH_SS_TEST:
1878 return IGB_TEST_LEN;
1879 default:
1880 return -ENOTSUPP;
1884 static void igb_get_ethtool_stats(struct net_device *netdev,
1885 struct ethtool_stats *stats, u64 *data)
1887 struct igb_adapter *adapter = netdev_priv(netdev);
1888 u64 *queue_stat;
1889 int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
1890 int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
1891 int j;
1892 int i;
1893 char *p = NULL;
1895 igb_update_stats(adapter);
1896 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1897 switch (igb_gstrings_stats[i].type) {
1898 case NETDEV_STATS:
1899 p = (char *) netdev +
1900 igb_gstrings_stats[i].stat_offset;
1901 break;
1902 case IGB_STATS:
1903 p = (char *) adapter +
1904 igb_gstrings_stats[i].stat_offset;
1905 break;
1908 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1909 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1911 for (j = 0; j < adapter->num_tx_queues; j++) {
1912 int k;
1913 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1914 for (k = 0; k < stat_count_tx; k++)
1915 data[i + k] = queue_stat[k];
1916 i += k;
1918 for (j = 0; j < adapter->num_rx_queues; j++) {
1919 int k;
1920 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1921 for (k = 0; k < stat_count_rx; k++)
1922 data[i + k] = queue_stat[k];
1923 i += k;
1927 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1929 struct igb_adapter *adapter = netdev_priv(netdev);
1930 u8 *p = data;
1931 int i;
1933 switch (stringset) {
1934 case ETH_SS_TEST:
1935 memcpy(data, *igb_gstrings_test,
1936 IGB_TEST_LEN*ETH_GSTRING_LEN);
1937 break;
1938 case ETH_SS_STATS:
1939 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1940 memcpy(p, igb_gstrings_stats[i].stat_string,
1941 ETH_GSTRING_LEN);
1942 p += ETH_GSTRING_LEN;
1944 for (i = 0; i < adapter->num_tx_queues; i++) {
1945 sprintf(p, "tx_queue_%u_packets", i);
1946 p += ETH_GSTRING_LEN;
1947 sprintf(p, "tx_queue_%u_bytes", i);
1948 p += ETH_GSTRING_LEN;
1949 sprintf(p, "tx_queue_%u_restart", i);
1950 p += ETH_GSTRING_LEN;
1952 for (i = 0; i < adapter->num_rx_queues; i++) {
1953 sprintf(p, "rx_queue_%u_packets", i);
1954 p += ETH_GSTRING_LEN;
1955 sprintf(p, "rx_queue_%u_bytes", i);
1956 p += ETH_GSTRING_LEN;
1957 sprintf(p, "rx_queue_%u_drops", i);
1958 p += ETH_GSTRING_LEN;
1959 sprintf(p, "rx_queue_%u_csum_err", i);
1960 p += ETH_GSTRING_LEN;
1961 sprintf(p, "rx_queue_%u_alloc_failed", i);
1962 p += ETH_GSTRING_LEN;
1964 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1965 break;
1969 static const struct ethtool_ops igb_ethtool_ops = {
1970 .get_settings = igb_get_settings,
1971 .set_settings = igb_set_settings,
1972 .get_drvinfo = igb_get_drvinfo,
1973 .get_regs_len = igb_get_regs_len,
1974 .get_regs = igb_get_regs,
1975 .get_wol = igb_get_wol,
1976 .set_wol = igb_set_wol,
1977 .get_msglevel = igb_get_msglevel,
1978 .set_msglevel = igb_set_msglevel,
1979 .nway_reset = igb_nway_reset,
1980 .get_link = ethtool_op_get_link,
1981 .get_eeprom_len = igb_get_eeprom_len,
1982 .get_eeprom = igb_get_eeprom,
1983 .set_eeprom = igb_set_eeprom,
1984 .get_ringparam = igb_get_ringparam,
1985 .set_ringparam = igb_set_ringparam,
1986 .get_pauseparam = igb_get_pauseparam,
1987 .set_pauseparam = igb_set_pauseparam,
1988 .get_rx_csum = igb_get_rx_csum,
1989 .set_rx_csum = igb_set_rx_csum,
1990 .get_tx_csum = igb_get_tx_csum,
1991 .set_tx_csum = igb_set_tx_csum,
1992 .get_sg = ethtool_op_get_sg,
1993 .set_sg = ethtool_op_set_sg,
1994 .get_tso = ethtool_op_get_tso,
1995 .set_tso = igb_set_tso,
1996 .self_test = igb_diag_test,
1997 .get_strings = igb_get_strings,
1998 .phys_id = igb_phys_id,
1999 .get_sset_count = igb_get_sset_count,
2000 .get_ethtool_stats = igb_get_ethtool_stats,
2001 .get_coalesce = igb_get_coalesce,
2002 .set_coalesce = igb_set_coalesce,
2005 void igb_set_ethtool_ops(struct net_device *netdev)
2007 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);