2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #define pr_fmt(fmt) "%s: " fmt, __func__
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/regulator/driver.h>
29 #include <linux/regulator/machine.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
36 #define rdev_err(rdev, fmt, ...) \
37 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_warn(rdev, fmt, ...) \
39 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_info(rdev, fmt, ...) \
41 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_dbg(rdev, fmt, ...) \
43 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 static DEFINE_MUTEX(regulator_list_mutex
);
46 static LIST_HEAD(regulator_list
);
47 static LIST_HEAD(regulator_map_list
);
48 static bool has_full_constraints
;
49 static bool board_wants_dummy_regulator
;
51 #ifdef CONFIG_DEBUG_FS
52 static struct dentry
*debugfs_root
;
56 * struct regulator_map
58 * Used to provide symbolic supply names to devices.
60 struct regulator_map
{
61 struct list_head list
;
62 const char *dev_name
; /* The dev_name() for the consumer */
64 struct regulator_dev
*regulator
;
70 * One for each consumer device.
74 struct list_head list
;
79 struct device_attribute dev_attr
;
80 struct regulator_dev
*rdev
;
83 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
84 static int _regulator_disable(struct regulator_dev
*rdev
,
85 struct regulator_dev
**supply_rdev_ptr
);
86 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
87 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
88 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
89 static void _notifier_call_chain(struct regulator_dev
*rdev
,
90 unsigned long event
, void *data
);
91 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
92 int min_uV
, int max_uV
);
94 static const char *rdev_get_name(struct regulator_dev
*rdev
)
96 if (rdev
->constraints
&& rdev
->constraints
->name
)
97 return rdev
->constraints
->name
;
98 else if (rdev
->desc
->name
)
99 return rdev
->desc
->name
;
104 /* gets the regulator for a given consumer device */
105 static struct regulator
*get_device_regulator(struct device
*dev
)
107 struct regulator
*regulator
= NULL
;
108 struct regulator_dev
*rdev
;
110 mutex_lock(®ulator_list_mutex
);
111 list_for_each_entry(rdev
, ®ulator_list
, list
) {
112 mutex_lock(&rdev
->mutex
);
113 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
114 if (regulator
->dev
== dev
) {
115 mutex_unlock(&rdev
->mutex
);
116 mutex_unlock(®ulator_list_mutex
);
120 mutex_unlock(&rdev
->mutex
);
122 mutex_unlock(®ulator_list_mutex
);
126 /* Platform voltage constraint check */
127 static int regulator_check_voltage(struct regulator_dev
*rdev
,
128 int *min_uV
, int *max_uV
)
130 BUG_ON(*min_uV
> *max_uV
);
132 if (!rdev
->constraints
) {
133 rdev_err(rdev
, "no constraints\n");
136 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
137 rdev_err(rdev
, "operation not allowed\n");
141 if (*max_uV
> rdev
->constraints
->max_uV
)
142 *max_uV
= rdev
->constraints
->max_uV
;
143 if (*min_uV
< rdev
->constraints
->min_uV
)
144 *min_uV
= rdev
->constraints
->min_uV
;
146 if (*min_uV
> *max_uV
)
152 /* Make sure we select a voltage that suits the needs of all
153 * regulator consumers
155 static int regulator_check_consumers(struct regulator_dev
*rdev
,
156 int *min_uV
, int *max_uV
)
158 struct regulator
*regulator
;
160 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
162 * Assume consumers that didn't say anything are OK
163 * with anything in the constraint range.
165 if (!regulator
->min_uV
&& !regulator
->max_uV
)
168 if (*max_uV
> regulator
->max_uV
)
169 *max_uV
= regulator
->max_uV
;
170 if (*min_uV
< regulator
->min_uV
)
171 *min_uV
= regulator
->min_uV
;
174 if (*min_uV
> *max_uV
)
180 /* current constraint check */
181 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
182 int *min_uA
, int *max_uA
)
184 BUG_ON(*min_uA
> *max_uA
);
186 if (!rdev
->constraints
) {
187 rdev_err(rdev
, "no constraints\n");
190 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
191 rdev_err(rdev
, "operation not allowed\n");
195 if (*max_uA
> rdev
->constraints
->max_uA
)
196 *max_uA
= rdev
->constraints
->max_uA
;
197 if (*min_uA
< rdev
->constraints
->min_uA
)
198 *min_uA
= rdev
->constraints
->min_uA
;
200 if (*min_uA
> *max_uA
)
206 /* operating mode constraint check */
207 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
210 case REGULATOR_MODE_FAST
:
211 case REGULATOR_MODE_NORMAL
:
212 case REGULATOR_MODE_IDLE
:
213 case REGULATOR_MODE_STANDBY
:
219 if (!rdev
->constraints
) {
220 rdev_err(rdev
, "no constraints\n");
223 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
224 rdev_err(rdev
, "operation not allowed\n");
228 /* The modes are bitmasks, the most power hungry modes having
229 * the lowest values. If the requested mode isn't supported
230 * try higher modes. */
232 if (rdev
->constraints
->valid_modes_mask
& *mode
)
240 /* dynamic regulator mode switching constraint check */
241 static int regulator_check_drms(struct regulator_dev
*rdev
)
243 if (!rdev
->constraints
) {
244 rdev_err(rdev
, "no constraints\n");
247 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
248 rdev_err(rdev
, "operation not allowed\n");
254 static ssize_t
device_requested_uA_show(struct device
*dev
,
255 struct device_attribute
*attr
, char *buf
)
257 struct regulator
*regulator
;
259 regulator
= get_device_regulator(dev
);
260 if (regulator
== NULL
)
263 return sprintf(buf
, "%d\n", regulator
->uA_load
);
266 static ssize_t
regulator_uV_show(struct device
*dev
,
267 struct device_attribute
*attr
, char *buf
)
269 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
272 mutex_lock(&rdev
->mutex
);
273 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
274 mutex_unlock(&rdev
->mutex
);
278 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
280 static ssize_t
regulator_uA_show(struct device
*dev
,
281 struct device_attribute
*attr
, char *buf
)
283 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
285 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
287 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
289 static ssize_t
regulator_name_show(struct device
*dev
,
290 struct device_attribute
*attr
, char *buf
)
292 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
294 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
297 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
300 case REGULATOR_MODE_FAST
:
301 return sprintf(buf
, "fast\n");
302 case REGULATOR_MODE_NORMAL
:
303 return sprintf(buf
, "normal\n");
304 case REGULATOR_MODE_IDLE
:
305 return sprintf(buf
, "idle\n");
306 case REGULATOR_MODE_STANDBY
:
307 return sprintf(buf
, "standby\n");
309 return sprintf(buf
, "unknown\n");
312 static ssize_t
regulator_opmode_show(struct device
*dev
,
313 struct device_attribute
*attr
, char *buf
)
315 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
317 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
319 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
321 static ssize_t
regulator_print_state(char *buf
, int state
)
324 return sprintf(buf
, "enabled\n");
326 return sprintf(buf
, "disabled\n");
328 return sprintf(buf
, "unknown\n");
331 static ssize_t
regulator_state_show(struct device
*dev
,
332 struct device_attribute
*attr
, char *buf
)
334 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
337 mutex_lock(&rdev
->mutex
);
338 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
339 mutex_unlock(&rdev
->mutex
);
343 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
345 static ssize_t
regulator_status_show(struct device
*dev
,
346 struct device_attribute
*attr
, char *buf
)
348 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
352 status
= rdev
->desc
->ops
->get_status(rdev
);
357 case REGULATOR_STATUS_OFF
:
360 case REGULATOR_STATUS_ON
:
363 case REGULATOR_STATUS_ERROR
:
366 case REGULATOR_STATUS_FAST
:
369 case REGULATOR_STATUS_NORMAL
:
372 case REGULATOR_STATUS_IDLE
:
375 case REGULATOR_STATUS_STANDBY
:
382 return sprintf(buf
, "%s\n", label
);
384 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
386 static ssize_t
regulator_min_uA_show(struct device
*dev
,
387 struct device_attribute
*attr
, char *buf
)
389 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
391 if (!rdev
->constraints
)
392 return sprintf(buf
, "constraint not defined\n");
394 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
396 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
398 static ssize_t
regulator_max_uA_show(struct device
*dev
,
399 struct device_attribute
*attr
, char *buf
)
401 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
403 if (!rdev
->constraints
)
404 return sprintf(buf
, "constraint not defined\n");
406 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
408 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
410 static ssize_t
regulator_min_uV_show(struct device
*dev
,
411 struct device_attribute
*attr
, char *buf
)
413 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
415 if (!rdev
->constraints
)
416 return sprintf(buf
, "constraint not defined\n");
418 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
420 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
422 static ssize_t
regulator_max_uV_show(struct device
*dev
,
423 struct device_attribute
*attr
, char *buf
)
425 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
427 if (!rdev
->constraints
)
428 return sprintf(buf
, "constraint not defined\n");
430 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
432 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
434 static ssize_t
regulator_total_uA_show(struct device
*dev
,
435 struct device_attribute
*attr
, char *buf
)
437 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
438 struct regulator
*regulator
;
441 mutex_lock(&rdev
->mutex
);
442 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
443 uA
+= regulator
->uA_load
;
444 mutex_unlock(&rdev
->mutex
);
445 return sprintf(buf
, "%d\n", uA
);
447 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
449 static ssize_t
regulator_num_users_show(struct device
*dev
,
450 struct device_attribute
*attr
, char *buf
)
452 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
453 return sprintf(buf
, "%d\n", rdev
->use_count
);
456 static ssize_t
regulator_type_show(struct device
*dev
,
457 struct device_attribute
*attr
, char *buf
)
459 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
461 switch (rdev
->desc
->type
) {
462 case REGULATOR_VOLTAGE
:
463 return sprintf(buf
, "voltage\n");
464 case REGULATOR_CURRENT
:
465 return sprintf(buf
, "current\n");
467 return sprintf(buf
, "unknown\n");
470 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
471 struct device_attribute
*attr
, char *buf
)
473 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
475 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
477 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
478 regulator_suspend_mem_uV_show
, NULL
);
480 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
481 struct device_attribute
*attr
, char *buf
)
483 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
485 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
487 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
488 regulator_suspend_disk_uV_show
, NULL
);
490 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
491 struct device_attribute
*attr
, char *buf
)
493 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
495 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
497 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
498 regulator_suspend_standby_uV_show
, NULL
);
500 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
501 struct device_attribute
*attr
, char *buf
)
503 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
505 return regulator_print_opmode(buf
,
506 rdev
->constraints
->state_mem
.mode
);
508 static DEVICE_ATTR(suspend_mem_mode
, 0444,
509 regulator_suspend_mem_mode_show
, NULL
);
511 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
512 struct device_attribute
*attr
, char *buf
)
514 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
516 return regulator_print_opmode(buf
,
517 rdev
->constraints
->state_disk
.mode
);
519 static DEVICE_ATTR(suspend_disk_mode
, 0444,
520 regulator_suspend_disk_mode_show
, NULL
);
522 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
523 struct device_attribute
*attr
, char *buf
)
525 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
527 return regulator_print_opmode(buf
,
528 rdev
->constraints
->state_standby
.mode
);
530 static DEVICE_ATTR(suspend_standby_mode
, 0444,
531 regulator_suspend_standby_mode_show
, NULL
);
533 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
534 struct device_attribute
*attr
, char *buf
)
536 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
538 return regulator_print_state(buf
,
539 rdev
->constraints
->state_mem
.enabled
);
541 static DEVICE_ATTR(suspend_mem_state
, 0444,
542 regulator_suspend_mem_state_show
, NULL
);
544 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
545 struct device_attribute
*attr
, char *buf
)
547 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
549 return regulator_print_state(buf
,
550 rdev
->constraints
->state_disk
.enabled
);
552 static DEVICE_ATTR(suspend_disk_state
, 0444,
553 regulator_suspend_disk_state_show
, NULL
);
555 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
556 struct device_attribute
*attr
, char *buf
)
558 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
560 return regulator_print_state(buf
,
561 rdev
->constraints
->state_standby
.enabled
);
563 static DEVICE_ATTR(suspend_standby_state
, 0444,
564 regulator_suspend_standby_state_show
, NULL
);
568 * These are the only attributes are present for all regulators.
569 * Other attributes are a function of regulator functionality.
571 static struct device_attribute regulator_dev_attrs
[] = {
572 __ATTR(name
, 0444, regulator_name_show
, NULL
),
573 __ATTR(num_users
, 0444, regulator_num_users_show
, NULL
),
574 __ATTR(type
, 0444, regulator_type_show
, NULL
),
578 static void regulator_dev_release(struct device
*dev
)
580 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
584 static struct class regulator_class
= {
586 .dev_release
= regulator_dev_release
,
587 .dev_attrs
= regulator_dev_attrs
,
590 /* Calculate the new optimum regulator operating mode based on the new total
591 * consumer load. All locks held by caller */
592 static void drms_uA_update(struct regulator_dev
*rdev
)
594 struct regulator
*sibling
;
595 int current_uA
= 0, output_uV
, input_uV
, err
;
598 err
= regulator_check_drms(rdev
);
599 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
600 (!rdev
->desc
->ops
->get_voltage
&&
601 !rdev
->desc
->ops
->get_voltage_sel
) ||
602 !rdev
->desc
->ops
->set_mode
)
605 /* get output voltage */
606 output_uV
= _regulator_get_voltage(rdev
);
610 /* get input voltage */
613 input_uV
= _regulator_get_voltage(rdev
);
615 input_uV
= rdev
->constraints
->input_uV
;
619 /* calc total requested load */
620 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
621 current_uA
+= sibling
->uA_load
;
623 /* now get the optimum mode for our new total regulator load */
624 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
625 output_uV
, current_uA
);
627 /* check the new mode is allowed */
628 err
= regulator_mode_constrain(rdev
, &mode
);
630 rdev
->desc
->ops
->set_mode(rdev
, mode
);
633 static int suspend_set_state(struct regulator_dev
*rdev
,
634 struct regulator_state
*rstate
)
639 can_set_state
= rdev
->desc
->ops
->set_suspend_enable
&&
640 rdev
->desc
->ops
->set_suspend_disable
;
642 /* If we have no suspend mode configration don't set anything;
643 * only warn if the driver actually makes the suspend mode
646 if (!rstate
->enabled
&& !rstate
->disabled
) {
648 rdev_warn(rdev
, "No configuration\n");
652 if (rstate
->enabled
&& rstate
->disabled
) {
653 rdev_err(rdev
, "invalid configuration\n");
657 if (!can_set_state
) {
658 rdev_err(rdev
, "no way to set suspend state\n");
663 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
665 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
667 rdev_err(rdev
, "failed to enabled/disable\n");
671 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
672 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
674 rdev_err(rdev
, "failed to set voltage\n");
679 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
680 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
682 rdev_err(rdev
, "failed to set mode\n");
689 /* locks held by caller */
690 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
692 if (!rdev
->constraints
)
696 case PM_SUSPEND_STANDBY
:
697 return suspend_set_state(rdev
,
698 &rdev
->constraints
->state_standby
);
700 return suspend_set_state(rdev
,
701 &rdev
->constraints
->state_mem
);
703 return suspend_set_state(rdev
,
704 &rdev
->constraints
->state_disk
);
710 static void print_constraints(struct regulator_dev
*rdev
)
712 struct regulation_constraints
*constraints
= rdev
->constraints
;
717 if (constraints
->min_uV
&& constraints
->max_uV
) {
718 if (constraints
->min_uV
== constraints
->max_uV
)
719 count
+= sprintf(buf
+ count
, "%d mV ",
720 constraints
->min_uV
/ 1000);
722 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
723 constraints
->min_uV
/ 1000,
724 constraints
->max_uV
/ 1000);
727 if (!constraints
->min_uV
||
728 constraints
->min_uV
!= constraints
->max_uV
) {
729 ret
= _regulator_get_voltage(rdev
);
731 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
734 if (constraints
->uV_offset
)
735 count
+= sprintf(buf
, "%dmV offset ",
736 constraints
->uV_offset
/ 1000);
738 if (constraints
->min_uA
&& constraints
->max_uA
) {
739 if (constraints
->min_uA
== constraints
->max_uA
)
740 count
+= sprintf(buf
+ count
, "%d mA ",
741 constraints
->min_uA
/ 1000);
743 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
744 constraints
->min_uA
/ 1000,
745 constraints
->max_uA
/ 1000);
748 if (!constraints
->min_uA
||
749 constraints
->min_uA
!= constraints
->max_uA
) {
750 ret
= _regulator_get_current_limit(rdev
);
752 count
+= sprintf(buf
+ count
, "at %d mA ", ret
/ 1000);
755 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
756 count
+= sprintf(buf
+ count
, "fast ");
757 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
758 count
+= sprintf(buf
+ count
, "normal ");
759 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
760 count
+= sprintf(buf
+ count
, "idle ");
761 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
762 count
+= sprintf(buf
+ count
, "standby");
764 rdev_info(rdev
, "%s\n", buf
);
767 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
768 struct regulation_constraints
*constraints
)
770 struct regulator_ops
*ops
= rdev
->desc
->ops
;
773 /* do we need to apply the constraint voltage */
774 if (rdev
->constraints
->apply_uV
&&
775 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
776 ret
= _regulator_do_set_voltage(rdev
,
777 rdev
->constraints
->min_uV
,
778 rdev
->constraints
->max_uV
);
780 rdev_err(rdev
, "failed to apply %duV constraint\n",
781 rdev
->constraints
->min_uV
);
782 rdev
->constraints
= NULL
;
787 /* constrain machine-level voltage specs to fit
788 * the actual range supported by this regulator.
790 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
791 int count
= rdev
->desc
->n_voltages
;
793 int min_uV
= INT_MAX
;
794 int max_uV
= INT_MIN
;
795 int cmin
= constraints
->min_uV
;
796 int cmax
= constraints
->max_uV
;
798 /* it's safe to autoconfigure fixed-voltage supplies
799 and the constraints are used by list_voltage. */
800 if (count
== 1 && !cmin
) {
803 constraints
->min_uV
= cmin
;
804 constraints
->max_uV
= cmax
;
807 /* voltage constraints are optional */
808 if ((cmin
== 0) && (cmax
== 0))
811 /* else require explicit machine-level constraints */
812 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
813 rdev_err(rdev
, "invalid voltage constraints\n");
817 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
818 for (i
= 0; i
< count
; i
++) {
821 value
= ops
->list_voltage(rdev
, i
);
825 /* maybe adjust [min_uV..max_uV] */
826 if (value
>= cmin
&& value
< min_uV
)
828 if (value
<= cmax
&& value
> max_uV
)
832 /* final: [min_uV..max_uV] valid iff constraints valid */
833 if (max_uV
< min_uV
) {
834 rdev_err(rdev
, "unsupportable voltage constraints\n");
838 /* use regulator's subset of machine constraints */
839 if (constraints
->min_uV
< min_uV
) {
840 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
841 constraints
->min_uV
, min_uV
);
842 constraints
->min_uV
= min_uV
;
844 if (constraints
->max_uV
> max_uV
) {
845 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
846 constraints
->max_uV
, max_uV
);
847 constraints
->max_uV
= max_uV
;
855 * set_machine_constraints - sets regulator constraints
856 * @rdev: regulator source
857 * @constraints: constraints to apply
859 * Allows platform initialisation code to define and constrain
860 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
861 * Constraints *must* be set by platform code in order for some
862 * regulator operations to proceed i.e. set_voltage, set_current_limit,
865 static int set_machine_constraints(struct regulator_dev
*rdev
,
866 const struct regulation_constraints
*constraints
)
869 struct regulator_ops
*ops
= rdev
->desc
->ops
;
871 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
873 if (!rdev
->constraints
)
876 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
880 /* do we need to setup our suspend state */
881 if (constraints
->initial_state
) {
882 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
884 rdev_err(rdev
, "failed to set suspend state\n");
885 rdev
->constraints
= NULL
;
890 if (constraints
->initial_mode
) {
891 if (!ops
->set_mode
) {
892 rdev_err(rdev
, "no set_mode operation\n");
897 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
899 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
904 /* If the constraints say the regulator should be on at this point
905 * and we have control then make sure it is enabled.
907 if ((rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) &&
909 ret
= ops
->enable(rdev
);
911 rdev_err(rdev
, "failed to enable\n");
912 rdev
->constraints
= NULL
;
917 print_constraints(rdev
);
923 * set_supply - set regulator supply regulator
924 * @rdev: regulator name
925 * @supply_rdev: supply regulator name
927 * Called by platform initialisation code to set the supply regulator for this
928 * regulator. This ensures that a regulators supply will also be enabled by the
929 * core if it's child is enabled.
931 static int set_supply(struct regulator_dev
*rdev
,
932 struct regulator_dev
*supply_rdev
)
936 err
= sysfs_create_link(&rdev
->dev
.kobj
, &supply_rdev
->dev
.kobj
,
939 rdev_err(rdev
, "could not add device link %s err %d\n",
940 supply_rdev
->dev
.kobj
.name
, err
);
943 rdev
->supply
= supply_rdev
;
944 list_add(&rdev
->slist
, &supply_rdev
->supply_list
);
950 * set_consumer_device_supply - Bind a regulator to a symbolic supply
951 * @rdev: regulator source
952 * @consumer_dev: device the supply applies to
953 * @consumer_dev_name: dev_name() string for device supply applies to
954 * @supply: symbolic name for supply
956 * Allows platform initialisation code to map physical regulator
957 * sources to symbolic names for supplies for use by devices. Devices
958 * should use these symbolic names to request regulators, avoiding the
959 * need to provide board-specific regulator names as platform data.
961 * Only one of consumer_dev and consumer_dev_name may be specified.
963 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
964 struct device
*consumer_dev
, const char *consumer_dev_name
,
967 struct regulator_map
*node
;
970 if (consumer_dev
&& consumer_dev_name
)
973 if (!consumer_dev_name
&& consumer_dev
)
974 consumer_dev_name
= dev_name(consumer_dev
);
979 if (consumer_dev_name
!= NULL
)
984 list_for_each_entry(node
, ®ulator_map_list
, list
) {
985 if (node
->dev_name
&& consumer_dev_name
) {
986 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
988 } else if (node
->dev_name
|| consumer_dev_name
) {
992 if (strcmp(node
->supply
, supply
) != 0)
995 dev_dbg(consumer_dev
, "%s/%s is '%s' supply; fail %s/%s\n",
996 dev_name(&node
->regulator
->dev
),
997 node
->regulator
->desc
->name
,
999 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1003 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1007 node
->regulator
= rdev
;
1008 node
->supply
= supply
;
1011 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1012 if (node
->dev_name
== NULL
) {
1018 list_add(&node
->list
, ®ulator_map_list
);
1022 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1024 struct regulator_map
*node
, *n
;
1026 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1027 if (rdev
== node
->regulator
) {
1028 list_del(&node
->list
);
1029 kfree(node
->dev_name
);
1035 #define REG_STR_SIZE 32
1037 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1039 const char *supply_name
)
1041 struct regulator
*regulator
;
1042 char buf
[REG_STR_SIZE
];
1045 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1046 if (regulator
== NULL
)
1049 mutex_lock(&rdev
->mutex
);
1050 regulator
->rdev
= rdev
;
1051 list_add(®ulator
->list
, &rdev
->consumer_list
);
1054 /* create a 'requested_microamps_name' sysfs entry */
1055 size
= scnprintf(buf
, REG_STR_SIZE
, "microamps_requested_%s",
1057 if (size
>= REG_STR_SIZE
)
1060 regulator
->dev
= dev
;
1061 sysfs_attr_init(®ulator
->dev_attr
.attr
);
1062 regulator
->dev_attr
.attr
.name
= kstrdup(buf
, GFP_KERNEL
);
1063 if (regulator
->dev_attr
.attr
.name
== NULL
)
1066 regulator
->dev_attr
.attr
.mode
= 0444;
1067 regulator
->dev_attr
.show
= device_requested_uA_show
;
1068 err
= device_create_file(dev
, ®ulator
->dev_attr
);
1070 rdev_warn(rdev
, "could not add regulator_dev requested microamps sysfs entry\n");
1074 /* also add a link to the device sysfs entry */
1075 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1076 dev
->kobj
.name
, supply_name
);
1077 if (size
>= REG_STR_SIZE
)
1080 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1081 if (regulator
->supply_name
== NULL
)
1084 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1087 rdev_warn(rdev
, "could not add device link %s err %d\n",
1088 dev
->kobj
.name
, err
);
1092 mutex_unlock(&rdev
->mutex
);
1095 kfree(regulator
->supply_name
);
1097 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1099 kfree(regulator
->dev_attr
.attr
.name
);
1101 list_del(®ulator
->list
);
1103 mutex_unlock(&rdev
->mutex
);
1107 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1109 if (!rdev
->desc
->ops
->enable_time
)
1111 return rdev
->desc
->ops
->enable_time(rdev
);
1114 /* Internal regulator request function */
1115 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1118 struct regulator_dev
*rdev
;
1119 struct regulator_map
*map
;
1120 struct regulator
*regulator
= ERR_PTR(-ENODEV
);
1121 const char *devname
= NULL
;
1125 pr_err("get() with no identifier\n");
1130 devname
= dev_name(dev
);
1132 mutex_lock(®ulator_list_mutex
);
1134 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1135 /* If the mapping has a device set up it must match */
1136 if (map
->dev_name
&&
1137 (!devname
|| strcmp(map
->dev_name
, devname
)))
1140 if (strcmp(map
->supply
, id
) == 0) {
1141 rdev
= map
->regulator
;
1146 if (board_wants_dummy_regulator
) {
1147 rdev
= dummy_regulator_rdev
;
1151 #ifdef CONFIG_REGULATOR_DUMMY
1153 devname
= "deviceless";
1155 /* If the board didn't flag that it was fully constrained then
1156 * substitute in a dummy regulator so consumers can continue.
1158 if (!has_full_constraints
) {
1159 pr_warn("%s supply %s not found, using dummy regulator\n",
1161 rdev
= dummy_regulator_rdev
;
1166 mutex_unlock(®ulator_list_mutex
);
1170 if (rdev
->exclusive
) {
1171 regulator
= ERR_PTR(-EPERM
);
1175 if (exclusive
&& rdev
->open_count
) {
1176 regulator
= ERR_PTR(-EBUSY
);
1180 if (!try_module_get(rdev
->owner
))
1183 regulator
= create_regulator(rdev
, dev
, id
);
1184 if (regulator
== NULL
) {
1185 regulator
= ERR_PTR(-ENOMEM
);
1186 module_put(rdev
->owner
);
1191 rdev
->exclusive
= 1;
1193 ret
= _regulator_is_enabled(rdev
);
1195 rdev
->use_count
= 1;
1197 rdev
->use_count
= 0;
1201 mutex_unlock(®ulator_list_mutex
);
1207 * regulator_get - lookup and obtain a reference to a regulator.
1208 * @dev: device for regulator "consumer"
1209 * @id: Supply name or regulator ID.
1211 * Returns a struct regulator corresponding to the regulator producer,
1212 * or IS_ERR() condition containing errno.
1214 * Use of supply names configured via regulator_set_device_supply() is
1215 * strongly encouraged. It is recommended that the supply name used
1216 * should match the name used for the supply and/or the relevant
1217 * device pins in the datasheet.
1219 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1221 return _regulator_get(dev
, id
, 0);
1223 EXPORT_SYMBOL_GPL(regulator_get
);
1226 * regulator_get_exclusive - obtain exclusive access to a regulator.
1227 * @dev: device for regulator "consumer"
1228 * @id: Supply name or regulator ID.
1230 * Returns a struct regulator corresponding to the regulator producer,
1231 * or IS_ERR() condition containing errno. Other consumers will be
1232 * unable to obtain this reference is held and the use count for the
1233 * regulator will be initialised to reflect the current state of the
1236 * This is intended for use by consumers which cannot tolerate shared
1237 * use of the regulator such as those which need to force the
1238 * regulator off for correct operation of the hardware they are
1241 * Use of supply names configured via regulator_set_device_supply() is
1242 * strongly encouraged. It is recommended that the supply name used
1243 * should match the name used for the supply and/or the relevant
1244 * device pins in the datasheet.
1246 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1248 return _regulator_get(dev
, id
, 1);
1250 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1253 * regulator_put - "free" the regulator source
1254 * @regulator: regulator source
1256 * Note: drivers must ensure that all regulator_enable calls made on this
1257 * regulator source are balanced by regulator_disable calls prior to calling
1260 void regulator_put(struct regulator
*regulator
)
1262 struct regulator_dev
*rdev
;
1264 if (regulator
== NULL
|| IS_ERR(regulator
))
1267 mutex_lock(®ulator_list_mutex
);
1268 rdev
= regulator
->rdev
;
1270 /* remove any sysfs entries */
1271 if (regulator
->dev
) {
1272 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1273 kfree(regulator
->supply_name
);
1274 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1275 kfree(regulator
->dev_attr
.attr
.name
);
1277 list_del(®ulator
->list
);
1281 rdev
->exclusive
= 0;
1283 module_put(rdev
->owner
);
1284 mutex_unlock(®ulator_list_mutex
);
1286 EXPORT_SYMBOL_GPL(regulator_put
);
1288 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
1290 if (!rdev
->constraints
)
1293 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
1299 /* locks held by regulator_enable() */
1300 static int _regulator_enable(struct regulator_dev
*rdev
)
1304 if (rdev
->use_count
== 0) {
1305 /* do we need to enable the supply regulator first */
1307 mutex_lock(&rdev
->supply
->mutex
);
1308 ret
= _regulator_enable(rdev
->supply
);
1309 mutex_unlock(&rdev
->supply
->mutex
);
1311 rdev_err(rdev
, "failed to enable: %d\n", ret
);
1317 /* check voltage and requested load before enabling */
1318 if (rdev
->constraints
&&
1319 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1320 drms_uA_update(rdev
);
1322 if (rdev
->use_count
== 0) {
1323 /* The regulator may on if it's not switchable or left on */
1324 ret
= _regulator_is_enabled(rdev
);
1325 if (ret
== -EINVAL
|| ret
== 0) {
1326 if (!_regulator_can_change_status(rdev
))
1329 if (!rdev
->desc
->ops
->enable
)
1332 /* Query before enabling in case configuration
1334 ret
= _regulator_get_enable_time(rdev
);
1338 rdev_warn(rdev
, "enable_time() failed: %d\n",
1343 trace_regulator_enable(rdev_get_name(rdev
));
1345 /* Allow the regulator to ramp; it would be useful
1346 * to extend this for bulk operations so that the
1347 * regulators can ramp together. */
1348 ret
= rdev
->desc
->ops
->enable(rdev
);
1352 trace_regulator_enable_delay(rdev_get_name(rdev
));
1354 if (delay
>= 1000) {
1355 mdelay(delay
/ 1000);
1356 udelay(delay
% 1000);
1361 trace_regulator_enable_complete(rdev_get_name(rdev
));
1363 } else if (ret
< 0) {
1364 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
1367 /* Fallthrough on positive return values - already enabled */
1376 * regulator_enable - enable regulator output
1377 * @regulator: regulator source
1379 * Request that the regulator be enabled with the regulator output at
1380 * the predefined voltage or current value. Calls to regulator_enable()
1381 * must be balanced with calls to regulator_disable().
1383 * NOTE: the output value can be set by other drivers, boot loader or may be
1384 * hardwired in the regulator.
1386 int regulator_enable(struct regulator
*regulator
)
1388 struct regulator_dev
*rdev
= regulator
->rdev
;
1391 mutex_lock(&rdev
->mutex
);
1392 ret
= _regulator_enable(rdev
);
1393 mutex_unlock(&rdev
->mutex
);
1396 EXPORT_SYMBOL_GPL(regulator_enable
);
1398 /* locks held by regulator_disable() */
1399 static int _regulator_disable(struct regulator_dev
*rdev
,
1400 struct regulator_dev
**supply_rdev_ptr
)
1403 *supply_rdev_ptr
= NULL
;
1405 if (WARN(rdev
->use_count
<= 0,
1406 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
1409 /* are we the last user and permitted to disable ? */
1410 if (rdev
->use_count
== 1 &&
1411 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1413 /* we are last user */
1414 if (_regulator_can_change_status(rdev
) &&
1415 rdev
->desc
->ops
->disable
) {
1416 trace_regulator_disable(rdev_get_name(rdev
));
1418 ret
= rdev
->desc
->ops
->disable(rdev
);
1420 rdev_err(rdev
, "failed to disable\n");
1424 trace_regulator_disable_complete(rdev_get_name(rdev
));
1426 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1430 /* decrease our supplies ref count and disable if required */
1431 *supply_rdev_ptr
= rdev
->supply
;
1433 rdev
->use_count
= 0;
1434 } else if (rdev
->use_count
> 1) {
1436 if (rdev
->constraints
&&
1437 (rdev
->constraints
->valid_ops_mask
&
1438 REGULATOR_CHANGE_DRMS
))
1439 drms_uA_update(rdev
);
1447 * regulator_disable - disable regulator output
1448 * @regulator: regulator source
1450 * Disable the regulator output voltage or current. Calls to
1451 * regulator_enable() must be balanced with calls to
1452 * regulator_disable().
1454 * NOTE: this will only disable the regulator output if no other consumer
1455 * devices have it enabled, the regulator device supports disabling and
1456 * machine constraints permit this operation.
1458 int regulator_disable(struct regulator
*regulator
)
1460 struct regulator_dev
*rdev
= regulator
->rdev
;
1461 struct regulator_dev
*supply_rdev
= NULL
;
1464 mutex_lock(&rdev
->mutex
);
1465 ret
= _regulator_disable(rdev
, &supply_rdev
);
1466 mutex_unlock(&rdev
->mutex
);
1468 /* decrease our supplies ref count and disable if required */
1469 while (supply_rdev
!= NULL
) {
1472 mutex_lock(&rdev
->mutex
);
1473 _regulator_disable(rdev
, &supply_rdev
);
1474 mutex_unlock(&rdev
->mutex
);
1479 EXPORT_SYMBOL_GPL(regulator_disable
);
1481 /* locks held by regulator_force_disable() */
1482 static int _regulator_force_disable(struct regulator_dev
*rdev
,
1483 struct regulator_dev
**supply_rdev_ptr
)
1488 if (rdev
->desc
->ops
->disable
) {
1489 /* ah well, who wants to live forever... */
1490 ret
= rdev
->desc
->ops
->disable(rdev
);
1492 rdev_err(rdev
, "failed to force disable\n");
1495 /* notify other consumers that power has been forced off */
1496 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
1497 REGULATOR_EVENT_DISABLE
, NULL
);
1500 /* decrease our supplies ref count and disable if required */
1501 *supply_rdev_ptr
= rdev
->supply
;
1503 rdev
->use_count
= 0;
1508 * regulator_force_disable - force disable regulator output
1509 * @regulator: regulator source
1511 * Forcibly disable the regulator output voltage or current.
1512 * NOTE: this *will* disable the regulator output even if other consumer
1513 * devices have it enabled. This should be used for situations when device
1514 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1516 int regulator_force_disable(struct regulator
*regulator
)
1518 struct regulator_dev
*rdev
= regulator
->rdev
;
1519 struct regulator_dev
*supply_rdev
= NULL
;
1522 mutex_lock(&rdev
->mutex
);
1523 regulator
->uA_load
= 0;
1524 ret
= _regulator_force_disable(rdev
, &supply_rdev
);
1525 mutex_unlock(&rdev
->mutex
);
1528 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev
)));
1532 EXPORT_SYMBOL_GPL(regulator_force_disable
);
1534 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
1536 /* If we don't know then assume that the regulator is always on */
1537 if (!rdev
->desc
->ops
->is_enabled
)
1540 return rdev
->desc
->ops
->is_enabled(rdev
);
1544 * regulator_is_enabled - is the regulator output enabled
1545 * @regulator: regulator source
1547 * Returns positive if the regulator driver backing the source/client
1548 * has requested that the device be enabled, zero if it hasn't, else a
1549 * negative errno code.
1551 * Note that the device backing this regulator handle can have multiple
1552 * users, so it might be enabled even if regulator_enable() was never
1553 * called for this particular source.
1555 int regulator_is_enabled(struct regulator
*regulator
)
1559 mutex_lock(®ulator
->rdev
->mutex
);
1560 ret
= _regulator_is_enabled(regulator
->rdev
);
1561 mutex_unlock(®ulator
->rdev
->mutex
);
1565 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
1568 * regulator_count_voltages - count regulator_list_voltage() selectors
1569 * @regulator: regulator source
1571 * Returns number of selectors, or negative errno. Selectors are
1572 * numbered starting at zero, and typically correspond to bitfields
1573 * in hardware registers.
1575 int regulator_count_voltages(struct regulator
*regulator
)
1577 struct regulator_dev
*rdev
= regulator
->rdev
;
1579 return rdev
->desc
->n_voltages
? : -EINVAL
;
1581 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
1584 * regulator_list_voltage - enumerate supported voltages
1585 * @regulator: regulator source
1586 * @selector: identify voltage to list
1587 * Context: can sleep
1589 * Returns a voltage that can be passed to @regulator_set_voltage(),
1590 * zero if this selector code can't be used on this system, or a
1593 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
1595 struct regulator_dev
*rdev
= regulator
->rdev
;
1596 struct regulator_ops
*ops
= rdev
->desc
->ops
;
1599 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
1602 mutex_lock(&rdev
->mutex
);
1603 ret
= ops
->list_voltage(rdev
, selector
);
1604 mutex_unlock(&rdev
->mutex
);
1607 if (ret
< rdev
->constraints
->min_uV
)
1609 else if (ret
> rdev
->constraints
->max_uV
)
1615 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
1618 * regulator_is_supported_voltage - check if a voltage range can be supported
1620 * @regulator: Regulator to check.
1621 * @min_uV: Minimum required voltage in uV.
1622 * @max_uV: Maximum required voltage in uV.
1624 * Returns a boolean or a negative error code.
1626 int regulator_is_supported_voltage(struct regulator
*regulator
,
1627 int min_uV
, int max_uV
)
1629 int i
, voltages
, ret
;
1631 ret
= regulator_count_voltages(regulator
);
1636 for (i
= 0; i
< voltages
; i
++) {
1637 ret
= regulator_list_voltage(regulator
, i
);
1639 if (ret
>= min_uV
&& ret
<= max_uV
)
1646 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
1647 int min_uV
, int max_uV
)
1651 unsigned int selector
;
1653 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
1655 min_uV
+= rdev
->constraints
->uV_offset
;
1656 max_uV
+= rdev
->constraints
->uV_offset
;
1658 if (rdev
->desc
->ops
->set_voltage
) {
1659 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
,
1662 if (rdev
->desc
->ops
->list_voltage
)
1663 selector
= rdev
->desc
->ops
->list_voltage(rdev
,
1667 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
1668 int best_val
= INT_MAX
;
1673 /* Find the smallest voltage that falls within the specified
1676 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
1677 ret
= rdev
->desc
->ops
->list_voltage(rdev
, i
);
1681 if (ret
< best_val
&& ret
>= min_uV
&& ret
<= max_uV
) {
1688 * If we can't obtain the old selector there is not enough
1689 * info to call set_voltage_time_sel().
1691 if (rdev
->desc
->ops
->set_voltage_time_sel
&&
1692 rdev
->desc
->ops
->get_voltage_sel
) {
1693 unsigned int old_selector
= 0;
1695 ret
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
1699 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
1700 old_selector
, selector
);
1703 if (best_val
!= INT_MAX
) {
1704 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
1705 selector
= best_val
;
1713 /* Insert any necessary delays */
1714 if (delay
>= 1000) {
1715 mdelay(delay
/ 1000);
1716 udelay(delay
% 1000);
1722 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
1725 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), selector
);
1731 * regulator_set_voltage - set regulator output voltage
1732 * @regulator: regulator source
1733 * @min_uV: Minimum required voltage in uV
1734 * @max_uV: Maximum acceptable voltage in uV
1736 * Sets a voltage regulator to the desired output voltage. This can be set
1737 * during any regulator state. IOW, regulator can be disabled or enabled.
1739 * If the regulator is enabled then the voltage will change to the new value
1740 * immediately otherwise if the regulator is disabled the regulator will
1741 * output at the new voltage when enabled.
1743 * NOTE: If the regulator is shared between several devices then the lowest
1744 * request voltage that meets the system constraints will be used.
1745 * Regulator system constraints must be set for this regulator before
1746 * calling this function otherwise this call will fail.
1748 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
1750 struct regulator_dev
*rdev
= regulator
->rdev
;
1753 mutex_lock(&rdev
->mutex
);
1755 /* If we're setting the same range as last time the change
1756 * should be a noop (some cpufreq implementations use the same
1757 * voltage for multiple frequencies, for example).
1759 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
1763 if (!rdev
->desc
->ops
->set_voltage
&&
1764 !rdev
->desc
->ops
->set_voltage_sel
) {
1769 /* constraints check */
1770 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
1773 regulator
->min_uV
= min_uV
;
1774 regulator
->max_uV
= max_uV
;
1776 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
1780 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
1783 mutex_unlock(&rdev
->mutex
);
1786 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
1789 * regulator_set_voltage_time - get raise/fall time
1790 * @regulator: regulator source
1791 * @old_uV: starting voltage in microvolts
1792 * @new_uV: target voltage in microvolts
1794 * Provided with the starting and ending voltage, this function attempts to
1795 * calculate the time in microseconds required to rise or fall to this new
1798 int regulator_set_voltage_time(struct regulator
*regulator
,
1799 int old_uV
, int new_uV
)
1801 struct regulator_dev
*rdev
= regulator
->rdev
;
1802 struct regulator_ops
*ops
= rdev
->desc
->ops
;
1808 /* Currently requires operations to do this */
1809 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
1810 || !rdev
->desc
->n_voltages
)
1813 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
1814 /* We only look for exact voltage matches here */
1815 voltage
= regulator_list_voltage(regulator
, i
);
1820 if (voltage
== old_uV
)
1822 if (voltage
== new_uV
)
1826 if (old_sel
< 0 || new_sel
< 0)
1829 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
1831 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
1834 * regulator_sync_voltage - re-apply last regulator output voltage
1835 * @regulator: regulator source
1837 * Re-apply the last configured voltage. This is intended to be used
1838 * where some external control source the consumer is cooperating with
1839 * has caused the configured voltage to change.
1841 int regulator_sync_voltage(struct regulator
*regulator
)
1843 struct regulator_dev
*rdev
= regulator
->rdev
;
1844 int ret
, min_uV
, max_uV
;
1846 mutex_lock(&rdev
->mutex
);
1848 if (!rdev
->desc
->ops
->set_voltage
&&
1849 !rdev
->desc
->ops
->set_voltage_sel
) {
1854 /* This is only going to work if we've had a voltage configured. */
1855 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
1860 min_uV
= regulator
->min_uV
;
1861 max_uV
= regulator
->max_uV
;
1863 /* This should be a paranoia check... */
1864 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
1868 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
1872 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
1875 mutex_unlock(&rdev
->mutex
);
1878 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
1880 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
1884 if (rdev
->desc
->ops
->get_voltage_sel
) {
1885 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
1888 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
1889 } else if (rdev
->desc
->ops
->get_voltage
) {
1890 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
1897 return ret
- rdev
->constraints
->uV_offset
;
1901 * regulator_get_voltage - get regulator output voltage
1902 * @regulator: regulator source
1904 * This returns the current regulator voltage in uV.
1906 * NOTE: If the regulator is disabled it will return the voltage value. This
1907 * function should not be used to determine regulator state.
1909 int regulator_get_voltage(struct regulator
*regulator
)
1913 mutex_lock(®ulator
->rdev
->mutex
);
1915 ret
= _regulator_get_voltage(regulator
->rdev
);
1917 mutex_unlock(®ulator
->rdev
->mutex
);
1921 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
1924 * regulator_set_current_limit - set regulator output current limit
1925 * @regulator: regulator source
1926 * @min_uA: Minimuum supported current in uA
1927 * @max_uA: Maximum supported current in uA
1929 * Sets current sink to the desired output current. This can be set during
1930 * any regulator state. IOW, regulator can be disabled or enabled.
1932 * If the regulator is enabled then the current will change to the new value
1933 * immediately otherwise if the regulator is disabled the regulator will
1934 * output at the new current when enabled.
1936 * NOTE: Regulator system constraints must be set for this regulator before
1937 * calling this function otherwise this call will fail.
1939 int regulator_set_current_limit(struct regulator
*regulator
,
1940 int min_uA
, int max_uA
)
1942 struct regulator_dev
*rdev
= regulator
->rdev
;
1945 mutex_lock(&rdev
->mutex
);
1948 if (!rdev
->desc
->ops
->set_current_limit
) {
1953 /* constraints check */
1954 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
1958 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
1960 mutex_unlock(&rdev
->mutex
);
1963 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
1965 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
1969 mutex_lock(&rdev
->mutex
);
1972 if (!rdev
->desc
->ops
->get_current_limit
) {
1977 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
1979 mutex_unlock(&rdev
->mutex
);
1984 * regulator_get_current_limit - get regulator output current
1985 * @regulator: regulator source
1987 * This returns the current supplied by the specified current sink in uA.
1989 * NOTE: If the regulator is disabled it will return the current value. This
1990 * function should not be used to determine regulator state.
1992 int regulator_get_current_limit(struct regulator
*regulator
)
1994 return _regulator_get_current_limit(regulator
->rdev
);
1996 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
1999 * regulator_set_mode - set regulator operating mode
2000 * @regulator: regulator source
2001 * @mode: operating mode - one of the REGULATOR_MODE constants
2003 * Set regulator operating mode to increase regulator efficiency or improve
2004 * regulation performance.
2006 * NOTE: Regulator system constraints must be set for this regulator before
2007 * calling this function otherwise this call will fail.
2009 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
2011 struct regulator_dev
*rdev
= regulator
->rdev
;
2013 int regulator_curr_mode
;
2015 mutex_lock(&rdev
->mutex
);
2018 if (!rdev
->desc
->ops
->set_mode
) {
2023 /* return if the same mode is requested */
2024 if (rdev
->desc
->ops
->get_mode
) {
2025 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
2026 if (regulator_curr_mode
== mode
) {
2032 /* constraints check */
2033 ret
= regulator_mode_constrain(rdev
, &mode
);
2037 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2039 mutex_unlock(&rdev
->mutex
);
2042 EXPORT_SYMBOL_GPL(regulator_set_mode
);
2044 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
2048 mutex_lock(&rdev
->mutex
);
2051 if (!rdev
->desc
->ops
->get_mode
) {
2056 ret
= rdev
->desc
->ops
->get_mode(rdev
);
2058 mutex_unlock(&rdev
->mutex
);
2063 * regulator_get_mode - get regulator operating mode
2064 * @regulator: regulator source
2066 * Get the current regulator operating mode.
2068 unsigned int regulator_get_mode(struct regulator
*regulator
)
2070 return _regulator_get_mode(regulator
->rdev
);
2072 EXPORT_SYMBOL_GPL(regulator_get_mode
);
2075 * regulator_set_optimum_mode - set regulator optimum operating mode
2076 * @regulator: regulator source
2077 * @uA_load: load current
2079 * Notifies the regulator core of a new device load. This is then used by
2080 * DRMS (if enabled by constraints) to set the most efficient regulator
2081 * operating mode for the new regulator loading.
2083 * Consumer devices notify their supply regulator of the maximum power
2084 * they will require (can be taken from device datasheet in the power
2085 * consumption tables) when they change operational status and hence power
2086 * state. Examples of operational state changes that can affect power
2087 * consumption are :-
2089 * o Device is opened / closed.
2090 * o Device I/O is about to begin or has just finished.
2091 * o Device is idling in between work.
2093 * This information is also exported via sysfs to userspace.
2095 * DRMS will sum the total requested load on the regulator and change
2096 * to the most efficient operating mode if platform constraints allow.
2098 * Returns the new regulator mode or error.
2100 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
2102 struct regulator_dev
*rdev
= regulator
->rdev
;
2103 struct regulator
*consumer
;
2104 int ret
, output_uV
, input_uV
, total_uA_load
= 0;
2107 mutex_lock(&rdev
->mutex
);
2110 * first check to see if we can set modes at all, otherwise just
2111 * tell the consumer everything is OK.
2113 regulator
->uA_load
= uA_load
;
2114 ret
= regulator_check_drms(rdev
);
2120 if (!rdev
->desc
->ops
->get_optimum_mode
)
2124 * we can actually do this so any errors are indicators of
2125 * potential real failure.
2129 /* get output voltage */
2130 output_uV
= _regulator_get_voltage(rdev
);
2131 if (output_uV
<= 0) {
2132 rdev_err(rdev
, "invalid output voltage found\n");
2136 /* get input voltage */
2139 input_uV
= _regulator_get_voltage(rdev
->supply
);
2141 input_uV
= rdev
->constraints
->input_uV
;
2142 if (input_uV
<= 0) {
2143 rdev_err(rdev
, "invalid input voltage found\n");
2147 /* calc total requested load for this regulator */
2148 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
2149 total_uA_load
+= consumer
->uA_load
;
2151 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
2152 input_uV
, output_uV
,
2154 ret
= regulator_mode_constrain(rdev
, &mode
);
2156 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2157 total_uA_load
, input_uV
, output_uV
);
2161 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2163 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
2168 mutex_unlock(&rdev
->mutex
);
2171 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
2174 * regulator_register_notifier - register regulator event notifier
2175 * @regulator: regulator source
2176 * @nb: notifier block
2178 * Register notifier block to receive regulator events.
2180 int regulator_register_notifier(struct regulator
*regulator
,
2181 struct notifier_block
*nb
)
2183 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
2186 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
2189 * regulator_unregister_notifier - unregister regulator event notifier
2190 * @regulator: regulator source
2191 * @nb: notifier block
2193 * Unregister regulator event notifier block.
2195 int regulator_unregister_notifier(struct regulator
*regulator
,
2196 struct notifier_block
*nb
)
2198 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
2201 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
2203 /* notify regulator consumers and downstream regulator consumers.
2204 * Note mutex must be held by caller.
2206 static void _notifier_call_chain(struct regulator_dev
*rdev
,
2207 unsigned long event
, void *data
)
2209 struct regulator_dev
*_rdev
;
2211 /* call rdev chain first */
2212 blocking_notifier_call_chain(&rdev
->notifier
, event
, NULL
);
2214 /* now notify regulator we supply */
2215 list_for_each_entry(_rdev
, &rdev
->supply_list
, slist
) {
2216 mutex_lock(&_rdev
->mutex
);
2217 _notifier_call_chain(_rdev
, event
, data
);
2218 mutex_unlock(&_rdev
->mutex
);
2223 * regulator_bulk_get - get multiple regulator consumers
2225 * @dev: Device to supply
2226 * @num_consumers: Number of consumers to register
2227 * @consumers: Configuration of consumers; clients are stored here.
2229 * @return 0 on success, an errno on failure.
2231 * This helper function allows drivers to get several regulator
2232 * consumers in one operation. If any of the regulators cannot be
2233 * acquired then any regulators that were allocated will be freed
2234 * before returning to the caller.
2236 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
2237 struct regulator_bulk_data
*consumers
)
2242 for (i
= 0; i
< num_consumers
; i
++)
2243 consumers
[i
].consumer
= NULL
;
2245 for (i
= 0; i
< num_consumers
; i
++) {
2246 consumers
[i
].consumer
= regulator_get(dev
,
2247 consumers
[i
].supply
);
2248 if (IS_ERR(consumers
[i
].consumer
)) {
2249 ret
= PTR_ERR(consumers
[i
].consumer
);
2250 dev_err(dev
, "Failed to get supply '%s': %d\n",
2251 consumers
[i
].supply
, ret
);
2252 consumers
[i
].consumer
= NULL
;
2260 for (i
= 0; i
< num_consumers
&& consumers
[i
].consumer
; i
++)
2261 regulator_put(consumers
[i
].consumer
);
2265 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
2268 * regulator_bulk_enable - enable multiple regulator consumers
2270 * @num_consumers: Number of consumers
2271 * @consumers: Consumer data; clients are stored here.
2272 * @return 0 on success, an errno on failure
2274 * This convenience API allows consumers to enable multiple regulator
2275 * clients in a single API call. If any consumers cannot be enabled
2276 * then any others that were enabled will be disabled again prior to
2279 int regulator_bulk_enable(int num_consumers
,
2280 struct regulator_bulk_data
*consumers
)
2285 for (i
= 0; i
< num_consumers
; i
++) {
2286 ret
= regulator_enable(consumers
[i
].consumer
);
2294 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
, ret
);
2295 for (--i
; i
>= 0; --i
)
2296 regulator_disable(consumers
[i
].consumer
);
2300 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
2303 * regulator_bulk_disable - disable multiple regulator consumers
2305 * @num_consumers: Number of consumers
2306 * @consumers: Consumer data; clients are stored here.
2307 * @return 0 on success, an errno on failure
2309 * This convenience API allows consumers to disable multiple regulator
2310 * clients in a single API call. If any consumers cannot be enabled
2311 * then any others that were disabled will be disabled again prior to
2314 int regulator_bulk_disable(int num_consumers
,
2315 struct regulator_bulk_data
*consumers
)
2320 for (i
= 0; i
< num_consumers
; i
++) {
2321 ret
= regulator_disable(consumers
[i
].consumer
);
2329 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
2330 for (--i
; i
>= 0; --i
)
2331 regulator_enable(consumers
[i
].consumer
);
2335 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
2338 * regulator_bulk_free - free multiple regulator consumers
2340 * @num_consumers: Number of consumers
2341 * @consumers: Consumer data; clients are stored here.
2343 * This convenience API allows consumers to free multiple regulator
2344 * clients in a single API call.
2346 void regulator_bulk_free(int num_consumers
,
2347 struct regulator_bulk_data
*consumers
)
2351 for (i
= 0; i
< num_consumers
; i
++) {
2352 regulator_put(consumers
[i
].consumer
);
2353 consumers
[i
].consumer
= NULL
;
2356 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
2359 * regulator_notifier_call_chain - call regulator event notifier
2360 * @rdev: regulator source
2361 * @event: notifier block
2362 * @data: callback-specific data.
2364 * Called by regulator drivers to notify clients a regulator event has
2365 * occurred. We also notify regulator clients downstream.
2366 * Note lock must be held by caller.
2368 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
2369 unsigned long event
, void *data
)
2371 _notifier_call_chain(rdev
, event
, data
);
2375 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
2378 * regulator_mode_to_status - convert a regulator mode into a status
2380 * @mode: Mode to convert
2382 * Convert a regulator mode into a status.
2384 int regulator_mode_to_status(unsigned int mode
)
2387 case REGULATOR_MODE_FAST
:
2388 return REGULATOR_STATUS_FAST
;
2389 case REGULATOR_MODE_NORMAL
:
2390 return REGULATOR_STATUS_NORMAL
;
2391 case REGULATOR_MODE_IDLE
:
2392 return REGULATOR_STATUS_IDLE
;
2393 case REGULATOR_STATUS_STANDBY
:
2394 return REGULATOR_STATUS_STANDBY
;
2399 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
2402 * To avoid cluttering sysfs (and memory) with useless state, only
2403 * create attributes that can be meaningfully displayed.
2405 static int add_regulator_attributes(struct regulator_dev
*rdev
)
2407 struct device
*dev
= &rdev
->dev
;
2408 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2411 /* some attributes need specific methods to be displayed */
2412 if (ops
->get_voltage
|| ops
->get_voltage_sel
) {
2413 status
= device_create_file(dev
, &dev_attr_microvolts
);
2417 if (ops
->get_current_limit
) {
2418 status
= device_create_file(dev
, &dev_attr_microamps
);
2422 if (ops
->get_mode
) {
2423 status
= device_create_file(dev
, &dev_attr_opmode
);
2427 if (ops
->is_enabled
) {
2428 status
= device_create_file(dev
, &dev_attr_state
);
2432 if (ops
->get_status
) {
2433 status
= device_create_file(dev
, &dev_attr_status
);
2438 /* some attributes are type-specific */
2439 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
2440 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
2445 /* all the other attributes exist to support constraints;
2446 * don't show them if there are no constraints, or if the
2447 * relevant supporting methods are missing.
2449 if (!rdev
->constraints
)
2452 /* constraints need specific supporting methods */
2453 if (ops
->set_voltage
|| ops
->set_voltage_sel
) {
2454 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
2457 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
2461 if (ops
->set_current_limit
) {
2462 status
= device_create_file(dev
, &dev_attr_min_microamps
);
2465 status
= device_create_file(dev
, &dev_attr_max_microamps
);
2470 /* suspend mode constraints need multiple supporting methods */
2471 if (!(ops
->set_suspend_enable
&& ops
->set_suspend_disable
))
2474 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
2477 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
2480 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
2484 if (ops
->set_suspend_voltage
) {
2485 status
= device_create_file(dev
,
2486 &dev_attr_suspend_standby_microvolts
);
2489 status
= device_create_file(dev
,
2490 &dev_attr_suspend_mem_microvolts
);
2493 status
= device_create_file(dev
,
2494 &dev_attr_suspend_disk_microvolts
);
2499 if (ops
->set_suspend_mode
) {
2500 status
= device_create_file(dev
,
2501 &dev_attr_suspend_standby_mode
);
2504 status
= device_create_file(dev
,
2505 &dev_attr_suspend_mem_mode
);
2508 status
= device_create_file(dev
,
2509 &dev_attr_suspend_disk_mode
);
2517 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
2519 #ifdef CONFIG_DEBUG_FS
2520 rdev
->debugfs
= debugfs_create_dir(rdev_get_name(rdev
), debugfs_root
);
2521 if (IS_ERR(rdev
->debugfs
) || !rdev
->debugfs
) {
2522 rdev_warn(rdev
, "Failed to create debugfs directory\n");
2523 rdev
->debugfs
= NULL
;
2527 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
2529 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
2535 * regulator_register - register regulator
2536 * @regulator_desc: regulator to register
2537 * @dev: struct device for the regulator
2538 * @init_data: platform provided init data, passed through by driver
2539 * @driver_data: private regulator data
2541 * Called by regulator drivers to register a regulator.
2542 * Returns 0 on success.
2544 struct regulator_dev
*regulator_register(struct regulator_desc
*regulator_desc
,
2545 struct device
*dev
, const struct regulator_init_data
*init_data
,
2548 static atomic_t regulator_no
= ATOMIC_INIT(0);
2549 struct regulator_dev
*rdev
;
2552 if (regulator_desc
== NULL
)
2553 return ERR_PTR(-EINVAL
);
2555 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
2556 return ERR_PTR(-EINVAL
);
2558 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
2559 regulator_desc
->type
!= REGULATOR_CURRENT
)
2560 return ERR_PTR(-EINVAL
);
2563 return ERR_PTR(-EINVAL
);
2565 /* Only one of each should be implemented */
2566 WARN_ON(regulator_desc
->ops
->get_voltage
&&
2567 regulator_desc
->ops
->get_voltage_sel
);
2568 WARN_ON(regulator_desc
->ops
->set_voltage
&&
2569 regulator_desc
->ops
->set_voltage_sel
);
2571 /* If we're using selectors we must implement list_voltage. */
2572 if (regulator_desc
->ops
->get_voltage_sel
&&
2573 !regulator_desc
->ops
->list_voltage
) {
2574 return ERR_PTR(-EINVAL
);
2576 if (regulator_desc
->ops
->set_voltage_sel
&&
2577 !regulator_desc
->ops
->list_voltage
) {
2578 return ERR_PTR(-EINVAL
);
2581 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
2583 return ERR_PTR(-ENOMEM
);
2585 mutex_lock(®ulator_list_mutex
);
2587 mutex_init(&rdev
->mutex
);
2588 rdev
->reg_data
= driver_data
;
2589 rdev
->owner
= regulator_desc
->owner
;
2590 rdev
->desc
= regulator_desc
;
2591 INIT_LIST_HEAD(&rdev
->consumer_list
);
2592 INIT_LIST_HEAD(&rdev
->supply_list
);
2593 INIT_LIST_HEAD(&rdev
->list
);
2594 INIT_LIST_HEAD(&rdev
->slist
);
2595 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
2597 /* preform any regulator specific init */
2598 if (init_data
->regulator_init
) {
2599 ret
= init_data
->regulator_init(rdev
->reg_data
);
2604 /* register with sysfs */
2605 rdev
->dev
.class = ®ulator_class
;
2606 rdev
->dev
.parent
= dev
;
2607 dev_set_name(&rdev
->dev
, "regulator.%d",
2608 atomic_inc_return(®ulator_no
) - 1);
2609 ret
= device_register(&rdev
->dev
);
2611 put_device(&rdev
->dev
);
2615 dev_set_drvdata(&rdev
->dev
, rdev
);
2617 /* set regulator constraints */
2618 ret
= set_machine_constraints(rdev
, &init_data
->constraints
);
2622 /* add attributes supported by this regulator */
2623 ret
= add_regulator_attributes(rdev
);
2627 if (init_data
->supply_regulator
) {
2628 struct regulator_dev
*r
;
2631 list_for_each_entry(r
, ®ulator_list
, list
) {
2632 if (strcmp(rdev_get_name(r
),
2633 init_data
->supply_regulator
) == 0) {
2640 dev_err(dev
, "Failed to find supply %s\n",
2641 init_data
->supply_regulator
);
2646 ret
= set_supply(rdev
, r
);
2651 /* add consumers devices */
2652 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
2653 ret
= set_consumer_device_supply(rdev
,
2654 init_data
->consumer_supplies
[i
].dev
,
2655 init_data
->consumer_supplies
[i
].dev_name
,
2656 init_data
->consumer_supplies
[i
].supply
);
2658 dev_err(dev
, "Failed to set supply %s\n",
2659 init_data
->consumer_supplies
[i
].supply
);
2660 goto unset_supplies
;
2664 list_add(&rdev
->list
, ®ulator_list
);
2666 rdev_init_debugfs(rdev
);
2668 mutex_unlock(®ulator_list_mutex
);
2672 unset_regulator_supplies(rdev
);
2675 device_unregister(&rdev
->dev
);
2676 /* device core frees rdev */
2677 rdev
= ERR_PTR(ret
);
2682 rdev
= ERR_PTR(ret
);
2685 EXPORT_SYMBOL_GPL(regulator_register
);
2688 * regulator_unregister - unregister regulator
2689 * @rdev: regulator to unregister
2691 * Called by regulator drivers to unregister a regulator.
2693 void regulator_unregister(struct regulator_dev
*rdev
)
2698 mutex_lock(®ulator_list_mutex
);
2699 #ifdef CONFIG_DEBUG_FS
2700 debugfs_remove_recursive(rdev
->debugfs
);
2702 WARN_ON(rdev
->open_count
);
2703 unset_regulator_supplies(rdev
);
2704 list_del(&rdev
->list
);
2706 sysfs_remove_link(&rdev
->dev
.kobj
, "supply");
2707 device_unregister(&rdev
->dev
);
2708 kfree(rdev
->constraints
);
2709 mutex_unlock(®ulator_list_mutex
);
2711 EXPORT_SYMBOL_GPL(regulator_unregister
);
2714 * regulator_suspend_prepare - prepare regulators for system wide suspend
2715 * @state: system suspend state
2717 * Configure each regulator with it's suspend operating parameters for state.
2718 * This will usually be called by machine suspend code prior to supending.
2720 int regulator_suspend_prepare(suspend_state_t state
)
2722 struct regulator_dev
*rdev
;
2725 /* ON is handled by regulator active state */
2726 if (state
== PM_SUSPEND_ON
)
2729 mutex_lock(®ulator_list_mutex
);
2730 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2732 mutex_lock(&rdev
->mutex
);
2733 ret
= suspend_prepare(rdev
, state
);
2734 mutex_unlock(&rdev
->mutex
);
2737 rdev_err(rdev
, "failed to prepare\n");
2742 mutex_unlock(®ulator_list_mutex
);
2745 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
2748 * regulator_suspend_finish - resume regulators from system wide suspend
2750 * Turn on regulators that might be turned off by regulator_suspend_prepare
2751 * and that should be turned on according to the regulators properties.
2753 int regulator_suspend_finish(void)
2755 struct regulator_dev
*rdev
;
2758 mutex_lock(®ulator_list_mutex
);
2759 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2760 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2762 mutex_lock(&rdev
->mutex
);
2763 if ((rdev
->use_count
> 0 || rdev
->constraints
->always_on
) &&
2765 error
= ops
->enable(rdev
);
2769 if (!has_full_constraints
)
2773 if (ops
->is_enabled
&& !ops
->is_enabled(rdev
))
2776 error
= ops
->disable(rdev
);
2781 mutex_unlock(&rdev
->mutex
);
2783 mutex_unlock(®ulator_list_mutex
);
2786 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
2789 * regulator_has_full_constraints - the system has fully specified constraints
2791 * Calling this function will cause the regulator API to disable all
2792 * regulators which have a zero use count and don't have an always_on
2793 * constraint in a late_initcall.
2795 * The intention is that this will become the default behaviour in a
2796 * future kernel release so users are encouraged to use this facility
2799 void regulator_has_full_constraints(void)
2801 has_full_constraints
= 1;
2803 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
2806 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2808 * Calling this function will cause the regulator API to provide a
2809 * dummy regulator to consumers if no physical regulator is found,
2810 * allowing most consumers to proceed as though a regulator were
2811 * configured. This allows systems such as those with software
2812 * controllable regulators for the CPU core only to be brought up more
2815 void regulator_use_dummy_regulator(void)
2817 board_wants_dummy_regulator
= true;
2819 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator
);
2822 * rdev_get_drvdata - get rdev regulator driver data
2825 * Get rdev regulator driver private data. This call can be used in the
2826 * regulator driver context.
2828 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
2830 return rdev
->reg_data
;
2832 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
2835 * regulator_get_drvdata - get regulator driver data
2836 * @regulator: regulator
2838 * Get regulator driver private data. This call can be used in the consumer
2839 * driver context when non API regulator specific functions need to be called.
2841 void *regulator_get_drvdata(struct regulator
*regulator
)
2843 return regulator
->rdev
->reg_data
;
2845 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
2848 * regulator_set_drvdata - set regulator driver data
2849 * @regulator: regulator
2852 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
2854 regulator
->rdev
->reg_data
= data
;
2856 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
2859 * regulator_get_id - get regulator ID
2862 int rdev_get_id(struct regulator_dev
*rdev
)
2864 return rdev
->desc
->id
;
2866 EXPORT_SYMBOL_GPL(rdev_get_id
);
2868 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
2872 EXPORT_SYMBOL_GPL(rdev_get_dev
);
2874 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
2876 return reg_init_data
->driver_data
;
2878 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
2880 static int __init
regulator_init(void)
2884 ret
= class_register(®ulator_class
);
2886 #ifdef CONFIG_DEBUG_FS
2887 debugfs_root
= debugfs_create_dir("regulator", NULL
);
2888 if (IS_ERR(debugfs_root
) || !debugfs_root
) {
2889 pr_warn("regulator: Failed to create debugfs directory\n");
2890 debugfs_root
= NULL
;
2894 regulator_dummy_init();
2899 /* init early to allow our consumers to complete system booting */
2900 core_initcall(regulator_init
);
2902 static int __init
regulator_init_complete(void)
2904 struct regulator_dev
*rdev
;
2905 struct regulator_ops
*ops
;
2906 struct regulation_constraints
*c
;
2909 mutex_lock(®ulator_list_mutex
);
2911 /* If we have a full configuration then disable any regulators
2912 * which are not in use or always_on. This will become the
2913 * default behaviour in the future.
2915 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2916 ops
= rdev
->desc
->ops
;
2917 c
= rdev
->constraints
;
2919 if (!ops
->disable
|| (c
&& c
->always_on
))
2922 mutex_lock(&rdev
->mutex
);
2924 if (rdev
->use_count
)
2927 /* If we can't read the status assume it's on. */
2928 if (ops
->is_enabled
)
2929 enabled
= ops
->is_enabled(rdev
);
2936 if (has_full_constraints
) {
2937 /* We log since this may kill the system if it
2939 rdev_info(rdev
, "disabling\n");
2940 ret
= ops
->disable(rdev
);
2942 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
2945 /* The intention is that in future we will
2946 * assume that full constraints are provided
2947 * so warn even if we aren't going to do
2950 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
2954 mutex_unlock(&rdev
->mutex
);
2957 mutex_unlock(®ulator_list_mutex
);
2961 late_initcall(regulator_init_complete
);