1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
41 #include <cluster/masklog.h>
49 #include "extent_map.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
65 #include "buffer_head_io.h"
67 static int ocfs2_init_file_private(struct inode
*inode
, struct file
*file
)
69 struct ocfs2_file_private
*fp
;
71 fp
= kzalloc(sizeof(struct ocfs2_file_private
), GFP_KERNEL
);
76 mutex_init(&fp
->fp_mutex
);
77 ocfs2_file_lock_res_init(&fp
->fp_flock
, fp
);
78 file
->private_data
= fp
;
83 static void ocfs2_free_file_private(struct inode
*inode
, struct file
*file
)
85 struct ocfs2_file_private
*fp
= file
->private_data
;
86 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
89 ocfs2_simple_drop_lockres(osb
, &fp
->fp_flock
);
90 ocfs2_lock_res_free(&fp
->fp_flock
);
92 file
->private_data
= NULL
;
96 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
99 int mode
= file
->f_flags
;
100 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
102 trace_ocfs2_file_open(inode
, file
, file
->f_path
.dentry
,
103 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
104 file
->f_path
.dentry
->d_name
.len
,
105 file
->f_path
.dentry
->d_name
.name
, mode
);
107 if (file
->f_mode
& FMODE_WRITE
)
108 dquot_initialize(inode
);
110 spin_lock(&oi
->ip_lock
);
112 /* Check that the inode hasn't been wiped from disk by another
113 * node. If it hasn't then we're safe as long as we hold the
114 * spin lock until our increment of open count. */
115 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_DELETED
) {
116 spin_unlock(&oi
->ip_lock
);
123 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
126 spin_unlock(&oi
->ip_lock
);
128 status
= ocfs2_init_file_private(inode
, file
);
131 * We want to set open count back if we're failing the
134 spin_lock(&oi
->ip_lock
);
136 spin_unlock(&oi
->ip_lock
);
143 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
145 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
147 spin_lock(&oi
->ip_lock
);
148 if (!--oi
->ip_open_count
)
149 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
151 trace_ocfs2_file_release(inode
, file
, file
->f_path
.dentry
,
153 file
->f_path
.dentry
->d_name
.len
,
154 file
->f_path
.dentry
->d_name
.name
,
156 spin_unlock(&oi
->ip_lock
);
158 ocfs2_free_file_private(inode
, file
);
163 static int ocfs2_dir_open(struct inode
*inode
, struct file
*file
)
165 return ocfs2_init_file_private(inode
, file
);
168 static int ocfs2_dir_release(struct inode
*inode
, struct file
*file
)
170 ocfs2_free_file_private(inode
, file
);
174 static int ocfs2_sync_file(struct file
*file
, loff_t start
, loff_t end
,
179 struct inode
*inode
= file
->f_mapping
->host
;
180 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
182 trace_ocfs2_sync_file(inode
, file
, file
->f_path
.dentry
,
183 OCFS2_I(inode
)->ip_blkno
,
184 file
->f_path
.dentry
->d_name
.len
,
185 file
->f_path
.dentry
->d_name
.name
,
186 (unsigned long long)datasync
);
188 err
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
193 * Probably don't need the i_mutex at all in here, just putting it here
194 * to be consistent with how fsync used to be called, someone more
195 * familiar with the fs could possibly remove it.
197 mutex_lock(&inode
->i_mutex
);
198 if (datasync
&& !(inode
->i_state
& I_DIRTY_DATASYNC
)) {
200 * We still have to flush drive's caches to get data to the
203 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
204 blkdev_issue_flush(inode
->i_sb
->s_bdev
, GFP_KERNEL
, NULL
);
208 journal
= osb
->journal
->j_journal
;
209 err
= jbd2_journal_force_commit(journal
);
214 mutex_unlock(&inode
->i_mutex
);
216 return (err
< 0) ? -EIO
: 0;
219 int ocfs2_should_update_atime(struct inode
*inode
,
220 struct vfsmount
*vfsmnt
)
223 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
225 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
228 if ((inode
->i_flags
& S_NOATIME
) ||
229 ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
233 * We can be called with no vfsmnt structure - NFSD will
236 * Note that our action here is different than touch_atime() -
237 * if we can't tell whether this is a noatime mount, then we
238 * don't know whether to trust the value of s_atime_quantum.
243 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
244 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
247 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
248 if ((timespec_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
249 (timespec_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
256 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
262 int ocfs2_update_inode_atime(struct inode
*inode
,
263 struct buffer_head
*bh
)
266 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
268 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
270 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
271 if (IS_ERR(handle
)) {
272 ret
= PTR_ERR(handle
);
277 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
278 OCFS2_JOURNAL_ACCESS_WRITE
);
285 * Don't use ocfs2_mark_inode_dirty() here as we don't always
286 * have i_mutex to guard against concurrent changes to other
289 inode
->i_atime
= CURRENT_TIME
;
290 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
291 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
292 ocfs2_journal_dirty(handle
, bh
);
295 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
300 static int ocfs2_set_inode_size(handle_t
*handle
,
302 struct buffer_head
*fe_bh
,
307 i_size_write(inode
, new_i_size
);
308 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
309 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
311 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
321 int ocfs2_simple_size_update(struct inode
*inode
,
322 struct buffer_head
*di_bh
,
326 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
327 handle_t
*handle
= NULL
;
329 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
330 if (IS_ERR(handle
)) {
331 ret
= PTR_ERR(handle
);
336 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
341 ocfs2_commit_trans(osb
, handle
);
346 static int ocfs2_cow_file_pos(struct inode
*inode
,
347 struct buffer_head
*fe_bh
,
351 u32 phys
, cpos
= offset
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
352 unsigned int num_clusters
= 0;
353 unsigned int ext_flags
= 0;
356 * If the new offset is aligned to the range of the cluster, there is
357 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
360 if ((offset
& (OCFS2_SB(inode
->i_sb
)->s_clustersize
- 1)) == 0)
363 status
= ocfs2_get_clusters(inode
, cpos
, &phys
,
364 &num_clusters
, &ext_flags
);
370 if (!(ext_flags
& OCFS2_EXT_REFCOUNTED
))
373 return ocfs2_refcount_cow(inode
, NULL
, fe_bh
, cpos
, 1, cpos
+1);
379 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
381 struct buffer_head
*fe_bh
,
386 struct ocfs2_dinode
*di
;
390 * We need to CoW the cluster contains the offset if it is reflinked
391 * since we will call ocfs2_zero_range_for_truncate later which will
392 * write "0" from offset to the end of the cluster.
394 status
= ocfs2_cow_file_pos(inode
, fe_bh
, new_i_size
);
400 /* TODO: This needs to actually orphan the inode in this
403 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
404 if (IS_ERR(handle
)) {
405 status
= PTR_ERR(handle
);
410 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), fe_bh
,
411 OCFS2_JOURNAL_ACCESS_WRITE
);
418 * Do this before setting i_size.
420 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
421 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
428 i_size_write(inode
, new_i_size
);
429 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
431 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
432 di
->i_size
= cpu_to_le64(new_i_size
);
433 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
434 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
436 ocfs2_journal_dirty(handle
, fe_bh
);
439 ocfs2_commit_trans(osb
, handle
);
444 static int ocfs2_truncate_file(struct inode
*inode
,
445 struct buffer_head
*di_bh
,
449 struct ocfs2_dinode
*fe
= NULL
;
450 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 * already validated it */
454 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
457 (unsigned long long)le64_to_cpu(fe
->i_size
),
458 (unsigned long long)new_i_size
);
460 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
461 "Inode %llu, inode i_size = %lld != di "
462 "i_size = %llu, i_flags = 0x%x\n",
463 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
465 (unsigned long long)le64_to_cpu(fe
->i_size
),
466 le32_to_cpu(fe
->i_flags
));
468 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
469 trace_ocfs2_truncate_file_error(
470 (unsigned long long)le64_to_cpu(fe
->i_size
),
471 (unsigned long long)new_i_size
);
477 /* lets handle the simple truncate cases before doing any more
478 * cluster locking. */
479 if (new_i_size
== le64_to_cpu(fe
->i_size
))
482 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
484 ocfs2_resv_discard(&osb
->osb_la_resmap
,
485 &OCFS2_I(inode
)->ip_la_data_resv
);
488 * The inode lock forced other nodes to sync and drop their
489 * pages, which (correctly) happens even if we have a truncate
490 * without allocation change - ocfs2 cluster sizes can be much
491 * greater than page size, so we have to truncate them
494 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
495 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
497 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
498 status
= ocfs2_truncate_inline(inode
, di_bh
, new_i_size
,
499 i_size_read(inode
), 1);
503 goto bail_unlock_sem
;
506 /* alright, we're going to need to do a full blown alloc size
507 * change. Orphan the inode so that recovery can complete the
508 * truncate if necessary. This does the task of marking
510 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
513 goto bail_unlock_sem
;
516 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
);
519 goto bail_unlock_sem
;
522 /* TODO: orphan dir cleanup here. */
524 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
527 if (!status
&& OCFS2_I(inode
)->ip_clusters
== 0)
528 status
= ocfs2_try_remove_refcount_tree(inode
, di_bh
);
534 * extend file allocation only here.
535 * we'll update all the disk stuff, and oip->alloc_size
537 * expect stuff to be locked, a transaction started and enough data /
538 * metadata reservations in the contexts.
540 * Will return -EAGAIN, and a reason if a restart is needed.
541 * If passed in, *reason will always be set, even in error.
543 int ocfs2_add_inode_data(struct ocfs2_super
*osb
,
548 struct buffer_head
*fe_bh
,
550 struct ocfs2_alloc_context
*data_ac
,
551 struct ocfs2_alloc_context
*meta_ac
,
552 enum ocfs2_alloc_restarted
*reason_ret
)
555 struct ocfs2_extent_tree et
;
557 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), fe_bh
);
558 ret
= ocfs2_add_clusters_in_btree(handle
, &et
, logical_offset
,
559 clusters_to_add
, mark_unwritten
,
560 data_ac
, meta_ac
, reason_ret
);
565 static int __ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
566 u32 clusters_to_add
, int mark_unwritten
)
569 int restart_func
= 0;
572 struct buffer_head
*bh
= NULL
;
573 struct ocfs2_dinode
*fe
= NULL
;
574 handle_t
*handle
= NULL
;
575 struct ocfs2_alloc_context
*data_ac
= NULL
;
576 struct ocfs2_alloc_context
*meta_ac
= NULL
;
577 enum ocfs2_alloc_restarted why
;
578 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
579 struct ocfs2_extent_tree et
;
583 * This function only exists for file systems which don't
586 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
588 status
= ocfs2_read_inode_block(inode
, &bh
);
593 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
596 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
598 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), bh
);
599 status
= ocfs2_lock_allocators(inode
, &et
, clusters_to_add
, 0,
606 credits
= ocfs2_calc_extend_credits(osb
->sb
, &fe
->id2
.i_list
,
608 handle
= ocfs2_start_trans(osb
, credits
);
609 if (IS_ERR(handle
)) {
610 status
= PTR_ERR(handle
);
616 restarted_transaction
:
617 trace_ocfs2_extend_allocation(
618 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
619 (unsigned long long)i_size_read(inode
),
620 le32_to_cpu(fe
->i_clusters
), clusters_to_add
,
623 status
= dquot_alloc_space_nodirty(inode
,
624 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
629 /* reserve a write to the file entry early on - that we if we
630 * run out of credits in the allocation path, we can still
632 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
633 OCFS2_JOURNAL_ACCESS_WRITE
);
639 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
641 status
= ocfs2_add_inode_data(osb
,
651 if ((status
< 0) && (status
!= -EAGAIN
)) {
652 if (status
!= -ENOSPC
)
657 ocfs2_journal_dirty(handle
, bh
);
659 spin_lock(&OCFS2_I(inode
)->ip_lock
);
660 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
661 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
662 /* Release unused quota reservation */
663 dquot_free_space(inode
,
664 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
667 if (why
!= RESTART_NONE
&& clusters_to_add
) {
668 if (why
== RESTART_META
) {
672 BUG_ON(why
!= RESTART_TRANS
);
674 /* TODO: This can be more intelligent. */
675 credits
= ocfs2_calc_extend_credits(osb
->sb
,
678 status
= ocfs2_extend_trans(handle
, credits
);
680 /* handle still has to be committed at
686 goto restarted_transaction
;
690 trace_ocfs2_extend_allocation_end(OCFS2_I(inode
)->ip_blkno
,
691 le32_to_cpu(fe
->i_clusters
),
692 (unsigned long long)le64_to_cpu(fe
->i_size
),
693 OCFS2_I(inode
)->ip_clusters
,
694 (unsigned long long)i_size_read(inode
));
697 if (status
< 0 && did_quota
)
698 dquot_free_space(inode
,
699 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
701 ocfs2_commit_trans(osb
, handle
);
705 ocfs2_free_alloc_context(data_ac
);
709 ocfs2_free_alloc_context(meta_ac
);
712 if ((!status
) && restart_func
) {
723 * While a write will already be ordering the data, a truncate will not.
724 * Thus, we need to explicitly order the zeroed pages.
726 static handle_t
*ocfs2_zero_start_ordered_transaction(struct inode
*inode
)
728 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
729 handle_t
*handle
= NULL
;
732 if (!ocfs2_should_order_data(inode
))
735 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
736 if (IS_ERR(handle
)) {
742 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
749 ocfs2_commit_trans(osb
, handle
);
750 handle
= ERR_PTR(ret
);
755 /* Some parts of this taken from generic_cont_expand, which turned out
756 * to be too fragile to do exactly what we need without us having to
757 * worry about recursive locking in ->write_begin() and ->write_end(). */
758 static int ocfs2_write_zero_page(struct inode
*inode
, u64 abs_from
,
761 struct address_space
*mapping
= inode
->i_mapping
;
763 unsigned long index
= abs_from
>> PAGE_CACHE_SHIFT
;
764 handle_t
*handle
= NULL
;
766 unsigned zero_from
, zero_to
, block_start
, block_end
;
768 BUG_ON(abs_from
>= abs_to
);
769 BUG_ON(abs_to
> (((u64
)index
+ 1) << PAGE_CACHE_SHIFT
));
770 BUG_ON(abs_from
& (inode
->i_blkbits
- 1));
772 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
779 /* Get the offsets within the page that we want to zero */
780 zero_from
= abs_from
& (PAGE_CACHE_SIZE
- 1);
781 zero_to
= abs_to
& (PAGE_CACHE_SIZE
- 1);
783 zero_to
= PAGE_CACHE_SIZE
;
785 trace_ocfs2_write_zero_page(
786 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
787 (unsigned long long)abs_from
,
788 (unsigned long long)abs_to
,
789 index
, zero_from
, zero_to
);
791 /* We know that zero_from is block aligned */
792 for (block_start
= zero_from
; block_start
< zero_to
;
793 block_start
= block_end
) {
794 block_end
= block_start
+ (1 << inode
->i_blkbits
);
797 * block_start is block-aligned. Bump it by one to force
798 * __block_write_begin and block_commit_write to zero the
801 ret
= __block_write_begin(page
, block_start
+ 1, 0,
809 handle
= ocfs2_zero_start_ordered_transaction(inode
);
810 if (IS_ERR(handle
)) {
811 ret
= PTR_ERR(handle
);
817 /* must not update i_size! */
818 ret
= block_commit_write(page
, block_start
+ 1,
827 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
831 page_cache_release(page
);
837 * Find the next range to zero. We do this in terms of bytes because
838 * that's what ocfs2_zero_extend() wants, and it is dealing with the
839 * pagecache. We may return multiple extents.
841 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
842 * needs to be zeroed. range_start and range_end return the next zeroing
843 * range. A subsequent call should pass the previous range_end as its
844 * zero_start. If range_end is 0, there's nothing to do.
846 * Unwritten extents are skipped over. Refcounted extents are CoWd.
848 static int ocfs2_zero_extend_get_range(struct inode
*inode
,
849 struct buffer_head
*di_bh
,
850 u64 zero_start
, u64 zero_end
,
851 u64
*range_start
, u64
*range_end
)
853 int rc
= 0, needs_cow
= 0;
854 u32 p_cpos
, zero_clusters
= 0;
856 zero_start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
857 u32 last_cpos
= ocfs2_clusters_for_bytes(inode
->i_sb
, zero_end
);
858 unsigned int num_clusters
= 0;
859 unsigned int ext_flags
= 0;
861 while (zero_cpos
< last_cpos
) {
862 rc
= ocfs2_get_clusters(inode
, zero_cpos
, &p_cpos
,
863 &num_clusters
, &ext_flags
);
869 if (p_cpos
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
)) {
870 zero_clusters
= num_clusters
;
871 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
876 zero_cpos
+= num_clusters
;
878 if (!zero_clusters
) {
883 while ((zero_cpos
+ zero_clusters
) < last_cpos
) {
884 rc
= ocfs2_get_clusters(inode
, zero_cpos
+ zero_clusters
,
885 &p_cpos
, &num_clusters
,
892 if (!p_cpos
|| (ext_flags
& OCFS2_EXT_UNWRITTEN
))
894 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
896 zero_clusters
+= num_clusters
;
898 if ((zero_cpos
+ zero_clusters
) > last_cpos
)
899 zero_clusters
= last_cpos
- zero_cpos
;
902 rc
= ocfs2_refcount_cow(inode
, NULL
, di_bh
, zero_cpos
,
903 zero_clusters
, UINT_MAX
);
910 *range_start
= ocfs2_clusters_to_bytes(inode
->i_sb
, zero_cpos
);
911 *range_end
= ocfs2_clusters_to_bytes(inode
->i_sb
,
912 zero_cpos
+ zero_clusters
);
919 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
920 * has made sure that the entire range needs zeroing.
922 static int ocfs2_zero_extend_range(struct inode
*inode
, u64 range_start
,
927 u64 zero_pos
= range_start
;
929 trace_ocfs2_zero_extend_range(
930 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
931 (unsigned long long)range_start
,
932 (unsigned long long)range_end
);
933 BUG_ON(range_start
>= range_end
);
935 while (zero_pos
< range_end
) {
936 next_pos
= (zero_pos
& PAGE_CACHE_MASK
) + PAGE_CACHE_SIZE
;
937 if (next_pos
> range_end
)
938 next_pos
= range_end
;
939 rc
= ocfs2_write_zero_page(inode
, zero_pos
, next_pos
);
947 * Very large extends have the potential to lock up
948 * the cpu for extended periods of time.
956 int ocfs2_zero_extend(struct inode
*inode
, struct buffer_head
*di_bh
,
960 u64 zero_start
, range_start
= 0, range_end
= 0;
961 struct super_block
*sb
= inode
->i_sb
;
963 zero_start
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
964 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
965 (unsigned long long)zero_start
,
966 (unsigned long long)i_size_read(inode
));
967 while (zero_start
< zero_to_size
) {
968 ret
= ocfs2_zero_extend_get_range(inode
, di_bh
, zero_start
,
979 if (range_start
< zero_start
)
980 range_start
= zero_start
;
981 if (range_end
> zero_to_size
)
982 range_end
= zero_to_size
;
984 ret
= ocfs2_zero_extend_range(inode
, range_start
,
990 zero_start
= range_end
;
996 int ocfs2_extend_no_holes(struct inode
*inode
, struct buffer_head
*di_bh
,
997 u64 new_i_size
, u64 zero_to
)
1000 u32 clusters_to_add
;
1001 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1004 * Only quota files call this without a bh, and they can't be
1007 BUG_ON(!di_bh
&& (oi
->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
));
1008 BUG_ON(!di_bh
&& !(oi
->ip_flags
& OCFS2_INODE_SYSTEM_FILE
));
1010 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
);
1011 if (clusters_to_add
< oi
->ip_clusters
)
1012 clusters_to_add
= 0;
1014 clusters_to_add
-= oi
->ip_clusters
;
1016 if (clusters_to_add
) {
1017 ret
= __ocfs2_extend_allocation(inode
, oi
->ip_clusters
,
1018 clusters_to_add
, 0);
1026 * Call this even if we don't add any clusters to the tree. We
1027 * still need to zero the area between the old i_size and the
1030 ret
= ocfs2_zero_extend(inode
, di_bh
, zero_to
);
1038 static int ocfs2_extend_file(struct inode
*inode
,
1039 struct buffer_head
*di_bh
,
1043 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1047 /* setattr sometimes calls us like this. */
1048 if (new_i_size
== 0)
1051 if (i_size_read(inode
) == new_i_size
)
1053 BUG_ON(new_i_size
< i_size_read(inode
));
1056 * The alloc sem blocks people in read/write from reading our
1057 * allocation until we're done changing it. We depend on
1058 * i_mutex to block other extend/truncate calls while we're
1059 * here. We even have to hold it for sparse files because there
1060 * might be some tail zeroing.
1062 down_write(&oi
->ip_alloc_sem
);
1064 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1066 * We can optimize small extends by keeping the inodes
1069 if (ocfs2_size_fits_inline_data(di_bh
, new_i_size
)) {
1070 up_write(&oi
->ip_alloc_sem
);
1071 goto out_update_size
;
1074 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1076 up_write(&oi
->ip_alloc_sem
);
1082 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
1083 ret
= ocfs2_zero_extend(inode
, di_bh
, new_i_size
);
1085 ret
= ocfs2_extend_no_holes(inode
, di_bh
, new_i_size
,
1088 up_write(&oi
->ip_alloc_sem
);
1096 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
1104 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1106 int status
= 0, size_change
;
1107 struct inode
*inode
= dentry
->d_inode
;
1108 struct super_block
*sb
= inode
->i_sb
;
1109 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
1110 struct buffer_head
*bh
= NULL
;
1111 handle_t
*handle
= NULL
;
1112 struct dquot
*transfer_to
[MAXQUOTAS
] = { };
1115 trace_ocfs2_setattr(inode
, dentry
,
1116 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1117 dentry
->d_name
.len
, dentry
->d_name
.name
,
1118 attr
->ia_valid
, attr
->ia_mode
,
1119 attr
->ia_uid
, attr
->ia_gid
);
1121 /* ensuring we don't even attempt to truncate a symlink */
1122 if (S_ISLNK(inode
->i_mode
))
1123 attr
->ia_valid
&= ~ATTR_SIZE
;
1125 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1126 | ATTR_GID | ATTR_UID | ATTR_MODE)
1127 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
))
1130 status
= inode_change_ok(inode
, attr
);
1134 if (is_quota_modification(inode
, attr
))
1135 dquot_initialize(inode
);
1136 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
1138 status
= ocfs2_rw_lock(inode
, 1);
1145 status
= ocfs2_inode_lock(inode
, &bh
, 1);
1147 if (status
!= -ENOENT
)
1149 goto bail_unlock_rw
;
1152 if (size_change
&& attr
->ia_size
!= i_size_read(inode
)) {
1153 status
= inode_newsize_ok(inode
, attr
->ia_size
);
1157 inode_dio_wait(inode
);
1159 if (i_size_read(inode
) > attr
->ia_size
) {
1160 if (ocfs2_should_order_data(inode
)) {
1161 status
= ocfs2_begin_ordered_truncate(inode
,
1166 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1168 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
);
1170 if (status
!= -ENOSPC
)
1177 if ((attr
->ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
1178 (attr
->ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
1180 * Gather pointers to quota structures so that allocation /
1181 * freeing of quota structures happens here and not inside
1182 * dquot_transfer() where we have problems with lock ordering
1184 if (attr
->ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
1185 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1186 OCFS2_FEATURE_RO_COMPAT_USRQUOTA
)) {
1187 transfer_to
[USRQUOTA
] = dqget(sb
, attr
->ia_uid
,
1189 if (!transfer_to
[USRQUOTA
]) {
1194 if (attr
->ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
1195 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1196 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA
)) {
1197 transfer_to
[GRPQUOTA
] = dqget(sb
, attr
->ia_gid
,
1199 if (!transfer_to
[GRPQUOTA
]) {
1204 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
+
1205 2 * ocfs2_quota_trans_credits(sb
));
1206 if (IS_ERR(handle
)) {
1207 status
= PTR_ERR(handle
);
1211 status
= __dquot_transfer(inode
, transfer_to
);
1215 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1216 if (IS_ERR(handle
)) {
1217 status
= PTR_ERR(handle
);
1224 * This will intentionally not wind up calling truncate_setsize(),
1225 * since all the work for a size change has been done above.
1226 * Otherwise, we could get into problems with truncate as
1227 * ip_alloc_sem is used there to protect against i_size
1230 * XXX: this means the conditional below can probably be removed.
1232 if ((attr
->ia_valid
& ATTR_SIZE
) &&
1233 attr
->ia_size
!= i_size_read(inode
)) {
1234 status
= vmtruncate(inode
, attr
->ia_size
);
1241 setattr_copy(inode
, attr
);
1242 mark_inode_dirty(inode
);
1244 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1249 ocfs2_commit_trans(osb
, handle
);
1251 ocfs2_inode_unlock(inode
, 1);
1254 ocfs2_rw_unlock(inode
, 1);
1258 /* Release quota pointers in case we acquired them */
1259 for (qtype
= 0; qtype
< MAXQUOTAS
; qtype
++)
1260 dqput(transfer_to
[qtype
]);
1262 if (!status
&& attr
->ia_valid
& ATTR_MODE
) {
1263 status
= ocfs2_acl_chmod(inode
);
1271 int ocfs2_getattr(struct vfsmount
*mnt
,
1272 struct dentry
*dentry
,
1275 struct inode
*inode
= dentry
->d_inode
;
1276 struct super_block
*sb
= dentry
->d_inode
->i_sb
;
1277 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1280 err
= ocfs2_inode_revalidate(dentry
);
1287 generic_fillattr(inode
, stat
);
1289 /* We set the blksize from the cluster size for performance */
1290 stat
->blksize
= osb
->s_clustersize
;
1296 int ocfs2_permission(struct inode
*inode
, int mask
)
1300 if (mask
& MAY_NOT_BLOCK
)
1303 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
1310 ret
= generic_permission(inode
, mask
);
1312 ocfs2_inode_unlock(inode
, 0);
1317 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1318 struct buffer_head
*bh
)
1322 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1323 struct ocfs2_dinode
*di
;
1325 trace_ocfs2_write_remove_suid(
1326 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1329 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1330 if (IS_ERR(handle
)) {
1331 ret
= PTR_ERR(handle
);
1336 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
1337 OCFS2_JOURNAL_ACCESS_WRITE
);
1343 inode
->i_mode
&= ~S_ISUID
;
1344 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1345 inode
->i_mode
&= ~S_ISGID
;
1347 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1348 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1350 ocfs2_journal_dirty(handle
, bh
);
1353 ocfs2_commit_trans(osb
, handle
);
1359 * Will look for holes and unwritten extents in the range starting at
1360 * pos for count bytes (inclusive).
1362 static int ocfs2_check_range_for_holes(struct inode
*inode
, loff_t pos
,
1366 unsigned int extent_flags
;
1367 u32 cpos
, clusters
, extent_len
, phys_cpos
;
1368 struct super_block
*sb
= inode
->i_sb
;
1370 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
1371 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
1374 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
1381 if (phys_cpos
== 0 || (extent_flags
& OCFS2_EXT_UNWRITTEN
)) {
1386 if (extent_len
> clusters
)
1387 extent_len
= clusters
;
1389 clusters
-= extent_len
;
1396 static int ocfs2_write_remove_suid(struct inode
*inode
)
1399 struct buffer_head
*bh
= NULL
;
1401 ret
= ocfs2_read_inode_block(inode
, &bh
);
1407 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1414 * Allocate enough extents to cover the region starting at byte offset
1415 * start for len bytes. Existing extents are skipped, any extents
1416 * added are marked as "unwritten".
1418 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1422 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1423 u64 end
= start
+ len
;
1424 struct buffer_head
*di_bh
= NULL
;
1426 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1427 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
1434 * Nothing to do if the requested reservation range
1435 * fits within the inode.
1437 if (ocfs2_size_fits_inline_data(di_bh
, end
))
1440 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1448 * We consider both start and len to be inclusive.
1450 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1451 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1455 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1463 * Hole or existing extent len can be arbitrary, so
1464 * cap it to our own allocation request.
1466 if (alloc_size
> clusters
)
1467 alloc_size
= clusters
;
1471 * We already have an allocation at this
1472 * region so we can safely skip it.
1477 ret
= __ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1486 clusters
-= alloc_size
;
1497 * Truncate a byte range, avoiding pages within partial clusters. This
1498 * preserves those pages for the zeroing code to write to.
1500 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1503 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1505 struct address_space
*mapping
= inode
->i_mapping
;
1507 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1508 end
= byte_start
+ byte_len
;
1509 end
= end
& ~(osb
->s_clustersize
- 1);
1512 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1513 truncate_inode_pages_range(mapping
, start
, end
- 1);
1517 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1521 u64 tmpend
, end
= start
+ len
;
1522 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1523 unsigned int csize
= osb
->s_clustersize
;
1527 * The "start" and "end" values are NOT necessarily part of
1528 * the range whose allocation is being deleted. Rather, this
1529 * is what the user passed in with the request. We must zero
1530 * partial clusters here. There's no need to worry about
1531 * physical allocation - the zeroing code knows to skip holes.
1533 trace_ocfs2_zero_partial_clusters(
1534 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1535 (unsigned long long)start
, (unsigned long long)end
);
1538 * If both edges are on a cluster boundary then there's no
1539 * zeroing required as the region is part of the allocation to
1542 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1545 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1546 if (IS_ERR(handle
)) {
1547 ret
= PTR_ERR(handle
);
1553 * We want to get the byte offset of the end of the 1st cluster.
1555 tmpend
= (u64
)osb
->s_clustersize
+ (start
& ~(osb
->s_clustersize
- 1));
1559 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start
,
1560 (unsigned long long)tmpend
);
1562 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, tmpend
);
1568 * This may make start and end equal, but the zeroing
1569 * code will skip any work in that case so there's no
1570 * need to catch it up here.
1572 start
= end
& ~(osb
->s_clustersize
- 1);
1574 trace_ocfs2_zero_partial_clusters_range2(
1575 (unsigned long long)start
, (unsigned long long)end
);
1577 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1582 ocfs2_commit_trans(osb
, handle
);
1587 static int ocfs2_find_rec(struct ocfs2_extent_list
*el
, u32 pos
)
1590 struct ocfs2_extent_rec
*rec
= NULL
;
1592 for (i
= le16_to_cpu(el
->l_next_free_rec
) - 1; i
>= 0; i
--) {
1594 rec
= &el
->l_recs
[i
];
1596 if (le32_to_cpu(rec
->e_cpos
) < pos
)
1604 * Helper to calculate the punching pos and length in one run, we handle the
1605 * following three cases in order:
1607 * - remove the entire record
1608 * - remove a partial record
1609 * - no record needs to be removed (hole-punching completed)
1611 static void ocfs2_calc_trunc_pos(struct inode
*inode
,
1612 struct ocfs2_extent_list
*el
,
1613 struct ocfs2_extent_rec
*rec
,
1614 u32 trunc_start
, u32
*trunc_cpos
,
1615 u32
*trunc_len
, u32
*trunc_end
,
1616 u64
*blkno
, int *done
)
1621 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1623 if (le32_to_cpu(rec
->e_cpos
) >= trunc_start
) {
1625 * remove an entire extent record.
1627 *trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
1629 * Skip holes if any.
1631 if (range
< *trunc_end
)
1633 *trunc_len
= *trunc_end
- le32_to_cpu(rec
->e_cpos
);
1634 *blkno
= le64_to_cpu(rec
->e_blkno
);
1635 *trunc_end
= le32_to_cpu(rec
->e_cpos
);
1636 } else if (range
> trunc_start
) {
1638 * remove a partial extent record, which means we're
1639 * removing the last extent record.
1641 *trunc_cpos
= trunc_start
;
1645 if (range
< *trunc_end
)
1647 *trunc_len
= *trunc_end
- trunc_start
;
1648 coff
= trunc_start
- le32_to_cpu(rec
->e_cpos
);
1649 *blkno
= le64_to_cpu(rec
->e_blkno
) +
1650 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
1651 *trunc_end
= trunc_start
;
1654 * It may have two following possibilities:
1656 * - last record has been removed
1657 * - trunc_start was within a hole
1659 * both two cases mean the completion of hole punching.
1667 static int ocfs2_remove_inode_range(struct inode
*inode
,
1668 struct buffer_head
*di_bh
, u64 byte_start
,
1671 int ret
= 0, flags
= 0, done
= 0, i
;
1672 u32 trunc_start
, trunc_len
, trunc_end
, trunc_cpos
, phys_cpos
;
1674 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1675 struct ocfs2_cached_dealloc_ctxt dealloc
;
1676 struct address_space
*mapping
= inode
->i_mapping
;
1677 struct ocfs2_extent_tree et
;
1678 struct ocfs2_path
*path
= NULL
;
1679 struct ocfs2_extent_list
*el
= NULL
;
1680 struct ocfs2_extent_rec
*rec
= NULL
;
1681 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1682 u64 blkno
, refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
1684 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
1685 ocfs2_init_dealloc_ctxt(&dealloc
);
1687 trace_ocfs2_remove_inode_range(
1688 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1689 (unsigned long long)byte_start
,
1690 (unsigned long long)byte_len
);
1695 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1696 ret
= ocfs2_truncate_inline(inode
, di_bh
, byte_start
,
1697 byte_start
+ byte_len
, 0);
1703 * There's no need to get fancy with the page cache
1704 * truncate of an inline-data inode. We're talking
1705 * about less than a page here, which will be cached
1706 * in the dinode buffer anyway.
1708 unmap_mapping_range(mapping
, 0, 0, 0);
1709 truncate_inode_pages(mapping
, 0);
1714 * For reflinks, we may need to CoW 2 clusters which might be
1715 * partially zero'd later, if hole's start and end offset were
1716 * within one cluster(means is not exactly aligned to clustersize).
1719 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
) {
1721 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
);
1727 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
+ byte_len
);
1734 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1735 trunc_end
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1736 cluster_in_el
= trunc_end
;
1738 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1744 path
= ocfs2_new_path_from_et(&et
);
1751 while (trunc_end
> trunc_start
) {
1753 ret
= ocfs2_find_path(INODE_CACHE(inode
), path
,
1760 el
= path_leaf_el(path
);
1762 i
= ocfs2_find_rec(el
, trunc_end
);
1764 * Need to go to previous extent block.
1767 if (path
->p_tree_depth
== 0)
1770 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
1779 * We've reached the leftmost extent block,
1780 * it's safe to leave.
1782 if (cluster_in_el
== 0)
1786 * The 'pos' searched for previous extent block is
1787 * always one cluster less than actual trunc_end.
1789 trunc_end
= cluster_in_el
+ 1;
1791 ocfs2_reinit_path(path
, 1);
1796 rec
= &el
->l_recs
[i
];
1798 ocfs2_calc_trunc_pos(inode
, el
, rec
, trunc_start
, &trunc_cpos
,
1799 &trunc_len
, &trunc_end
, &blkno
, &done
);
1803 flags
= rec
->e_flags
;
1804 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
1806 ret
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
1807 phys_cpos
, trunc_len
, flags
,
1808 &dealloc
, refcount_loc
);
1814 cluster_in_el
= trunc_end
;
1816 ocfs2_reinit_path(path
, 1);
1819 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1822 ocfs2_schedule_truncate_log_flush(osb
, 1);
1823 ocfs2_run_deallocs(osb
, &dealloc
);
1829 * Parts of this function taken from xfs_change_file_space()
1831 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1832 loff_t f_pos
, unsigned int cmd
,
1833 struct ocfs2_space_resv
*sr
,
1839 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1840 struct buffer_head
*di_bh
= NULL
;
1842 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1844 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1847 mutex_lock(&inode
->i_mutex
);
1850 * This prevents concurrent writes on other nodes
1852 ret
= ocfs2_rw_lock(inode
, 1);
1858 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1864 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1866 goto out_inode_unlock
;
1869 switch (sr
->l_whence
) {
1870 case 0: /*SEEK_SET*/
1872 case 1: /*SEEK_CUR*/
1873 sr
->l_start
+= f_pos
;
1875 case 2: /*SEEK_END*/
1876 sr
->l_start
+= i_size_read(inode
);
1880 goto out_inode_unlock
;
1884 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1887 || sr
->l_start
> max_off
1888 || (sr
->l_start
+ llen
) < 0
1889 || (sr
->l_start
+ llen
) > max_off
) {
1891 goto out_inode_unlock
;
1893 size
= sr
->l_start
+ sr
->l_len
;
1895 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) {
1896 if (sr
->l_len
<= 0) {
1898 goto out_inode_unlock
;
1902 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1903 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1906 goto out_inode_unlock
;
1910 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1912 case OCFS2_IOC_RESVSP
:
1913 case OCFS2_IOC_RESVSP64
:
1915 * This takes unsigned offsets, but the signed ones we
1916 * pass have been checked against overflow above.
1918 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1921 case OCFS2_IOC_UNRESVSP
:
1922 case OCFS2_IOC_UNRESVSP64
:
1923 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1929 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1932 goto out_inode_unlock
;
1936 * We update c/mtime for these changes
1938 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1939 if (IS_ERR(handle
)) {
1940 ret
= PTR_ERR(handle
);
1942 goto out_inode_unlock
;
1945 if (change_size
&& i_size_read(inode
) < size
)
1946 i_size_write(inode
, size
);
1948 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1949 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1953 ocfs2_commit_trans(osb
, handle
);
1957 ocfs2_inode_unlock(inode
, 1);
1959 ocfs2_rw_unlock(inode
, 1);
1962 mutex_unlock(&inode
->i_mutex
);
1966 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
1967 struct ocfs2_space_resv
*sr
)
1969 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1970 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1972 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
1973 !ocfs2_writes_unwritten_extents(osb
))
1975 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
1976 !ocfs2_sparse_alloc(osb
))
1979 if (!S_ISREG(inode
->i_mode
))
1982 if (!(file
->f_mode
& FMODE_WRITE
))
1985 return __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
1988 static long ocfs2_fallocate(struct file
*file
, int mode
, loff_t offset
,
1991 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1992 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1993 struct ocfs2_space_resv sr
;
1994 int change_size
= 1;
1995 int cmd
= OCFS2_IOC_RESVSP64
;
1997 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
1999 if (!ocfs2_writes_unwritten_extents(osb
))
2002 if (mode
& FALLOC_FL_KEEP_SIZE
)
2005 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2006 cmd
= OCFS2_IOC_UNRESVSP64
;
2009 sr
.l_start
= (s64
)offset
;
2010 sr
.l_len
= (s64
)len
;
2012 return __ocfs2_change_file_space(NULL
, inode
, offset
, cmd
, &sr
,
2016 int ocfs2_check_range_for_refcount(struct inode
*inode
, loff_t pos
,
2020 unsigned int extent_flags
;
2021 u32 cpos
, clusters
, extent_len
, phys_cpos
;
2022 struct super_block
*sb
= inode
->i_sb
;
2024 if (!ocfs2_refcount_tree(OCFS2_SB(inode
->i_sb
)) ||
2025 !(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
) ||
2026 OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2029 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
2030 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
2033 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
2040 if (phys_cpos
&& (extent_flags
& OCFS2_EXT_REFCOUNTED
)) {
2045 if (extent_len
> clusters
)
2046 extent_len
= clusters
;
2048 clusters
-= extent_len
;
2055 static int ocfs2_prepare_inode_for_refcount(struct inode
*inode
,
2057 loff_t pos
, size_t count
,
2061 struct buffer_head
*di_bh
= NULL
;
2062 u32 cpos
= pos
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
2064 ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ count
) - cpos
;
2066 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2074 ret
= ocfs2_refcount_cow(inode
, file
, di_bh
, cpos
, clusters
, UINT_MAX
);
2082 static int ocfs2_prepare_inode_for_write(struct file
*file
,
2089 int ret
= 0, meta_level
= 0;
2090 struct dentry
*dentry
= file
->f_path
.dentry
;
2091 struct inode
*inode
= dentry
->d_inode
;
2092 loff_t saved_pos
= 0, end
;
2095 * We start with a read level meta lock and only jump to an ex
2096 * if we need to make modifications here.
2099 ret
= ocfs2_inode_lock(inode
, NULL
, meta_level
);
2106 /* Clear suid / sgid if necessary. We do this here
2107 * instead of later in the write path because
2108 * remove_suid() calls ->setattr without any hint that
2109 * we may have already done our cluster locking. Since
2110 * ocfs2_setattr() *must* take cluster locks to
2111 * proceeed, this will lead us to recursively lock the
2112 * inode. There's also the dinode i_size state which
2113 * can be lost via setattr during extending writes (we
2114 * set inode->i_size at the end of a write. */
2115 if (should_remove_suid(dentry
)) {
2116 if (meta_level
== 0) {
2117 ocfs2_inode_unlock(inode
, meta_level
);
2122 ret
= ocfs2_write_remove_suid(inode
);
2129 /* work on a copy of ppos until we're sure that we won't have
2130 * to recalculate it due to relocking. */
2132 saved_pos
= i_size_read(inode
);
2136 end
= saved_pos
+ count
;
2138 ret
= ocfs2_check_range_for_refcount(inode
, saved_pos
, count
);
2140 ocfs2_inode_unlock(inode
, meta_level
);
2143 ret
= ocfs2_prepare_inode_for_refcount(inode
,
2160 * Skip the O_DIRECT checks if we don't need
2163 if (!direct_io
|| !(*direct_io
))
2167 * There's no sane way to do direct writes to an inode
2170 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
2176 * Allowing concurrent direct writes means
2177 * i_size changes wouldn't be synchronized, so
2178 * one node could wind up truncating another
2181 if (end
> i_size_read(inode
)) {
2187 * We don't fill holes during direct io, so
2188 * check for them here. If any are found, the
2189 * caller will have to retake some cluster
2190 * locks and initiate the io as buffered.
2192 ret
= ocfs2_check_range_for_holes(inode
, saved_pos
, count
);
2205 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode
)->ip_blkno
,
2206 saved_pos
, appending
, count
,
2207 direct_io
, has_refcount
);
2209 if (meta_level
>= 0)
2210 ocfs2_inode_unlock(inode
, meta_level
);
2216 static ssize_t
ocfs2_file_aio_write(struct kiocb
*iocb
,
2217 const struct iovec
*iov
,
2218 unsigned long nr_segs
,
2221 int ret
, direct_io
, appending
, rw_level
, have_alloc_sem
= 0;
2222 int can_do_direct
, has_refcount
= 0;
2223 ssize_t written
= 0;
2224 size_t ocount
; /* original count */
2225 size_t count
; /* after file limit checks */
2226 loff_t old_size
, *ppos
= &iocb
->ki_pos
;
2228 struct file
*file
= iocb
->ki_filp
;
2229 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
2230 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2231 int full_coherency
= !(osb
->s_mount_opt
&
2232 OCFS2_MOUNT_COHERENCY_BUFFERED
);
2234 trace_ocfs2_file_aio_write(inode
, file
, file
->f_path
.dentry
,
2235 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2236 file
->f_path
.dentry
->d_name
.len
,
2237 file
->f_path
.dentry
->d_name
.name
,
2238 (unsigned int)nr_segs
);
2240 if (iocb
->ki_left
== 0)
2243 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2245 appending
= file
->f_flags
& O_APPEND
? 1 : 0;
2246 direct_io
= file
->f_flags
& O_DIRECT
? 1 : 0;
2248 mutex_lock(&inode
->i_mutex
);
2250 ocfs2_iocb_clear_sem_locked(iocb
);
2253 /* to match setattr's i_mutex -> rw_lock ordering */
2256 /* communicate with ocfs2_dio_end_io */
2257 ocfs2_iocb_set_sem_locked(iocb
);
2261 * Concurrent O_DIRECT writes are allowed with
2262 * mount_option "coherency=buffered".
2264 rw_level
= (!direct_io
|| full_coherency
);
2266 ret
= ocfs2_rw_lock(inode
, rw_level
);
2273 * O_DIRECT writes with "coherency=full" need to take EX cluster
2274 * inode_lock to guarantee coherency.
2276 if (direct_io
&& full_coherency
) {
2278 * We need to take and drop the inode lock to force
2279 * other nodes to drop their caches. Buffered I/O
2280 * already does this in write_begin().
2282 ret
= ocfs2_inode_lock(inode
, NULL
, 1);
2288 ocfs2_inode_unlock(inode
, 1);
2291 can_do_direct
= direct_io
;
2292 ret
= ocfs2_prepare_inode_for_write(file
, ppos
,
2293 iocb
->ki_left
, appending
,
2294 &can_do_direct
, &has_refcount
);
2301 * We can't complete the direct I/O as requested, fall back to
2304 if (direct_io
&& !can_do_direct
) {
2305 ocfs2_rw_unlock(inode
, rw_level
);
2315 * To later detect whether a journal commit for sync writes is
2316 * necessary, we sample i_size, and cluster count here.
2318 old_size
= i_size_read(inode
);
2319 old_clusters
= OCFS2_I(inode
)->ip_clusters
;
2321 /* communicate with ocfs2_dio_end_io */
2322 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2324 ret
= generic_segment_checks(iov
, &nr_segs
, &ocount
,
2330 ret
= generic_write_checks(file
, ppos
, &count
,
2331 S_ISBLK(inode
->i_mode
));
2336 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, *ppos
,
2337 ppos
, count
, ocount
);
2343 current
->backing_dev_info
= file
->f_mapping
->backing_dev_info
;
2344 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
, *ppos
,
2346 current
->backing_dev_info
= NULL
;
2350 /* buffered aio wouldn't have proper lock coverage today */
2351 BUG_ON(ret
== -EIOCBQUEUED
&& !(file
->f_flags
& O_DIRECT
));
2353 if (((file
->f_flags
& O_DSYNC
) && !direct_io
) || IS_SYNC(inode
) ||
2354 ((file
->f_flags
& O_DIRECT
) && !direct_io
)) {
2355 ret
= filemap_fdatawrite_range(file
->f_mapping
, pos
,
2360 if (!ret
&& ((old_size
!= i_size_read(inode
)) ||
2361 (old_clusters
!= OCFS2_I(inode
)->ip_clusters
) ||
2363 ret
= jbd2_journal_force_commit(osb
->journal
->j_journal
);
2369 ret
= filemap_fdatawait_range(file
->f_mapping
, pos
,
2374 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2375 * function pointer which is called when o_direct io completes so that
2376 * it can unlock our rw lock.
2377 * Unfortunately there are error cases which call end_io and others
2378 * that don't. so we don't have to unlock the rw_lock if either an
2379 * async dio is going to do it in the future or an end_io after an
2380 * error has already done it.
2382 if ((ret
== -EIOCBQUEUED
) || (!ocfs2_iocb_is_rw_locked(iocb
))) {
2389 ocfs2_rw_unlock(inode
, rw_level
);
2393 ocfs2_iocb_clear_sem_locked(iocb
);
2395 mutex_unlock(&inode
->i_mutex
);
2402 static int ocfs2_splice_to_file(struct pipe_inode_info
*pipe
,
2404 struct splice_desc
*sd
)
2408 ret
= ocfs2_prepare_inode_for_write(out
, &sd
->pos
,
2409 sd
->total_len
, 0, NULL
, NULL
);
2415 return splice_from_pipe_feed(pipe
, sd
, pipe_to_file
);
2418 static ssize_t
ocfs2_file_splice_write(struct pipe_inode_info
*pipe
,
2425 struct address_space
*mapping
= out
->f_mapping
;
2426 struct inode
*inode
= mapping
->host
;
2427 struct splice_desc sd
= {
2435 trace_ocfs2_file_splice_write(inode
, out
, out
->f_path
.dentry
,
2436 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2437 out
->f_path
.dentry
->d_name
.len
,
2438 out
->f_path
.dentry
->d_name
.name
, len
);
2441 mutex_lock_nested(&pipe
->inode
->i_mutex
, I_MUTEX_PARENT
);
2443 splice_from_pipe_begin(&sd
);
2445 ret
= splice_from_pipe_next(pipe
, &sd
);
2449 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2450 ret
= ocfs2_rw_lock(inode
, 1);
2454 ret
= ocfs2_splice_to_file(pipe
, out
, &sd
);
2455 ocfs2_rw_unlock(inode
, 1);
2457 mutex_unlock(&inode
->i_mutex
);
2459 splice_from_pipe_end(pipe
, &sd
);
2462 mutex_unlock(&pipe
->inode
->i_mutex
);
2465 ret
= sd
.num_spliced
;
2468 unsigned long nr_pages
;
2471 nr_pages
= (ret
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2473 err
= generic_write_sync(out
, *ppos
, ret
);
2479 balance_dirty_pages_ratelimited_nr(mapping
, nr_pages
);
2485 static ssize_t
ocfs2_file_splice_read(struct file
*in
,
2487 struct pipe_inode_info
*pipe
,
2491 int ret
= 0, lock_level
= 0;
2492 struct inode
*inode
= in
->f_path
.dentry
->d_inode
;
2494 trace_ocfs2_file_splice_read(inode
, in
, in
->f_path
.dentry
,
2495 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2496 in
->f_path
.dentry
->d_name
.len
,
2497 in
->f_path
.dentry
->d_name
.name
, len
);
2500 * See the comment in ocfs2_file_aio_read()
2502 ret
= ocfs2_inode_lock_atime(inode
, in
->f_vfsmnt
, &lock_level
);
2507 ocfs2_inode_unlock(inode
, lock_level
);
2509 ret
= generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
2515 static ssize_t
ocfs2_file_aio_read(struct kiocb
*iocb
,
2516 const struct iovec
*iov
,
2517 unsigned long nr_segs
,
2520 int ret
= 0, rw_level
= -1, have_alloc_sem
= 0, lock_level
= 0;
2521 struct file
*filp
= iocb
->ki_filp
;
2522 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2524 trace_ocfs2_file_aio_read(inode
, filp
, filp
->f_path
.dentry
,
2525 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2526 filp
->f_path
.dentry
->d_name
.len
,
2527 filp
->f_path
.dentry
->d_name
.name
, nr_segs
);
2536 ocfs2_iocb_clear_sem_locked(iocb
);
2539 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2540 * need locks to protect pending reads from racing with truncate.
2542 if (filp
->f_flags
& O_DIRECT
) {
2544 ocfs2_iocb_set_sem_locked(iocb
);
2546 ret
= ocfs2_rw_lock(inode
, 0);
2552 /* communicate with ocfs2_dio_end_io */
2553 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2557 * We're fine letting folks race truncates and extending
2558 * writes with read across the cluster, just like they can
2559 * locally. Hence no rw_lock during read.
2561 * Take and drop the meta data lock to update inode fields
2562 * like i_size. This allows the checks down below
2563 * generic_file_aio_read() a chance of actually working.
2565 ret
= ocfs2_inode_lock_atime(inode
, filp
->f_vfsmnt
, &lock_level
);
2570 ocfs2_inode_unlock(inode
, lock_level
);
2572 ret
= generic_file_aio_read(iocb
, iov
, nr_segs
, iocb
->ki_pos
);
2573 trace_generic_file_aio_read_ret(ret
);
2575 /* buffered aio wouldn't have proper lock coverage today */
2576 BUG_ON(ret
== -EIOCBQUEUED
&& !(filp
->f_flags
& O_DIRECT
));
2578 /* see ocfs2_file_aio_write */
2579 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2586 ocfs2_iocb_clear_sem_locked(iocb
);
2589 ocfs2_rw_unlock(inode
, rw_level
);
2594 const struct inode_operations ocfs2_file_iops
= {
2595 .setattr
= ocfs2_setattr
,
2596 .getattr
= ocfs2_getattr
,
2597 .permission
= ocfs2_permission
,
2598 .setxattr
= generic_setxattr
,
2599 .getxattr
= generic_getxattr
,
2600 .listxattr
= ocfs2_listxattr
,
2601 .removexattr
= generic_removexattr
,
2602 .fiemap
= ocfs2_fiemap
,
2603 .get_acl
= ocfs2_iop_get_acl
,
2606 const struct inode_operations ocfs2_special_file_iops
= {
2607 .setattr
= ocfs2_setattr
,
2608 .getattr
= ocfs2_getattr
,
2609 .permission
= ocfs2_permission
,
2610 .get_acl
= ocfs2_iop_get_acl
,
2614 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2615 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2617 const struct file_operations ocfs2_fops
= {
2618 .llseek
= generic_file_llseek
,
2619 .read
= do_sync_read
,
2620 .write
= do_sync_write
,
2622 .fsync
= ocfs2_sync_file
,
2623 .release
= ocfs2_file_release
,
2624 .open
= ocfs2_file_open
,
2625 .aio_read
= ocfs2_file_aio_read
,
2626 .aio_write
= ocfs2_file_aio_write
,
2627 .unlocked_ioctl
= ocfs2_ioctl
,
2628 #ifdef CONFIG_COMPAT
2629 .compat_ioctl
= ocfs2_compat_ioctl
,
2632 .flock
= ocfs2_flock
,
2633 .splice_read
= ocfs2_file_splice_read
,
2634 .splice_write
= ocfs2_file_splice_write
,
2635 .fallocate
= ocfs2_fallocate
,
2638 const struct file_operations ocfs2_dops
= {
2639 .llseek
= generic_file_llseek
,
2640 .read
= generic_read_dir
,
2641 .readdir
= ocfs2_readdir
,
2642 .fsync
= ocfs2_sync_file
,
2643 .release
= ocfs2_dir_release
,
2644 .open
= ocfs2_dir_open
,
2645 .unlocked_ioctl
= ocfs2_ioctl
,
2646 #ifdef CONFIG_COMPAT
2647 .compat_ioctl
= ocfs2_compat_ioctl
,
2650 .flock
= ocfs2_flock
,
2654 * POSIX-lockless variants of our file_operations.
2656 * These will be used if the underlying cluster stack does not support
2657 * posix file locking, if the user passes the "localflocks" mount
2658 * option, or if we have a local-only fs.
2660 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2661 * so we still want it in the case of no stack support for
2662 * plocks. Internally, it will do the right thing when asked to ignore
2665 const struct file_operations ocfs2_fops_no_plocks
= {
2666 .llseek
= generic_file_llseek
,
2667 .read
= do_sync_read
,
2668 .write
= do_sync_write
,
2670 .fsync
= ocfs2_sync_file
,
2671 .release
= ocfs2_file_release
,
2672 .open
= ocfs2_file_open
,
2673 .aio_read
= ocfs2_file_aio_read
,
2674 .aio_write
= ocfs2_file_aio_write
,
2675 .unlocked_ioctl
= ocfs2_ioctl
,
2676 #ifdef CONFIG_COMPAT
2677 .compat_ioctl
= ocfs2_compat_ioctl
,
2679 .flock
= ocfs2_flock
,
2680 .splice_read
= ocfs2_file_splice_read
,
2681 .splice_write
= ocfs2_file_splice_write
,
2682 .fallocate
= ocfs2_fallocate
,
2685 const struct file_operations ocfs2_dops_no_plocks
= {
2686 .llseek
= generic_file_llseek
,
2687 .read
= generic_read_dir
,
2688 .readdir
= ocfs2_readdir
,
2689 .fsync
= ocfs2_sync_file
,
2690 .release
= ocfs2_dir_release
,
2691 .open
= ocfs2_dir_open
,
2692 .unlocked_ioctl
= ocfs2_ioctl
,
2693 #ifdef CONFIG_COMPAT
2694 .compat_ioctl
= ocfs2_compat_ioctl
,
2696 .flock
= ocfs2_flock
,