Merge branch 'x86-bootmem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/x86.git] / arch / x86 / mm / numa_64.c
blob8948f47fde056f9e723640c7791732fe4e68ae63
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
14 #include <linux/sched.h>
16 #include <asm/e820.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>
19 #include <asm/numa.h>
20 #include <asm/acpi.h>
21 #include <asm/k8.h>
23 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
24 EXPORT_SYMBOL(node_data);
26 struct memnode memnode;
28 s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
29 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
32 int numa_off __initdata;
33 static unsigned long __initdata nodemap_addr;
34 static unsigned long __initdata nodemap_size;
36 DEFINE_PER_CPU(int, node_number) = 0;
37 EXPORT_PER_CPU_SYMBOL(node_number);
40 * Map cpu index to node index
42 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
43 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
46 * Given a shift value, try to populate memnodemap[]
47 * Returns :
48 * 1 if OK
49 * 0 if memnodmap[] too small (of shift too small)
50 * -1 if node overlap or lost ram (shift too big)
52 static int __init populate_memnodemap(const struct bootnode *nodes,
53 int numnodes, int shift, int *nodeids)
55 unsigned long addr, end;
56 int i, res = -1;
58 memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
59 for (i = 0; i < numnodes; i++) {
60 addr = nodes[i].start;
61 end = nodes[i].end;
62 if (addr >= end)
63 continue;
64 if ((end >> shift) >= memnodemapsize)
65 return 0;
66 do {
67 if (memnodemap[addr >> shift] != NUMA_NO_NODE)
68 return -1;
70 if (!nodeids)
71 memnodemap[addr >> shift] = i;
72 else
73 memnodemap[addr >> shift] = nodeids[i];
75 addr += (1UL << shift);
76 } while (addr < end);
77 res = 1;
79 return res;
82 static int __init allocate_cachealigned_memnodemap(void)
84 unsigned long addr;
86 memnodemap = memnode.embedded_map;
87 if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
88 return 0;
90 addr = 0x8000;
91 nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
92 nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT,
93 nodemap_size, L1_CACHE_BYTES);
94 if (nodemap_addr == -1UL) {
95 printk(KERN_ERR
96 "NUMA: Unable to allocate Memory to Node hash map\n");
97 nodemap_addr = nodemap_size = 0;
98 return -1;
100 memnodemap = phys_to_virt(nodemap_addr);
101 reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
103 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
104 nodemap_addr, nodemap_addr + nodemap_size);
105 return 0;
109 * The LSB of all start and end addresses in the node map is the value of the
110 * maximum possible shift.
112 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
113 int numnodes)
115 int i, nodes_used = 0;
116 unsigned long start, end;
117 unsigned long bitfield = 0, memtop = 0;
119 for (i = 0; i < numnodes; i++) {
120 start = nodes[i].start;
121 end = nodes[i].end;
122 if (start >= end)
123 continue;
124 bitfield |= start;
125 nodes_used++;
126 if (end > memtop)
127 memtop = end;
129 if (nodes_used <= 1)
130 i = 63;
131 else
132 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
133 memnodemapsize = (memtop >> i)+1;
134 return i;
137 int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
138 int *nodeids)
140 int shift;
142 shift = extract_lsb_from_nodes(nodes, numnodes);
143 if (allocate_cachealigned_memnodemap())
144 return -1;
145 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
146 shift);
148 if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
149 printk(KERN_INFO "Your memory is not aligned you need to "
150 "rebuild your kernel with a bigger NODEMAPSIZE "
151 "shift=%d\n", shift);
152 return -1;
154 return shift;
157 int __meminit __early_pfn_to_nid(unsigned long pfn)
159 return phys_to_nid(pfn << PAGE_SHIFT);
162 static void * __init early_node_mem(int nodeid, unsigned long start,
163 unsigned long end, unsigned long size,
164 unsigned long align)
166 unsigned long mem;
169 * put it on high as possible
170 * something will go with NODE_DATA
172 if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
173 start = MAX_DMA_PFN<<PAGE_SHIFT;
174 if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
175 end > (MAX_DMA32_PFN<<PAGE_SHIFT))
176 start = MAX_DMA32_PFN<<PAGE_SHIFT;
177 mem = find_e820_area(start, end, size, align);
178 if (mem != -1L)
179 return __va(mem);
181 /* extend the search scope */
182 end = max_pfn_mapped << PAGE_SHIFT;
183 if (end > (MAX_DMA32_PFN<<PAGE_SHIFT))
184 start = MAX_DMA32_PFN<<PAGE_SHIFT;
185 else
186 start = MAX_DMA_PFN<<PAGE_SHIFT;
187 mem = find_e820_area(start, end, size, align);
188 if (mem != -1L)
189 return __va(mem);
191 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
192 size, nodeid);
194 return NULL;
197 /* Initialize bootmem allocator for a node */
198 void __init
199 setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
201 unsigned long start_pfn, last_pfn, nodedata_phys;
202 const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
203 int nid;
204 #ifndef CONFIG_NO_BOOTMEM
205 unsigned long bootmap_start, bootmap_pages, bootmap_size;
206 void *bootmap;
207 #endif
209 if (!end)
210 return;
213 * Don't confuse VM with a node that doesn't have the
214 * minimum amount of memory:
216 if (end && (end - start) < NODE_MIN_SIZE)
217 return;
219 start = roundup(start, ZONE_ALIGN);
221 printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
222 start, end);
224 start_pfn = start >> PAGE_SHIFT;
225 last_pfn = end >> PAGE_SHIFT;
227 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
228 SMP_CACHE_BYTES);
229 if (node_data[nodeid] == NULL)
230 return;
231 nodedata_phys = __pa(node_data[nodeid]);
232 reserve_early(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
233 printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
234 nodedata_phys + pgdat_size - 1);
235 nid = phys_to_nid(nodedata_phys);
236 if (nid != nodeid)
237 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
239 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
240 NODE_DATA(nodeid)->node_id = nodeid;
241 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
242 NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
244 #ifndef CONFIG_NO_BOOTMEM
245 NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid];
248 * Find a place for the bootmem map
249 * nodedata_phys could be on other nodes by alloc_bootmem,
250 * so need to sure bootmap_start not to be small, otherwise
251 * early_node_mem will get that with find_e820_area instead
252 * of alloc_bootmem, that could clash with reserved range
254 bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn);
255 bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE);
257 * SMP_CACHE_BYTES could be enough, but init_bootmem_node like
258 * to use that to align to PAGE_SIZE
260 bootmap = early_node_mem(nodeid, bootmap_start, end,
261 bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
262 if (bootmap == NULL) {
263 free_early(nodedata_phys, nodedata_phys + pgdat_size);
264 node_data[nodeid] = NULL;
265 return;
267 bootmap_start = __pa(bootmap);
268 reserve_early(bootmap_start, bootmap_start+(bootmap_pages<<PAGE_SHIFT),
269 "BOOTMAP");
271 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
272 bootmap_start >> PAGE_SHIFT,
273 start_pfn, last_pfn);
275 printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n",
276 bootmap_start, bootmap_start + bootmap_size - 1,
277 bootmap_pages);
278 nid = phys_to_nid(bootmap_start);
279 if (nid != nodeid)
280 printk(KERN_INFO " bootmap(%d) on node %d\n", nodeid, nid);
282 free_bootmem_with_active_regions(nodeid, end);
283 #endif
285 node_set_online(nodeid);
289 * There are unfortunately some poorly designed mainboards around that
290 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
291 * mapping. To avoid this fill in the mapping for all possible CPUs,
292 * as the number of CPUs is not known yet. We round robin the existing
293 * nodes.
295 void __init numa_init_array(void)
297 int rr, i;
299 rr = first_node(node_online_map);
300 for (i = 0; i < nr_cpu_ids; i++) {
301 if (early_cpu_to_node(i) != NUMA_NO_NODE)
302 continue;
303 numa_set_node(i, rr);
304 rr = next_node(rr, node_online_map);
305 if (rr == MAX_NUMNODES)
306 rr = first_node(node_online_map);
310 #ifdef CONFIG_NUMA_EMU
311 /* Numa emulation */
312 static struct bootnode nodes[MAX_NUMNODES] __initdata;
313 static struct bootnode physnodes[MAX_NUMNODES] __initdata;
314 static char *cmdline __initdata;
316 static int __init setup_physnodes(unsigned long start, unsigned long end,
317 int acpi, int k8)
319 int nr_nodes = 0;
320 int ret = 0;
321 int i;
323 #ifdef CONFIG_ACPI_NUMA
324 if (acpi)
325 nr_nodes = acpi_get_nodes(physnodes);
326 #endif
327 #ifdef CONFIG_K8_NUMA
328 if (k8)
329 nr_nodes = k8_get_nodes(physnodes);
330 #endif
332 * Basic sanity checking on the physical node map: there may be errors
333 * if the SRAT or K8 incorrectly reported the topology or the mem=
334 * kernel parameter is used.
336 for (i = 0; i < nr_nodes; i++) {
337 if (physnodes[i].start == physnodes[i].end)
338 continue;
339 if (physnodes[i].start > end) {
340 physnodes[i].end = physnodes[i].start;
341 continue;
343 if (physnodes[i].end < start) {
344 physnodes[i].start = physnodes[i].end;
345 continue;
347 if (physnodes[i].start < start)
348 physnodes[i].start = start;
349 if (physnodes[i].end > end)
350 physnodes[i].end = end;
354 * Remove all nodes that have no memory or were truncated because of the
355 * limited address range.
357 for (i = 0; i < nr_nodes; i++) {
358 if (physnodes[i].start == physnodes[i].end)
359 continue;
360 physnodes[ret].start = physnodes[i].start;
361 physnodes[ret].end = physnodes[i].end;
362 ret++;
366 * If no physical topology was detected, a single node is faked to cover
367 * the entire address space.
369 if (!ret) {
370 physnodes[ret].start = start;
371 physnodes[ret].end = end;
372 ret = 1;
374 return ret;
378 * Setups up nid to range from addr to addr + size. If the end
379 * boundary is greater than max_addr, then max_addr is used instead.
380 * The return value is 0 if there is additional memory left for
381 * allocation past addr and -1 otherwise. addr is adjusted to be at
382 * the end of the node.
384 static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
386 int ret = 0;
387 nodes[nid].start = *addr;
388 *addr += size;
389 if (*addr >= max_addr) {
390 *addr = max_addr;
391 ret = -1;
393 nodes[nid].end = *addr;
394 node_set(nid, node_possible_map);
395 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
396 nodes[nid].start, nodes[nid].end,
397 (nodes[nid].end - nodes[nid].start) >> 20);
398 return ret;
402 * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
403 * to max_addr. The return value is the number of nodes allocated.
405 static int __init split_nodes_interleave(u64 addr, u64 max_addr,
406 int nr_phys_nodes, int nr_nodes)
408 nodemask_t physnode_mask = NODE_MASK_NONE;
409 u64 size;
410 int big;
411 int ret = 0;
412 int i;
414 if (nr_nodes <= 0)
415 return -1;
416 if (nr_nodes > MAX_NUMNODES) {
417 pr_info("numa=fake=%d too large, reducing to %d\n",
418 nr_nodes, MAX_NUMNODES);
419 nr_nodes = MAX_NUMNODES;
422 size = (max_addr - addr - e820_hole_size(addr, max_addr)) / nr_nodes;
424 * Calculate the number of big nodes that can be allocated as a result
425 * of consolidating the remainder.
427 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
428 FAKE_NODE_MIN_SIZE;
430 size &= FAKE_NODE_MIN_HASH_MASK;
431 if (!size) {
432 pr_err("Not enough memory for each node. "
433 "NUMA emulation disabled.\n");
434 return -1;
437 for (i = 0; i < nr_phys_nodes; i++)
438 if (physnodes[i].start != physnodes[i].end)
439 node_set(i, physnode_mask);
442 * Continue to fill physical nodes with fake nodes until there is no
443 * memory left on any of them.
445 while (nodes_weight(physnode_mask)) {
446 for_each_node_mask(i, physnode_mask) {
447 u64 end = physnodes[i].start + size;
448 u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
450 if (ret < big)
451 end += FAKE_NODE_MIN_SIZE;
454 * Continue to add memory to this fake node if its
455 * non-reserved memory is less than the per-node size.
457 while (end - physnodes[i].start -
458 e820_hole_size(physnodes[i].start, end) < size) {
459 end += FAKE_NODE_MIN_SIZE;
460 if (end > physnodes[i].end) {
461 end = physnodes[i].end;
462 break;
467 * If there won't be at least FAKE_NODE_MIN_SIZE of
468 * non-reserved memory in ZONE_DMA32 for the next node,
469 * this one must extend to the boundary.
471 if (end < dma32_end && dma32_end - end -
472 e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
473 end = dma32_end;
476 * If there won't be enough non-reserved memory for the
477 * next node, this one must extend to the end of the
478 * physical node.
480 if (physnodes[i].end - end -
481 e820_hole_size(end, physnodes[i].end) < size)
482 end = physnodes[i].end;
485 * Avoid allocating more nodes than requested, which can
486 * happen as a result of rounding down each node's size
487 * to FAKE_NODE_MIN_SIZE.
489 if (nodes_weight(physnode_mask) + ret >= nr_nodes)
490 end = physnodes[i].end;
492 if (setup_node_range(ret++, &physnodes[i].start,
493 end - physnodes[i].start,
494 physnodes[i].end) < 0)
495 node_clear(i, physnode_mask);
498 return ret;
502 * Returns the end address of a node so that there is at least `size' amount of
503 * non-reserved memory or `max_addr' is reached.
505 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
507 u64 end = start + size;
509 while (end - start - e820_hole_size(start, end) < size) {
510 end += FAKE_NODE_MIN_SIZE;
511 if (end > max_addr) {
512 end = max_addr;
513 break;
516 return end;
520 * Sets up fake nodes of `size' interleaved over physical nodes ranging from
521 * `addr' to `max_addr'. The return value is the number of nodes allocated.
523 static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
525 nodemask_t physnode_mask = NODE_MASK_NONE;
526 u64 min_size;
527 int ret = 0;
528 int i;
530 if (!size)
531 return -1;
533 * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
534 * increased accordingly if the requested size is too small. This
535 * creates a uniform distribution of node sizes across the entire
536 * machine (but not necessarily over physical nodes).
538 min_size = (max_addr - addr - e820_hole_size(addr, max_addr)) /
539 MAX_NUMNODES;
540 min_size = max(min_size, FAKE_NODE_MIN_SIZE);
541 if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
542 min_size = (min_size + FAKE_NODE_MIN_SIZE) &
543 FAKE_NODE_MIN_HASH_MASK;
544 if (size < min_size) {
545 pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
546 size >> 20, min_size >> 20);
547 size = min_size;
549 size &= FAKE_NODE_MIN_HASH_MASK;
551 for (i = 0; i < MAX_NUMNODES; i++)
552 if (physnodes[i].start != physnodes[i].end)
553 node_set(i, physnode_mask);
555 * Fill physical nodes with fake nodes of size until there is no memory
556 * left on any of them.
558 while (nodes_weight(physnode_mask)) {
559 for_each_node_mask(i, physnode_mask) {
560 u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
561 u64 end;
563 end = find_end_of_node(physnodes[i].start,
564 physnodes[i].end, size);
566 * If there won't be at least FAKE_NODE_MIN_SIZE of
567 * non-reserved memory in ZONE_DMA32 for the next node,
568 * this one must extend to the boundary.
570 if (end < dma32_end && dma32_end - end -
571 e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
572 end = dma32_end;
575 * If there won't be enough non-reserved memory for the
576 * next node, this one must extend to the end of the
577 * physical node.
579 if (physnodes[i].end - end -
580 e820_hole_size(end, physnodes[i].end) < size)
581 end = physnodes[i].end;
584 * Setup the fake node that will be allocated as bootmem
585 * later. If setup_node_range() returns non-zero, there
586 * is no more memory available on this physical node.
588 if (setup_node_range(ret++, &physnodes[i].start,
589 end - physnodes[i].start,
590 physnodes[i].end) < 0)
591 node_clear(i, physnode_mask);
594 return ret;
598 * Sets up the system RAM area from start_pfn to last_pfn according to the
599 * numa=fake command-line option.
601 static int __init numa_emulation(unsigned long start_pfn,
602 unsigned long last_pfn, int acpi, int k8)
604 u64 addr = start_pfn << PAGE_SHIFT;
605 u64 max_addr = last_pfn << PAGE_SHIFT;
606 int num_phys_nodes;
607 int num_nodes;
608 int i;
610 num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8);
612 * If the numa=fake command-line contains a 'M' or 'G', it represents
613 * the fixed node size. Otherwise, if it is just a single number N,
614 * split the system RAM into N fake nodes.
616 if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
617 u64 size;
619 size = memparse(cmdline, &cmdline);
620 num_nodes = split_nodes_size_interleave(addr, max_addr, size);
621 } else {
622 unsigned long n;
624 n = simple_strtoul(cmdline, NULL, 0);
625 num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n);
628 if (num_nodes < 0)
629 return num_nodes;
630 memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
631 if (memnode_shift < 0) {
632 memnode_shift = 0;
633 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
634 "disabled.\n");
635 return -1;
639 * We need to vacate all active ranges that may have been registered for
640 * the e820 memory map.
642 remove_all_active_ranges();
643 for_each_node_mask(i, node_possible_map) {
644 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
645 nodes[i].end >> PAGE_SHIFT);
646 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
648 acpi_fake_nodes(nodes, num_nodes);
649 numa_init_array();
650 return 0;
652 #endif /* CONFIG_NUMA_EMU */
654 void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn,
655 int acpi, int k8)
657 int i;
659 nodes_clear(node_possible_map);
660 nodes_clear(node_online_map);
662 #ifdef CONFIG_NUMA_EMU
663 if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8))
664 return;
665 nodes_clear(node_possible_map);
666 nodes_clear(node_online_map);
667 #endif
669 #ifdef CONFIG_ACPI_NUMA
670 if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
671 last_pfn << PAGE_SHIFT))
672 return;
673 nodes_clear(node_possible_map);
674 nodes_clear(node_online_map);
675 #endif
677 #ifdef CONFIG_K8_NUMA
678 if (!numa_off && k8 && !k8_scan_nodes())
679 return;
680 nodes_clear(node_possible_map);
681 nodes_clear(node_online_map);
682 #endif
683 printk(KERN_INFO "%s\n",
684 numa_off ? "NUMA turned off" : "No NUMA configuration found");
686 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
687 start_pfn << PAGE_SHIFT,
688 last_pfn << PAGE_SHIFT);
689 /* setup dummy node covering all memory */
690 memnode_shift = 63;
691 memnodemap = memnode.embedded_map;
692 memnodemap[0] = 0;
693 node_set_online(0);
694 node_set(0, node_possible_map);
695 for (i = 0; i < nr_cpu_ids; i++)
696 numa_set_node(i, 0);
697 e820_register_active_regions(0, start_pfn, last_pfn);
698 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
701 unsigned long __init numa_free_all_bootmem(void)
703 unsigned long pages = 0;
704 int i;
706 for_each_online_node(i)
707 pages += free_all_bootmem_node(NODE_DATA(i));
709 #ifdef CONFIG_NO_BOOTMEM
710 pages += free_all_memory_core_early(MAX_NUMNODES);
711 #endif
713 return pages;
716 static __init int numa_setup(char *opt)
718 if (!opt)
719 return -EINVAL;
720 if (!strncmp(opt, "off", 3))
721 numa_off = 1;
722 #ifdef CONFIG_NUMA_EMU
723 if (!strncmp(opt, "fake=", 5))
724 cmdline = opt + 5;
725 #endif
726 #ifdef CONFIG_ACPI_NUMA
727 if (!strncmp(opt, "noacpi", 6))
728 acpi_numa = -1;
729 #endif
730 return 0;
732 early_param("numa", numa_setup);
734 #ifdef CONFIG_NUMA
736 static __init int find_near_online_node(int node)
738 int n, val;
739 int min_val = INT_MAX;
740 int best_node = -1;
742 for_each_online_node(n) {
743 val = node_distance(node, n);
745 if (val < min_val) {
746 min_val = val;
747 best_node = n;
751 return best_node;
755 * Setup early cpu_to_node.
757 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
758 * and apicid_to_node[] tables have valid entries for a CPU.
759 * This means we skip cpu_to_node[] initialisation for NUMA
760 * emulation and faking node case (when running a kernel compiled
761 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
762 * is already initialized in a round robin manner at numa_init_array,
763 * prior to this call, and this initialization is good enough
764 * for the fake NUMA cases.
766 * Called before the per_cpu areas are setup.
768 void __init init_cpu_to_node(void)
770 int cpu;
771 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
773 BUG_ON(cpu_to_apicid == NULL);
775 for_each_possible_cpu(cpu) {
776 int node;
777 u16 apicid = cpu_to_apicid[cpu];
779 if (apicid == BAD_APICID)
780 continue;
781 node = apicid_to_node[apicid];
782 if (node == NUMA_NO_NODE)
783 continue;
784 if (!node_online(node))
785 node = find_near_online_node(node);
786 numa_set_node(cpu, node);
789 #endif
792 void __cpuinit numa_set_node(int cpu, int node)
794 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
796 /* early setting, no percpu area yet */
797 if (cpu_to_node_map) {
798 cpu_to_node_map[cpu] = node;
799 return;
802 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
803 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
804 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
805 dump_stack();
806 return;
808 #endif
809 per_cpu(x86_cpu_to_node_map, cpu) = node;
811 if (node != NUMA_NO_NODE)
812 per_cpu(node_number, cpu) = node;
815 void __cpuinit numa_clear_node(int cpu)
817 numa_set_node(cpu, NUMA_NO_NODE);
820 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
822 void __cpuinit numa_add_cpu(int cpu)
824 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
827 void __cpuinit numa_remove_cpu(int cpu)
829 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
832 #else /* CONFIG_DEBUG_PER_CPU_MAPS */
835 * --------- debug versions of the numa functions ---------
837 static void __cpuinit numa_set_cpumask(int cpu, int enable)
839 int node = early_cpu_to_node(cpu);
840 struct cpumask *mask;
841 char buf[64];
843 mask = node_to_cpumask_map[node];
844 if (mask == NULL) {
845 printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node);
846 dump_stack();
847 return;
850 if (enable)
851 cpumask_set_cpu(cpu, mask);
852 else
853 cpumask_clear_cpu(cpu, mask);
855 cpulist_scnprintf(buf, sizeof(buf), mask);
856 printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
857 enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf);
860 void __cpuinit numa_add_cpu(int cpu)
862 numa_set_cpumask(cpu, 1);
865 void __cpuinit numa_remove_cpu(int cpu)
867 numa_set_cpumask(cpu, 0);
870 int cpu_to_node(int cpu)
872 if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
873 printk(KERN_WARNING
874 "cpu_to_node(%d): usage too early!\n", cpu);
875 dump_stack();
876 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
878 return per_cpu(x86_cpu_to_node_map, cpu);
880 EXPORT_SYMBOL(cpu_to_node);
883 * Same function as cpu_to_node() but used if called before the
884 * per_cpu areas are setup.
886 int early_cpu_to_node(int cpu)
888 if (early_per_cpu_ptr(x86_cpu_to_node_map))
889 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
891 if (!cpu_possible(cpu)) {
892 printk(KERN_WARNING
893 "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
894 dump_stack();
895 return NUMA_NO_NODE;
897 return per_cpu(x86_cpu_to_node_map, cpu);
901 * --------- end of debug versions of the numa functions ---------
904 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */