Merge master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6/x86.git] / include / linux / mm.h
blob7b115feca4df23064dfd3ee80a66a9e638b0dcbd
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/sched.h>
5 #include <linux/errno.h>
7 #ifdef __KERNEL__
9 #include <linux/config.h>
10 #include <linux/gfp.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/prio_tree.h>
15 #include <linux/fs.h>
17 struct mempolicy;
18 struct anon_vma;
20 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
21 extern unsigned long max_mapnr;
22 #endif
24 extern unsigned long num_physpages;
25 extern void * high_memory;
26 extern unsigned long vmalloc_earlyreserve;
27 extern int page_cluster;
29 #ifdef CONFIG_SYSCTL
30 extern int sysctl_legacy_va_layout;
31 #else
32 #define sysctl_legacy_va_layout 0
33 #endif
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/processor.h>
38 #include <asm/atomic.h>
40 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43 * Linux kernel virtual memory manager primitives.
44 * The idea being to have a "virtual" mm in the same way
45 * we have a virtual fs - giving a cleaner interface to the
46 * mm details, and allowing different kinds of memory mappings
47 * (from shared memory to executable loading to arbitrary
48 * mmap() functions).
52 * This struct defines a memory VMM memory area. There is one of these
53 * per VM-area/task. A VM area is any part of the process virtual memory
54 * space that has a special rule for the page-fault handlers (ie a shared
55 * library, the executable area etc).
57 struct vm_area_struct {
58 struct mm_struct * vm_mm; /* The address space we belong to. */
59 unsigned long vm_start; /* Our start address within vm_mm. */
60 unsigned long vm_end; /* The first byte after our end address
61 within vm_mm. */
63 /* linked list of VM areas per task, sorted by address */
64 struct vm_area_struct *vm_next;
66 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
67 unsigned long vm_flags; /* Flags, listed below. */
69 struct rb_node vm_rb;
72 * For areas with an address space and backing store,
73 * linkage into the address_space->i_mmap prio tree, or
74 * linkage to the list of like vmas hanging off its node, or
75 * linkage of vma in the address_space->i_mmap_nonlinear list.
77 union {
78 struct {
79 struct list_head list;
80 void *parent; /* aligns with prio_tree_node parent */
81 struct vm_area_struct *head;
82 } vm_set;
84 struct raw_prio_tree_node prio_tree_node;
85 } shared;
88 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
89 * list, after a COW of one of the file pages. A MAP_SHARED vma
90 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
91 * or brk vma (with NULL file) can only be in an anon_vma list.
93 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
94 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
96 /* Function pointers to deal with this struct. */
97 struct vm_operations_struct * vm_ops;
99 /* Information about our backing store: */
100 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
101 units, *not* PAGE_CACHE_SIZE */
102 struct file * vm_file; /* File we map to (can be NULL). */
103 void * vm_private_data; /* was vm_pte (shared mem) */
104 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
106 #ifndef CONFIG_MMU
107 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
108 #endif
109 #ifdef CONFIG_NUMA
110 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
111 #endif
115 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
116 * disabled, then there's a single shared list of VMAs maintained by the
117 * system, and mm's subscribe to these individually
119 struct vm_list_struct {
120 struct vm_list_struct *next;
121 struct vm_area_struct *vma;
124 #ifndef CONFIG_MMU
125 extern struct rb_root nommu_vma_tree;
126 extern struct rw_semaphore nommu_vma_sem;
128 extern unsigned int kobjsize(const void *objp);
129 #endif
132 * vm_flags..
134 #define VM_READ 0x00000001 /* currently active flags */
135 #define VM_WRITE 0x00000002
136 #define VM_EXEC 0x00000004
137 #define VM_SHARED 0x00000008
139 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
140 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
141 #define VM_MAYWRITE 0x00000020
142 #define VM_MAYEXEC 0x00000040
143 #define VM_MAYSHARE 0x00000080
145 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
146 #define VM_GROWSUP 0x00000200
147 #define VM_SHM 0x00000400 /* shared memory area, don't swap out */
148 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
150 #define VM_EXECUTABLE 0x00001000
151 #define VM_LOCKED 0x00002000
152 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
154 /* Used by sys_madvise() */
155 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
156 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
158 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
159 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
160 #define VM_RESERVED 0x00080000 /* Pages managed in a special way */
161 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
162 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
163 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
164 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
166 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
167 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
168 #endif
170 #ifdef CONFIG_STACK_GROWSUP
171 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172 #else
173 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
174 #endif
176 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
177 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
178 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
179 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
180 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
183 * mapping from the currently active vm_flags protection bits (the
184 * low four bits) to a page protection mask..
186 extern pgprot_t protection_map[16];
190 * These are the virtual MM functions - opening of an area, closing and
191 * unmapping it (needed to keep files on disk up-to-date etc), pointer
192 * to the functions called when a no-page or a wp-page exception occurs.
194 struct vm_operations_struct {
195 void (*open)(struct vm_area_struct * area);
196 void (*close)(struct vm_area_struct * area);
197 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
198 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
199 #ifdef CONFIG_NUMA
200 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
201 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
202 unsigned long addr);
203 #endif
206 struct mmu_gather;
207 struct inode;
209 #ifdef ARCH_HAS_ATOMIC_UNSIGNED
210 typedef unsigned page_flags_t;
211 #else
212 typedef unsigned long page_flags_t;
213 #endif
216 * Each physical page in the system has a struct page associated with
217 * it to keep track of whatever it is we are using the page for at the
218 * moment. Note that we have no way to track which tasks are using
219 * a page.
221 struct page {
222 page_flags_t flags; /* Atomic flags, some possibly
223 * updated asynchronously */
224 atomic_t _count; /* Usage count, see below. */
225 atomic_t _mapcount; /* Count of ptes mapped in mms,
226 * to show when page is mapped
227 * & limit reverse map searches.
229 union {
230 unsigned long private; /* Mapping-private opaque data:
231 * usually used for buffer_heads
232 * if PagePrivate set; used for
233 * swp_entry_t if PageSwapCache
234 * When page is free, this indicates
235 * order in the buddy system.
237 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
238 spinlock_t ptl;
239 #endif
240 } u;
241 struct address_space *mapping; /* If low bit clear, points to
242 * inode address_space, or NULL.
243 * If page mapped as anonymous
244 * memory, low bit is set, and
245 * it points to anon_vma object:
246 * see PAGE_MAPPING_ANON below.
248 pgoff_t index; /* Our offset within mapping. */
249 struct list_head lru; /* Pageout list, eg. active_list
250 * protected by zone->lru_lock !
253 * On machines where all RAM is mapped into kernel address space,
254 * we can simply calculate the virtual address. On machines with
255 * highmem some memory is mapped into kernel virtual memory
256 * dynamically, so we need a place to store that address.
257 * Note that this field could be 16 bits on x86 ... ;)
259 * Architectures with slow multiplication can define
260 * WANT_PAGE_VIRTUAL in asm/page.h
262 #if defined(WANT_PAGE_VIRTUAL)
263 void *virtual; /* Kernel virtual address (NULL if
264 not kmapped, ie. highmem) */
265 #endif /* WANT_PAGE_VIRTUAL */
268 #define page_private(page) ((page)->u.private)
269 #define set_page_private(page, v) ((page)->u.private = (v))
272 * FIXME: take this include out, include page-flags.h in
273 * files which need it (119 of them)
275 #include <linux/page-flags.h>
278 * Methods to modify the page usage count.
280 * What counts for a page usage:
281 * - cache mapping (page->mapping)
282 * - private data (page->private)
283 * - page mapped in a task's page tables, each mapping
284 * is counted separately
286 * Also, many kernel routines increase the page count before a critical
287 * routine so they can be sure the page doesn't go away from under them.
289 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we
290 * can use atomic_add_negative(-1, page->_count) to detect when the page
291 * becomes free and so that we can also use atomic_inc_and_test to atomically
292 * detect when we just tried to grab a ref on a page which some other CPU has
293 * already deemed to be freeable.
295 * NO code should make assumptions about this internal detail! Use the provided
296 * macros which retain the old rules: page_count(page) == 0 is a free page.
300 * Drop a ref, return true if the logical refcount fell to zero (the page has
301 * no users)
303 #define put_page_testzero(p) \
304 ({ \
305 BUG_ON(page_count(p) == 0); \
306 atomic_add_negative(-1, &(p)->_count); \
310 * Grab a ref, return true if the page previously had a logical refcount of
311 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page
313 #define get_page_testone(p) atomic_inc_and_test(&(p)->_count)
315 #define set_page_count(p,v) atomic_set(&(p)->_count, v - 1)
316 #define __put_page(p) atomic_dec(&(p)->_count)
318 extern void FASTCALL(__page_cache_release(struct page *));
320 #ifdef CONFIG_HUGETLB_PAGE
322 static inline int page_count(struct page *page)
324 if (PageCompound(page))
325 page = (struct page *)page_private(page);
326 return atomic_read(&page->_count) + 1;
329 static inline void get_page(struct page *page)
331 if (unlikely(PageCompound(page)))
332 page = (struct page *)page_private(page);
333 atomic_inc(&page->_count);
336 void put_page(struct page *page);
338 #else /* CONFIG_HUGETLB_PAGE */
340 #define page_count(p) (atomic_read(&(p)->_count) + 1)
342 static inline void get_page(struct page *page)
344 atomic_inc(&page->_count);
347 static inline void put_page(struct page *page)
349 if (put_page_testzero(page))
350 __page_cache_release(page);
353 #endif /* CONFIG_HUGETLB_PAGE */
356 * Multiple processes may "see" the same page. E.g. for untouched
357 * mappings of /dev/null, all processes see the same page full of
358 * zeroes, and text pages of executables and shared libraries have
359 * only one copy in memory, at most, normally.
361 * For the non-reserved pages, page_count(page) denotes a reference count.
362 * page_count() == 0 means the page is free. page->lru is then used for
363 * freelist management in the buddy allocator.
364 * page_count() == 1 means the page is used for exactly one purpose
365 * (e.g. a private data page of one process).
367 * A page may be used for kmalloc() or anyone else who does a
368 * __get_free_page(). In this case the page_count() is at least 1, and
369 * all other fields are unused but should be 0 or NULL. The
370 * management of this page is the responsibility of the one who uses
371 * it.
373 * The other pages (we may call them "process pages") are completely
374 * managed by the Linux memory manager: I/O, buffers, swapping etc.
375 * The following discussion applies only to them.
377 * A page may belong to an inode's memory mapping. In this case,
378 * page->mapping is the pointer to the inode, and page->index is the
379 * file offset of the page, in units of PAGE_CACHE_SIZE.
381 * A page contains an opaque `private' member, which belongs to the
382 * page's address_space. Usually, this is the address of a circular
383 * list of the page's disk buffers.
385 * For pages belonging to inodes, the page_count() is the number of
386 * attaches, plus 1 if `private' contains something, plus one for
387 * the page cache itself.
389 * Instead of keeping dirty/clean pages in per address-space lists, we instead
390 * now tag pages as dirty/under writeback in the radix tree.
392 * There is also a per-mapping radix tree mapping index to the page
393 * in memory if present. The tree is rooted at mapping->root.
395 * All process pages can do I/O:
396 * - inode pages may need to be read from disk,
397 * - inode pages which have been modified and are MAP_SHARED may need
398 * to be written to disk,
399 * - private pages which have been modified may need to be swapped out
400 * to swap space and (later) to be read back into memory.
404 * The zone field is never updated after free_area_init_core()
405 * sets it, so none of the operations on it need to be atomic.
410 * page->flags layout:
412 * There are three possibilities for how page->flags get
413 * laid out. The first is for the normal case, without
414 * sparsemem. The second is for sparsemem when there is
415 * plenty of space for node and section. The last is when
416 * we have run out of space and have to fall back to an
417 * alternate (slower) way of determining the node.
419 * No sparsemem: | NODE | ZONE | ... | FLAGS |
420 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
421 * no space for node: | SECTION | ZONE | ... | FLAGS |
423 #ifdef CONFIG_SPARSEMEM
424 #define SECTIONS_WIDTH SECTIONS_SHIFT
425 #else
426 #define SECTIONS_WIDTH 0
427 #endif
429 #define ZONES_WIDTH ZONES_SHIFT
431 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
432 #define NODES_WIDTH NODES_SHIFT
433 #else
434 #define NODES_WIDTH 0
435 #endif
437 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
438 #define SECTIONS_PGOFF ((sizeof(page_flags_t)*8) - SECTIONS_WIDTH)
439 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
440 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
443 * We are going to use the flags for the page to node mapping if its in
444 * there. This includes the case where there is no node, so it is implicit.
446 #define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
448 #ifndef PFN_SECTION_SHIFT
449 #define PFN_SECTION_SHIFT 0
450 #endif
453 * Define the bit shifts to access each section. For non-existant
454 * sections we define the shift as 0; that plus a 0 mask ensures
455 * the compiler will optimise away reference to them.
457 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
458 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
459 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
461 /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
462 #if FLAGS_HAS_NODE
463 #define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
464 #else
465 #define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
466 #endif
467 #define ZONETABLE_PGSHIFT ZONES_PGSHIFT
469 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
470 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
471 #endif
473 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
474 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
475 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
476 #define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
478 static inline unsigned long page_zonenum(struct page *page)
480 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
483 struct zone;
484 extern struct zone *zone_table[];
486 static inline struct zone *page_zone(struct page *page)
488 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) &
489 ZONETABLE_MASK];
492 static inline unsigned long page_to_nid(struct page *page)
494 if (FLAGS_HAS_NODE)
495 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
496 else
497 return page_zone(page)->zone_pgdat->node_id;
499 static inline unsigned long page_to_section(struct page *page)
501 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
504 static inline void set_page_zone(struct page *page, unsigned long zone)
506 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
507 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
509 static inline void set_page_node(struct page *page, unsigned long node)
511 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
512 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
514 static inline void set_page_section(struct page *page, unsigned long section)
516 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
517 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
520 static inline void set_page_links(struct page *page, unsigned long zone,
521 unsigned long node, unsigned long pfn)
523 set_page_zone(page, zone);
524 set_page_node(page, node);
525 set_page_section(page, pfn_to_section_nr(pfn));
528 #ifndef CONFIG_DISCONTIGMEM
529 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
530 extern struct page *mem_map;
531 #endif
533 static inline void *lowmem_page_address(struct page *page)
535 return __va(page_to_pfn(page) << PAGE_SHIFT);
538 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
539 #define HASHED_PAGE_VIRTUAL
540 #endif
542 #if defined(WANT_PAGE_VIRTUAL)
543 #define page_address(page) ((page)->virtual)
544 #define set_page_address(page, address) \
545 do { \
546 (page)->virtual = (address); \
547 } while(0)
548 #define page_address_init() do { } while(0)
549 #endif
551 #if defined(HASHED_PAGE_VIRTUAL)
552 void *page_address(struct page *page);
553 void set_page_address(struct page *page, void *virtual);
554 void page_address_init(void);
555 #endif
557 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
558 #define page_address(page) lowmem_page_address(page)
559 #define set_page_address(page, address) do { } while(0)
560 #define page_address_init() do { } while(0)
561 #endif
564 * On an anonymous page mapped into a user virtual memory area,
565 * page->mapping points to its anon_vma, not to a struct address_space;
566 * with the PAGE_MAPPING_ANON bit set to distinguish it.
568 * Please note that, confusingly, "page_mapping" refers to the inode
569 * address_space which maps the page from disk; whereas "page_mapped"
570 * refers to user virtual address space into which the page is mapped.
572 #define PAGE_MAPPING_ANON 1
574 extern struct address_space swapper_space;
575 static inline struct address_space *page_mapping(struct page *page)
577 struct address_space *mapping = page->mapping;
579 if (unlikely(PageSwapCache(page)))
580 mapping = &swapper_space;
581 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
582 mapping = NULL;
583 return mapping;
586 static inline int PageAnon(struct page *page)
588 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
592 * Return the pagecache index of the passed page. Regular pagecache pages
593 * use ->index whereas swapcache pages use ->private
595 static inline pgoff_t page_index(struct page *page)
597 if (unlikely(PageSwapCache(page)))
598 return page_private(page);
599 return page->index;
603 * The atomic page->_mapcount, like _count, starts from -1:
604 * so that transitions both from it and to it can be tracked,
605 * using atomic_inc_and_test and atomic_add_negative(-1).
607 static inline void reset_page_mapcount(struct page *page)
609 atomic_set(&(page)->_mapcount, -1);
612 static inline int page_mapcount(struct page *page)
614 return atomic_read(&(page)->_mapcount) + 1;
618 * Return true if this page is mapped into pagetables.
620 static inline int page_mapped(struct page *page)
622 return atomic_read(&(page)->_mapcount) >= 0;
626 * Error return values for the *_nopage functions
628 #define NOPAGE_SIGBUS (NULL)
629 #define NOPAGE_OOM ((struct page *) (-1))
632 * Different kinds of faults, as returned by handle_mm_fault().
633 * Used to decide whether a process gets delivered SIGBUS or
634 * just gets major/minor fault counters bumped up.
636 #define VM_FAULT_OOM 0x00
637 #define VM_FAULT_SIGBUS 0x01
638 #define VM_FAULT_MINOR 0x02
639 #define VM_FAULT_MAJOR 0x03
642 * Special case for get_user_pages.
643 * Must be in a distinct bit from the above VM_FAULT_ flags.
645 #define VM_FAULT_WRITE 0x10
647 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
649 extern void show_free_areas(void);
651 #ifdef CONFIG_SHMEM
652 struct page *shmem_nopage(struct vm_area_struct *vma,
653 unsigned long address, int *type);
654 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
655 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
656 unsigned long addr);
657 int shmem_lock(struct file *file, int lock, struct user_struct *user);
658 #else
659 #define shmem_nopage filemap_nopage
660 #define shmem_lock(a, b, c) ({0;}) /* always in memory, no need to lock */
661 #define shmem_set_policy(a, b) (0)
662 #define shmem_get_policy(a, b) (NULL)
663 #endif
664 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
666 int shmem_zero_setup(struct vm_area_struct *);
668 static inline int can_do_mlock(void)
670 if (capable(CAP_IPC_LOCK))
671 return 1;
672 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
673 return 1;
674 return 0;
676 extern int user_shm_lock(size_t, struct user_struct *);
677 extern void user_shm_unlock(size_t, struct user_struct *);
680 * Parameter block passed down to zap_pte_range in exceptional cases.
682 struct zap_details {
683 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
684 struct address_space *check_mapping; /* Check page->mapping if set */
685 pgoff_t first_index; /* Lowest page->index to unmap */
686 pgoff_t last_index; /* Highest page->index to unmap */
687 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
688 unsigned long truncate_count; /* Compare vm_truncate_count */
691 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
692 unsigned long size, struct zap_details *);
693 unsigned long unmap_vmas(struct mmu_gather **tlb,
694 struct vm_area_struct *start_vma, unsigned long start_addr,
695 unsigned long end_addr, unsigned long *nr_accounted,
696 struct zap_details *);
697 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
698 unsigned long end, unsigned long floor, unsigned long ceiling);
699 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
700 unsigned long floor, unsigned long ceiling);
701 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
702 struct vm_area_struct *vma);
703 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
704 unsigned long size, pgprot_t prot);
705 void unmap_mapping_range(struct address_space *mapping,
706 loff_t const holebegin, loff_t const holelen, int even_cows);
708 static inline void unmap_shared_mapping_range(struct address_space *mapping,
709 loff_t const holebegin, loff_t const holelen)
711 unmap_mapping_range(mapping, holebegin, holelen, 0);
714 extern int vmtruncate(struct inode * inode, loff_t offset);
715 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
716 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
717 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access);
719 static inline int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access)
721 return __handle_mm_fault(mm, vma, address, write_access) & (~VM_FAULT_WRITE);
724 extern int make_pages_present(unsigned long addr, unsigned long end);
725 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
726 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
728 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
729 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
730 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
732 int __set_page_dirty_buffers(struct page *page);
733 int __set_page_dirty_nobuffers(struct page *page);
734 int redirty_page_for_writepage(struct writeback_control *wbc,
735 struct page *page);
736 int FASTCALL(set_page_dirty(struct page *page));
737 int set_page_dirty_lock(struct page *page);
738 int clear_page_dirty_for_io(struct page *page);
740 extern unsigned long do_mremap(unsigned long addr,
741 unsigned long old_len, unsigned long new_len,
742 unsigned long flags, unsigned long new_addr);
745 * Prototype to add a shrinker callback for ageable caches.
747 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
748 * scan `nr_to_scan' objects, attempting to free them.
750 * The callback must return the number of objects which remain in the cache.
752 * The callback will be passed nr_to_scan == 0 when the VM is querying the
753 * cache size, so a fastpath for that case is appropriate.
755 typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
758 * Add an aging callback. The int is the number of 'seeks' it takes
759 * to recreate one of the objects that these functions age.
762 #define DEFAULT_SEEKS 2
763 struct shrinker;
764 extern struct shrinker *set_shrinker(int, shrinker_t);
765 extern void remove_shrinker(struct shrinker *shrinker);
767 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
768 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
769 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
770 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
773 * The following ifdef needed to get the 4level-fixup.h header to work.
774 * Remove it when 4level-fixup.h has been removed.
776 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
777 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
779 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
780 NULL: pud_offset(pgd, address);
783 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
785 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
786 NULL: pmd_offset(pud, address);
788 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
790 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
792 * We tuck a spinlock to guard each pagetable page into its struct page,
793 * at page->private, with BUILD_BUG_ON to make sure that this will not
794 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
795 * When freeing, reset page->mapping so free_pages_check won't complain.
797 #define __pte_lockptr(page) &((page)->u.ptl)
798 #define pte_lock_init(_page) do { \
799 spin_lock_init(__pte_lockptr(_page)); \
800 } while (0)
801 #define pte_lock_deinit(page) ((page)->mapping = NULL)
802 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
803 #else
805 * We use mm->page_table_lock to guard all pagetable pages of the mm.
807 #define pte_lock_init(page) do {} while (0)
808 #define pte_lock_deinit(page) do {} while (0)
809 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
810 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
812 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
813 ({ \
814 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
815 pte_t *__pte = pte_offset_map(pmd, address); \
816 *(ptlp) = __ptl; \
817 spin_lock(__ptl); \
818 __pte; \
821 #define pte_unmap_unlock(pte, ptl) do { \
822 spin_unlock(ptl); \
823 pte_unmap(pte); \
824 } while (0)
826 #define pte_alloc_map(mm, pmd, address) \
827 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
828 NULL: pte_offset_map(pmd, address))
830 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
831 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
832 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
834 #define pte_alloc_kernel(pmd, address) \
835 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
836 NULL: pte_offset_kernel(pmd, address))
838 extern void free_area_init(unsigned long * zones_size);
839 extern void free_area_init_node(int nid, pg_data_t *pgdat,
840 unsigned long * zones_size, unsigned long zone_start_pfn,
841 unsigned long *zholes_size);
842 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
843 extern void setup_per_zone_pages_min(void);
844 extern void mem_init(void);
845 extern void show_mem(void);
846 extern void si_meminfo(struct sysinfo * val);
847 extern void si_meminfo_node(struct sysinfo *val, int nid);
849 #ifdef CONFIG_NUMA
850 extern void setup_per_cpu_pageset(void);
851 #else
852 static inline void setup_per_cpu_pageset(void) {}
853 #endif
855 /* prio_tree.c */
856 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
857 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
858 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
859 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
860 struct prio_tree_iter *iter);
862 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
863 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
864 (vma = vma_prio_tree_next(vma, iter)); )
866 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
867 struct list_head *list)
869 vma->shared.vm_set.parent = NULL;
870 list_add_tail(&vma->shared.vm_set.list, list);
873 /* mmap.c */
874 extern int __vm_enough_memory(long pages, int cap_sys_admin);
875 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
876 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
877 extern struct vm_area_struct *vma_merge(struct mm_struct *,
878 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
879 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
880 struct mempolicy *);
881 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
882 extern int split_vma(struct mm_struct *,
883 struct vm_area_struct *, unsigned long addr, int new_below);
884 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
885 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
886 struct rb_node **, struct rb_node *);
887 extern void unlink_file_vma(struct vm_area_struct *);
888 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
889 unsigned long addr, unsigned long len, pgoff_t pgoff);
890 extern void exit_mmap(struct mm_struct *);
891 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
893 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
895 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
896 unsigned long len, unsigned long prot,
897 unsigned long flag, unsigned long pgoff);
899 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
900 unsigned long len, unsigned long prot,
901 unsigned long flag, unsigned long offset)
903 unsigned long ret = -EINVAL;
904 if ((offset + PAGE_ALIGN(len)) < offset)
905 goto out;
906 if (!(offset & ~PAGE_MASK))
907 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
908 out:
909 return ret;
912 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
914 extern unsigned long do_brk(unsigned long, unsigned long);
916 /* filemap.c */
917 extern unsigned long page_unuse(struct page *);
918 extern void truncate_inode_pages(struct address_space *, loff_t);
920 /* generic vm_area_ops exported for stackable file systems */
921 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
922 extern int filemap_populate(struct vm_area_struct *, unsigned long,
923 unsigned long, pgprot_t, unsigned long, int);
925 /* mm/page-writeback.c */
926 int write_one_page(struct page *page, int wait);
928 /* readahead.c */
929 #define VM_MAX_READAHEAD 128 /* kbytes */
930 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
931 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
932 * turning readahead off */
934 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
935 pgoff_t offset, unsigned long nr_to_read);
936 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
937 pgoff_t offset, unsigned long nr_to_read);
938 unsigned long page_cache_readahead(struct address_space *mapping,
939 struct file_ra_state *ra,
940 struct file *filp,
941 pgoff_t offset,
942 unsigned long size);
943 void handle_ra_miss(struct address_space *mapping,
944 struct file_ra_state *ra, pgoff_t offset);
945 unsigned long max_sane_readahead(unsigned long nr);
947 /* Do stack extension */
948 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
949 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
951 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
952 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
953 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
954 struct vm_area_struct **pprev);
956 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
957 NULL if none. Assume start_addr < end_addr. */
958 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
960 struct vm_area_struct * vma = find_vma(mm,start_addr);
962 if (vma && end_addr <= vma->vm_start)
963 vma = NULL;
964 return vma;
967 static inline unsigned long vma_pages(struct vm_area_struct *vma)
969 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
972 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
973 struct page *vmalloc_to_page(void *addr);
974 unsigned long vmalloc_to_pfn(void *addr);
975 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
976 unsigned long pfn, unsigned long size, pgprot_t);
978 struct page *follow_page(struct mm_struct *, unsigned long address,
979 unsigned int foll_flags);
980 #define FOLL_WRITE 0x01 /* check pte is writable */
981 #define FOLL_TOUCH 0x02 /* mark page accessed */
982 #define FOLL_GET 0x04 /* do get_page on page */
983 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
985 #ifdef CONFIG_PROC_FS
986 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
987 #else
988 static inline void vm_stat_account(struct mm_struct *mm,
989 unsigned long flags, struct file *file, long pages)
992 #endif /* CONFIG_PROC_FS */
994 #ifndef CONFIG_DEBUG_PAGEALLOC
995 static inline void
996 kernel_map_pages(struct page *page, int numpages, int enable)
999 #endif
1001 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1002 #ifdef __HAVE_ARCH_GATE_AREA
1003 int in_gate_area_no_task(unsigned long addr);
1004 int in_gate_area(struct task_struct *task, unsigned long addr);
1005 #else
1006 int in_gate_area_no_task(unsigned long addr);
1007 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1008 #endif /* __HAVE_ARCH_GATE_AREA */
1010 /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
1011 #define OOM_DISABLE -17
1013 #endif /* __KERNEL__ */
1014 #endif /* _LINUX_MM_H */