net: backlog functions rename
[linux-2.6/x86.git] / net / ipv4 / tcp_ipv4.c
blob1915f7dc30e6abba10d1273403660a18726abc55
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
64 #include <net/net_namespace.h>
65 #include <net/icmp.h>
66 #include <net/inet_hashtables.h>
67 #include <net/tcp.h>
68 #include <net/transp_v6.h>
69 #include <net/ipv6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
72 #include <net/xfrm.h>
73 #include <net/netdma.h>
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
84 int sysctl_tcp_tw_reuse __read_mostly;
85 int sysctl_tcp_low_latency __read_mostly;
88 #ifdef CONFIG_TCP_MD5SIG
89 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
90 __be32 addr);
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
92 __be32 daddr, __be32 saddr, struct tcphdr *th);
93 #else
94 static inline
95 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
97 return NULL;
99 #endif
101 struct inet_hashinfo tcp_hashinfo;
103 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
105 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
106 ip_hdr(skb)->saddr,
107 tcp_hdr(skb)->dest,
108 tcp_hdr(skb)->source);
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 struct tcp_sock *tp = tcp_sk(sk);
116 /* With PAWS, it is safe from the viewpoint
117 of data integrity. Even without PAWS it is safe provided sequence
118 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
120 Actually, the idea is close to VJ's one, only timestamp cache is
121 held not per host, but per port pair and TW bucket is used as state
122 holder.
124 If TW bucket has been already destroyed we fall back to VJ's scheme
125 and use initial timestamp retrieved from peer table.
127 if (tcptw->tw_ts_recent_stamp &&
128 (twp == NULL || (sysctl_tcp_tw_reuse &&
129 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
130 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
131 if (tp->write_seq == 0)
132 tp->write_seq = 1;
133 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
134 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
135 sock_hold(sktw);
136 return 1;
139 return 0;
142 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
144 /* This will initiate an outgoing connection. */
145 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
147 struct inet_sock *inet = inet_sk(sk);
148 struct tcp_sock *tp = tcp_sk(sk);
149 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150 struct rtable *rt;
151 __be32 daddr, nexthop;
152 int tmp;
153 int err;
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
161 nexthop = daddr = usin->sin_addr.s_addr;
162 if (inet->opt && inet->opt->srr) {
163 if (!daddr)
164 return -EINVAL;
165 nexthop = inet->opt->faddr;
168 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
169 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
170 IPPROTO_TCP,
171 inet->inet_sport, usin->sin_port, sk, 1);
172 if (tmp < 0) {
173 if (tmp == -ENETUNREACH)
174 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
175 return tmp;
178 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
179 ip_rt_put(rt);
180 return -ENETUNREACH;
183 if (!inet->opt || !inet->opt->srr)
184 daddr = rt->rt_dst;
186 if (!inet->inet_saddr)
187 inet->inet_saddr = rt->rt_src;
188 inet->inet_rcv_saddr = inet->inet_saddr;
190 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
191 /* Reset inherited state */
192 tp->rx_opt.ts_recent = 0;
193 tp->rx_opt.ts_recent_stamp = 0;
194 tp->write_seq = 0;
197 if (tcp_death_row.sysctl_tw_recycle &&
198 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
199 struct inet_peer *peer = rt_get_peer(rt);
201 * VJ's idea. We save last timestamp seen from
202 * the destination in peer table, when entering state
203 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
204 * when trying new connection.
206 if (peer != NULL &&
207 (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
208 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
209 tp->rx_opt.ts_recent = peer->tcp_ts;
213 inet->inet_dport = usin->sin_port;
214 inet->inet_daddr = daddr;
216 inet_csk(sk)->icsk_ext_hdr_len = 0;
217 if (inet->opt)
218 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
220 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
222 /* Socket identity is still unknown (sport may be zero).
223 * However we set state to SYN-SENT and not releasing socket
224 * lock select source port, enter ourselves into the hash tables and
225 * complete initialization after this.
227 tcp_set_state(sk, TCP_SYN_SENT);
228 err = inet_hash_connect(&tcp_death_row, sk);
229 if (err)
230 goto failure;
232 err = ip_route_newports(&rt, IPPROTO_TCP,
233 inet->inet_sport, inet->inet_dport, sk);
234 if (err)
235 goto failure;
237 /* OK, now commit destination to socket. */
238 sk->sk_gso_type = SKB_GSO_TCPV4;
239 sk_setup_caps(sk, &rt->u.dst);
241 if (!tp->write_seq)
242 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
243 inet->inet_daddr,
244 inet->inet_sport,
245 usin->sin_port);
247 inet->inet_id = tp->write_seq ^ jiffies;
249 err = tcp_connect(sk);
250 rt = NULL;
251 if (err)
252 goto failure;
254 return 0;
256 failure:
258 * This unhashes the socket and releases the local port,
259 * if necessary.
261 tcp_set_state(sk, TCP_CLOSE);
262 ip_rt_put(rt);
263 sk->sk_route_caps = 0;
264 inet->inet_dport = 0;
265 return err;
269 * This routine does path mtu discovery as defined in RFC1191.
271 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
276 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
277 * send out by Linux are always <576bytes so they should go through
278 * unfragmented).
280 if (sk->sk_state == TCP_LISTEN)
281 return;
283 /* We don't check in the destentry if pmtu discovery is forbidden
284 * on this route. We just assume that no packet_to_big packets
285 * are send back when pmtu discovery is not active.
286 * There is a small race when the user changes this flag in the
287 * route, but I think that's acceptable.
289 if ((dst = __sk_dst_check(sk, 0)) == NULL)
290 return;
292 dst->ops->update_pmtu(dst, mtu);
294 /* Something is about to be wrong... Remember soft error
295 * for the case, if this connection will not able to recover.
297 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
298 sk->sk_err_soft = EMSGSIZE;
300 mtu = dst_mtu(dst);
302 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
303 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
304 tcp_sync_mss(sk, mtu);
306 /* Resend the TCP packet because it's
307 * clear that the old packet has been
308 * dropped. This is the new "fast" path mtu
309 * discovery.
311 tcp_simple_retransmit(sk);
312 } /* else let the usual retransmit timer handle it */
316 * This routine is called by the ICMP module when it gets some
317 * sort of error condition. If err < 0 then the socket should
318 * be closed and the error returned to the user. If err > 0
319 * it's just the icmp type << 8 | icmp code. After adjustment
320 * header points to the first 8 bytes of the tcp header. We need
321 * to find the appropriate port.
323 * The locking strategy used here is very "optimistic". When
324 * someone else accesses the socket the ICMP is just dropped
325 * and for some paths there is no check at all.
326 * A more general error queue to queue errors for later handling
327 * is probably better.
331 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
333 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
334 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
335 struct inet_connection_sock *icsk;
336 struct tcp_sock *tp;
337 struct inet_sock *inet;
338 const int type = icmp_hdr(icmp_skb)->type;
339 const int code = icmp_hdr(icmp_skb)->code;
340 struct sock *sk;
341 struct sk_buff *skb;
342 __u32 seq;
343 __u32 remaining;
344 int err;
345 struct net *net = dev_net(icmp_skb->dev);
347 if (icmp_skb->len < (iph->ihl << 2) + 8) {
348 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
349 return;
352 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
353 iph->saddr, th->source, inet_iif(icmp_skb));
354 if (!sk) {
355 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
356 return;
358 if (sk->sk_state == TCP_TIME_WAIT) {
359 inet_twsk_put(inet_twsk(sk));
360 return;
363 bh_lock_sock(sk);
364 /* If too many ICMPs get dropped on busy
365 * servers this needs to be solved differently.
367 if (sock_owned_by_user(sk))
368 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370 if (sk->sk_state == TCP_CLOSE)
371 goto out;
373 icsk = inet_csk(sk);
374 tp = tcp_sk(sk);
375 seq = ntohl(th->seq);
376 if (sk->sk_state != TCP_LISTEN &&
377 !between(seq, tp->snd_una, tp->snd_nxt)) {
378 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
379 goto out;
382 switch (type) {
383 case ICMP_SOURCE_QUENCH:
384 /* Just silently ignore these. */
385 goto out;
386 case ICMP_PARAMETERPROB:
387 err = EPROTO;
388 break;
389 case ICMP_DEST_UNREACH:
390 if (code > NR_ICMP_UNREACH)
391 goto out;
393 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
394 if (!sock_owned_by_user(sk))
395 do_pmtu_discovery(sk, iph, info);
396 goto out;
399 err = icmp_err_convert[code].errno;
400 /* check if icmp_skb allows revert of backoff
401 * (see draft-zimmermann-tcp-lcd) */
402 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
403 break;
404 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
405 !icsk->icsk_backoff)
406 break;
408 icsk->icsk_backoff--;
409 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
410 icsk->icsk_backoff;
411 tcp_bound_rto(sk);
413 skb = tcp_write_queue_head(sk);
414 BUG_ON(!skb);
416 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
417 tcp_time_stamp - TCP_SKB_CB(skb)->when);
419 if (remaining) {
420 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
421 remaining, TCP_RTO_MAX);
422 } else if (sock_owned_by_user(sk)) {
423 /* RTO revert clocked out retransmission,
424 * but socket is locked. Will defer. */
425 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
426 HZ/20, TCP_RTO_MAX);
427 } else {
428 /* RTO revert clocked out retransmission.
429 * Will retransmit now */
430 tcp_retransmit_timer(sk);
433 break;
434 case ICMP_TIME_EXCEEDED:
435 err = EHOSTUNREACH;
436 break;
437 default:
438 goto out;
441 switch (sk->sk_state) {
442 struct request_sock *req, **prev;
443 case TCP_LISTEN:
444 if (sock_owned_by_user(sk))
445 goto out;
447 req = inet_csk_search_req(sk, &prev, th->dest,
448 iph->daddr, iph->saddr);
449 if (!req)
450 goto out;
452 /* ICMPs are not backlogged, hence we cannot get
453 an established socket here.
455 WARN_ON(req->sk);
457 if (seq != tcp_rsk(req)->snt_isn) {
458 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
459 goto out;
463 * Still in SYN_RECV, just remove it silently.
464 * There is no good way to pass the error to the newly
465 * created socket, and POSIX does not want network
466 * errors returned from accept().
468 inet_csk_reqsk_queue_drop(sk, req, prev);
469 goto out;
471 case TCP_SYN_SENT:
472 case TCP_SYN_RECV: /* Cannot happen.
473 It can f.e. if SYNs crossed.
475 if (!sock_owned_by_user(sk)) {
476 sk->sk_err = err;
478 sk->sk_error_report(sk);
480 tcp_done(sk);
481 } else {
482 sk->sk_err_soft = err;
484 goto out;
487 /* If we've already connected we will keep trying
488 * until we time out, or the user gives up.
490 * rfc1122 4.2.3.9 allows to consider as hard errors
491 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
492 * but it is obsoleted by pmtu discovery).
494 * Note, that in modern internet, where routing is unreliable
495 * and in each dark corner broken firewalls sit, sending random
496 * errors ordered by their masters even this two messages finally lose
497 * their original sense (even Linux sends invalid PORT_UNREACHs)
499 * Now we are in compliance with RFCs.
500 * --ANK (980905)
503 inet = inet_sk(sk);
504 if (!sock_owned_by_user(sk) && inet->recverr) {
505 sk->sk_err = err;
506 sk->sk_error_report(sk);
507 } else { /* Only an error on timeout */
508 sk->sk_err_soft = err;
511 out:
512 bh_unlock_sock(sk);
513 sock_put(sk);
516 /* This routine computes an IPv4 TCP checksum. */
517 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
519 struct inet_sock *inet = inet_sk(sk);
520 struct tcphdr *th = tcp_hdr(skb);
522 if (skb->ip_summed == CHECKSUM_PARTIAL) {
523 th->check = ~tcp_v4_check(len, inet->inet_saddr,
524 inet->inet_daddr, 0);
525 skb->csum_start = skb_transport_header(skb) - skb->head;
526 skb->csum_offset = offsetof(struct tcphdr, check);
527 } else {
528 th->check = tcp_v4_check(len, inet->inet_saddr,
529 inet->inet_daddr,
530 csum_partial(th,
531 th->doff << 2,
532 skb->csum));
536 int tcp_v4_gso_send_check(struct sk_buff *skb)
538 const struct iphdr *iph;
539 struct tcphdr *th;
541 if (!pskb_may_pull(skb, sizeof(*th)))
542 return -EINVAL;
544 iph = ip_hdr(skb);
545 th = tcp_hdr(skb);
547 th->check = 0;
548 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 skb->ip_summed = CHECKSUM_PARTIAL;
552 return 0;
556 * This routine will send an RST to the other tcp.
558 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
559 * for reset.
560 * Answer: if a packet caused RST, it is not for a socket
561 * existing in our system, if it is matched to a socket,
562 * it is just duplicate segment or bug in other side's TCP.
563 * So that we build reply only basing on parameters
564 * arrived with segment.
565 * Exception: precedence violation. We do not implement it in any case.
568 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
570 struct tcphdr *th = tcp_hdr(skb);
571 struct {
572 struct tcphdr th;
573 #ifdef CONFIG_TCP_MD5SIG
574 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
575 #endif
576 } rep;
577 struct ip_reply_arg arg;
578 #ifdef CONFIG_TCP_MD5SIG
579 struct tcp_md5sig_key *key;
580 #endif
581 struct net *net;
583 /* Never send a reset in response to a reset. */
584 if (th->rst)
585 return;
587 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
588 return;
590 /* Swap the send and the receive. */
591 memset(&rep, 0, sizeof(rep));
592 rep.th.dest = th->source;
593 rep.th.source = th->dest;
594 rep.th.doff = sizeof(struct tcphdr) / 4;
595 rep.th.rst = 1;
597 if (th->ack) {
598 rep.th.seq = th->ack_seq;
599 } else {
600 rep.th.ack = 1;
601 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
602 skb->len - (th->doff << 2));
605 memset(&arg, 0, sizeof(arg));
606 arg.iov[0].iov_base = (unsigned char *)&rep;
607 arg.iov[0].iov_len = sizeof(rep.th);
609 #ifdef CONFIG_TCP_MD5SIG
610 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
611 if (key) {
612 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
613 (TCPOPT_NOP << 16) |
614 (TCPOPT_MD5SIG << 8) |
615 TCPOLEN_MD5SIG);
616 /* Update length and the length the header thinks exists */
617 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
618 rep.th.doff = arg.iov[0].iov_len / 4;
620 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
621 key, ip_hdr(skb)->saddr,
622 ip_hdr(skb)->daddr, &rep.th);
624 #endif
625 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
626 ip_hdr(skb)->saddr, /* XXX */
627 arg.iov[0].iov_len, IPPROTO_TCP, 0);
628 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
629 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
631 net = dev_net(skb_dst(skb)->dev);
632 ip_send_reply(net->ipv4.tcp_sock, skb,
633 &arg, arg.iov[0].iov_len);
635 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
636 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
639 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
640 outside socket context is ugly, certainly. What can I do?
643 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
644 u32 win, u32 ts, int oif,
645 struct tcp_md5sig_key *key,
646 int reply_flags)
648 struct tcphdr *th = tcp_hdr(skb);
649 struct {
650 struct tcphdr th;
651 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
652 #ifdef CONFIG_TCP_MD5SIG
653 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
654 #endif
656 } rep;
657 struct ip_reply_arg arg;
658 struct net *net = dev_net(skb_dst(skb)->dev);
660 memset(&rep.th, 0, sizeof(struct tcphdr));
661 memset(&arg, 0, sizeof(arg));
663 arg.iov[0].iov_base = (unsigned char *)&rep;
664 arg.iov[0].iov_len = sizeof(rep.th);
665 if (ts) {
666 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
667 (TCPOPT_TIMESTAMP << 8) |
668 TCPOLEN_TIMESTAMP);
669 rep.opt[1] = htonl(tcp_time_stamp);
670 rep.opt[2] = htonl(ts);
671 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
674 /* Swap the send and the receive. */
675 rep.th.dest = th->source;
676 rep.th.source = th->dest;
677 rep.th.doff = arg.iov[0].iov_len / 4;
678 rep.th.seq = htonl(seq);
679 rep.th.ack_seq = htonl(ack);
680 rep.th.ack = 1;
681 rep.th.window = htons(win);
683 #ifdef CONFIG_TCP_MD5SIG
684 if (key) {
685 int offset = (ts) ? 3 : 0;
687 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
688 (TCPOPT_NOP << 16) |
689 (TCPOPT_MD5SIG << 8) |
690 TCPOLEN_MD5SIG);
691 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
692 rep.th.doff = arg.iov[0].iov_len/4;
694 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
695 key, ip_hdr(skb)->saddr,
696 ip_hdr(skb)->daddr, &rep.th);
698 #endif
699 arg.flags = reply_flags;
700 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
701 ip_hdr(skb)->saddr, /* XXX */
702 arg.iov[0].iov_len, IPPROTO_TCP, 0);
703 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
704 if (oif)
705 arg.bound_dev_if = oif;
707 ip_send_reply(net->ipv4.tcp_sock, skb,
708 &arg, arg.iov[0].iov_len);
710 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
715 struct inet_timewait_sock *tw = inet_twsk(sk);
716 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
718 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
719 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
720 tcptw->tw_ts_recent,
721 tw->tw_bound_dev_if,
722 tcp_twsk_md5_key(tcptw),
723 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
726 inet_twsk_put(tw);
729 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
730 struct request_sock *req)
732 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
733 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
734 req->ts_recent,
736 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
737 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
741 * Send a SYN-ACK after having received a SYN.
742 * This still operates on a request_sock only, not on a big
743 * socket.
745 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
746 struct request_sock *req,
747 struct request_values *rvp)
749 const struct inet_request_sock *ireq = inet_rsk(req);
750 int err = -1;
751 struct sk_buff * skb;
753 /* First, grab a route. */
754 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
755 return -1;
757 skb = tcp_make_synack(sk, dst, req, rvp);
759 if (skb) {
760 struct tcphdr *th = tcp_hdr(skb);
762 th->check = tcp_v4_check(skb->len,
763 ireq->loc_addr,
764 ireq->rmt_addr,
765 csum_partial(th, skb->len,
766 skb->csum));
768 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
769 ireq->rmt_addr,
770 ireq->opt);
771 err = net_xmit_eval(err);
774 dst_release(dst);
775 return err;
778 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
779 struct request_values *rvp)
781 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
782 return tcp_v4_send_synack(sk, NULL, req, rvp);
786 * IPv4 request_sock destructor.
788 static void tcp_v4_reqsk_destructor(struct request_sock *req)
790 kfree(inet_rsk(req)->opt);
793 #ifdef CONFIG_SYN_COOKIES
794 static void syn_flood_warning(struct sk_buff *skb)
796 static unsigned long warntime;
798 if (time_after(jiffies, (warntime + HZ * 60))) {
799 warntime = jiffies;
800 printk(KERN_INFO
801 "possible SYN flooding on port %d. Sending cookies.\n",
802 ntohs(tcp_hdr(skb)->dest));
805 #endif
808 * Save and compile IPv4 options into the request_sock if needed.
810 static struct ip_options *tcp_v4_save_options(struct sock *sk,
811 struct sk_buff *skb)
813 struct ip_options *opt = &(IPCB(skb)->opt);
814 struct ip_options *dopt = NULL;
816 if (opt && opt->optlen) {
817 int opt_size = optlength(opt);
818 dopt = kmalloc(opt_size, GFP_ATOMIC);
819 if (dopt) {
820 if (ip_options_echo(dopt, skb)) {
821 kfree(dopt);
822 dopt = NULL;
826 return dopt;
829 #ifdef CONFIG_TCP_MD5SIG
831 * RFC2385 MD5 checksumming requires a mapping of
832 * IP address->MD5 Key.
833 * We need to maintain these in the sk structure.
836 /* Find the Key structure for an address. */
837 static struct tcp_md5sig_key *
838 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
840 struct tcp_sock *tp = tcp_sk(sk);
841 int i;
843 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
844 return NULL;
845 for (i = 0; i < tp->md5sig_info->entries4; i++) {
846 if (tp->md5sig_info->keys4[i].addr == addr)
847 return &tp->md5sig_info->keys4[i].base;
849 return NULL;
852 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
853 struct sock *addr_sk)
855 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
858 EXPORT_SYMBOL(tcp_v4_md5_lookup);
860 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
861 struct request_sock *req)
863 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
866 /* This can be called on a newly created socket, from other files */
867 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
868 u8 *newkey, u8 newkeylen)
870 /* Add Key to the list */
871 struct tcp_md5sig_key *key;
872 struct tcp_sock *tp = tcp_sk(sk);
873 struct tcp4_md5sig_key *keys;
875 key = tcp_v4_md5_do_lookup(sk, addr);
876 if (key) {
877 /* Pre-existing entry - just update that one. */
878 kfree(key->key);
879 key->key = newkey;
880 key->keylen = newkeylen;
881 } else {
882 struct tcp_md5sig_info *md5sig;
884 if (!tp->md5sig_info) {
885 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
886 GFP_ATOMIC);
887 if (!tp->md5sig_info) {
888 kfree(newkey);
889 return -ENOMEM;
891 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
893 if (tcp_alloc_md5sig_pool(sk) == NULL) {
894 kfree(newkey);
895 return -ENOMEM;
897 md5sig = tp->md5sig_info;
899 if (md5sig->alloced4 == md5sig->entries4) {
900 keys = kmalloc((sizeof(*keys) *
901 (md5sig->entries4 + 1)), GFP_ATOMIC);
902 if (!keys) {
903 kfree(newkey);
904 tcp_free_md5sig_pool();
905 return -ENOMEM;
908 if (md5sig->entries4)
909 memcpy(keys, md5sig->keys4,
910 sizeof(*keys) * md5sig->entries4);
912 /* Free old key list, and reference new one */
913 kfree(md5sig->keys4);
914 md5sig->keys4 = keys;
915 md5sig->alloced4++;
917 md5sig->entries4++;
918 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
919 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
920 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
922 return 0;
925 EXPORT_SYMBOL(tcp_v4_md5_do_add);
927 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
928 u8 *newkey, u8 newkeylen)
930 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
931 newkey, newkeylen);
934 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
936 struct tcp_sock *tp = tcp_sk(sk);
937 int i;
939 for (i = 0; i < tp->md5sig_info->entries4; i++) {
940 if (tp->md5sig_info->keys4[i].addr == addr) {
941 /* Free the key */
942 kfree(tp->md5sig_info->keys4[i].base.key);
943 tp->md5sig_info->entries4--;
945 if (tp->md5sig_info->entries4 == 0) {
946 kfree(tp->md5sig_info->keys4);
947 tp->md5sig_info->keys4 = NULL;
948 tp->md5sig_info->alloced4 = 0;
949 } else if (tp->md5sig_info->entries4 != i) {
950 /* Need to do some manipulation */
951 memmove(&tp->md5sig_info->keys4[i],
952 &tp->md5sig_info->keys4[i+1],
953 (tp->md5sig_info->entries4 - i) *
954 sizeof(struct tcp4_md5sig_key));
956 tcp_free_md5sig_pool();
957 return 0;
960 return -ENOENT;
963 EXPORT_SYMBOL(tcp_v4_md5_do_del);
965 static void tcp_v4_clear_md5_list(struct sock *sk)
967 struct tcp_sock *tp = tcp_sk(sk);
969 /* Free each key, then the set of key keys,
970 * the crypto element, and then decrement our
971 * hold on the last resort crypto.
973 if (tp->md5sig_info->entries4) {
974 int i;
975 for (i = 0; i < tp->md5sig_info->entries4; i++)
976 kfree(tp->md5sig_info->keys4[i].base.key);
977 tp->md5sig_info->entries4 = 0;
978 tcp_free_md5sig_pool();
980 if (tp->md5sig_info->keys4) {
981 kfree(tp->md5sig_info->keys4);
982 tp->md5sig_info->keys4 = NULL;
983 tp->md5sig_info->alloced4 = 0;
987 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
988 int optlen)
990 struct tcp_md5sig cmd;
991 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
992 u8 *newkey;
994 if (optlen < sizeof(cmd))
995 return -EINVAL;
997 if (copy_from_user(&cmd, optval, sizeof(cmd)))
998 return -EFAULT;
1000 if (sin->sin_family != AF_INET)
1001 return -EINVAL;
1003 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1004 if (!tcp_sk(sk)->md5sig_info)
1005 return -ENOENT;
1006 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1009 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1010 return -EINVAL;
1012 if (!tcp_sk(sk)->md5sig_info) {
1013 struct tcp_sock *tp = tcp_sk(sk);
1014 struct tcp_md5sig_info *p;
1016 p = kzalloc(sizeof(*p), sk->sk_allocation);
1017 if (!p)
1018 return -EINVAL;
1020 tp->md5sig_info = p;
1021 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1024 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1025 if (!newkey)
1026 return -ENOMEM;
1027 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1028 newkey, cmd.tcpm_keylen);
1031 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1032 __be32 daddr, __be32 saddr, int nbytes)
1034 struct tcp4_pseudohdr *bp;
1035 struct scatterlist sg;
1037 bp = &hp->md5_blk.ip4;
1040 * 1. the TCP pseudo-header (in the order: source IP address,
1041 * destination IP address, zero-padded protocol number, and
1042 * segment length)
1044 bp->saddr = saddr;
1045 bp->daddr = daddr;
1046 bp->pad = 0;
1047 bp->protocol = IPPROTO_TCP;
1048 bp->len = cpu_to_be16(nbytes);
1050 sg_init_one(&sg, bp, sizeof(*bp));
1051 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1054 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1055 __be32 daddr, __be32 saddr, struct tcphdr *th)
1057 struct tcp_md5sig_pool *hp;
1058 struct hash_desc *desc;
1060 hp = tcp_get_md5sig_pool();
1061 if (!hp)
1062 goto clear_hash_noput;
1063 desc = &hp->md5_desc;
1065 if (crypto_hash_init(desc))
1066 goto clear_hash;
1067 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1068 goto clear_hash;
1069 if (tcp_md5_hash_header(hp, th))
1070 goto clear_hash;
1071 if (tcp_md5_hash_key(hp, key))
1072 goto clear_hash;
1073 if (crypto_hash_final(desc, md5_hash))
1074 goto clear_hash;
1076 tcp_put_md5sig_pool();
1077 return 0;
1079 clear_hash:
1080 tcp_put_md5sig_pool();
1081 clear_hash_noput:
1082 memset(md5_hash, 0, 16);
1083 return 1;
1086 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1087 struct sock *sk, struct request_sock *req,
1088 struct sk_buff *skb)
1090 struct tcp_md5sig_pool *hp;
1091 struct hash_desc *desc;
1092 struct tcphdr *th = tcp_hdr(skb);
1093 __be32 saddr, daddr;
1095 if (sk) {
1096 saddr = inet_sk(sk)->inet_saddr;
1097 daddr = inet_sk(sk)->inet_daddr;
1098 } else if (req) {
1099 saddr = inet_rsk(req)->loc_addr;
1100 daddr = inet_rsk(req)->rmt_addr;
1101 } else {
1102 const struct iphdr *iph = ip_hdr(skb);
1103 saddr = iph->saddr;
1104 daddr = iph->daddr;
1107 hp = tcp_get_md5sig_pool();
1108 if (!hp)
1109 goto clear_hash_noput;
1110 desc = &hp->md5_desc;
1112 if (crypto_hash_init(desc))
1113 goto clear_hash;
1115 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1116 goto clear_hash;
1117 if (tcp_md5_hash_header(hp, th))
1118 goto clear_hash;
1119 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1120 goto clear_hash;
1121 if (tcp_md5_hash_key(hp, key))
1122 goto clear_hash;
1123 if (crypto_hash_final(desc, md5_hash))
1124 goto clear_hash;
1126 tcp_put_md5sig_pool();
1127 return 0;
1129 clear_hash:
1130 tcp_put_md5sig_pool();
1131 clear_hash_noput:
1132 memset(md5_hash, 0, 16);
1133 return 1;
1136 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1138 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1141 * This gets called for each TCP segment that arrives
1142 * so we want to be efficient.
1143 * We have 3 drop cases:
1144 * o No MD5 hash and one expected.
1145 * o MD5 hash and we're not expecting one.
1146 * o MD5 hash and its wrong.
1148 __u8 *hash_location = NULL;
1149 struct tcp_md5sig_key *hash_expected;
1150 const struct iphdr *iph = ip_hdr(skb);
1151 struct tcphdr *th = tcp_hdr(skb);
1152 int genhash;
1153 unsigned char newhash[16];
1155 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1156 hash_location = tcp_parse_md5sig_option(th);
1158 /* We've parsed the options - do we have a hash? */
1159 if (!hash_expected && !hash_location)
1160 return 0;
1162 if (hash_expected && !hash_location) {
1163 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1164 return 1;
1167 if (!hash_expected && hash_location) {
1168 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1169 return 1;
1172 /* Okay, so this is hash_expected and hash_location -
1173 * so we need to calculate the checksum.
1175 genhash = tcp_v4_md5_hash_skb(newhash,
1176 hash_expected,
1177 NULL, NULL, skb);
1179 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1180 if (net_ratelimit()) {
1181 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1182 &iph->saddr, ntohs(th->source),
1183 &iph->daddr, ntohs(th->dest),
1184 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1186 return 1;
1188 return 0;
1191 #endif
1193 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1194 .family = PF_INET,
1195 .obj_size = sizeof(struct tcp_request_sock),
1196 .rtx_syn_ack = tcp_v4_rtx_synack,
1197 .send_ack = tcp_v4_reqsk_send_ack,
1198 .destructor = tcp_v4_reqsk_destructor,
1199 .send_reset = tcp_v4_send_reset,
1200 .syn_ack_timeout = tcp_syn_ack_timeout,
1203 #ifdef CONFIG_TCP_MD5SIG
1204 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1205 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1206 .calc_md5_hash = tcp_v4_md5_hash_skb,
1208 #endif
1210 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1211 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1212 .twsk_unique = tcp_twsk_unique,
1213 .twsk_destructor= tcp_twsk_destructor,
1216 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1218 struct tcp_extend_values tmp_ext;
1219 struct tcp_options_received tmp_opt;
1220 u8 *hash_location;
1221 struct request_sock *req;
1222 struct inet_request_sock *ireq;
1223 struct tcp_sock *tp = tcp_sk(sk);
1224 struct dst_entry *dst = NULL;
1225 __be32 saddr = ip_hdr(skb)->saddr;
1226 __be32 daddr = ip_hdr(skb)->daddr;
1227 __u32 isn = TCP_SKB_CB(skb)->when;
1228 #ifdef CONFIG_SYN_COOKIES
1229 int want_cookie = 0;
1230 #else
1231 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1232 #endif
1234 /* Never answer to SYNs send to broadcast or multicast */
1235 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1236 goto drop;
1238 /* TW buckets are converted to open requests without
1239 * limitations, they conserve resources and peer is
1240 * evidently real one.
1242 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1243 #ifdef CONFIG_SYN_COOKIES
1244 if (sysctl_tcp_syncookies) {
1245 want_cookie = 1;
1246 } else
1247 #endif
1248 goto drop;
1251 /* Accept backlog is full. If we have already queued enough
1252 * of warm entries in syn queue, drop request. It is better than
1253 * clogging syn queue with openreqs with exponentially increasing
1254 * timeout.
1256 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1257 goto drop;
1259 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1260 if (!req)
1261 goto drop;
1263 #ifdef CONFIG_TCP_MD5SIG
1264 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1265 #endif
1267 tcp_clear_options(&tmp_opt);
1268 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1269 tmp_opt.user_mss = tp->rx_opt.user_mss;
1270 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1272 if (tmp_opt.cookie_plus > 0 &&
1273 tmp_opt.saw_tstamp &&
1274 !tp->rx_opt.cookie_out_never &&
1275 (sysctl_tcp_cookie_size > 0 ||
1276 (tp->cookie_values != NULL &&
1277 tp->cookie_values->cookie_desired > 0))) {
1278 u8 *c;
1279 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1280 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1282 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1283 goto drop_and_release;
1285 /* Secret recipe starts with IP addresses */
1286 *mess++ ^= daddr;
1287 *mess++ ^= saddr;
1289 /* plus variable length Initiator Cookie */
1290 c = (u8 *)mess;
1291 while (l-- > 0)
1292 *c++ ^= *hash_location++;
1294 #ifdef CONFIG_SYN_COOKIES
1295 want_cookie = 0; /* not our kind of cookie */
1296 #endif
1297 tmp_ext.cookie_out_never = 0; /* false */
1298 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1299 } else if (!tp->rx_opt.cookie_in_always) {
1300 /* redundant indications, but ensure initialization. */
1301 tmp_ext.cookie_out_never = 1; /* true */
1302 tmp_ext.cookie_plus = 0;
1303 } else {
1304 goto drop_and_release;
1306 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1308 if (want_cookie && !tmp_opt.saw_tstamp)
1309 tcp_clear_options(&tmp_opt);
1311 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1312 tcp_openreq_init(req, &tmp_opt, skb);
1314 ireq = inet_rsk(req);
1315 ireq->loc_addr = daddr;
1316 ireq->rmt_addr = saddr;
1317 ireq->no_srccheck = inet_sk(sk)->transparent;
1318 ireq->opt = tcp_v4_save_options(sk, skb);
1320 if (security_inet_conn_request(sk, skb, req))
1321 goto drop_and_free;
1323 if (!want_cookie)
1324 TCP_ECN_create_request(req, tcp_hdr(skb));
1326 if (want_cookie) {
1327 #ifdef CONFIG_SYN_COOKIES
1328 syn_flood_warning(skb);
1329 req->cookie_ts = tmp_opt.tstamp_ok;
1330 #endif
1331 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1332 } else if (!isn) {
1333 struct inet_peer *peer = NULL;
1335 /* VJ's idea. We save last timestamp seen
1336 * from the destination in peer table, when entering
1337 * state TIME-WAIT, and check against it before
1338 * accepting new connection request.
1340 * If "isn" is not zero, this request hit alive
1341 * timewait bucket, so that all the necessary checks
1342 * are made in the function processing timewait state.
1344 if (tmp_opt.saw_tstamp &&
1345 tcp_death_row.sysctl_tw_recycle &&
1346 (dst = inet_csk_route_req(sk, req)) != NULL &&
1347 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1348 peer->v4daddr == saddr) {
1349 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1350 (s32)(peer->tcp_ts - req->ts_recent) >
1351 TCP_PAWS_WINDOW) {
1352 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1353 goto drop_and_release;
1356 /* Kill the following clause, if you dislike this way. */
1357 else if (!sysctl_tcp_syncookies &&
1358 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1359 (sysctl_max_syn_backlog >> 2)) &&
1360 (!peer || !peer->tcp_ts_stamp) &&
1361 (!dst || !dst_metric(dst, RTAX_RTT))) {
1362 /* Without syncookies last quarter of
1363 * backlog is filled with destinations,
1364 * proven to be alive.
1365 * It means that we continue to communicate
1366 * to destinations, already remembered
1367 * to the moment of synflood.
1369 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1370 &saddr, ntohs(tcp_hdr(skb)->source));
1371 goto drop_and_release;
1374 isn = tcp_v4_init_sequence(skb);
1376 tcp_rsk(req)->snt_isn = isn;
1378 if (tcp_v4_send_synack(sk, dst, req,
1379 (struct request_values *)&tmp_ext) ||
1380 want_cookie)
1381 goto drop_and_free;
1383 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1384 return 0;
1386 drop_and_release:
1387 dst_release(dst);
1388 drop_and_free:
1389 reqsk_free(req);
1390 drop:
1391 return 0;
1396 * The three way handshake has completed - we got a valid synack -
1397 * now create the new socket.
1399 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1400 struct request_sock *req,
1401 struct dst_entry *dst)
1403 struct inet_request_sock *ireq;
1404 struct inet_sock *newinet;
1405 struct tcp_sock *newtp;
1406 struct sock *newsk;
1407 #ifdef CONFIG_TCP_MD5SIG
1408 struct tcp_md5sig_key *key;
1409 #endif
1411 if (sk_acceptq_is_full(sk))
1412 goto exit_overflow;
1414 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1415 goto exit;
1417 newsk = tcp_create_openreq_child(sk, req, skb);
1418 if (!newsk)
1419 goto exit;
1421 newsk->sk_gso_type = SKB_GSO_TCPV4;
1422 sk_setup_caps(newsk, dst);
1424 newtp = tcp_sk(newsk);
1425 newinet = inet_sk(newsk);
1426 ireq = inet_rsk(req);
1427 newinet->inet_daddr = ireq->rmt_addr;
1428 newinet->inet_rcv_saddr = ireq->loc_addr;
1429 newinet->inet_saddr = ireq->loc_addr;
1430 newinet->opt = ireq->opt;
1431 ireq->opt = NULL;
1432 newinet->mc_index = inet_iif(skb);
1433 newinet->mc_ttl = ip_hdr(skb)->ttl;
1434 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1435 if (newinet->opt)
1436 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1437 newinet->inet_id = newtp->write_seq ^ jiffies;
1439 tcp_mtup_init(newsk);
1440 tcp_sync_mss(newsk, dst_mtu(dst));
1441 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1442 if (tcp_sk(sk)->rx_opt.user_mss &&
1443 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1444 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1446 tcp_initialize_rcv_mss(newsk);
1448 #ifdef CONFIG_TCP_MD5SIG
1449 /* Copy over the MD5 key from the original socket */
1450 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1451 if (key != NULL) {
1453 * We're using one, so create a matching key
1454 * on the newsk structure. If we fail to get
1455 * memory, then we end up not copying the key
1456 * across. Shucks.
1458 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1459 if (newkey != NULL)
1460 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1461 newkey, key->keylen);
1462 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1464 #endif
1466 __inet_hash_nolisten(newsk, NULL);
1467 __inet_inherit_port(sk, newsk);
1469 return newsk;
1471 exit_overflow:
1472 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1473 exit:
1474 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1475 dst_release(dst);
1476 return NULL;
1479 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1481 struct tcphdr *th = tcp_hdr(skb);
1482 const struct iphdr *iph = ip_hdr(skb);
1483 struct sock *nsk;
1484 struct request_sock **prev;
1485 /* Find possible connection requests. */
1486 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1487 iph->saddr, iph->daddr);
1488 if (req)
1489 return tcp_check_req(sk, skb, req, prev);
1491 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1492 th->source, iph->daddr, th->dest, inet_iif(skb));
1494 if (nsk) {
1495 if (nsk->sk_state != TCP_TIME_WAIT) {
1496 bh_lock_sock(nsk);
1497 return nsk;
1499 inet_twsk_put(inet_twsk(nsk));
1500 return NULL;
1503 #ifdef CONFIG_SYN_COOKIES
1504 if (!th->rst && !th->syn && th->ack)
1505 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1506 #endif
1507 return sk;
1510 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1512 const struct iphdr *iph = ip_hdr(skb);
1514 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1515 if (!tcp_v4_check(skb->len, iph->saddr,
1516 iph->daddr, skb->csum)) {
1517 skb->ip_summed = CHECKSUM_UNNECESSARY;
1518 return 0;
1522 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1523 skb->len, IPPROTO_TCP, 0);
1525 if (skb->len <= 76) {
1526 return __skb_checksum_complete(skb);
1528 return 0;
1532 /* The socket must have it's spinlock held when we get
1533 * here.
1535 * We have a potential double-lock case here, so even when
1536 * doing backlog processing we use the BH locking scheme.
1537 * This is because we cannot sleep with the original spinlock
1538 * held.
1540 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1542 struct sock *rsk;
1543 #ifdef CONFIG_TCP_MD5SIG
1545 * We really want to reject the packet as early as possible
1546 * if:
1547 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1548 * o There is an MD5 option and we're not expecting one
1550 if (tcp_v4_inbound_md5_hash(sk, skb))
1551 goto discard;
1552 #endif
1554 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1555 TCP_CHECK_TIMER(sk);
1556 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1557 rsk = sk;
1558 goto reset;
1560 TCP_CHECK_TIMER(sk);
1561 return 0;
1564 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1565 goto csum_err;
1567 if (sk->sk_state == TCP_LISTEN) {
1568 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1569 if (!nsk)
1570 goto discard;
1572 if (nsk != sk) {
1573 if (tcp_child_process(sk, nsk, skb)) {
1574 rsk = nsk;
1575 goto reset;
1577 return 0;
1581 TCP_CHECK_TIMER(sk);
1582 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1583 rsk = sk;
1584 goto reset;
1586 TCP_CHECK_TIMER(sk);
1587 return 0;
1589 reset:
1590 tcp_v4_send_reset(rsk, skb);
1591 discard:
1592 kfree_skb(skb);
1593 /* Be careful here. If this function gets more complicated and
1594 * gcc suffers from register pressure on the x86, sk (in %ebx)
1595 * might be destroyed here. This current version compiles correctly,
1596 * but you have been warned.
1598 return 0;
1600 csum_err:
1601 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1602 goto discard;
1606 * From tcp_input.c
1609 int tcp_v4_rcv(struct sk_buff *skb)
1611 const struct iphdr *iph;
1612 struct tcphdr *th;
1613 struct sock *sk;
1614 int ret;
1615 struct net *net = dev_net(skb->dev);
1617 if (skb->pkt_type != PACKET_HOST)
1618 goto discard_it;
1620 /* Count it even if it's bad */
1621 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1623 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1624 goto discard_it;
1626 th = tcp_hdr(skb);
1628 if (th->doff < sizeof(struct tcphdr) / 4)
1629 goto bad_packet;
1630 if (!pskb_may_pull(skb, th->doff * 4))
1631 goto discard_it;
1633 /* An explanation is required here, I think.
1634 * Packet length and doff are validated by header prediction,
1635 * provided case of th->doff==0 is eliminated.
1636 * So, we defer the checks. */
1637 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1638 goto bad_packet;
1640 th = tcp_hdr(skb);
1641 iph = ip_hdr(skb);
1642 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1643 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1644 skb->len - th->doff * 4);
1645 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1646 TCP_SKB_CB(skb)->when = 0;
1647 TCP_SKB_CB(skb)->flags = iph->tos;
1648 TCP_SKB_CB(skb)->sacked = 0;
1650 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1651 if (!sk)
1652 goto no_tcp_socket;
1654 if (iph->ttl < inet_sk(sk)->min_ttl)
1655 goto discard_and_relse;
1657 process:
1658 if (sk->sk_state == TCP_TIME_WAIT)
1659 goto do_time_wait;
1661 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1662 goto discard_and_relse;
1663 nf_reset(skb);
1665 if (sk_filter(sk, skb))
1666 goto discard_and_relse;
1668 skb->dev = NULL;
1670 bh_lock_sock_nested(sk);
1671 ret = 0;
1672 if (!sock_owned_by_user(sk)) {
1673 #ifdef CONFIG_NET_DMA
1674 struct tcp_sock *tp = tcp_sk(sk);
1675 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1676 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1677 if (tp->ucopy.dma_chan)
1678 ret = tcp_v4_do_rcv(sk, skb);
1679 else
1680 #endif
1682 if (!tcp_prequeue(sk, skb))
1683 ret = tcp_v4_do_rcv(sk, skb);
1685 } else if (sk_add_backlog(sk, skb)) {
1686 bh_unlock_sock(sk);
1687 goto discard_and_relse;
1689 bh_unlock_sock(sk);
1691 sock_put(sk);
1693 return ret;
1695 no_tcp_socket:
1696 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1697 goto discard_it;
1699 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1700 bad_packet:
1701 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1702 } else {
1703 tcp_v4_send_reset(NULL, skb);
1706 discard_it:
1707 /* Discard frame. */
1708 kfree_skb(skb);
1709 return 0;
1711 discard_and_relse:
1712 sock_put(sk);
1713 goto discard_it;
1715 do_time_wait:
1716 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1717 inet_twsk_put(inet_twsk(sk));
1718 goto discard_it;
1721 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1722 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1723 inet_twsk_put(inet_twsk(sk));
1724 goto discard_it;
1726 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1727 case TCP_TW_SYN: {
1728 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1729 &tcp_hashinfo,
1730 iph->daddr, th->dest,
1731 inet_iif(skb));
1732 if (sk2) {
1733 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1734 inet_twsk_put(inet_twsk(sk));
1735 sk = sk2;
1736 goto process;
1738 /* Fall through to ACK */
1740 case TCP_TW_ACK:
1741 tcp_v4_timewait_ack(sk, skb);
1742 break;
1743 case TCP_TW_RST:
1744 goto no_tcp_socket;
1745 case TCP_TW_SUCCESS:;
1747 goto discard_it;
1750 /* VJ's idea. Save last timestamp seen from this destination
1751 * and hold it at least for normal timewait interval to use for duplicate
1752 * segment detection in subsequent connections, before they enter synchronized
1753 * state.
1756 int tcp_v4_remember_stamp(struct sock *sk)
1758 struct inet_sock *inet = inet_sk(sk);
1759 struct tcp_sock *tp = tcp_sk(sk);
1760 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1761 struct inet_peer *peer = NULL;
1762 int release_it = 0;
1764 if (!rt || rt->rt_dst != inet->inet_daddr) {
1765 peer = inet_getpeer(inet->inet_daddr, 1);
1766 release_it = 1;
1767 } else {
1768 if (!rt->peer)
1769 rt_bind_peer(rt, 1);
1770 peer = rt->peer;
1773 if (peer) {
1774 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1775 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1776 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1777 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1778 peer->tcp_ts = tp->rx_opt.ts_recent;
1780 if (release_it)
1781 inet_putpeer(peer);
1782 return 1;
1785 return 0;
1788 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1790 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1792 if (peer) {
1793 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1795 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1796 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1797 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1798 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1799 peer->tcp_ts = tcptw->tw_ts_recent;
1801 inet_putpeer(peer);
1802 return 1;
1805 return 0;
1808 const struct inet_connection_sock_af_ops ipv4_specific = {
1809 .queue_xmit = ip_queue_xmit,
1810 .send_check = tcp_v4_send_check,
1811 .rebuild_header = inet_sk_rebuild_header,
1812 .conn_request = tcp_v4_conn_request,
1813 .syn_recv_sock = tcp_v4_syn_recv_sock,
1814 .remember_stamp = tcp_v4_remember_stamp,
1815 .net_header_len = sizeof(struct iphdr),
1816 .setsockopt = ip_setsockopt,
1817 .getsockopt = ip_getsockopt,
1818 .addr2sockaddr = inet_csk_addr2sockaddr,
1819 .sockaddr_len = sizeof(struct sockaddr_in),
1820 .bind_conflict = inet_csk_bind_conflict,
1821 #ifdef CONFIG_COMPAT
1822 .compat_setsockopt = compat_ip_setsockopt,
1823 .compat_getsockopt = compat_ip_getsockopt,
1824 #endif
1827 #ifdef CONFIG_TCP_MD5SIG
1828 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1829 .md5_lookup = tcp_v4_md5_lookup,
1830 .calc_md5_hash = tcp_v4_md5_hash_skb,
1831 .md5_add = tcp_v4_md5_add_func,
1832 .md5_parse = tcp_v4_parse_md5_keys,
1834 #endif
1836 /* NOTE: A lot of things set to zero explicitly by call to
1837 * sk_alloc() so need not be done here.
1839 static int tcp_v4_init_sock(struct sock *sk)
1841 struct inet_connection_sock *icsk = inet_csk(sk);
1842 struct tcp_sock *tp = tcp_sk(sk);
1844 skb_queue_head_init(&tp->out_of_order_queue);
1845 tcp_init_xmit_timers(sk);
1846 tcp_prequeue_init(tp);
1848 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1849 tp->mdev = TCP_TIMEOUT_INIT;
1851 /* So many TCP implementations out there (incorrectly) count the
1852 * initial SYN frame in their delayed-ACK and congestion control
1853 * algorithms that we must have the following bandaid to talk
1854 * efficiently to them. -DaveM
1856 tp->snd_cwnd = 2;
1858 /* See draft-stevens-tcpca-spec-01 for discussion of the
1859 * initialization of these values.
1861 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1862 tp->snd_cwnd_clamp = ~0;
1863 tp->mss_cache = TCP_MSS_DEFAULT;
1865 tp->reordering = sysctl_tcp_reordering;
1866 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1868 sk->sk_state = TCP_CLOSE;
1870 sk->sk_write_space = sk_stream_write_space;
1871 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1873 icsk->icsk_af_ops = &ipv4_specific;
1874 icsk->icsk_sync_mss = tcp_sync_mss;
1875 #ifdef CONFIG_TCP_MD5SIG
1876 tp->af_specific = &tcp_sock_ipv4_specific;
1877 #endif
1879 /* TCP Cookie Transactions */
1880 if (sysctl_tcp_cookie_size > 0) {
1881 /* Default, cookies without s_data_payload. */
1882 tp->cookie_values =
1883 kzalloc(sizeof(*tp->cookie_values),
1884 sk->sk_allocation);
1885 if (tp->cookie_values != NULL)
1886 kref_init(&tp->cookie_values->kref);
1888 /* Presumed zeroed, in order of appearance:
1889 * cookie_in_always, cookie_out_never,
1890 * s_data_constant, s_data_in, s_data_out
1892 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1893 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1895 local_bh_disable();
1896 percpu_counter_inc(&tcp_sockets_allocated);
1897 local_bh_enable();
1899 return 0;
1902 void tcp_v4_destroy_sock(struct sock *sk)
1904 struct tcp_sock *tp = tcp_sk(sk);
1906 tcp_clear_xmit_timers(sk);
1908 tcp_cleanup_congestion_control(sk);
1910 /* Cleanup up the write buffer. */
1911 tcp_write_queue_purge(sk);
1913 /* Cleans up our, hopefully empty, out_of_order_queue. */
1914 __skb_queue_purge(&tp->out_of_order_queue);
1916 #ifdef CONFIG_TCP_MD5SIG
1917 /* Clean up the MD5 key list, if any */
1918 if (tp->md5sig_info) {
1919 tcp_v4_clear_md5_list(sk);
1920 kfree(tp->md5sig_info);
1921 tp->md5sig_info = NULL;
1923 #endif
1925 #ifdef CONFIG_NET_DMA
1926 /* Cleans up our sk_async_wait_queue */
1927 __skb_queue_purge(&sk->sk_async_wait_queue);
1928 #endif
1930 /* Clean prequeue, it must be empty really */
1931 __skb_queue_purge(&tp->ucopy.prequeue);
1933 /* Clean up a referenced TCP bind bucket. */
1934 if (inet_csk(sk)->icsk_bind_hash)
1935 inet_put_port(sk);
1938 * If sendmsg cached page exists, toss it.
1940 if (sk->sk_sndmsg_page) {
1941 __free_page(sk->sk_sndmsg_page);
1942 sk->sk_sndmsg_page = NULL;
1945 /* TCP Cookie Transactions */
1946 if (tp->cookie_values != NULL) {
1947 kref_put(&tp->cookie_values->kref,
1948 tcp_cookie_values_release);
1949 tp->cookie_values = NULL;
1952 percpu_counter_dec(&tcp_sockets_allocated);
1955 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1957 #ifdef CONFIG_PROC_FS
1958 /* Proc filesystem TCP sock list dumping. */
1960 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1962 return hlist_nulls_empty(head) ? NULL :
1963 list_entry(head->first, struct inet_timewait_sock, tw_node);
1966 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1968 return !is_a_nulls(tw->tw_node.next) ?
1969 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1972 static void *listening_get_next(struct seq_file *seq, void *cur)
1974 struct inet_connection_sock *icsk;
1975 struct hlist_nulls_node *node;
1976 struct sock *sk = cur;
1977 struct inet_listen_hashbucket *ilb;
1978 struct tcp_iter_state *st = seq->private;
1979 struct net *net = seq_file_net(seq);
1981 if (!sk) {
1982 st->bucket = 0;
1983 ilb = &tcp_hashinfo.listening_hash[0];
1984 spin_lock_bh(&ilb->lock);
1985 sk = sk_nulls_head(&ilb->head);
1986 goto get_sk;
1988 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1989 ++st->num;
1991 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1992 struct request_sock *req = cur;
1994 icsk = inet_csk(st->syn_wait_sk);
1995 req = req->dl_next;
1996 while (1) {
1997 while (req) {
1998 if (req->rsk_ops->family == st->family) {
1999 cur = req;
2000 goto out;
2002 req = req->dl_next;
2004 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2005 break;
2006 get_req:
2007 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2009 sk = sk_next(st->syn_wait_sk);
2010 st->state = TCP_SEQ_STATE_LISTENING;
2011 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2012 } else {
2013 icsk = inet_csk(sk);
2014 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2015 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2016 goto start_req;
2017 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2018 sk = sk_next(sk);
2020 get_sk:
2021 sk_nulls_for_each_from(sk, node) {
2022 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2023 cur = sk;
2024 goto out;
2026 icsk = inet_csk(sk);
2027 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2028 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2029 start_req:
2030 st->uid = sock_i_uid(sk);
2031 st->syn_wait_sk = sk;
2032 st->state = TCP_SEQ_STATE_OPENREQ;
2033 st->sbucket = 0;
2034 goto get_req;
2036 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2038 spin_unlock_bh(&ilb->lock);
2039 if (++st->bucket < INET_LHTABLE_SIZE) {
2040 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2041 spin_lock_bh(&ilb->lock);
2042 sk = sk_nulls_head(&ilb->head);
2043 goto get_sk;
2045 cur = NULL;
2046 out:
2047 return cur;
2050 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2052 void *rc = listening_get_next(seq, NULL);
2054 while (rc && *pos) {
2055 rc = listening_get_next(seq, rc);
2056 --*pos;
2058 return rc;
2061 static inline int empty_bucket(struct tcp_iter_state *st)
2063 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2064 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2067 static void *established_get_first(struct seq_file *seq)
2069 struct tcp_iter_state *st = seq->private;
2070 struct net *net = seq_file_net(seq);
2071 void *rc = NULL;
2073 for (st->bucket = 0; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2074 struct sock *sk;
2075 struct hlist_nulls_node *node;
2076 struct inet_timewait_sock *tw;
2077 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2079 /* Lockless fast path for the common case of empty buckets */
2080 if (empty_bucket(st))
2081 continue;
2083 spin_lock_bh(lock);
2084 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2085 if (sk->sk_family != st->family ||
2086 !net_eq(sock_net(sk), net)) {
2087 continue;
2089 rc = sk;
2090 goto out;
2092 st->state = TCP_SEQ_STATE_TIME_WAIT;
2093 inet_twsk_for_each(tw, node,
2094 &tcp_hashinfo.ehash[st->bucket].twchain) {
2095 if (tw->tw_family != st->family ||
2096 !net_eq(twsk_net(tw), net)) {
2097 continue;
2099 rc = tw;
2100 goto out;
2102 spin_unlock_bh(lock);
2103 st->state = TCP_SEQ_STATE_ESTABLISHED;
2105 out:
2106 return rc;
2109 static void *established_get_next(struct seq_file *seq, void *cur)
2111 struct sock *sk = cur;
2112 struct inet_timewait_sock *tw;
2113 struct hlist_nulls_node *node;
2114 struct tcp_iter_state *st = seq->private;
2115 struct net *net = seq_file_net(seq);
2117 ++st->num;
2119 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2120 tw = cur;
2121 tw = tw_next(tw);
2122 get_tw:
2123 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2124 tw = tw_next(tw);
2126 if (tw) {
2127 cur = tw;
2128 goto out;
2130 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2131 st->state = TCP_SEQ_STATE_ESTABLISHED;
2133 /* Look for next non empty bucket */
2134 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2135 empty_bucket(st))
2137 if (st->bucket > tcp_hashinfo.ehash_mask)
2138 return NULL;
2140 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2141 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2142 } else
2143 sk = sk_nulls_next(sk);
2145 sk_nulls_for_each_from(sk, node) {
2146 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2147 goto found;
2150 st->state = TCP_SEQ_STATE_TIME_WAIT;
2151 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2152 goto get_tw;
2153 found:
2154 cur = sk;
2155 out:
2156 return cur;
2159 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2161 void *rc = established_get_first(seq);
2163 while (rc && pos) {
2164 rc = established_get_next(seq, rc);
2165 --pos;
2167 return rc;
2170 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2172 void *rc;
2173 struct tcp_iter_state *st = seq->private;
2175 st->state = TCP_SEQ_STATE_LISTENING;
2176 rc = listening_get_idx(seq, &pos);
2178 if (!rc) {
2179 st->state = TCP_SEQ_STATE_ESTABLISHED;
2180 rc = established_get_idx(seq, pos);
2183 return rc;
2186 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2188 struct tcp_iter_state *st = seq->private;
2189 st->state = TCP_SEQ_STATE_LISTENING;
2190 st->num = 0;
2191 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2194 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2196 void *rc = NULL;
2197 struct tcp_iter_state *st;
2199 if (v == SEQ_START_TOKEN) {
2200 rc = tcp_get_idx(seq, 0);
2201 goto out;
2203 st = seq->private;
2205 switch (st->state) {
2206 case TCP_SEQ_STATE_OPENREQ:
2207 case TCP_SEQ_STATE_LISTENING:
2208 rc = listening_get_next(seq, v);
2209 if (!rc) {
2210 st->state = TCP_SEQ_STATE_ESTABLISHED;
2211 rc = established_get_first(seq);
2213 break;
2214 case TCP_SEQ_STATE_ESTABLISHED:
2215 case TCP_SEQ_STATE_TIME_WAIT:
2216 rc = established_get_next(seq, v);
2217 break;
2219 out:
2220 ++*pos;
2221 return rc;
2224 static void tcp_seq_stop(struct seq_file *seq, void *v)
2226 struct tcp_iter_state *st = seq->private;
2228 switch (st->state) {
2229 case TCP_SEQ_STATE_OPENREQ:
2230 if (v) {
2231 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2232 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2234 case TCP_SEQ_STATE_LISTENING:
2235 if (v != SEQ_START_TOKEN)
2236 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2237 break;
2238 case TCP_SEQ_STATE_TIME_WAIT:
2239 case TCP_SEQ_STATE_ESTABLISHED:
2240 if (v)
2241 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2242 break;
2246 static int tcp_seq_open(struct inode *inode, struct file *file)
2248 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2249 struct tcp_iter_state *s;
2250 int err;
2252 err = seq_open_net(inode, file, &afinfo->seq_ops,
2253 sizeof(struct tcp_iter_state));
2254 if (err < 0)
2255 return err;
2257 s = ((struct seq_file *)file->private_data)->private;
2258 s->family = afinfo->family;
2259 return 0;
2262 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2264 int rc = 0;
2265 struct proc_dir_entry *p;
2267 afinfo->seq_fops.open = tcp_seq_open;
2268 afinfo->seq_fops.read = seq_read;
2269 afinfo->seq_fops.llseek = seq_lseek;
2270 afinfo->seq_fops.release = seq_release_net;
2272 afinfo->seq_ops.start = tcp_seq_start;
2273 afinfo->seq_ops.next = tcp_seq_next;
2274 afinfo->seq_ops.stop = tcp_seq_stop;
2276 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2277 &afinfo->seq_fops, afinfo);
2278 if (!p)
2279 rc = -ENOMEM;
2280 return rc;
2283 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2285 proc_net_remove(net, afinfo->name);
2288 static void get_openreq4(struct sock *sk, struct request_sock *req,
2289 struct seq_file *f, int i, int uid, int *len)
2291 const struct inet_request_sock *ireq = inet_rsk(req);
2292 int ttd = req->expires - jiffies;
2294 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2295 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2297 ireq->loc_addr,
2298 ntohs(inet_sk(sk)->inet_sport),
2299 ireq->rmt_addr,
2300 ntohs(ireq->rmt_port),
2301 TCP_SYN_RECV,
2302 0, 0, /* could print option size, but that is af dependent. */
2303 1, /* timers active (only the expire timer) */
2304 jiffies_to_clock_t(ttd),
2305 req->retrans,
2306 uid,
2307 0, /* non standard timer */
2308 0, /* open_requests have no inode */
2309 atomic_read(&sk->sk_refcnt),
2310 req,
2311 len);
2314 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2316 int timer_active;
2317 unsigned long timer_expires;
2318 struct tcp_sock *tp = tcp_sk(sk);
2319 const struct inet_connection_sock *icsk = inet_csk(sk);
2320 struct inet_sock *inet = inet_sk(sk);
2321 __be32 dest = inet->inet_daddr;
2322 __be32 src = inet->inet_rcv_saddr;
2323 __u16 destp = ntohs(inet->inet_dport);
2324 __u16 srcp = ntohs(inet->inet_sport);
2325 int rx_queue;
2327 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2328 timer_active = 1;
2329 timer_expires = icsk->icsk_timeout;
2330 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2331 timer_active = 4;
2332 timer_expires = icsk->icsk_timeout;
2333 } else if (timer_pending(&sk->sk_timer)) {
2334 timer_active = 2;
2335 timer_expires = sk->sk_timer.expires;
2336 } else {
2337 timer_active = 0;
2338 timer_expires = jiffies;
2341 if (sk->sk_state == TCP_LISTEN)
2342 rx_queue = sk->sk_ack_backlog;
2343 else
2345 * because we dont lock socket, we might find a transient negative value
2347 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2349 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2350 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2351 i, src, srcp, dest, destp, sk->sk_state,
2352 tp->write_seq - tp->snd_una,
2353 rx_queue,
2354 timer_active,
2355 jiffies_to_clock_t(timer_expires - jiffies),
2356 icsk->icsk_retransmits,
2357 sock_i_uid(sk),
2358 icsk->icsk_probes_out,
2359 sock_i_ino(sk),
2360 atomic_read(&sk->sk_refcnt), sk,
2361 jiffies_to_clock_t(icsk->icsk_rto),
2362 jiffies_to_clock_t(icsk->icsk_ack.ato),
2363 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2364 tp->snd_cwnd,
2365 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2366 len);
2369 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2370 struct seq_file *f, int i, int *len)
2372 __be32 dest, src;
2373 __u16 destp, srcp;
2374 int ttd = tw->tw_ttd - jiffies;
2376 if (ttd < 0)
2377 ttd = 0;
2379 dest = tw->tw_daddr;
2380 src = tw->tw_rcv_saddr;
2381 destp = ntohs(tw->tw_dport);
2382 srcp = ntohs(tw->tw_sport);
2384 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2385 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2386 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2387 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2388 atomic_read(&tw->tw_refcnt), tw, len);
2391 #define TMPSZ 150
2393 static int tcp4_seq_show(struct seq_file *seq, void *v)
2395 struct tcp_iter_state *st;
2396 int len;
2398 if (v == SEQ_START_TOKEN) {
2399 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2400 " sl local_address rem_address st tx_queue "
2401 "rx_queue tr tm->when retrnsmt uid timeout "
2402 "inode");
2403 goto out;
2405 st = seq->private;
2407 switch (st->state) {
2408 case TCP_SEQ_STATE_LISTENING:
2409 case TCP_SEQ_STATE_ESTABLISHED:
2410 get_tcp4_sock(v, seq, st->num, &len);
2411 break;
2412 case TCP_SEQ_STATE_OPENREQ:
2413 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2414 break;
2415 case TCP_SEQ_STATE_TIME_WAIT:
2416 get_timewait4_sock(v, seq, st->num, &len);
2417 break;
2419 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2420 out:
2421 return 0;
2424 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2425 .name = "tcp",
2426 .family = AF_INET,
2427 .seq_fops = {
2428 .owner = THIS_MODULE,
2430 .seq_ops = {
2431 .show = tcp4_seq_show,
2435 static int __net_init tcp4_proc_init_net(struct net *net)
2437 return tcp_proc_register(net, &tcp4_seq_afinfo);
2440 static void __net_exit tcp4_proc_exit_net(struct net *net)
2442 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2445 static struct pernet_operations tcp4_net_ops = {
2446 .init = tcp4_proc_init_net,
2447 .exit = tcp4_proc_exit_net,
2450 int __init tcp4_proc_init(void)
2452 return register_pernet_subsys(&tcp4_net_ops);
2455 void tcp4_proc_exit(void)
2457 unregister_pernet_subsys(&tcp4_net_ops);
2459 #endif /* CONFIG_PROC_FS */
2461 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2463 struct iphdr *iph = skb_gro_network_header(skb);
2465 switch (skb->ip_summed) {
2466 case CHECKSUM_COMPLETE:
2467 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2468 skb->csum)) {
2469 skb->ip_summed = CHECKSUM_UNNECESSARY;
2470 break;
2473 /* fall through */
2474 case CHECKSUM_NONE:
2475 NAPI_GRO_CB(skb)->flush = 1;
2476 return NULL;
2479 return tcp_gro_receive(head, skb);
2481 EXPORT_SYMBOL(tcp4_gro_receive);
2483 int tcp4_gro_complete(struct sk_buff *skb)
2485 struct iphdr *iph = ip_hdr(skb);
2486 struct tcphdr *th = tcp_hdr(skb);
2488 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2489 iph->saddr, iph->daddr, 0);
2490 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2492 return tcp_gro_complete(skb);
2494 EXPORT_SYMBOL(tcp4_gro_complete);
2496 struct proto tcp_prot = {
2497 .name = "TCP",
2498 .owner = THIS_MODULE,
2499 .close = tcp_close,
2500 .connect = tcp_v4_connect,
2501 .disconnect = tcp_disconnect,
2502 .accept = inet_csk_accept,
2503 .ioctl = tcp_ioctl,
2504 .init = tcp_v4_init_sock,
2505 .destroy = tcp_v4_destroy_sock,
2506 .shutdown = tcp_shutdown,
2507 .setsockopt = tcp_setsockopt,
2508 .getsockopt = tcp_getsockopt,
2509 .recvmsg = tcp_recvmsg,
2510 .backlog_rcv = tcp_v4_do_rcv,
2511 .hash = inet_hash,
2512 .unhash = inet_unhash,
2513 .get_port = inet_csk_get_port,
2514 .enter_memory_pressure = tcp_enter_memory_pressure,
2515 .sockets_allocated = &tcp_sockets_allocated,
2516 .orphan_count = &tcp_orphan_count,
2517 .memory_allocated = &tcp_memory_allocated,
2518 .memory_pressure = &tcp_memory_pressure,
2519 .sysctl_mem = sysctl_tcp_mem,
2520 .sysctl_wmem = sysctl_tcp_wmem,
2521 .sysctl_rmem = sysctl_tcp_rmem,
2522 .max_header = MAX_TCP_HEADER,
2523 .obj_size = sizeof(struct tcp_sock),
2524 .slab_flags = SLAB_DESTROY_BY_RCU,
2525 .twsk_prot = &tcp_timewait_sock_ops,
2526 .rsk_prot = &tcp_request_sock_ops,
2527 .h.hashinfo = &tcp_hashinfo,
2528 #ifdef CONFIG_COMPAT
2529 .compat_setsockopt = compat_tcp_setsockopt,
2530 .compat_getsockopt = compat_tcp_getsockopt,
2531 #endif
2535 static int __net_init tcp_sk_init(struct net *net)
2537 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2538 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2541 static void __net_exit tcp_sk_exit(struct net *net)
2543 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2546 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2548 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2551 static struct pernet_operations __net_initdata tcp_sk_ops = {
2552 .init = tcp_sk_init,
2553 .exit = tcp_sk_exit,
2554 .exit_batch = tcp_sk_exit_batch,
2557 void __init tcp_v4_init(void)
2559 inet_hashinfo_init(&tcp_hashinfo);
2560 if (register_pernet_subsys(&tcp_sk_ops))
2561 panic("Failed to create the TCP control socket.\n");
2564 EXPORT_SYMBOL(ipv4_specific);
2565 EXPORT_SYMBOL(tcp_hashinfo);
2566 EXPORT_SYMBOL(tcp_prot);
2567 EXPORT_SYMBOL(tcp_v4_conn_request);
2568 EXPORT_SYMBOL(tcp_v4_connect);
2569 EXPORT_SYMBOL(tcp_v4_do_rcv);
2570 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2571 EXPORT_SYMBOL(tcp_v4_send_check);
2572 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2574 #ifdef CONFIG_PROC_FS
2575 EXPORT_SYMBOL(tcp_proc_register);
2576 EXPORT_SYMBOL(tcp_proc_unregister);
2577 #endif
2578 EXPORT_SYMBOL(sysctl_tcp_low_latency);