x86, x2apic: Track the x2apic cluster sibling map
[linux-2.6/x86.git] / kernel / rcutree.c
blobe486f7c3ffb8b239a31eddb37f9ed0251629bdeb
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
53 #include "rcutree.h"
55 /* Data structures. */
57 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
59 #define RCU_STATE_INITIALIZER(structname) { \
60 .level = { &structname.node[0] }, \
61 .levelcnt = { \
62 NUM_RCU_LVL_0, /* root of hierarchy. */ \
63 NUM_RCU_LVL_1, \
64 NUM_RCU_LVL_2, \
65 NUM_RCU_LVL_3, \
66 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
67 }, \
68 .signaled = RCU_GP_IDLE, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75 .name = #structname, \
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84 static struct rcu_state *rcu_state;
86 int rcu_scheduler_active __read_mostly;
87 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
90 * Control variables for per-CPU and per-rcu_node kthreads. These
91 * handle all flavors of RCU.
93 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
94 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
95 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
96 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
97 static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
98 DEFINE_PER_CPU(char, rcu_cpu_has_work);
99 static char rcu_kthreads_spawnable;
101 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
102 static void invoke_rcu_cpu_kthread(void);
104 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
107 * Track the rcutorture test sequence number and the update version
108 * number within a given test. The rcutorture_testseq is incremented
109 * on every rcutorture module load and unload, so has an odd value
110 * when a test is running. The rcutorture_vernum is set to zero
111 * when rcutorture starts and is incremented on each rcutorture update.
112 * These variables enable correlating rcutorture output with the
113 * RCU tracing information.
115 unsigned long rcutorture_testseq;
116 unsigned long rcutorture_vernum;
119 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
120 * permit this function to be invoked without holding the root rcu_node
121 * structure's ->lock, but of course results can be subject to change.
123 static int rcu_gp_in_progress(struct rcu_state *rsp)
125 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
129 * Note a quiescent state. Because we do not need to know
130 * how many quiescent states passed, just if there was at least
131 * one since the start of the grace period, this just sets a flag.
133 void rcu_sched_qs(int cpu)
135 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
137 rdp->passed_quiesc_completed = rdp->gpnum - 1;
138 barrier();
139 rdp->passed_quiesc = 1;
142 void rcu_bh_qs(int cpu)
144 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
146 rdp->passed_quiesc_completed = rdp->gpnum - 1;
147 barrier();
148 rdp->passed_quiesc = 1;
152 * Note a context switch. This is a quiescent state for RCU-sched,
153 * and requires special handling for preemptible RCU.
155 void rcu_note_context_switch(int cpu)
157 rcu_sched_qs(cpu);
158 rcu_preempt_note_context_switch(cpu);
160 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
162 #ifdef CONFIG_NO_HZ
163 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
164 .dynticks_nesting = 1,
165 .dynticks = 1,
167 #endif /* #ifdef CONFIG_NO_HZ */
169 static int blimit = 10; /* Maximum callbacks per softirq. */
170 static int qhimark = 10000; /* If this many pending, ignore blimit. */
171 static int qlowmark = 100; /* Once only this many pending, use blimit. */
173 module_param(blimit, int, 0);
174 module_param(qhimark, int, 0);
175 module_param(qlowmark, int, 0);
177 int rcu_cpu_stall_suppress __read_mostly;
178 module_param(rcu_cpu_stall_suppress, int, 0644);
180 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
181 static int rcu_pending(int cpu);
184 * Return the number of RCU-sched batches processed thus far for debug & stats.
186 long rcu_batches_completed_sched(void)
188 return rcu_sched_state.completed;
190 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
193 * Return the number of RCU BH batches processed thus far for debug & stats.
195 long rcu_batches_completed_bh(void)
197 return rcu_bh_state.completed;
199 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
202 * Force a quiescent state for RCU BH.
204 void rcu_bh_force_quiescent_state(void)
206 force_quiescent_state(&rcu_bh_state, 0);
208 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
211 * Record the number of times rcutorture tests have been initiated and
212 * terminated. This information allows the debugfs tracing stats to be
213 * correlated to the rcutorture messages, even when the rcutorture module
214 * is being repeatedly loaded and unloaded. In other words, we cannot
215 * store this state in rcutorture itself.
217 void rcutorture_record_test_transition(void)
219 rcutorture_testseq++;
220 rcutorture_vernum = 0;
222 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
225 * Record the number of writer passes through the current rcutorture test.
226 * This is also used to correlate debugfs tracing stats with the rcutorture
227 * messages.
229 void rcutorture_record_progress(unsigned long vernum)
231 rcutorture_vernum++;
233 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
236 * Force a quiescent state for RCU-sched.
238 void rcu_sched_force_quiescent_state(void)
240 force_quiescent_state(&rcu_sched_state, 0);
242 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
245 * Does the CPU have callbacks ready to be invoked?
247 static int
248 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
250 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
254 * Does the current CPU require a yet-as-unscheduled grace period?
256 static int
257 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
259 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
263 * Return the root node of the specified rcu_state structure.
265 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
267 return &rsp->node[0];
270 #ifdef CONFIG_SMP
273 * If the specified CPU is offline, tell the caller that it is in
274 * a quiescent state. Otherwise, whack it with a reschedule IPI.
275 * Grace periods can end up waiting on an offline CPU when that
276 * CPU is in the process of coming online -- it will be added to the
277 * rcu_node bitmasks before it actually makes it online. The same thing
278 * can happen while a CPU is in the process of coming online. Because this
279 * race is quite rare, we check for it after detecting that the grace
280 * period has been delayed rather than checking each and every CPU
281 * each and every time we start a new grace period.
283 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
286 * If the CPU is offline, it is in a quiescent state. We can
287 * trust its state not to change because interrupts are disabled.
289 if (cpu_is_offline(rdp->cpu)) {
290 rdp->offline_fqs++;
291 return 1;
294 /* If preemptible RCU, no point in sending reschedule IPI. */
295 if (rdp->preemptible)
296 return 0;
298 /* The CPU is online, so send it a reschedule IPI. */
299 if (rdp->cpu != smp_processor_id())
300 smp_send_reschedule(rdp->cpu);
301 else
302 set_need_resched();
303 rdp->resched_ipi++;
304 return 0;
307 #endif /* #ifdef CONFIG_SMP */
309 #ifdef CONFIG_NO_HZ
312 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
314 * Enter nohz mode, in other words, -leave- the mode in which RCU
315 * read-side critical sections can occur. (Though RCU read-side
316 * critical sections can occur in irq handlers in nohz mode, a possibility
317 * handled by rcu_irq_enter() and rcu_irq_exit()).
319 void rcu_enter_nohz(void)
321 unsigned long flags;
322 struct rcu_dynticks *rdtp;
324 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
325 local_irq_save(flags);
326 rdtp = &__get_cpu_var(rcu_dynticks);
327 rdtp->dynticks++;
328 rdtp->dynticks_nesting--;
329 WARN_ON_ONCE(rdtp->dynticks & 0x1);
330 local_irq_restore(flags);
334 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
336 * Exit nohz mode, in other words, -enter- the mode in which RCU
337 * read-side critical sections normally occur.
339 void rcu_exit_nohz(void)
341 unsigned long flags;
342 struct rcu_dynticks *rdtp;
344 local_irq_save(flags);
345 rdtp = &__get_cpu_var(rcu_dynticks);
346 rdtp->dynticks++;
347 rdtp->dynticks_nesting++;
348 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
349 local_irq_restore(flags);
350 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
354 * rcu_nmi_enter - inform RCU of entry to NMI context
356 * If the CPU was idle with dynamic ticks active, and there is no
357 * irq handler running, this updates rdtp->dynticks_nmi to let the
358 * RCU grace-period handling know that the CPU is active.
360 void rcu_nmi_enter(void)
362 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
364 if (rdtp->dynticks & 0x1)
365 return;
366 rdtp->dynticks_nmi++;
367 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
368 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
372 * rcu_nmi_exit - inform RCU of exit from NMI context
374 * If the CPU was idle with dynamic ticks active, and there is no
375 * irq handler running, this updates rdtp->dynticks_nmi to let the
376 * RCU grace-period handling know that the CPU is no longer active.
378 void rcu_nmi_exit(void)
380 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
382 if (rdtp->dynticks & 0x1)
383 return;
384 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
385 rdtp->dynticks_nmi++;
386 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
390 * rcu_irq_enter - inform RCU of entry to hard irq context
392 * If the CPU was idle with dynamic ticks active, this updates the
393 * rdtp->dynticks to let the RCU handling know that the CPU is active.
395 void rcu_irq_enter(void)
397 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
399 if (rdtp->dynticks_nesting++)
400 return;
401 rdtp->dynticks++;
402 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
403 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
407 * rcu_irq_exit - inform RCU of exit from hard irq context
409 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
410 * to put let the RCU handling be aware that the CPU is going back to idle
411 * with no ticks.
413 void rcu_irq_exit(void)
415 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
417 if (--rdtp->dynticks_nesting)
418 return;
419 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
420 rdtp->dynticks++;
421 WARN_ON_ONCE(rdtp->dynticks & 0x1);
423 /* If the interrupt queued a callback, get out of dyntick mode. */
424 if (__this_cpu_read(rcu_sched_data.nxtlist) ||
425 __this_cpu_read(rcu_bh_data.nxtlist))
426 set_need_resched();
429 #ifdef CONFIG_SMP
432 * Snapshot the specified CPU's dynticks counter so that we can later
433 * credit them with an implicit quiescent state. Return 1 if this CPU
434 * is in dynticks idle mode, which is an extended quiescent state.
436 static int dyntick_save_progress_counter(struct rcu_data *rdp)
438 int ret;
439 int snap;
440 int snap_nmi;
442 snap = rdp->dynticks->dynticks;
443 snap_nmi = rdp->dynticks->dynticks_nmi;
444 smp_mb(); /* Order sampling of snap with end of grace period. */
445 rdp->dynticks_snap = snap;
446 rdp->dynticks_nmi_snap = snap_nmi;
447 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
448 if (ret)
449 rdp->dynticks_fqs++;
450 return ret;
454 * Return true if the specified CPU has passed through a quiescent
455 * state by virtue of being in or having passed through an dynticks
456 * idle state since the last call to dyntick_save_progress_counter()
457 * for this same CPU.
459 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
461 long curr;
462 long curr_nmi;
463 long snap;
464 long snap_nmi;
466 curr = rdp->dynticks->dynticks;
467 snap = rdp->dynticks_snap;
468 curr_nmi = rdp->dynticks->dynticks_nmi;
469 snap_nmi = rdp->dynticks_nmi_snap;
470 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
473 * If the CPU passed through or entered a dynticks idle phase with
474 * no active irq/NMI handlers, then we can safely pretend that the CPU
475 * already acknowledged the request to pass through a quiescent
476 * state. Either way, that CPU cannot possibly be in an RCU
477 * read-side critical section that started before the beginning
478 * of the current RCU grace period.
480 if ((curr != snap || (curr & 0x1) == 0) &&
481 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
482 rdp->dynticks_fqs++;
483 return 1;
486 /* Go check for the CPU being offline. */
487 return rcu_implicit_offline_qs(rdp);
490 #endif /* #ifdef CONFIG_SMP */
492 #else /* #ifdef CONFIG_NO_HZ */
494 #ifdef CONFIG_SMP
496 static int dyntick_save_progress_counter(struct rcu_data *rdp)
498 return 0;
501 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
503 return rcu_implicit_offline_qs(rdp);
506 #endif /* #ifdef CONFIG_SMP */
508 #endif /* #else #ifdef CONFIG_NO_HZ */
510 int rcu_cpu_stall_suppress __read_mostly;
512 static void record_gp_stall_check_time(struct rcu_state *rsp)
514 rsp->gp_start = jiffies;
515 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
518 static void print_other_cpu_stall(struct rcu_state *rsp)
520 int cpu;
521 long delta;
522 unsigned long flags;
523 struct rcu_node *rnp = rcu_get_root(rsp);
525 /* Only let one CPU complain about others per time interval. */
527 raw_spin_lock_irqsave(&rnp->lock, flags);
528 delta = jiffies - rsp->jiffies_stall;
529 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
530 raw_spin_unlock_irqrestore(&rnp->lock, flags);
531 return;
533 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
536 * Now rat on any tasks that got kicked up to the root rcu_node
537 * due to CPU offlining.
539 rcu_print_task_stall(rnp);
540 raw_spin_unlock_irqrestore(&rnp->lock, flags);
543 * OK, time to rat on our buddy...
544 * See Documentation/RCU/stallwarn.txt for info on how to debug
545 * RCU CPU stall warnings.
547 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
548 rsp->name);
549 rcu_for_each_leaf_node(rsp, rnp) {
550 raw_spin_lock_irqsave(&rnp->lock, flags);
551 rcu_print_task_stall(rnp);
552 raw_spin_unlock_irqrestore(&rnp->lock, flags);
553 if (rnp->qsmask == 0)
554 continue;
555 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
556 if (rnp->qsmask & (1UL << cpu))
557 printk(" %d", rnp->grplo + cpu);
559 printk("} (detected by %d, t=%ld jiffies)\n",
560 smp_processor_id(), (long)(jiffies - rsp->gp_start));
561 trigger_all_cpu_backtrace();
563 /* If so configured, complain about tasks blocking the grace period. */
565 rcu_print_detail_task_stall(rsp);
567 force_quiescent_state(rsp, 0); /* Kick them all. */
570 static void print_cpu_stall(struct rcu_state *rsp)
572 unsigned long flags;
573 struct rcu_node *rnp = rcu_get_root(rsp);
576 * OK, time to rat on ourselves...
577 * See Documentation/RCU/stallwarn.txt for info on how to debug
578 * RCU CPU stall warnings.
580 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
581 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
582 trigger_all_cpu_backtrace();
584 raw_spin_lock_irqsave(&rnp->lock, flags);
585 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
586 rsp->jiffies_stall =
587 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
588 raw_spin_unlock_irqrestore(&rnp->lock, flags);
590 set_need_resched(); /* kick ourselves to get things going. */
593 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
595 unsigned long j;
596 unsigned long js;
597 struct rcu_node *rnp;
599 if (rcu_cpu_stall_suppress)
600 return;
601 j = ACCESS_ONCE(jiffies);
602 js = ACCESS_ONCE(rsp->jiffies_stall);
603 rnp = rdp->mynode;
604 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
606 /* We haven't checked in, so go dump stack. */
607 print_cpu_stall(rsp);
609 } else if (rcu_gp_in_progress(rsp) &&
610 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
612 /* They had a few time units to dump stack, so complain. */
613 print_other_cpu_stall(rsp);
617 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
619 rcu_cpu_stall_suppress = 1;
620 return NOTIFY_DONE;
624 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
626 * Set the stall-warning timeout way off into the future, thus preventing
627 * any RCU CPU stall-warning messages from appearing in the current set of
628 * RCU grace periods.
630 * The caller must disable hard irqs.
632 void rcu_cpu_stall_reset(void)
634 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
635 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
636 rcu_preempt_stall_reset();
639 static struct notifier_block rcu_panic_block = {
640 .notifier_call = rcu_panic,
643 static void __init check_cpu_stall_init(void)
645 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
649 * Update CPU-local rcu_data state to record the newly noticed grace period.
650 * This is used both when we started the grace period and when we notice
651 * that someone else started the grace period. The caller must hold the
652 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
653 * and must have irqs disabled.
655 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
657 if (rdp->gpnum != rnp->gpnum) {
659 * If the current grace period is waiting for this CPU,
660 * set up to detect a quiescent state, otherwise don't
661 * go looking for one.
663 rdp->gpnum = rnp->gpnum;
664 if (rnp->qsmask & rdp->grpmask) {
665 rdp->qs_pending = 1;
666 rdp->passed_quiesc = 0;
667 } else
668 rdp->qs_pending = 0;
672 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
674 unsigned long flags;
675 struct rcu_node *rnp;
677 local_irq_save(flags);
678 rnp = rdp->mynode;
679 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
680 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
681 local_irq_restore(flags);
682 return;
684 __note_new_gpnum(rsp, rnp, rdp);
685 raw_spin_unlock_irqrestore(&rnp->lock, flags);
689 * Did someone else start a new RCU grace period start since we last
690 * checked? Update local state appropriately if so. Must be called
691 * on the CPU corresponding to rdp.
693 static int
694 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
696 unsigned long flags;
697 int ret = 0;
699 local_irq_save(flags);
700 if (rdp->gpnum != rsp->gpnum) {
701 note_new_gpnum(rsp, rdp);
702 ret = 1;
704 local_irq_restore(flags);
705 return ret;
709 * Advance this CPU's callbacks, but only if the current grace period
710 * has ended. This may be called only from the CPU to whom the rdp
711 * belongs. In addition, the corresponding leaf rcu_node structure's
712 * ->lock must be held by the caller, with irqs disabled.
714 static void
715 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
717 /* Did another grace period end? */
718 if (rdp->completed != rnp->completed) {
720 /* Advance callbacks. No harm if list empty. */
721 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
722 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
723 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
725 /* Remember that we saw this grace-period completion. */
726 rdp->completed = rnp->completed;
729 * If we were in an extended quiescent state, we may have
730 * missed some grace periods that others CPUs handled on
731 * our behalf. Catch up with this state to avoid noting
732 * spurious new grace periods. If another grace period
733 * has started, then rnp->gpnum will have advanced, so
734 * we will detect this later on.
736 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
737 rdp->gpnum = rdp->completed;
740 * If RCU does not need a quiescent state from this CPU,
741 * then make sure that this CPU doesn't go looking for one.
743 if ((rnp->qsmask & rdp->grpmask) == 0)
744 rdp->qs_pending = 0;
749 * Advance this CPU's callbacks, but only if the current grace period
750 * has ended. This may be called only from the CPU to whom the rdp
751 * belongs.
753 static void
754 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
756 unsigned long flags;
757 struct rcu_node *rnp;
759 local_irq_save(flags);
760 rnp = rdp->mynode;
761 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
762 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
763 local_irq_restore(flags);
764 return;
766 __rcu_process_gp_end(rsp, rnp, rdp);
767 raw_spin_unlock_irqrestore(&rnp->lock, flags);
771 * Do per-CPU grace-period initialization for running CPU. The caller
772 * must hold the lock of the leaf rcu_node structure corresponding to
773 * this CPU.
775 static void
776 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
778 /* Prior grace period ended, so advance callbacks for current CPU. */
779 __rcu_process_gp_end(rsp, rnp, rdp);
782 * Because this CPU just now started the new grace period, we know
783 * that all of its callbacks will be covered by this upcoming grace
784 * period, even the ones that were registered arbitrarily recently.
785 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
787 * Other CPUs cannot be sure exactly when the grace period started.
788 * Therefore, their recently registered callbacks must pass through
789 * an additional RCU_NEXT_READY stage, so that they will be handled
790 * by the next RCU grace period.
792 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
793 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
795 /* Set state so that this CPU will detect the next quiescent state. */
796 __note_new_gpnum(rsp, rnp, rdp);
800 * Start a new RCU grace period if warranted, re-initializing the hierarchy
801 * in preparation for detecting the next grace period. The caller must hold
802 * the root node's ->lock, which is released before return. Hard irqs must
803 * be disabled.
805 static void
806 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
807 __releases(rcu_get_root(rsp)->lock)
809 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
810 struct rcu_node *rnp = rcu_get_root(rsp);
812 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
813 if (cpu_needs_another_gp(rsp, rdp))
814 rsp->fqs_need_gp = 1;
815 if (rnp->completed == rsp->completed) {
816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
817 return;
819 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
822 * Propagate new ->completed value to rcu_node structures
823 * so that other CPUs don't have to wait until the start
824 * of the next grace period to process their callbacks.
826 rcu_for_each_node_breadth_first(rsp, rnp) {
827 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
828 rnp->completed = rsp->completed;
829 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
831 local_irq_restore(flags);
832 return;
835 /* Advance to a new grace period and initialize state. */
836 rsp->gpnum++;
837 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
838 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
839 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
840 record_gp_stall_check_time(rsp);
842 /* Special-case the common single-level case. */
843 if (NUM_RCU_NODES == 1) {
844 rcu_preempt_check_blocked_tasks(rnp);
845 rnp->qsmask = rnp->qsmaskinit;
846 rnp->gpnum = rsp->gpnum;
847 rnp->completed = rsp->completed;
848 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
849 rcu_start_gp_per_cpu(rsp, rnp, rdp);
850 rcu_preempt_boost_start_gp(rnp);
851 raw_spin_unlock_irqrestore(&rnp->lock, flags);
852 return;
855 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
858 /* Exclude any concurrent CPU-hotplug operations. */
859 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
862 * Set the quiescent-state-needed bits in all the rcu_node
863 * structures for all currently online CPUs in breadth-first
864 * order, starting from the root rcu_node structure. This
865 * operation relies on the layout of the hierarchy within the
866 * rsp->node[] array. Note that other CPUs will access only
867 * the leaves of the hierarchy, which still indicate that no
868 * grace period is in progress, at least until the corresponding
869 * leaf node has been initialized. In addition, we have excluded
870 * CPU-hotplug operations.
872 * Note that the grace period cannot complete until we finish
873 * the initialization process, as there will be at least one
874 * qsmask bit set in the root node until that time, namely the
875 * one corresponding to this CPU, due to the fact that we have
876 * irqs disabled.
878 rcu_for_each_node_breadth_first(rsp, rnp) {
879 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
880 rcu_preempt_check_blocked_tasks(rnp);
881 rnp->qsmask = rnp->qsmaskinit;
882 rnp->gpnum = rsp->gpnum;
883 rnp->completed = rsp->completed;
884 if (rnp == rdp->mynode)
885 rcu_start_gp_per_cpu(rsp, rnp, rdp);
886 rcu_preempt_boost_start_gp(rnp);
887 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
890 rnp = rcu_get_root(rsp);
891 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
892 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
893 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
894 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
898 * Report a full set of quiescent states to the specified rcu_state
899 * data structure. This involves cleaning up after the prior grace
900 * period and letting rcu_start_gp() start up the next grace period
901 * if one is needed. Note that the caller must hold rnp->lock, as
902 * required by rcu_start_gp(), which will release it.
904 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
905 __releases(rcu_get_root(rsp)->lock)
907 unsigned long gp_duration;
909 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
910 gp_duration = jiffies - rsp->gp_start;
911 if (gp_duration > rsp->gp_max)
912 rsp->gp_max = gp_duration;
913 rsp->completed = rsp->gpnum;
914 rsp->signaled = RCU_GP_IDLE;
915 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
919 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
920 * Allows quiescent states for a group of CPUs to be reported at one go
921 * to the specified rcu_node structure, though all the CPUs in the group
922 * must be represented by the same rcu_node structure (which need not be
923 * a leaf rcu_node structure, though it often will be). That structure's
924 * lock must be held upon entry, and it is released before return.
926 static void
927 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
928 struct rcu_node *rnp, unsigned long flags)
929 __releases(rnp->lock)
931 struct rcu_node *rnp_c;
933 /* Walk up the rcu_node hierarchy. */
934 for (;;) {
935 if (!(rnp->qsmask & mask)) {
937 /* Our bit has already been cleared, so done. */
938 raw_spin_unlock_irqrestore(&rnp->lock, flags);
939 return;
941 rnp->qsmask &= ~mask;
942 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
944 /* Other bits still set at this level, so done. */
945 raw_spin_unlock_irqrestore(&rnp->lock, flags);
946 return;
948 mask = rnp->grpmask;
949 if (rnp->parent == NULL) {
951 /* No more levels. Exit loop holding root lock. */
953 break;
955 raw_spin_unlock_irqrestore(&rnp->lock, flags);
956 rnp_c = rnp;
957 rnp = rnp->parent;
958 raw_spin_lock_irqsave(&rnp->lock, flags);
959 WARN_ON_ONCE(rnp_c->qsmask);
963 * Get here if we are the last CPU to pass through a quiescent
964 * state for this grace period. Invoke rcu_report_qs_rsp()
965 * to clean up and start the next grace period if one is needed.
967 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
971 * Record a quiescent state for the specified CPU to that CPU's rcu_data
972 * structure. This must be either called from the specified CPU, or
973 * called when the specified CPU is known to be offline (and when it is
974 * also known that no other CPU is concurrently trying to help the offline
975 * CPU). The lastcomp argument is used to make sure we are still in the
976 * grace period of interest. We don't want to end the current grace period
977 * based on quiescent states detected in an earlier grace period!
979 static void
980 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
982 unsigned long flags;
983 unsigned long mask;
984 struct rcu_node *rnp;
986 rnp = rdp->mynode;
987 raw_spin_lock_irqsave(&rnp->lock, flags);
988 if (lastcomp != rnp->completed) {
991 * Someone beat us to it for this grace period, so leave.
992 * The race with GP start is resolved by the fact that we
993 * hold the leaf rcu_node lock, so that the per-CPU bits
994 * cannot yet be initialized -- so we would simply find our
995 * CPU's bit already cleared in rcu_report_qs_rnp() if this
996 * race occurred.
998 rdp->passed_quiesc = 0; /* try again later! */
999 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1000 return;
1002 mask = rdp->grpmask;
1003 if ((rnp->qsmask & mask) == 0) {
1004 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1005 } else {
1006 rdp->qs_pending = 0;
1009 * This GP can't end until cpu checks in, so all of our
1010 * callbacks can be processed during the next GP.
1012 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1014 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1019 * Check to see if there is a new grace period of which this CPU
1020 * is not yet aware, and if so, set up local rcu_data state for it.
1021 * Otherwise, see if this CPU has just passed through its first
1022 * quiescent state for this grace period, and record that fact if so.
1024 static void
1025 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1027 /* If there is now a new grace period, record and return. */
1028 if (check_for_new_grace_period(rsp, rdp))
1029 return;
1032 * Does this CPU still need to do its part for current grace period?
1033 * If no, return and let the other CPUs do their part as well.
1035 if (!rdp->qs_pending)
1036 return;
1039 * Was there a quiescent state since the beginning of the grace
1040 * period? If no, then exit and wait for the next call.
1042 if (!rdp->passed_quiesc)
1043 return;
1046 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1047 * judge of that).
1049 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1052 #ifdef CONFIG_HOTPLUG_CPU
1055 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1056 * Synchronization is not required because this function executes
1057 * in stop_machine() context.
1059 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1061 int i;
1062 /* current DYING CPU is cleared in the cpu_online_mask */
1063 int receive_cpu = cpumask_any(cpu_online_mask);
1064 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1065 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1067 if (rdp->nxtlist == NULL)
1068 return; /* irqs disabled, so comparison is stable. */
1070 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1071 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1072 receive_rdp->qlen += rdp->qlen;
1073 receive_rdp->n_cbs_adopted += rdp->qlen;
1074 rdp->n_cbs_orphaned += rdp->qlen;
1076 rdp->nxtlist = NULL;
1077 for (i = 0; i < RCU_NEXT_SIZE; i++)
1078 rdp->nxttail[i] = &rdp->nxtlist;
1079 rdp->qlen = 0;
1083 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1084 * and move all callbacks from the outgoing CPU to the current one.
1085 * There can only be one CPU hotplug operation at a time, so no other
1086 * CPU can be attempting to update rcu_cpu_kthread_task.
1088 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1090 unsigned long flags;
1091 unsigned long mask;
1092 int need_report = 0;
1093 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1094 struct rcu_node *rnp;
1095 struct task_struct *t;
1097 /* Stop the CPU's kthread. */
1098 t = per_cpu(rcu_cpu_kthread_task, cpu);
1099 if (t != NULL) {
1100 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1101 kthread_stop(t);
1104 /* Exclude any attempts to start a new grace period. */
1105 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1107 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1108 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1109 mask = rdp->grpmask; /* rnp->grplo is constant. */
1110 do {
1111 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1112 rnp->qsmaskinit &= ~mask;
1113 if (rnp->qsmaskinit != 0) {
1114 if (rnp != rdp->mynode)
1115 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1116 break;
1118 if (rnp == rdp->mynode)
1119 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1120 else
1121 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1122 mask = rnp->grpmask;
1123 rnp = rnp->parent;
1124 } while (rnp != NULL);
1127 * We still hold the leaf rcu_node structure lock here, and
1128 * irqs are still disabled. The reason for this subterfuge is
1129 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1130 * held leads to deadlock.
1132 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1133 rnp = rdp->mynode;
1134 if (need_report & RCU_OFL_TASKS_NORM_GP)
1135 rcu_report_unblock_qs_rnp(rnp, flags);
1136 else
1137 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1138 if (need_report & RCU_OFL_TASKS_EXP_GP)
1139 rcu_report_exp_rnp(rsp, rnp);
1140 rcu_node_kthread_setaffinity(rnp, -1);
1144 * Remove the specified CPU from the RCU hierarchy and move any pending
1145 * callbacks that it might have to the current CPU. This code assumes
1146 * that at least one CPU in the system will remain running at all times.
1147 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1149 static void rcu_offline_cpu(int cpu)
1151 __rcu_offline_cpu(cpu, &rcu_sched_state);
1152 __rcu_offline_cpu(cpu, &rcu_bh_state);
1153 rcu_preempt_offline_cpu(cpu);
1156 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1158 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1162 static void rcu_offline_cpu(int cpu)
1166 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1169 * Invoke any RCU callbacks that have made it to the end of their grace
1170 * period. Thottle as specified by rdp->blimit.
1172 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1174 unsigned long flags;
1175 struct rcu_head *next, *list, **tail;
1176 int count;
1178 /* If no callbacks are ready, just return.*/
1179 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1180 return;
1183 * Extract the list of ready callbacks, disabling to prevent
1184 * races with call_rcu() from interrupt handlers.
1186 local_irq_save(flags);
1187 list = rdp->nxtlist;
1188 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1189 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1190 tail = rdp->nxttail[RCU_DONE_TAIL];
1191 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1192 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1193 rdp->nxttail[count] = &rdp->nxtlist;
1194 local_irq_restore(flags);
1196 /* Invoke callbacks. */
1197 count = 0;
1198 while (list) {
1199 next = list->next;
1200 prefetch(next);
1201 debug_rcu_head_unqueue(list);
1202 __rcu_reclaim(list);
1203 list = next;
1204 if (++count >= rdp->blimit)
1205 break;
1208 local_irq_save(flags);
1210 /* Update count, and requeue any remaining callbacks. */
1211 rdp->qlen -= count;
1212 rdp->n_cbs_invoked += count;
1213 if (list != NULL) {
1214 *tail = rdp->nxtlist;
1215 rdp->nxtlist = list;
1216 for (count = 0; count < RCU_NEXT_SIZE; count++)
1217 if (&rdp->nxtlist == rdp->nxttail[count])
1218 rdp->nxttail[count] = tail;
1219 else
1220 break;
1223 /* Reinstate batch limit if we have worked down the excess. */
1224 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1225 rdp->blimit = blimit;
1227 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1228 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1229 rdp->qlen_last_fqs_check = 0;
1230 rdp->n_force_qs_snap = rsp->n_force_qs;
1231 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1232 rdp->qlen_last_fqs_check = rdp->qlen;
1234 local_irq_restore(flags);
1236 /* Re-raise the RCU softirq if there are callbacks remaining. */
1237 if (cpu_has_callbacks_ready_to_invoke(rdp))
1238 invoke_rcu_cpu_kthread();
1242 * Check to see if this CPU is in a non-context-switch quiescent state
1243 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1244 * Also schedule the RCU softirq handler.
1246 * This function must be called with hardirqs disabled. It is normally
1247 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1248 * false, there is no point in invoking rcu_check_callbacks().
1250 void rcu_check_callbacks(int cpu, int user)
1252 if (user ||
1253 (idle_cpu(cpu) && rcu_scheduler_active &&
1254 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1257 * Get here if this CPU took its interrupt from user
1258 * mode or from the idle loop, and if this is not a
1259 * nested interrupt. In this case, the CPU is in
1260 * a quiescent state, so note it.
1262 * No memory barrier is required here because both
1263 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1264 * variables that other CPUs neither access nor modify,
1265 * at least not while the corresponding CPU is online.
1268 rcu_sched_qs(cpu);
1269 rcu_bh_qs(cpu);
1271 } else if (!in_softirq()) {
1274 * Get here if this CPU did not take its interrupt from
1275 * softirq, in other words, if it is not interrupting
1276 * a rcu_bh read-side critical section. This is an _bh
1277 * critical section, so note it.
1280 rcu_bh_qs(cpu);
1282 rcu_preempt_check_callbacks(cpu);
1283 if (rcu_pending(cpu))
1284 invoke_rcu_cpu_kthread();
1287 #ifdef CONFIG_SMP
1290 * Scan the leaf rcu_node structures, processing dyntick state for any that
1291 * have not yet encountered a quiescent state, using the function specified.
1292 * Also initiate boosting for any threads blocked on the root rcu_node.
1294 * The caller must have suppressed start of new grace periods.
1296 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1298 unsigned long bit;
1299 int cpu;
1300 unsigned long flags;
1301 unsigned long mask;
1302 struct rcu_node *rnp;
1304 rcu_for_each_leaf_node(rsp, rnp) {
1305 mask = 0;
1306 raw_spin_lock_irqsave(&rnp->lock, flags);
1307 if (!rcu_gp_in_progress(rsp)) {
1308 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1309 return;
1311 if (rnp->qsmask == 0) {
1312 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1313 continue;
1315 cpu = rnp->grplo;
1316 bit = 1;
1317 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1318 if ((rnp->qsmask & bit) != 0 &&
1319 f(per_cpu_ptr(rsp->rda, cpu)))
1320 mask |= bit;
1322 if (mask != 0) {
1324 /* rcu_report_qs_rnp() releases rnp->lock. */
1325 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1326 continue;
1328 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1330 rnp = rcu_get_root(rsp);
1331 if (rnp->qsmask == 0) {
1332 raw_spin_lock_irqsave(&rnp->lock, flags);
1333 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1338 * Force quiescent states on reluctant CPUs, and also detect which
1339 * CPUs are in dyntick-idle mode.
1341 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1343 unsigned long flags;
1344 struct rcu_node *rnp = rcu_get_root(rsp);
1346 if (!rcu_gp_in_progress(rsp))
1347 return; /* No grace period in progress, nothing to force. */
1348 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1349 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1350 return; /* Someone else is already on the job. */
1352 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1353 goto unlock_fqs_ret; /* no emergency and done recently. */
1354 rsp->n_force_qs++;
1355 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1356 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1357 if(!rcu_gp_in_progress(rsp)) {
1358 rsp->n_force_qs_ngp++;
1359 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1360 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1362 rsp->fqs_active = 1;
1363 switch (rsp->signaled) {
1364 case RCU_GP_IDLE:
1365 case RCU_GP_INIT:
1367 break; /* grace period idle or initializing, ignore. */
1369 case RCU_SAVE_DYNTICK:
1370 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1371 break; /* So gcc recognizes the dead code. */
1373 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1375 /* Record dyntick-idle state. */
1376 force_qs_rnp(rsp, dyntick_save_progress_counter);
1377 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1378 if (rcu_gp_in_progress(rsp))
1379 rsp->signaled = RCU_FORCE_QS;
1380 break;
1382 case RCU_FORCE_QS:
1384 /* Check dyntick-idle state, send IPI to laggarts. */
1385 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1386 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1388 /* Leave state in case more forcing is required. */
1390 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1391 break;
1393 rsp->fqs_active = 0;
1394 if (rsp->fqs_need_gp) {
1395 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1396 rsp->fqs_need_gp = 0;
1397 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1398 return;
1400 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1401 unlock_fqs_ret:
1402 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1405 #else /* #ifdef CONFIG_SMP */
1407 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1409 set_need_resched();
1412 #endif /* #else #ifdef CONFIG_SMP */
1415 * This does the RCU processing work from softirq context for the
1416 * specified rcu_state and rcu_data structures. This may be called
1417 * only from the CPU to whom the rdp belongs.
1419 static void
1420 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1422 unsigned long flags;
1424 WARN_ON_ONCE(rdp->beenonline == 0);
1427 * If an RCU GP has gone long enough, go check for dyntick
1428 * idle CPUs and, if needed, send resched IPIs.
1430 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1431 force_quiescent_state(rsp, 1);
1434 * Advance callbacks in response to end of earlier grace
1435 * period that some other CPU ended.
1437 rcu_process_gp_end(rsp, rdp);
1439 /* Update RCU state based on any recent quiescent states. */
1440 rcu_check_quiescent_state(rsp, rdp);
1442 /* Does this CPU require a not-yet-started grace period? */
1443 if (cpu_needs_another_gp(rsp, rdp)) {
1444 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1445 rcu_start_gp(rsp, flags); /* releases above lock */
1448 /* If there are callbacks ready, invoke them. */
1449 rcu_do_batch(rsp, rdp);
1453 * Do softirq processing for the current CPU.
1455 static void rcu_process_callbacks(void)
1458 * Memory references from any prior RCU read-side critical sections
1459 * executed by the interrupted code must be seen before any RCU
1460 * grace-period manipulations below.
1462 smp_mb(); /* See above block comment. */
1464 __rcu_process_callbacks(&rcu_sched_state,
1465 &__get_cpu_var(rcu_sched_data));
1466 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1467 rcu_preempt_process_callbacks();
1470 * Memory references from any later RCU read-side critical sections
1471 * executed by the interrupted code must be seen after any RCU
1472 * grace-period manipulations above.
1474 smp_mb(); /* See above block comment. */
1476 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1477 rcu_needs_cpu_flush();
1481 * Wake up the current CPU's kthread. This replaces raise_softirq()
1482 * in earlier versions of RCU. Note that because we are running on
1483 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1484 * cannot disappear out from under us.
1486 static void invoke_rcu_cpu_kthread(void)
1488 unsigned long flags;
1490 local_irq_save(flags);
1491 __this_cpu_write(rcu_cpu_has_work, 1);
1492 if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
1493 local_irq_restore(flags);
1494 return;
1496 wake_up(&__get_cpu_var(rcu_cpu_wq));
1497 local_irq_restore(flags);
1501 * Wake up the specified per-rcu_node-structure kthread.
1502 * Because the per-rcu_node kthreads are immortal, we don't need
1503 * to do anything to keep them alive.
1505 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1507 struct task_struct *t;
1509 t = rnp->node_kthread_task;
1510 if (t != NULL)
1511 wake_up_process(t);
1515 * Set the specified CPU's kthread to run RT or not, as specified by
1516 * the to_rt argument. The CPU-hotplug locks are held, so the task
1517 * is not going away.
1519 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1521 int policy;
1522 struct sched_param sp;
1523 struct task_struct *t;
1525 t = per_cpu(rcu_cpu_kthread_task, cpu);
1526 if (t == NULL)
1527 return;
1528 if (to_rt) {
1529 policy = SCHED_FIFO;
1530 sp.sched_priority = RCU_KTHREAD_PRIO;
1531 } else {
1532 policy = SCHED_NORMAL;
1533 sp.sched_priority = 0;
1535 sched_setscheduler_nocheck(t, policy, &sp);
1539 * Timer handler to initiate the waking up of per-CPU kthreads that
1540 * have yielded the CPU due to excess numbers of RCU callbacks.
1541 * We wake up the per-rcu_node kthread, which in turn will wake up
1542 * the booster kthread.
1544 static void rcu_cpu_kthread_timer(unsigned long arg)
1546 unsigned long flags;
1547 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1548 struct rcu_node *rnp = rdp->mynode;
1550 raw_spin_lock_irqsave(&rnp->lock, flags);
1551 rnp->wakemask |= rdp->grpmask;
1552 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1553 invoke_rcu_node_kthread(rnp);
1557 * Drop to non-real-time priority and yield, but only after posting a
1558 * timer that will cause us to regain our real-time priority if we
1559 * remain preempted. Either way, we restore our real-time priority
1560 * before returning.
1562 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1564 struct sched_param sp;
1565 struct timer_list yield_timer;
1567 setup_timer_on_stack(&yield_timer, f, arg);
1568 mod_timer(&yield_timer, jiffies + 2);
1569 sp.sched_priority = 0;
1570 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1571 set_user_nice(current, 19);
1572 schedule();
1573 sp.sched_priority = RCU_KTHREAD_PRIO;
1574 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1575 del_timer(&yield_timer);
1579 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1580 * This can happen while the corresponding CPU is either coming online
1581 * or going offline. We cannot wait until the CPU is fully online
1582 * before starting the kthread, because the various notifier functions
1583 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1584 * the corresponding CPU is online.
1586 * Return 1 if the kthread needs to stop, 0 otherwise.
1588 * Caller must disable bh. This function can momentarily enable it.
1590 static int rcu_cpu_kthread_should_stop(int cpu)
1592 while (cpu_is_offline(cpu) ||
1593 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1594 smp_processor_id() != cpu) {
1595 if (kthread_should_stop())
1596 return 1;
1597 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1598 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1599 local_bh_enable();
1600 schedule_timeout_uninterruptible(1);
1601 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1602 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1603 local_bh_disable();
1605 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1606 return 0;
1610 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1611 * earlier RCU softirq.
1613 static int rcu_cpu_kthread(void *arg)
1615 int cpu = (int)(long)arg;
1616 unsigned long flags;
1617 int spincnt = 0;
1618 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1619 wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
1620 char work;
1621 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1623 for (;;) {
1624 *statusp = RCU_KTHREAD_WAITING;
1625 wait_event_interruptible(*wqp,
1626 *workp != 0 || kthread_should_stop());
1627 local_bh_disable();
1628 if (rcu_cpu_kthread_should_stop(cpu)) {
1629 local_bh_enable();
1630 break;
1632 *statusp = RCU_KTHREAD_RUNNING;
1633 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1634 local_irq_save(flags);
1635 work = *workp;
1636 *workp = 0;
1637 local_irq_restore(flags);
1638 if (work)
1639 rcu_process_callbacks();
1640 local_bh_enable();
1641 if (*workp != 0)
1642 spincnt++;
1643 else
1644 spincnt = 0;
1645 if (spincnt > 10) {
1646 *statusp = RCU_KTHREAD_YIELDING;
1647 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1648 spincnt = 0;
1651 *statusp = RCU_KTHREAD_STOPPED;
1652 return 0;
1656 * Spawn a per-CPU kthread, setting up affinity and priority.
1657 * Because the CPU hotplug lock is held, no other CPU will be attempting
1658 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1659 * attempting to access it during boot, but the locking in kthread_bind()
1660 * will enforce sufficient ordering.
1662 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1664 struct sched_param sp;
1665 struct task_struct *t;
1667 if (!rcu_kthreads_spawnable ||
1668 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1669 return 0;
1670 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1671 if (IS_ERR(t))
1672 return PTR_ERR(t);
1673 kthread_bind(t, cpu);
1674 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1675 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1676 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1677 wake_up_process(t);
1678 sp.sched_priority = RCU_KTHREAD_PRIO;
1679 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1680 return 0;
1684 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1685 * kthreads when needed. We ignore requests to wake up kthreads
1686 * for offline CPUs, which is OK because force_quiescent_state()
1687 * takes care of this case.
1689 static int rcu_node_kthread(void *arg)
1691 int cpu;
1692 unsigned long flags;
1693 unsigned long mask;
1694 struct rcu_node *rnp = (struct rcu_node *)arg;
1695 struct sched_param sp;
1696 struct task_struct *t;
1698 for (;;) {
1699 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1700 wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0);
1701 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1702 raw_spin_lock_irqsave(&rnp->lock, flags);
1703 mask = rnp->wakemask;
1704 rnp->wakemask = 0;
1705 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1706 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1707 if ((mask & 0x1) == 0)
1708 continue;
1709 preempt_disable();
1710 t = per_cpu(rcu_cpu_kthread_task, cpu);
1711 if (!cpu_online(cpu) || t == NULL) {
1712 preempt_enable();
1713 continue;
1715 per_cpu(rcu_cpu_has_work, cpu) = 1;
1716 sp.sched_priority = RCU_KTHREAD_PRIO;
1717 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1718 preempt_enable();
1721 /* NOTREACHED */
1722 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1723 return 0;
1727 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1728 * served by the rcu_node in question. The CPU hotplug lock is still
1729 * held, so the value of rnp->qsmaskinit will be stable.
1731 * We don't include outgoingcpu in the affinity set, use -1 if there is
1732 * no outgoing CPU. If there are no CPUs left in the affinity set,
1733 * this function allows the kthread to execute on any CPU.
1735 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1737 cpumask_var_t cm;
1738 int cpu;
1739 unsigned long mask = rnp->qsmaskinit;
1741 if (rnp->node_kthread_task == NULL)
1742 return;
1743 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1744 return;
1745 cpumask_clear(cm);
1746 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1747 if ((mask & 0x1) && cpu != outgoingcpu)
1748 cpumask_set_cpu(cpu, cm);
1749 if (cpumask_weight(cm) == 0) {
1750 cpumask_setall(cm);
1751 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1752 cpumask_clear_cpu(cpu, cm);
1753 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1755 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1756 rcu_boost_kthread_setaffinity(rnp, cm);
1757 free_cpumask_var(cm);
1761 * Spawn a per-rcu_node kthread, setting priority and affinity.
1762 * Called during boot before online/offline can happen, or, if
1763 * during runtime, with the main CPU-hotplug locks held. So only
1764 * one of these can be executing at a time.
1766 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1767 struct rcu_node *rnp)
1769 unsigned long flags;
1770 int rnp_index = rnp - &rsp->node[0];
1771 struct sched_param sp;
1772 struct task_struct *t;
1774 if (!rcu_kthreads_spawnable ||
1775 rnp->qsmaskinit == 0)
1776 return 0;
1777 if (rnp->node_kthread_task == NULL) {
1778 t = kthread_create(rcu_node_kthread, (void *)rnp,
1779 "rcun%d", rnp_index);
1780 if (IS_ERR(t))
1781 return PTR_ERR(t);
1782 raw_spin_lock_irqsave(&rnp->lock, flags);
1783 rnp->node_kthread_task = t;
1784 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1785 wake_up_process(t);
1786 sp.sched_priority = 99;
1787 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1789 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1793 * Spawn all kthreads -- called as soon as the scheduler is running.
1795 static int __init rcu_spawn_kthreads(void)
1797 int cpu;
1798 struct rcu_node *rnp;
1800 rcu_kthreads_spawnable = 1;
1801 for_each_possible_cpu(cpu) {
1802 init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
1803 per_cpu(rcu_cpu_has_work, cpu) = 0;
1804 if (cpu_online(cpu))
1805 (void)rcu_spawn_one_cpu_kthread(cpu);
1807 rnp = rcu_get_root(rcu_state);
1808 init_waitqueue_head(&rnp->node_wq);
1809 rcu_init_boost_waitqueue(rnp);
1810 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1811 if (NUM_RCU_NODES > 1)
1812 rcu_for_each_leaf_node(rcu_state, rnp) {
1813 init_waitqueue_head(&rnp->node_wq);
1814 rcu_init_boost_waitqueue(rnp);
1815 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1817 return 0;
1819 early_initcall(rcu_spawn_kthreads);
1821 static void
1822 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1823 struct rcu_state *rsp)
1825 unsigned long flags;
1826 struct rcu_data *rdp;
1828 debug_rcu_head_queue(head);
1829 head->func = func;
1830 head->next = NULL;
1832 smp_mb(); /* Ensure RCU update seen before callback registry. */
1835 * Opportunistically note grace-period endings and beginnings.
1836 * Note that we might see a beginning right after we see an
1837 * end, but never vice versa, since this CPU has to pass through
1838 * a quiescent state betweentimes.
1840 local_irq_save(flags);
1841 rdp = this_cpu_ptr(rsp->rda);
1843 /* Add the callback to our list. */
1844 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1845 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1846 rdp->qlen++;
1848 /* If interrupts were disabled, don't dive into RCU core. */
1849 if (irqs_disabled_flags(flags)) {
1850 local_irq_restore(flags);
1851 return;
1855 * Force the grace period if too many callbacks or too long waiting.
1856 * Enforce hysteresis, and don't invoke force_quiescent_state()
1857 * if some other CPU has recently done so. Also, don't bother
1858 * invoking force_quiescent_state() if the newly enqueued callback
1859 * is the only one waiting for a grace period to complete.
1861 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1863 /* Are we ignoring a completed grace period? */
1864 rcu_process_gp_end(rsp, rdp);
1865 check_for_new_grace_period(rsp, rdp);
1867 /* Start a new grace period if one not already started. */
1868 if (!rcu_gp_in_progress(rsp)) {
1869 unsigned long nestflag;
1870 struct rcu_node *rnp_root = rcu_get_root(rsp);
1872 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1873 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1874 } else {
1875 /* Give the grace period a kick. */
1876 rdp->blimit = LONG_MAX;
1877 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1878 *rdp->nxttail[RCU_DONE_TAIL] != head)
1879 force_quiescent_state(rsp, 0);
1880 rdp->n_force_qs_snap = rsp->n_force_qs;
1881 rdp->qlen_last_fqs_check = rdp->qlen;
1883 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1884 force_quiescent_state(rsp, 1);
1885 local_irq_restore(flags);
1889 * Queue an RCU-sched callback for invocation after a grace period.
1891 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1893 __call_rcu(head, func, &rcu_sched_state);
1895 EXPORT_SYMBOL_GPL(call_rcu_sched);
1898 * Queue an RCU for invocation after a quicker grace period.
1900 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1902 __call_rcu(head, func, &rcu_bh_state);
1904 EXPORT_SYMBOL_GPL(call_rcu_bh);
1907 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1909 * Control will return to the caller some time after a full rcu-sched
1910 * grace period has elapsed, in other words after all currently executing
1911 * rcu-sched read-side critical sections have completed. These read-side
1912 * critical sections are delimited by rcu_read_lock_sched() and
1913 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1914 * local_irq_disable(), and so on may be used in place of
1915 * rcu_read_lock_sched().
1917 * This means that all preempt_disable code sequences, including NMI and
1918 * hardware-interrupt handlers, in progress on entry will have completed
1919 * before this primitive returns. However, this does not guarantee that
1920 * softirq handlers will have completed, since in some kernels, these
1921 * handlers can run in process context, and can block.
1923 * This primitive provides the guarantees made by the (now removed)
1924 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1925 * guarantees that rcu_read_lock() sections will have completed.
1926 * In "classic RCU", these two guarantees happen to be one and
1927 * the same, but can differ in realtime RCU implementations.
1929 void synchronize_sched(void)
1931 struct rcu_synchronize rcu;
1933 if (rcu_blocking_is_gp())
1934 return;
1936 init_rcu_head_on_stack(&rcu.head);
1937 init_completion(&rcu.completion);
1938 /* Will wake me after RCU finished. */
1939 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1940 /* Wait for it. */
1941 wait_for_completion(&rcu.completion);
1942 destroy_rcu_head_on_stack(&rcu.head);
1944 EXPORT_SYMBOL_GPL(synchronize_sched);
1947 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1949 * Control will return to the caller some time after a full rcu_bh grace
1950 * period has elapsed, in other words after all currently executing rcu_bh
1951 * read-side critical sections have completed. RCU read-side critical
1952 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1953 * and may be nested.
1955 void synchronize_rcu_bh(void)
1957 struct rcu_synchronize rcu;
1959 if (rcu_blocking_is_gp())
1960 return;
1962 init_rcu_head_on_stack(&rcu.head);
1963 init_completion(&rcu.completion);
1964 /* Will wake me after RCU finished. */
1965 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1966 /* Wait for it. */
1967 wait_for_completion(&rcu.completion);
1968 destroy_rcu_head_on_stack(&rcu.head);
1970 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1973 * Check to see if there is any immediate RCU-related work to be done
1974 * by the current CPU, for the specified type of RCU, returning 1 if so.
1975 * The checks are in order of increasing expense: checks that can be
1976 * carried out against CPU-local state are performed first. However,
1977 * we must check for CPU stalls first, else we might not get a chance.
1979 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1981 struct rcu_node *rnp = rdp->mynode;
1983 rdp->n_rcu_pending++;
1985 /* Check for CPU stalls, if enabled. */
1986 check_cpu_stall(rsp, rdp);
1988 /* Is the RCU core waiting for a quiescent state from this CPU? */
1989 if (rdp->qs_pending && !rdp->passed_quiesc) {
1992 * If force_quiescent_state() coming soon and this CPU
1993 * needs a quiescent state, and this is either RCU-sched
1994 * or RCU-bh, force a local reschedule.
1996 rdp->n_rp_qs_pending++;
1997 if (!rdp->preemptible &&
1998 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1999 jiffies))
2000 set_need_resched();
2001 } else if (rdp->qs_pending && rdp->passed_quiesc) {
2002 rdp->n_rp_report_qs++;
2003 return 1;
2006 /* Does this CPU have callbacks ready to invoke? */
2007 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2008 rdp->n_rp_cb_ready++;
2009 return 1;
2012 /* Has RCU gone idle with this CPU needing another grace period? */
2013 if (cpu_needs_another_gp(rsp, rdp)) {
2014 rdp->n_rp_cpu_needs_gp++;
2015 return 1;
2018 /* Has another RCU grace period completed? */
2019 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2020 rdp->n_rp_gp_completed++;
2021 return 1;
2024 /* Has a new RCU grace period started? */
2025 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2026 rdp->n_rp_gp_started++;
2027 return 1;
2030 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2031 if (rcu_gp_in_progress(rsp) &&
2032 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2033 rdp->n_rp_need_fqs++;
2034 return 1;
2037 /* nothing to do */
2038 rdp->n_rp_need_nothing++;
2039 return 0;
2043 * Check to see if there is any immediate RCU-related work to be done
2044 * by the current CPU, returning 1 if so. This function is part of the
2045 * RCU implementation; it is -not- an exported member of the RCU API.
2047 static int rcu_pending(int cpu)
2049 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2050 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2051 rcu_preempt_pending(cpu);
2055 * Check to see if any future RCU-related work will need to be done
2056 * by the current CPU, even if none need be done immediately, returning
2057 * 1 if so.
2059 static int rcu_needs_cpu_quick_check(int cpu)
2061 /* RCU callbacks either ready or pending? */
2062 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2063 per_cpu(rcu_bh_data, cpu).nxtlist ||
2064 rcu_preempt_needs_cpu(cpu);
2067 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2068 static atomic_t rcu_barrier_cpu_count;
2069 static DEFINE_MUTEX(rcu_barrier_mutex);
2070 static struct completion rcu_barrier_completion;
2072 static void rcu_barrier_callback(struct rcu_head *notused)
2074 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2075 complete(&rcu_barrier_completion);
2079 * Called with preemption disabled, and from cross-cpu IRQ context.
2081 static void rcu_barrier_func(void *type)
2083 int cpu = smp_processor_id();
2084 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2085 void (*call_rcu_func)(struct rcu_head *head,
2086 void (*func)(struct rcu_head *head));
2088 atomic_inc(&rcu_barrier_cpu_count);
2089 call_rcu_func = type;
2090 call_rcu_func(head, rcu_barrier_callback);
2094 * Orchestrate the specified type of RCU barrier, waiting for all
2095 * RCU callbacks of the specified type to complete.
2097 static void _rcu_barrier(struct rcu_state *rsp,
2098 void (*call_rcu_func)(struct rcu_head *head,
2099 void (*func)(struct rcu_head *head)))
2101 BUG_ON(in_interrupt());
2102 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2103 mutex_lock(&rcu_barrier_mutex);
2104 init_completion(&rcu_barrier_completion);
2106 * Initialize rcu_barrier_cpu_count to 1, then invoke
2107 * rcu_barrier_func() on each CPU, so that each CPU also has
2108 * incremented rcu_barrier_cpu_count. Only then is it safe to
2109 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2110 * might complete its grace period before all of the other CPUs
2111 * did their increment, causing this function to return too
2112 * early. Note that on_each_cpu() disables irqs, which prevents
2113 * any CPUs from coming online or going offline until each online
2114 * CPU has queued its RCU-barrier callback.
2116 atomic_set(&rcu_barrier_cpu_count, 1);
2117 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2118 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2119 complete(&rcu_barrier_completion);
2120 wait_for_completion(&rcu_barrier_completion);
2121 mutex_unlock(&rcu_barrier_mutex);
2125 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2127 void rcu_barrier_bh(void)
2129 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2131 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2134 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2136 void rcu_barrier_sched(void)
2138 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2140 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2143 * Do boot-time initialization of a CPU's per-CPU RCU data.
2145 static void __init
2146 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2148 unsigned long flags;
2149 int i;
2150 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2151 struct rcu_node *rnp = rcu_get_root(rsp);
2153 /* Set up local state, ensuring consistent view of global state. */
2154 raw_spin_lock_irqsave(&rnp->lock, flags);
2155 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2156 rdp->nxtlist = NULL;
2157 for (i = 0; i < RCU_NEXT_SIZE; i++)
2158 rdp->nxttail[i] = &rdp->nxtlist;
2159 rdp->qlen = 0;
2160 #ifdef CONFIG_NO_HZ
2161 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2162 #endif /* #ifdef CONFIG_NO_HZ */
2163 rdp->cpu = cpu;
2164 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2168 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2169 * offline event can be happening at a given time. Note also that we
2170 * can accept some slop in the rsp->completed access due to the fact
2171 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2173 static void __cpuinit
2174 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2176 unsigned long flags;
2177 unsigned long mask;
2178 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2179 struct rcu_node *rnp = rcu_get_root(rsp);
2181 /* Set up local state, ensuring consistent view of global state. */
2182 raw_spin_lock_irqsave(&rnp->lock, flags);
2183 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2184 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2185 rdp->beenonline = 1; /* We have now been online. */
2186 rdp->preemptible = preemptible;
2187 rdp->qlen_last_fqs_check = 0;
2188 rdp->n_force_qs_snap = rsp->n_force_qs;
2189 rdp->blimit = blimit;
2190 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2193 * A new grace period might start here. If so, we won't be part
2194 * of it, but that is OK, as we are currently in a quiescent state.
2197 /* Exclude any attempts to start a new GP on large systems. */
2198 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2200 /* Add CPU to rcu_node bitmasks. */
2201 rnp = rdp->mynode;
2202 mask = rdp->grpmask;
2203 do {
2204 /* Exclude any attempts to start a new GP on small systems. */
2205 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2206 rnp->qsmaskinit |= mask;
2207 mask = rnp->grpmask;
2208 if (rnp == rdp->mynode) {
2209 rdp->gpnum = rnp->completed; /* if GP in progress... */
2210 rdp->completed = rnp->completed;
2211 rdp->passed_quiesc_completed = rnp->completed - 1;
2213 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2214 rnp = rnp->parent;
2215 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2217 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2220 static void __cpuinit rcu_online_cpu(int cpu)
2222 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2223 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2224 rcu_preempt_init_percpu_data(cpu);
2227 static void __cpuinit rcu_online_kthreads(int cpu)
2229 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2230 struct rcu_node *rnp = rdp->mynode;
2232 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2233 if (rcu_kthreads_spawnable) {
2234 (void)rcu_spawn_one_cpu_kthread(cpu);
2235 if (rnp->node_kthread_task == NULL)
2236 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2241 * Handle CPU online/offline notification events.
2243 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2244 unsigned long action, void *hcpu)
2246 long cpu = (long)hcpu;
2247 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2248 struct rcu_node *rnp = rdp->mynode;
2250 switch (action) {
2251 case CPU_UP_PREPARE:
2252 case CPU_UP_PREPARE_FROZEN:
2253 rcu_online_cpu(cpu);
2254 rcu_online_kthreads(cpu);
2255 break;
2256 case CPU_ONLINE:
2257 case CPU_DOWN_FAILED:
2258 rcu_node_kthread_setaffinity(rnp, -1);
2259 rcu_cpu_kthread_setrt(cpu, 1);
2260 break;
2261 case CPU_DOWN_PREPARE:
2262 rcu_node_kthread_setaffinity(rnp, cpu);
2263 rcu_cpu_kthread_setrt(cpu, 0);
2264 break;
2265 case CPU_DYING:
2266 case CPU_DYING_FROZEN:
2268 * The whole machine is "stopped" except this CPU, so we can
2269 * touch any data without introducing corruption. We send the
2270 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2272 rcu_send_cbs_to_online(&rcu_bh_state);
2273 rcu_send_cbs_to_online(&rcu_sched_state);
2274 rcu_preempt_send_cbs_to_online();
2275 break;
2276 case CPU_DEAD:
2277 case CPU_DEAD_FROZEN:
2278 case CPU_UP_CANCELED:
2279 case CPU_UP_CANCELED_FROZEN:
2280 rcu_offline_cpu(cpu);
2281 break;
2282 default:
2283 break;
2285 return NOTIFY_OK;
2289 * This function is invoked towards the end of the scheduler's initialization
2290 * process. Before this is called, the idle task might contain
2291 * RCU read-side critical sections (during which time, this idle
2292 * task is booting the system). After this function is called, the
2293 * idle tasks are prohibited from containing RCU read-side critical
2294 * sections. This function also enables RCU lockdep checking.
2296 void rcu_scheduler_starting(void)
2298 WARN_ON(num_online_cpus() != 1);
2299 WARN_ON(nr_context_switches() > 0);
2300 rcu_scheduler_active = 1;
2304 * Compute the per-level fanout, either using the exact fanout specified
2305 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2307 #ifdef CONFIG_RCU_FANOUT_EXACT
2308 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2310 int i;
2312 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2313 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2314 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2316 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2317 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2319 int ccur;
2320 int cprv;
2321 int i;
2323 cprv = NR_CPUS;
2324 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2325 ccur = rsp->levelcnt[i];
2326 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2327 cprv = ccur;
2330 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2333 * Helper function for rcu_init() that initializes one rcu_state structure.
2335 static void __init rcu_init_one(struct rcu_state *rsp,
2336 struct rcu_data __percpu *rda)
2338 static char *buf[] = { "rcu_node_level_0",
2339 "rcu_node_level_1",
2340 "rcu_node_level_2",
2341 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2342 int cpustride = 1;
2343 int i;
2344 int j;
2345 struct rcu_node *rnp;
2347 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2349 /* Initialize the level-tracking arrays. */
2351 for (i = 1; i < NUM_RCU_LVLS; i++)
2352 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2353 rcu_init_levelspread(rsp);
2355 /* Initialize the elements themselves, starting from the leaves. */
2357 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2358 cpustride *= rsp->levelspread[i];
2359 rnp = rsp->level[i];
2360 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2361 raw_spin_lock_init(&rnp->lock);
2362 lockdep_set_class_and_name(&rnp->lock,
2363 &rcu_node_class[i], buf[i]);
2364 rnp->gpnum = 0;
2365 rnp->qsmask = 0;
2366 rnp->qsmaskinit = 0;
2367 rnp->grplo = j * cpustride;
2368 rnp->grphi = (j + 1) * cpustride - 1;
2369 if (rnp->grphi >= NR_CPUS)
2370 rnp->grphi = NR_CPUS - 1;
2371 if (i == 0) {
2372 rnp->grpnum = 0;
2373 rnp->grpmask = 0;
2374 rnp->parent = NULL;
2375 } else {
2376 rnp->grpnum = j % rsp->levelspread[i - 1];
2377 rnp->grpmask = 1UL << rnp->grpnum;
2378 rnp->parent = rsp->level[i - 1] +
2379 j / rsp->levelspread[i - 1];
2381 rnp->level = i;
2382 INIT_LIST_HEAD(&rnp->blkd_tasks);
2386 rsp->rda = rda;
2387 rnp = rsp->level[NUM_RCU_LVLS - 1];
2388 for_each_possible_cpu(i) {
2389 while (i > rnp->grphi)
2390 rnp++;
2391 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2392 rcu_boot_init_percpu_data(i, rsp);
2396 void __init rcu_init(void)
2398 int cpu;
2400 rcu_bootup_announce();
2401 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2402 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2403 __rcu_init_preempt();
2406 * We don't need protection against CPU-hotplug here because
2407 * this is called early in boot, before either interrupts
2408 * or the scheduler are operational.
2410 cpu_notifier(rcu_cpu_notify, 0);
2411 for_each_online_cpu(cpu)
2412 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2413 check_cpu_stall_init();
2416 #include "rcutree_plugin.h"