[CCID2]: Remove redundant ack-counting variable
[linux-2.6/x86.git] / net / core / sock.c
blobeac7aa0721daa13f7fae426a2632d9e33eaf4633
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
12 * Authors: Ross Biro
13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Alan Cox, <A.Cox@swansea.ac.uk>
17 * Fixes:
18 * Alan Cox : Numerous verify_area() problems
19 * Alan Cox : Connecting on a connecting socket
20 * now returns an error for tcp.
21 * Alan Cox : sock->protocol is set correctly.
22 * and is not sometimes left as 0.
23 * Alan Cox : connect handles icmp errors on a
24 * connect properly. Unfortunately there
25 * is a restart syscall nasty there. I
26 * can't match BSD without hacking the C
27 * library. Ideas urgently sought!
28 * Alan Cox : Disallow bind() to addresses that are
29 * not ours - especially broadcast ones!!
30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
32 * instead they leave that for the DESTROY timer.
33 * Alan Cox : Clean up error flag in accept
34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
35 * was buggy. Put a remove_sock() in the handler
36 * for memory when we hit 0. Also altered the timer
37 * code. The ACK stuff can wait and needs major
38 * TCP layer surgery.
39 * Alan Cox : Fixed TCP ack bug, removed remove sock
40 * and fixed timer/inet_bh race.
41 * Alan Cox : Added zapped flag for TCP
42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 * Rick Sladkey : Relaxed UDP rules for matching packets.
48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
49 * Pauline Middelink : identd support
50 * Alan Cox : Fixed connect() taking signals I think.
51 * Alan Cox : SO_LINGER supported
52 * Alan Cox : Error reporting fixes
53 * Anonymous : inet_create tidied up (sk->reuse setting)
54 * Alan Cox : inet sockets don't set sk->type!
55 * Alan Cox : Split socket option code
56 * Alan Cox : Callbacks
57 * Alan Cox : Nagle flag for Charles & Johannes stuff
58 * Alex : Removed restriction on inet fioctl
59 * Alan Cox : Splitting INET from NET core
60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
62 * Alan Cox : Split IP from generic code
63 * Alan Cox : New kfree_skbmem()
64 * Alan Cox : Make SO_DEBUG superuser only.
65 * Alan Cox : Allow anyone to clear SO_DEBUG
66 * (compatibility fix)
67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
68 * Alan Cox : Allocator for a socket is settable.
69 * Alan Cox : SO_ERROR includes soft errors.
70 * Alan Cox : Allow NULL arguments on some SO_ opts
71 * Alan Cox : Generic socket allocation to make hooks
72 * easier (suggested by Craig Metz).
73 * Michael Pall : SO_ERROR returns positive errno again
74 * Steve Whitehouse: Added default destructor to free
75 * protocol private data.
76 * Steve Whitehouse: Added various other default routines
77 * common to several socket families.
78 * Chris Evans : Call suser() check last on F_SETOWN
79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
81 * Andi Kleen : Fix write_space callback
82 * Chris Evans : Security fixes - signedness again
83 * Arnaldo C. Melo : cleanups, use skb_queue_purge
85 * To Fix:
88 * This program is free software; you can redistribute it and/or
89 * modify it under the terms of the GNU General Public License
90 * as published by the Free Software Foundation; either version
91 * 2 of the License, or (at your option) any later version.
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
128 #include <linux/filter.h>
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
147 static const char *af_family_key_strings[AF_MAX+1] = {
148 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
149 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
150 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
151 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
152 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
153 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
154 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
155 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
156 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
157 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
158 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
159 "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_MAX"
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
177 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
178 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
179 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
180 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
181 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
182 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
183 "clock-21" , "clock-AF_SNA" , "clock-AF_IRDA" ,
184 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
185 "clock-27" , "clock-28" , "clock-29" ,
186 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
187 "clock-AF_RXRPC" , "clock-AF_MAX"
189 #endif
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
195 static struct lock_class_key af_callback_keys[AF_MAX];
197 /* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms. This makes socket queueing behavior and performance
200 * not depend upon such differences.
202 #define _SK_MEM_PACKETS 256
203 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
218 struct timeval tv;
220 if (optlen < sizeof(tv))
221 return -EINVAL;
222 if (copy_from_user(&tv, optval, sizeof(tv)))
223 return -EFAULT;
224 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225 return -EDOM;
227 if (tv.tv_sec < 0) {
228 static int warned __read_mostly;
230 *timeo_p = 0;
231 if (warned < 10 && net_ratelimit())
232 warned++;
233 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234 "tries to set negative timeout\n",
235 current->comm, task_pid_nr(current));
236 return 0;
238 *timeo_p = MAX_SCHEDULE_TIMEOUT;
239 if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 return 0;
241 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 return 0;
246 static void sock_warn_obsolete_bsdism(const char *name)
248 static int warned;
249 static char warncomm[TASK_COMM_LEN];
250 if (strcmp(warncomm, current->comm) && warned < 5) {
251 strcpy(warncomm, current->comm);
252 printk(KERN_WARNING "process `%s' is using obsolete "
253 "%s SO_BSDCOMPAT\n", warncomm, name);
254 warned++;
258 static void sock_disable_timestamp(struct sock *sk)
260 if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 sock_reset_flag(sk, SOCK_TIMESTAMP);
262 net_disable_timestamp();
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
269 int err = 0;
270 int skb_len;
272 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273 number of warnings when compiling with -W --ANK
275 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 (unsigned)sk->sk_rcvbuf) {
277 err = -ENOMEM;
278 goto out;
281 err = sk_filter(sk, skb);
282 if (err)
283 goto out;
285 skb->dev = NULL;
286 skb_set_owner_r(skb, sk);
288 /* Cache the SKB length before we tack it onto the receive
289 * queue. Once it is added it no longer belongs to us and
290 * may be freed by other threads of control pulling packets
291 * from the queue.
293 skb_len = skb->len;
295 skb_queue_tail(&sk->sk_receive_queue, skb);
297 if (!sock_flag(sk, SOCK_DEAD))
298 sk->sk_data_ready(sk, skb_len);
299 out:
300 return err;
302 EXPORT_SYMBOL(sock_queue_rcv_skb);
304 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
306 int rc = NET_RX_SUCCESS;
308 if (sk_filter(sk, skb))
309 goto discard_and_relse;
311 skb->dev = NULL;
313 if (nested)
314 bh_lock_sock_nested(sk);
315 else
316 bh_lock_sock(sk);
317 if (!sock_owned_by_user(sk)) {
319 * trylock + unlock semantics:
321 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
323 rc = sk->sk_backlog_rcv(sk, skb);
325 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326 } else
327 sk_add_backlog(sk, skb);
328 bh_unlock_sock(sk);
329 out:
330 sock_put(sk);
331 return rc;
332 discard_and_relse:
333 kfree_skb(skb);
334 goto out;
336 EXPORT_SYMBOL(sk_receive_skb);
338 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
340 struct dst_entry *dst = sk->sk_dst_cache;
342 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343 sk->sk_dst_cache = NULL;
344 dst_release(dst);
345 return NULL;
348 return dst;
350 EXPORT_SYMBOL(__sk_dst_check);
352 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
354 struct dst_entry *dst = sk_dst_get(sk);
356 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357 sk_dst_reset(sk);
358 dst_release(dst);
359 return NULL;
362 return dst;
364 EXPORT_SYMBOL(sk_dst_check);
366 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
368 int ret = -ENOPROTOOPT;
369 #ifdef CONFIG_NETDEVICES
370 struct net *net = sk->sk_net;
371 char devname[IFNAMSIZ];
372 int index;
374 /* Sorry... */
375 ret = -EPERM;
376 if (!capable(CAP_NET_RAW))
377 goto out;
379 ret = -EINVAL;
380 if (optlen < 0)
381 goto out;
383 /* Bind this socket to a particular device like "eth0",
384 * as specified in the passed interface name. If the
385 * name is "" or the option length is zero the socket
386 * is not bound.
388 if (optlen > IFNAMSIZ - 1)
389 optlen = IFNAMSIZ - 1;
390 memset(devname, 0, sizeof(devname));
392 ret = -EFAULT;
393 if (copy_from_user(devname, optval, optlen))
394 goto out;
396 if (devname[0] == '\0') {
397 index = 0;
398 } else {
399 struct net_device *dev = dev_get_by_name(net, devname);
401 ret = -ENODEV;
402 if (!dev)
403 goto out;
405 index = dev->ifindex;
406 dev_put(dev);
409 lock_sock(sk);
410 sk->sk_bound_dev_if = index;
411 sk_dst_reset(sk);
412 release_sock(sk);
414 ret = 0;
416 out:
417 #endif
419 return ret;
422 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
424 if (valbool)
425 sock_set_flag(sk, bit);
426 else
427 sock_reset_flag(sk, bit);
431 * This is meant for all protocols to use and covers goings on
432 * at the socket level. Everything here is generic.
435 int sock_setsockopt(struct socket *sock, int level, int optname,
436 char __user *optval, int optlen)
438 struct sock *sk=sock->sk;
439 int val;
440 int valbool;
441 struct linger ling;
442 int ret = 0;
445 * Options without arguments
448 #ifdef SO_DONTLINGER /* Compatibility item... */
449 if (optname == SO_DONTLINGER) {
450 lock_sock(sk);
451 sock_reset_flag(sk, SOCK_LINGER);
452 release_sock(sk);
453 return 0;
455 #endif
457 if (optname == SO_BINDTODEVICE)
458 return sock_bindtodevice(sk, optval, optlen);
460 if (optlen < sizeof(int))
461 return -EINVAL;
463 if (get_user(val, (int __user *)optval))
464 return -EFAULT;
466 valbool = val?1:0;
468 lock_sock(sk);
470 switch(optname) {
471 case SO_DEBUG:
472 if (val && !capable(CAP_NET_ADMIN)) {
473 ret = -EACCES;
474 } else
475 sock_valbool_flag(sk, SOCK_DBG, valbool);
476 break;
477 case SO_REUSEADDR:
478 sk->sk_reuse = valbool;
479 break;
480 case SO_TYPE:
481 case SO_ERROR:
482 ret = -ENOPROTOOPT;
483 break;
484 case SO_DONTROUTE:
485 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
486 break;
487 case SO_BROADCAST:
488 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
489 break;
490 case SO_SNDBUF:
491 /* Don't error on this BSD doesn't and if you think
492 about it this is right. Otherwise apps have to
493 play 'guess the biggest size' games. RCVBUF/SNDBUF
494 are treated in BSD as hints */
496 if (val > sysctl_wmem_max)
497 val = sysctl_wmem_max;
498 set_sndbuf:
499 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
500 if ((val * 2) < SOCK_MIN_SNDBUF)
501 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
502 else
503 sk->sk_sndbuf = val * 2;
506 * Wake up sending tasks if we
507 * upped the value.
509 sk->sk_write_space(sk);
510 break;
512 case SO_SNDBUFFORCE:
513 if (!capable(CAP_NET_ADMIN)) {
514 ret = -EPERM;
515 break;
517 goto set_sndbuf;
519 case SO_RCVBUF:
520 /* Don't error on this BSD doesn't and if you think
521 about it this is right. Otherwise apps have to
522 play 'guess the biggest size' games. RCVBUF/SNDBUF
523 are treated in BSD as hints */
525 if (val > sysctl_rmem_max)
526 val = sysctl_rmem_max;
527 set_rcvbuf:
528 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
530 * We double it on the way in to account for
531 * "struct sk_buff" etc. overhead. Applications
532 * assume that the SO_RCVBUF setting they make will
533 * allow that much actual data to be received on that
534 * socket.
536 * Applications are unaware that "struct sk_buff" and
537 * other overheads allocate from the receive buffer
538 * during socket buffer allocation.
540 * And after considering the possible alternatives,
541 * returning the value we actually used in getsockopt
542 * is the most desirable behavior.
544 if ((val * 2) < SOCK_MIN_RCVBUF)
545 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
546 else
547 sk->sk_rcvbuf = val * 2;
548 break;
550 case SO_RCVBUFFORCE:
551 if (!capable(CAP_NET_ADMIN)) {
552 ret = -EPERM;
553 break;
555 goto set_rcvbuf;
557 case SO_KEEPALIVE:
558 #ifdef CONFIG_INET
559 if (sk->sk_protocol == IPPROTO_TCP)
560 tcp_set_keepalive(sk, valbool);
561 #endif
562 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
563 break;
565 case SO_OOBINLINE:
566 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
567 break;
569 case SO_NO_CHECK:
570 sk->sk_no_check = valbool;
571 break;
573 case SO_PRIORITY:
574 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
575 sk->sk_priority = val;
576 else
577 ret = -EPERM;
578 break;
580 case SO_LINGER:
581 if (optlen < sizeof(ling)) {
582 ret = -EINVAL; /* 1003.1g */
583 break;
585 if (copy_from_user(&ling,optval,sizeof(ling))) {
586 ret = -EFAULT;
587 break;
589 if (!ling.l_onoff)
590 sock_reset_flag(sk, SOCK_LINGER);
591 else {
592 #if (BITS_PER_LONG == 32)
593 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
594 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
595 else
596 #endif
597 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
598 sock_set_flag(sk, SOCK_LINGER);
600 break;
602 case SO_BSDCOMPAT:
603 sock_warn_obsolete_bsdism("setsockopt");
604 break;
606 case SO_PASSCRED:
607 if (valbool)
608 set_bit(SOCK_PASSCRED, &sock->flags);
609 else
610 clear_bit(SOCK_PASSCRED, &sock->flags);
611 break;
613 case SO_TIMESTAMP:
614 case SO_TIMESTAMPNS:
615 if (valbool) {
616 if (optname == SO_TIMESTAMP)
617 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
618 else
619 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
620 sock_set_flag(sk, SOCK_RCVTSTAMP);
621 sock_enable_timestamp(sk);
622 } else {
623 sock_reset_flag(sk, SOCK_RCVTSTAMP);
624 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
626 break;
628 case SO_RCVLOWAT:
629 if (val < 0)
630 val = INT_MAX;
631 sk->sk_rcvlowat = val ? : 1;
632 break;
634 case SO_RCVTIMEO:
635 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
636 break;
638 case SO_SNDTIMEO:
639 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
640 break;
642 case SO_ATTACH_FILTER:
643 ret = -EINVAL;
644 if (optlen == sizeof(struct sock_fprog)) {
645 struct sock_fprog fprog;
647 ret = -EFAULT;
648 if (copy_from_user(&fprog, optval, sizeof(fprog)))
649 break;
651 ret = sk_attach_filter(&fprog, sk);
653 break;
655 case SO_DETACH_FILTER:
656 ret = sk_detach_filter(sk);
657 break;
659 case SO_PASSSEC:
660 if (valbool)
661 set_bit(SOCK_PASSSEC, &sock->flags);
662 else
663 clear_bit(SOCK_PASSSEC, &sock->flags);
664 break;
666 /* We implement the SO_SNDLOWAT etc to
667 not be settable (1003.1g 5.3) */
668 default:
669 ret = -ENOPROTOOPT;
670 break;
672 release_sock(sk);
673 return ret;
677 int sock_getsockopt(struct socket *sock, int level, int optname,
678 char __user *optval, int __user *optlen)
680 struct sock *sk = sock->sk;
682 union {
683 int val;
684 struct linger ling;
685 struct timeval tm;
686 } v;
688 unsigned int lv = sizeof(int);
689 int len;
691 if (get_user(len, optlen))
692 return -EFAULT;
693 if (len < 0)
694 return -EINVAL;
696 switch(optname) {
697 case SO_DEBUG:
698 v.val = sock_flag(sk, SOCK_DBG);
699 break;
701 case SO_DONTROUTE:
702 v.val = sock_flag(sk, SOCK_LOCALROUTE);
703 break;
705 case SO_BROADCAST:
706 v.val = !!sock_flag(sk, SOCK_BROADCAST);
707 break;
709 case SO_SNDBUF:
710 v.val = sk->sk_sndbuf;
711 break;
713 case SO_RCVBUF:
714 v.val = sk->sk_rcvbuf;
715 break;
717 case SO_REUSEADDR:
718 v.val = sk->sk_reuse;
719 break;
721 case SO_KEEPALIVE:
722 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
723 break;
725 case SO_TYPE:
726 v.val = sk->sk_type;
727 break;
729 case SO_ERROR:
730 v.val = -sock_error(sk);
731 if (v.val==0)
732 v.val = xchg(&sk->sk_err_soft, 0);
733 break;
735 case SO_OOBINLINE:
736 v.val = !!sock_flag(sk, SOCK_URGINLINE);
737 break;
739 case SO_NO_CHECK:
740 v.val = sk->sk_no_check;
741 break;
743 case SO_PRIORITY:
744 v.val = sk->sk_priority;
745 break;
747 case SO_LINGER:
748 lv = sizeof(v.ling);
749 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
750 v.ling.l_linger = sk->sk_lingertime / HZ;
751 break;
753 case SO_BSDCOMPAT:
754 sock_warn_obsolete_bsdism("getsockopt");
755 break;
757 case SO_TIMESTAMP:
758 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
759 !sock_flag(sk, SOCK_RCVTSTAMPNS);
760 break;
762 case SO_TIMESTAMPNS:
763 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
764 break;
766 case SO_RCVTIMEO:
767 lv=sizeof(struct timeval);
768 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
769 v.tm.tv_sec = 0;
770 v.tm.tv_usec = 0;
771 } else {
772 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
773 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
775 break;
777 case SO_SNDTIMEO:
778 lv=sizeof(struct timeval);
779 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
780 v.tm.tv_sec = 0;
781 v.tm.tv_usec = 0;
782 } else {
783 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
784 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
786 break;
788 case SO_RCVLOWAT:
789 v.val = sk->sk_rcvlowat;
790 break;
792 case SO_SNDLOWAT:
793 v.val=1;
794 break;
796 case SO_PASSCRED:
797 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
798 break;
800 case SO_PEERCRED:
801 if (len > sizeof(sk->sk_peercred))
802 len = sizeof(sk->sk_peercred);
803 if (copy_to_user(optval, &sk->sk_peercred, len))
804 return -EFAULT;
805 goto lenout;
807 case SO_PEERNAME:
809 char address[128];
811 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
812 return -ENOTCONN;
813 if (lv < len)
814 return -EINVAL;
815 if (copy_to_user(optval, address, len))
816 return -EFAULT;
817 goto lenout;
820 /* Dubious BSD thing... Probably nobody even uses it, but
821 * the UNIX standard wants it for whatever reason... -DaveM
823 case SO_ACCEPTCONN:
824 v.val = sk->sk_state == TCP_LISTEN;
825 break;
827 case SO_PASSSEC:
828 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
829 break;
831 case SO_PEERSEC:
832 return security_socket_getpeersec_stream(sock, optval, optlen, len);
834 default:
835 return -ENOPROTOOPT;
838 if (len > lv)
839 len = lv;
840 if (copy_to_user(optval, &v, len))
841 return -EFAULT;
842 lenout:
843 if (put_user(len, optlen))
844 return -EFAULT;
845 return 0;
849 * Initialize an sk_lock.
851 * (We also register the sk_lock with the lock validator.)
853 static inline void sock_lock_init(struct sock *sk)
855 sock_lock_init_class_and_name(sk,
856 af_family_slock_key_strings[sk->sk_family],
857 af_family_slock_keys + sk->sk_family,
858 af_family_key_strings[sk->sk_family],
859 af_family_keys + sk->sk_family);
862 static void sock_copy(struct sock *nsk, const struct sock *osk)
864 #ifdef CONFIG_SECURITY_NETWORK
865 void *sptr = nsk->sk_security;
866 #endif
868 memcpy(nsk, osk, osk->sk_prot->obj_size);
869 #ifdef CONFIG_SECURITY_NETWORK
870 nsk->sk_security = sptr;
871 security_sk_clone(osk, nsk);
872 #endif
875 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
876 int family)
878 struct sock *sk;
879 struct kmem_cache *slab;
881 slab = prot->slab;
882 if (slab != NULL)
883 sk = kmem_cache_alloc(slab, priority);
884 else
885 sk = kmalloc(prot->obj_size, priority);
887 if (sk != NULL) {
888 if (security_sk_alloc(sk, family, priority))
889 goto out_free;
891 if (!try_module_get(prot->owner))
892 goto out_free_sec;
895 return sk;
897 out_free_sec:
898 security_sk_free(sk);
899 out_free:
900 if (slab != NULL)
901 kmem_cache_free(slab, sk);
902 else
903 kfree(sk);
904 return NULL;
907 static void sk_prot_free(struct proto *prot, struct sock *sk)
909 struct kmem_cache *slab;
910 struct module *owner;
912 owner = prot->owner;
913 slab = prot->slab;
915 security_sk_free(sk);
916 if (slab != NULL)
917 kmem_cache_free(slab, sk);
918 else
919 kfree(sk);
920 module_put(owner);
924 * sk_alloc - All socket objects are allocated here
925 * @net: the applicable net namespace
926 * @family: protocol family
927 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
928 * @prot: struct proto associated with this new sock instance
929 * @zero_it: if we should zero the newly allocated sock
931 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
932 struct proto *prot)
934 struct sock *sk;
936 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
937 if (sk) {
938 sk->sk_family = family;
940 * See comment in struct sock definition to understand
941 * why we need sk_prot_creator -acme
943 sk->sk_prot = sk->sk_prot_creator = prot;
944 sock_lock_init(sk);
945 sk->sk_net = get_net(net);
948 return sk;
951 void sk_free(struct sock *sk)
953 struct sk_filter *filter;
955 if (sk->sk_destruct)
956 sk->sk_destruct(sk);
958 filter = rcu_dereference(sk->sk_filter);
959 if (filter) {
960 sk_filter_uncharge(sk, filter);
961 rcu_assign_pointer(sk->sk_filter, NULL);
964 sock_disable_timestamp(sk);
966 if (atomic_read(&sk->sk_omem_alloc))
967 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
968 __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
970 put_net(sk->sk_net);
971 sk_prot_free(sk->sk_prot_creator, sk);
974 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
976 struct sock *newsk;
978 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
979 if (newsk != NULL) {
980 struct sk_filter *filter;
982 sock_copy(newsk, sk);
984 /* SANITY */
985 get_net(newsk->sk_net);
986 sk_node_init(&newsk->sk_node);
987 sock_lock_init(newsk);
988 bh_lock_sock(newsk);
989 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
991 atomic_set(&newsk->sk_rmem_alloc, 0);
992 atomic_set(&newsk->sk_wmem_alloc, 0);
993 atomic_set(&newsk->sk_omem_alloc, 0);
994 skb_queue_head_init(&newsk->sk_receive_queue);
995 skb_queue_head_init(&newsk->sk_write_queue);
996 #ifdef CONFIG_NET_DMA
997 skb_queue_head_init(&newsk->sk_async_wait_queue);
998 #endif
1000 rwlock_init(&newsk->sk_dst_lock);
1001 rwlock_init(&newsk->sk_callback_lock);
1002 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1003 af_callback_keys + newsk->sk_family,
1004 af_family_clock_key_strings[newsk->sk_family]);
1006 newsk->sk_dst_cache = NULL;
1007 newsk->sk_wmem_queued = 0;
1008 newsk->sk_forward_alloc = 0;
1009 newsk->sk_send_head = NULL;
1010 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1012 sock_reset_flag(newsk, SOCK_DONE);
1013 skb_queue_head_init(&newsk->sk_error_queue);
1015 filter = newsk->sk_filter;
1016 if (filter != NULL)
1017 sk_filter_charge(newsk, filter);
1019 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1020 /* It is still raw copy of parent, so invalidate
1021 * destructor and make plain sk_free() */
1022 newsk->sk_destruct = NULL;
1023 sk_free(newsk);
1024 newsk = NULL;
1025 goto out;
1028 newsk->sk_err = 0;
1029 newsk->sk_priority = 0;
1030 atomic_set(&newsk->sk_refcnt, 2);
1033 * Increment the counter in the same struct proto as the master
1034 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1035 * is the same as sk->sk_prot->socks, as this field was copied
1036 * with memcpy).
1038 * This _changes_ the previous behaviour, where
1039 * tcp_create_openreq_child always was incrementing the
1040 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1041 * to be taken into account in all callers. -acme
1043 sk_refcnt_debug_inc(newsk);
1044 newsk->sk_socket = NULL;
1045 newsk->sk_sleep = NULL;
1047 if (newsk->sk_prot->sockets_allocated)
1048 atomic_inc(newsk->sk_prot->sockets_allocated);
1050 out:
1051 return newsk;
1054 EXPORT_SYMBOL_GPL(sk_clone);
1056 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1058 __sk_dst_set(sk, dst);
1059 sk->sk_route_caps = dst->dev->features;
1060 if (sk->sk_route_caps & NETIF_F_GSO)
1061 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1062 if (sk_can_gso(sk)) {
1063 if (dst->header_len)
1064 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1065 else
1066 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1069 EXPORT_SYMBOL_GPL(sk_setup_caps);
1071 void __init sk_init(void)
1073 if (num_physpages <= 4096) {
1074 sysctl_wmem_max = 32767;
1075 sysctl_rmem_max = 32767;
1076 sysctl_wmem_default = 32767;
1077 sysctl_rmem_default = 32767;
1078 } else if (num_physpages >= 131072) {
1079 sysctl_wmem_max = 131071;
1080 sysctl_rmem_max = 131071;
1085 * Simple resource managers for sockets.
1090 * Write buffer destructor automatically called from kfree_skb.
1092 void sock_wfree(struct sk_buff *skb)
1094 struct sock *sk = skb->sk;
1096 /* In case it might be waiting for more memory. */
1097 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1098 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1099 sk->sk_write_space(sk);
1100 sock_put(sk);
1104 * Read buffer destructor automatically called from kfree_skb.
1106 void sock_rfree(struct sk_buff *skb)
1108 struct sock *sk = skb->sk;
1110 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1114 int sock_i_uid(struct sock *sk)
1116 int uid;
1118 read_lock(&sk->sk_callback_lock);
1119 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1120 read_unlock(&sk->sk_callback_lock);
1121 return uid;
1124 unsigned long sock_i_ino(struct sock *sk)
1126 unsigned long ino;
1128 read_lock(&sk->sk_callback_lock);
1129 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1130 read_unlock(&sk->sk_callback_lock);
1131 return ino;
1135 * Allocate a skb from the socket's send buffer.
1137 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1138 gfp_t priority)
1140 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1141 struct sk_buff * skb = alloc_skb(size, priority);
1142 if (skb) {
1143 skb_set_owner_w(skb, sk);
1144 return skb;
1147 return NULL;
1151 * Allocate a skb from the socket's receive buffer.
1153 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1154 gfp_t priority)
1156 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1157 struct sk_buff *skb = alloc_skb(size, priority);
1158 if (skb) {
1159 skb_set_owner_r(skb, sk);
1160 return skb;
1163 return NULL;
1167 * Allocate a memory block from the socket's option memory buffer.
1169 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1171 if ((unsigned)size <= sysctl_optmem_max &&
1172 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1173 void *mem;
1174 /* First do the add, to avoid the race if kmalloc
1175 * might sleep.
1177 atomic_add(size, &sk->sk_omem_alloc);
1178 mem = kmalloc(size, priority);
1179 if (mem)
1180 return mem;
1181 atomic_sub(size, &sk->sk_omem_alloc);
1183 return NULL;
1187 * Free an option memory block.
1189 void sock_kfree_s(struct sock *sk, void *mem, int size)
1191 kfree(mem);
1192 atomic_sub(size, &sk->sk_omem_alloc);
1195 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1196 I think, these locks should be removed for datagram sockets.
1198 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1200 DEFINE_WAIT(wait);
1202 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1203 for (;;) {
1204 if (!timeo)
1205 break;
1206 if (signal_pending(current))
1207 break;
1208 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1209 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1210 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1211 break;
1212 if (sk->sk_shutdown & SEND_SHUTDOWN)
1213 break;
1214 if (sk->sk_err)
1215 break;
1216 timeo = schedule_timeout(timeo);
1218 finish_wait(sk->sk_sleep, &wait);
1219 return timeo;
1224 * Generic send/receive buffer handlers
1227 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1228 unsigned long header_len,
1229 unsigned long data_len,
1230 int noblock, int *errcode)
1232 struct sk_buff *skb;
1233 gfp_t gfp_mask;
1234 long timeo;
1235 int err;
1237 gfp_mask = sk->sk_allocation;
1238 if (gfp_mask & __GFP_WAIT)
1239 gfp_mask |= __GFP_REPEAT;
1241 timeo = sock_sndtimeo(sk, noblock);
1242 while (1) {
1243 err = sock_error(sk);
1244 if (err != 0)
1245 goto failure;
1247 err = -EPIPE;
1248 if (sk->sk_shutdown & SEND_SHUTDOWN)
1249 goto failure;
1251 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1252 skb = alloc_skb(header_len, gfp_mask);
1253 if (skb) {
1254 int npages;
1255 int i;
1257 /* No pages, we're done... */
1258 if (!data_len)
1259 break;
1261 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1262 skb->truesize += data_len;
1263 skb_shinfo(skb)->nr_frags = npages;
1264 for (i = 0; i < npages; i++) {
1265 struct page *page;
1266 skb_frag_t *frag;
1268 page = alloc_pages(sk->sk_allocation, 0);
1269 if (!page) {
1270 err = -ENOBUFS;
1271 skb_shinfo(skb)->nr_frags = i;
1272 kfree_skb(skb);
1273 goto failure;
1276 frag = &skb_shinfo(skb)->frags[i];
1277 frag->page = page;
1278 frag->page_offset = 0;
1279 frag->size = (data_len >= PAGE_SIZE ?
1280 PAGE_SIZE :
1281 data_len);
1282 data_len -= PAGE_SIZE;
1285 /* Full success... */
1286 break;
1288 err = -ENOBUFS;
1289 goto failure;
1291 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1292 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1293 err = -EAGAIN;
1294 if (!timeo)
1295 goto failure;
1296 if (signal_pending(current))
1297 goto interrupted;
1298 timeo = sock_wait_for_wmem(sk, timeo);
1301 skb_set_owner_w(skb, sk);
1302 return skb;
1304 interrupted:
1305 err = sock_intr_errno(timeo);
1306 failure:
1307 *errcode = err;
1308 return NULL;
1311 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1312 int noblock, int *errcode)
1314 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1317 static void __lock_sock(struct sock *sk)
1319 DEFINE_WAIT(wait);
1321 for (;;) {
1322 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1323 TASK_UNINTERRUPTIBLE);
1324 spin_unlock_bh(&sk->sk_lock.slock);
1325 schedule();
1326 spin_lock_bh(&sk->sk_lock.slock);
1327 if (!sock_owned_by_user(sk))
1328 break;
1330 finish_wait(&sk->sk_lock.wq, &wait);
1333 static void __release_sock(struct sock *sk)
1335 struct sk_buff *skb = sk->sk_backlog.head;
1337 do {
1338 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1339 bh_unlock_sock(sk);
1341 do {
1342 struct sk_buff *next = skb->next;
1344 skb->next = NULL;
1345 sk->sk_backlog_rcv(sk, skb);
1348 * We are in process context here with softirqs
1349 * disabled, use cond_resched_softirq() to preempt.
1350 * This is safe to do because we've taken the backlog
1351 * queue private:
1353 cond_resched_softirq();
1355 skb = next;
1356 } while (skb != NULL);
1358 bh_lock_sock(sk);
1359 } while ((skb = sk->sk_backlog.head) != NULL);
1363 * sk_wait_data - wait for data to arrive at sk_receive_queue
1364 * @sk: sock to wait on
1365 * @timeo: for how long
1367 * Now socket state including sk->sk_err is changed only under lock,
1368 * hence we may omit checks after joining wait queue.
1369 * We check receive queue before schedule() only as optimization;
1370 * it is very likely that release_sock() added new data.
1372 int sk_wait_data(struct sock *sk, long *timeo)
1374 int rc;
1375 DEFINE_WAIT(wait);
1377 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1378 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1379 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1380 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1381 finish_wait(sk->sk_sleep, &wait);
1382 return rc;
1385 EXPORT_SYMBOL(sk_wait_data);
1388 * Set of default routines for initialising struct proto_ops when
1389 * the protocol does not support a particular function. In certain
1390 * cases where it makes no sense for a protocol to have a "do nothing"
1391 * function, some default processing is provided.
1394 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1396 return -EOPNOTSUPP;
1399 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1400 int len, int flags)
1402 return -EOPNOTSUPP;
1405 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1407 return -EOPNOTSUPP;
1410 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1412 return -EOPNOTSUPP;
1415 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1416 int *len, int peer)
1418 return -EOPNOTSUPP;
1421 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1423 return 0;
1426 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1428 return -EOPNOTSUPP;
1431 int sock_no_listen(struct socket *sock, int backlog)
1433 return -EOPNOTSUPP;
1436 int sock_no_shutdown(struct socket *sock, int how)
1438 return -EOPNOTSUPP;
1441 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1442 char __user *optval, int optlen)
1444 return -EOPNOTSUPP;
1447 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1448 char __user *optval, int __user *optlen)
1450 return -EOPNOTSUPP;
1453 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1454 size_t len)
1456 return -EOPNOTSUPP;
1459 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1460 size_t len, int flags)
1462 return -EOPNOTSUPP;
1465 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1467 /* Mirror missing mmap method error code */
1468 return -ENODEV;
1471 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1473 ssize_t res;
1474 struct msghdr msg = {.msg_flags = flags};
1475 struct kvec iov;
1476 char *kaddr = kmap(page);
1477 iov.iov_base = kaddr + offset;
1478 iov.iov_len = size;
1479 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1480 kunmap(page);
1481 return res;
1485 * Default Socket Callbacks
1488 static void sock_def_wakeup(struct sock *sk)
1490 read_lock(&sk->sk_callback_lock);
1491 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1492 wake_up_interruptible_all(sk->sk_sleep);
1493 read_unlock(&sk->sk_callback_lock);
1496 static void sock_def_error_report(struct sock *sk)
1498 read_lock(&sk->sk_callback_lock);
1499 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1500 wake_up_interruptible(sk->sk_sleep);
1501 sk_wake_async(sk,0,POLL_ERR);
1502 read_unlock(&sk->sk_callback_lock);
1505 static void sock_def_readable(struct sock *sk, int len)
1507 read_lock(&sk->sk_callback_lock);
1508 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1509 wake_up_interruptible(sk->sk_sleep);
1510 sk_wake_async(sk,1,POLL_IN);
1511 read_unlock(&sk->sk_callback_lock);
1514 static void sock_def_write_space(struct sock *sk)
1516 read_lock(&sk->sk_callback_lock);
1518 /* Do not wake up a writer until he can make "significant"
1519 * progress. --DaveM
1521 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1522 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1523 wake_up_interruptible(sk->sk_sleep);
1525 /* Should agree with poll, otherwise some programs break */
1526 if (sock_writeable(sk))
1527 sk_wake_async(sk, 2, POLL_OUT);
1530 read_unlock(&sk->sk_callback_lock);
1533 static void sock_def_destruct(struct sock *sk)
1535 kfree(sk->sk_protinfo);
1538 void sk_send_sigurg(struct sock *sk)
1540 if (sk->sk_socket && sk->sk_socket->file)
1541 if (send_sigurg(&sk->sk_socket->file->f_owner))
1542 sk_wake_async(sk, 3, POLL_PRI);
1545 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1546 unsigned long expires)
1548 if (!mod_timer(timer, expires))
1549 sock_hold(sk);
1552 EXPORT_SYMBOL(sk_reset_timer);
1554 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1556 if (timer_pending(timer) && del_timer(timer))
1557 __sock_put(sk);
1560 EXPORT_SYMBOL(sk_stop_timer);
1562 void sock_init_data(struct socket *sock, struct sock *sk)
1564 skb_queue_head_init(&sk->sk_receive_queue);
1565 skb_queue_head_init(&sk->sk_write_queue);
1566 skb_queue_head_init(&sk->sk_error_queue);
1567 #ifdef CONFIG_NET_DMA
1568 skb_queue_head_init(&sk->sk_async_wait_queue);
1569 #endif
1571 sk->sk_send_head = NULL;
1573 init_timer(&sk->sk_timer);
1575 sk->sk_allocation = GFP_KERNEL;
1576 sk->sk_rcvbuf = sysctl_rmem_default;
1577 sk->sk_sndbuf = sysctl_wmem_default;
1578 sk->sk_state = TCP_CLOSE;
1579 sk->sk_socket = sock;
1581 sock_set_flag(sk, SOCK_ZAPPED);
1583 if (sock) {
1584 sk->sk_type = sock->type;
1585 sk->sk_sleep = &sock->wait;
1586 sock->sk = sk;
1587 } else
1588 sk->sk_sleep = NULL;
1590 rwlock_init(&sk->sk_dst_lock);
1591 rwlock_init(&sk->sk_callback_lock);
1592 lockdep_set_class_and_name(&sk->sk_callback_lock,
1593 af_callback_keys + sk->sk_family,
1594 af_family_clock_key_strings[sk->sk_family]);
1596 sk->sk_state_change = sock_def_wakeup;
1597 sk->sk_data_ready = sock_def_readable;
1598 sk->sk_write_space = sock_def_write_space;
1599 sk->sk_error_report = sock_def_error_report;
1600 sk->sk_destruct = sock_def_destruct;
1602 sk->sk_sndmsg_page = NULL;
1603 sk->sk_sndmsg_off = 0;
1605 sk->sk_peercred.pid = 0;
1606 sk->sk_peercred.uid = -1;
1607 sk->sk_peercred.gid = -1;
1608 sk->sk_write_pending = 0;
1609 sk->sk_rcvlowat = 1;
1610 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1611 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1613 sk->sk_stamp = ktime_set(-1L, -1L);
1615 atomic_set(&sk->sk_refcnt, 1);
1616 atomic_set(&sk->sk_drops, 0);
1619 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1621 might_sleep();
1622 spin_lock_bh(&sk->sk_lock.slock);
1623 if (sk->sk_lock.owned)
1624 __lock_sock(sk);
1625 sk->sk_lock.owned = 1;
1626 spin_unlock(&sk->sk_lock.slock);
1628 * The sk_lock has mutex_lock() semantics here:
1630 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1631 local_bh_enable();
1634 EXPORT_SYMBOL(lock_sock_nested);
1636 void fastcall release_sock(struct sock *sk)
1639 * The sk_lock has mutex_unlock() semantics:
1641 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1643 spin_lock_bh(&sk->sk_lock.slock);
1644 if (sk->sk_backlog.tail)
1645 __release_sock(sk);
1646 sk->sk_lock.owned = 0;
1647 if (waitqueue_active(&sk->sk_lock.wq))
1648 wake_up(&sk->sk_lock.wq);
1649 spin_unlock_bh(&sk->sk_lock.slock);
1651 EXPORT_SYMBOL(release_sock);
1653 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1655 struct timeval tv;
1656 if (!sock_flag(sk, SOCK_TIMESTAMP))
1657 sock_enable_timestamp(sk);
1658 tv = ktime_to_timeval(sk->sk_stamp);
1659 if (tv.tv_sec == -1)
1660 return -ENOENT;
1661 if (tv.tv_sec == 0) {
1662 sk->sk_stamp = ktime_get_real();
1663 tv = ktime_to_timeval(sk->sk_stamp);
1665 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1667 EXPORT_SYMBOL(sock_get_timestamp);
1669 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1671 struct timespec ts;
1672 if (!sock_flag(sk, SOCK_TIMESTAMP))
1673 sock_enable_timestamp(sk);
1674 ts = ktime_to_timespec(sk->sk_stamp);
1675 if (ts.tv_sec == -1)
1676 return -ENOENT;
1677 if (ts.tv_sec == 0) {
1678 sk->sk_stamp = ktime_get_real();
1679 ts = ktime_to_timespec(sk->sk_stamp);
1681 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1683 EXPORT_SYMBOL(sock_get_timestampns);
1685 void sock_enable_timestamp(struct sock *sk)
1687 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1688 sock_set_flag(sk, SOCK_TIMESTAMP);
1689 net_enable_timestamp();
1694 * Get a socket option on an socket.
1696 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1697 * asynchronous errors should be reported by getsockopt. We assume
1698 * this means if you specify SO_ERROR (otherwise whats the point of it).
1700 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1701 char __user *optval, int __user *optlen)
1703 struct sock *sk = sock->sk;
1705 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1708 EXPORT_SYMBOL(sock_common_getsockopt);
1710 #ifdef CONFIG_COMPAT
1711 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1712 char __user *optval, int __user *optlen)
1714 struct sock *sk = sock->sk;
1716 if (sk->sk_prot->compat_getsockopt != NULL)
1717 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1718 optval, optlen);
1719 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1721 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1722 #endif
1724 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1725 struct msghdr *msg, size_t size, int flags)
1727 struct sock *sk = sock->sk;
1728 int addr_len = 0;
1729 int err;
1731 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1732 flags & ~MSG_DONTWAIT, &addr_len);
1733 if (err >= 0)
1734 msg->msg_namelen = addr_len;
1735 return err;
1738 EXPORT_SYMBOL(sock_common_recvmsg);
1741 * Set socket options on an inet socket.
1743 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1744 char __user *optval, int optlen)
1746 struct sock *sk = sock->sk;
1748 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1751 EXPORT_SYMBOL(sock_common_setsockopt);
1753 #ifdef CONFIG_COMPAT
1754 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1755 char __user *optval, int optlen)
1757 struct sock *sk = sock->sk;
1759 if (sk->sk_prot->compat_setsockopt != NULL)
1760 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1761 optval, optlen);
1762 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1764 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1765 #endif
1767 void sk_common_release(struct sock *sk)
1769 if (sk->sk_prot->destroy)
1770 sk->sk_prot->destroy(sk);
1773 * Observation: when sock_common_release is called, processes have
1774 * no access to socket. But net still has.
1775 * Step one, detach it from networking:
1777 * A. Remove from hash tables.
1780 sk->sk_prot->unhash(sk);
1783 * In this point socket cannot receive new packets, but it is possible
1784 * that some packets are in flight because some CPU runs receiver and
1785 * did hash table lookup before we unhashed socket. They will achieve
1786 * receive queue and will be purged by socket destructor.
1788 * Also we still have packets pending on receive queue and probably,
1789 * our own packets waiting in device queues. sock_destroy will drain
1790 * receive queue, but transmitted packets will delay socket destruction
1791 * until the last reference will be released.
1794 sock_orphan(sk);
1796 xfrm_sk_free_policy(sk);
1798 sk_refcnt_debug_release(sk);
1799 sock_put(sk);
1802 EXPORT_SYMBOL(sk_common_release);
1804 static DEFINE_RWLOCK(proto_list_lock);
1805 static LIST_HEAD(proto_list);
1807 int proto_register(struct proto *prot, int alloc_slab)
1809 char *request_sock_slab_name = NULL;
1810 char *timewait_sock_slab_name;
1812 if (pcounter_alloc(&prot->inuse) != 0) {
1813 printk(KERN_CRIT "%s: Can't alloc inuse counters!\n", prot->name);
1814 goto out;
1817 if (alloc_slab) {
1818 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1819 SLAB_HWCACHE_ALIGN, NULL);
1821 if (prot->slab == NULL) {
1822 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1823 prot->name);
1824 goto out_free_inuse;
1827 if (prot->rsk_prot != NULL) {
1828 static const char mask[] = "request_sock_%s";
1830 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1831 if (request_sock_slab_name == NULL)
1832 goto out_free_sock_slab;
1834 sprintf(request_sock_slab_name, mask, prot->name);
1835 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1836 prot->rsk_prot->obj_size, 0,
1837 SLAB_HWCACHE_ALIGN, NULL);
1839 if (prot->rsk_prot->slab == NULL) {
1840 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1841 prot->name);
1842 goto out_free_request_sock_slab_name;
1846 if (prot->twsk_prot != NULL) {
1847 static const char mask[] = "tw_sock_%s";
1849 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1851 if (timewait_sock_slab_name == NULL)
1852 goto out_free_request_sock_slab;
1854 sprintf(timewait_sock_slab_name, mask, prot->name);
1855 prot->twsk_prot->twsk_slab =
1856 kmem_cache_create(timewait_sock_slab_name,
1857 prot->twsk_prot->twsk_obj_size,
1858 0, SLAB_HWCACHE_ALIGN,
1859 NULL);
1860 if (prot->twsk_prot->twsk_slab == NULL)
1861 goto out_free_timewait_sock_slab_name;
1865 write_lock(&proto_list_lock);
1866 list_add(&prot->node, &proto_list);
1867 write_unlock(&proto_list_lock);
1868 return 0;
1870 out_free_timewait_sock_slab_name:
1871 kfree(timewait_sock_slab_name);
1872 out_free_request_sock_slab:
1873 if (prot->rsk_prot && prot->rsk_prot->slab) {
1874 kmem_cache_destroy(prot->rsk_prot->slab);
1875 prot->rsk_prot->slab = NULL;
1877 out_free_request_sock_slab_name:
1878 kfree(request_sock_slab_name);
1879 out_free_sock_slab:
1880 kmem_cache_destroy(prot->slab);
1881 prot->slab = NULL;
1882 out_free_inuse:
1883 pcounter_free(&prot->inuse);
1884 out:
1885 return -ENOBUFS;
1888 EXPORT_SYMBOL(proto_register);
1890 void proto_unregister(struct proto *prot)
1892 write_lock(&proto_list_lock);
1893 list_del(&prot->node);
1894 write_unlock(&proto_list_lock);
1896 pcounter_free(&prot->inuse);
1898 if (prot->slab != NULL) {
1899 kmem_cache_destroy(prot->slab);
1900 prot->slab = NULL;
1903 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1904 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1906 kmem_cache_destroy(prot->rsk_prot->slab);
1907 kfree(name);
1908 prot->rsk_prot->slab = NULL;
1911 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1912 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1914 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1915 kfree(name);
1916 prot->twsk_prot->twsk_slab = NULL;
1920 EXPORT_SYMBOL(proto_unregister);
1922 #ifdef CONFIG_PROC_FS
1923 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1925 read_lock(&proto_list_lock);
1926 return seq_list_start_head(&proto_list, *pos);
1929 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1931 return seq_list_next(v, &proto_list, pos);
1934 static void proto_seq_stop(struct seq_file *seq, void *v)
1936 read_unlock(&proto_list_lock);
1939 static char proto_method_implemented(const void *method)
1941 return method == NULL ? 'n' : 'y';
1944 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1946 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
1947 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1948 proto->name,
1949 proto->obj_size,
1950 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1951 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1952 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1953 proto->max_header,
1954 proto->slab == NULL ? "no" : "yes",
1955 module_name(proto->owner),
1956 proto_method_implemented(proto->close),
1957 proto_method_implemented(proto->connect),
1958 proto_method_implemented(proto->disconnect),
1959 proto_method_implemented(proto->accept),
1960 proto_method_implemented(proto->ioctl),
1961 proto_method_implemented(proto->init),
1962 proto_method_implemented(proto->destroy),
1963 proto_method_implemented(proto->shutdown),
1964 proto_method_implemented(proto->setsockopt),
1965 proto_method_implemented(proto->getsockopt),
1966 proto_method_implemented(proto->sendmsg),
1967 proto_method_implemented(proto->recvmsg),
1968 proto_method_implemented(proto->sendpage),
1969 proto_method_implemented(proto->bind),
1970 proto_method_implemented(proto->backlog_rcv),
1971 proto_method_implemented(proto->hash),
1972 proto_method_implemented(proto->unhash),
1973 proto_method_implemented(proto->get_port),
1974 proto_method_implemented(proto->enter_memory_pressure));
1977 static int proto_seq_show(struct seq_file *seq, void *v)
1979 if (v == &proto_list)
1980 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1981 "protocol",
1982 "size",
1983 "sockets",
1984 "memory",
1985 "press",
1986 "maxhdr",
1987 "slab",
1988 "module",
1989 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1990 else
1991 proto_seq_printf(seq, list_entry(v, struct proto, node));
1992 return 0;
1995 static const struct seq_operations proto_seq_ops = {
1996 .start = proto_seq_start,
1997 .next = proto_seq_next,
1998 .stop = proto_seq_stop,
1999 .show = proto_seq_show,
2002 static int proto_seq_open(struct inode *inode, struct file *file)
2004 return seq_open(file, &proto_seq_ops);
2007 static const struct file_operations proto_seq_fops = {
2008 .owner = THIS_MODULE,
2009 .open = proto_seq_open,
2010 .read = seq_read,
2011 .llseek = seq_lseek,
2012 .release = seq_release,
2015 static int __init proto_init(void)
2017 /* register /proc/net/protocols */
2018 return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2021 subsys_initcall(proto_init);
2023 #endif /* PROC_FS */
2025 EXPORT_SYMBOL(sk_alloc);
2026 EXPORT_SYMBOL(sk_free);
2027 EXPORT_SYMBOL(sk_send_sigurg);
2028 EXPORT_SYMBOL(sock_alloc_send_skb);
2029 EXPORT_SYMBOL(sock_init_data);
2030 EXPORT_SYMBOL(sock_kfree_s);
2031 EXPORT_SYMBOL(sock_kmalloc);
2032 EXPORT_SYMBOL(sock_no_accept);
2033 EXPORT_SYMBOL(sock_no_bind);
2034 EXPORT_SYMBOL(sock_no_connect);
2035 EXPORT_SYMBOL(sock_no_getname);
2036 EXPORT_SYMBOL(sock_no_getsockopt);
2037 EXPORT_SYMBOL(sock_no_ioctl);
2038 EXPORT_SYMBOL(sock_no_listen);
2039 EXPORT_SYMBOL(sock_no_mmap);
2040 EXPORT_SYMBOL(sock_no_poll);
2041 EXPORT_SYMBOL(sock_no_recvmsg);
2042 EXPORT_SYMBOL(sock_no_sendmsg);
2043 EXPORT_SYMBOL(sock_no_sendpage);
2044 EXPORT_SYMBOL(sock_no_setsockopt);
2045 EXPORT_SYMBOL(sock_no_shutdown);
2046 EXPORT_SYMBOL(sock_no_socketpair);
2047 EXPORT_SYMBOL(sock_rfree);
2048 EXPORT_SYMBOL(sock_setsockopt);
2049 EXPORT_SYMBOL(sock_wfree);
2050 EXPORT_SYMBOL(sock_wmalloc);
2051 EXPORT_SYMBOL(sock_i_uid);
2052 EXPORT_SYMBOL(sock_i_ino);
2053 EXPORT_SYMBOL(sysctl_optmem_max);