perf_events: Revert: Fix transaction recovery in group_sched_in()
[linux-2.6/x86.git] / kernel / perf_event.c
blob39afdb07d75810b9cb26da3c1c5e778adae43674
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
35 #include <asm/irq_regs.h>
37 atomic_t perf_task_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
53 int sysctl_perf_event_paranoid __read_mostly = 1;
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
58 * max perf event sample rate
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62 static atomic64_t perf_event_id;
64 void __weak perf_event_print_debug(void) { }
66 extern __weak const char *perf_pmu_name(void)
68 return "pmu";
71 void perf_pmu_disable(struct pmu *pmu)
73 int *count = this_cpu_ptr(pmu->pmu_disable_count);
74 if (!(*count)++)
75 pmu->pmu_disable(pmu);
78 void perf_pmu_enable(struct pmu *pmu)
80 int *count = this_cpu_ptr(pmu->pmu_disable_count);
81 if (!--(*count))
82 pmu->pmu_enable(pmu);
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
88 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89 * because they're strictly cpu affine and rotate_start is called with IRQs
90 * disabled, while rotate_context is called from IRQ context.
92 static void perf_pmu_rotate_start(struct pmu *pmu)
94 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 struct list_head *head = &__get_cpu_var(rotation_list);
97 WARN_ON(!irqs_disabled());
99 if (list_empty(&cpuctx->rotation_list))
100 list_add(&cpuctx->rotation_list, head);
103 static void get_ctx(struct perf_event_context *ctx)
105 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
108 static void free_ctx(struct rcu_head *head)
110 struct perf_event_context *ctx;
112 ctx = container_of(head, struct perf_event_context, rcu_head);
113 kfree(ctx);
116 static void put_ctx(struct perf_event_context *ctx)
118 if (atomic_dec_and_test(&ctx->refcount)) {
119 if (ctx->parent_ctx)
120 put_ctx(ctx->parent_ctx);
121 if (ctx->task)
122 put_task_struct(ctx->task);
123 call_rcu(&ctx->rcu_head, free_ctx);
127 static void unclone_ctx(struct perf_event_context *ctx)
129 if (ctx->parent_ctx) {
130 put_ctx(ctx->parent_ctx);
131 ctx->parent_ctx = NULL;
136 * If we inherit events we want to return the parent event id
137 * to userspace.
139 static u64 primary_event_id(struct perf_event *event)
141 u64 id = event->id;
143 if (event->parent)
144 id = event->parent->id;
146 return id;
150 * Get the perf_event_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
157 struct perf_event_context *ctx;
159 rcu_read_lock();
160 retry:
161 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162 if (ctx) {
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_event_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
173 raw_spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176 goto retry;
179 if (!atomic_inc_not_zero(&ctx->refcount)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 ctx = NULL;
184 rcu_read_unlock();
185 return ctx;
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
196 struct perf_event_context *ctx;
197 unsigned long flags;
199 ctx = perf_lock_task_context(task, ctxn, &flags);
200 if (ctx) {
201 ++ctx->pin_count;
202 raw_spin_unlock_irqrestore(&ctx->lock, flags);
204 return ctx;
207 static void perf_unpin_context(struct perf_event_context *ctx)
209 unsigned long flags;
211 raw_spin_lock_irqsave(&ctx->lock, flags);
212 --ctx->pin_count;
213 raw_spin_unlock_irqrestore(&ctx->lock, flags);
214 put_ctx(ctx);
217 static inline u64 perf_clock(void)
219 return local_clock();
223 * Update the record of the current time in a context.
225 static void update_context_time(struct perf_event_context *ctx)
227 u64 now = perf_clock();
229 ctx->time += now - ctx->timestamp;
230 ctx->timestamp = now;
234 * Update the total_time_enabled and total_time_running fields for a event.
236 static void update_event_times(struct perf_event *event)
238 struct perf_event_context *ctx = event->ctx;
239 u64 run_end;
241 if (event->state < PERF_EVENT_STATE_INACTIVE ||
242 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243 return;
245 if (ctx->is_active)
246 run_end = ctx->time;
247 else
248 run_end = event->tstamp_stopped;
250 event->total_time_enabled = run_end - event->tstamp_enabled;
252 if (event->state == PERF_EVENT_STATE_INACTIVE)
253 run_end = event->tstamp_stopped;
254 else
255 run_end = ctx->time;
257 event->total_time_running = run_end - event->tstamp_running;
261 * Update total_time_enabled and total_time_running for all events in a group.
263 static void update_group_times(struct perf_event *leader)
265 struct perf_event *event;
267 update_event_times(leader);
268 list_for_each_entry(event, &leader->sibling_list, group_entry)
269 update_event_times(event);
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
275 if (event->attr.pinned)
276 return &ctx->pinned_groups;
277 else
278 return &ctx->flexible_groups;
282 * Add a event from the lists for its context.
283 * Must be called with ctx->mutex and ctx->lock held.
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
288 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289 event->attach_state |= PERF_ATTACH_CONTEXT;
292 * If we're a stand alone event or group leader, we go to the context
293 * list, group events are kept attached to the group so that
294 * perf_group_detach can, at all times, locate all siblings.
296 if (event->group_leader == event) {
297 struct list_head *list;
299 if (is_software_event(event))
300 event->group_flags |= PERF_GROUP_SOFTWARE;
302 list = ctx_group_list(event, ctx);
303 list_add_tail(&event->group_entry, list);
306 list_add_rcu(&event->event_entry, &ctx->event_list);
307 if (!ctx->nr_events)
308 perf_pmu_rotate_start(ctx->pmu);
309 ctx->nr_events++;
310 if (event->attr.inherit_stat)
311 ctx->nr_stat++;
314 static void perf_group_attach(struct perf_event *event)
316 struct perf_event *group_leader = event->group_leader;
319 * We can have double attach due to group movement in perf_event_open.
321 if (event->attach_state & PERF_ATTACH_GROUP)
322 return;
324 event->attach_state |= PERF_ATTACH_GROUP;
326 if (group_leader == event)
327 return;
329 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
330 !is_software_event(event))
331 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
333 list_add_tail(&event->group_entry, &group_leader->sibling_list);
334 group_leader->nr_siblings++;
338 * Remove a event from the lists for its context.
339 * Must be called with ctx->mutex and ctx->lock held.
341 static void
342 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
345 * We can have double detach due to exit/hot-unplug + close.
347 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
348 return;
350 event->attach_state &= ~PERF_ATTACH_CONTEXT;
352 ctx->nr_events--;
353 if (event->attr.inherit_stat)
354 ctx->nr_stat--;
356 list_del_rcu(&event->event_entry);
358 if (event->group_leader == event)
359 list_del_init(&event->group_entry);
361 update_group_times(event);
364 * If event was in error state, then keep it
365 * that way, otherwise bogus counts will be
366 * returned on read(). The only way to get out
367 * of error state is by explicit re-enabling
368 * of the event
370 if (event->state > PERF_EVENT_STATE_OFF)
371 event->state = PERF_EVENT_STATE_OFF;
374 static void perf_group_detach(struct perf_event *event)
376 struct perf_event *sibling, *tmp;
377 struct list_head *list = NULL;
380 * We can have double detach due to exit/hot-unplug + close.
382 if (!(event->attach_state & PERF_ATTACH_GROUP))
383 return;
385 event->attach_state &= ~PERF_ATTACH_GROUP;
388 * If this is a sibling, remove it from its group.
390 if (event->group_leader != event) {
391 list_del_init(&event->group_entry);
392 event->group_leader->nr_siblings--;
393 return;
396 if (!list_empty(&event->group_entry))
397 list = &event->group_entry;
400 * If this was a group event with sibling events then
401 * upgrade the siblings to singleton events by adding them
402 * to whatever list we are on.
404 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
405 if (list)
406 list_move_tail(&sibling->group_entry, list);
407 sibling->group_leader = sibling;
409 /* Inherit group flags from the previous leader */
410 sibling->group_flags = event->group_flags;
414 static inline int
415 event_filter_match(struct perf_event *event)
417 return event->cpu == -1 || event->cpu == smp_processor_id();
420 static void
421 event_sched_out(struct perf_event *event,
422 struct perf_cpu_context *cpuctx,
423 struct perf_event_context *ctx)
425 u64 delta;
427 * An event which could not be activated because of
428 * filter mismatch still needs to have its timings
429 * maintained, otherwise bogus information is return
430 * via read() for time_enabled, time_running:
432 if (event->state == PERF_EVENT_STATE_INACTIVE
433 && !event_filter_match(event)) {
434 delta = ctx->time - event->tstamp_stopped;
435 event->tstamp_running += delta;
436 event->tstamp_stopped = ctx->time;
439 if (event->state != PERF_EVENT_STATE_ACTIVE)
440 return;
442 event->state = PERF_EVENT_STATE_INACTIVE;
443 if (event->pending_disable) {
444 event->pending_disable = 0;
445 event->state = PERF_EVENT_STATE_OFF;
447 event->tstamp_stopped = ctx->time;
448 event->pmu->del(event, 0);
449 event->oncpu = -1;
451 if (!is_software_event(event))
452 cpuctx->active_oncpu--;
453 ctx->nr_active--;
454 if (event->attr.exclusive || !cpuctx->active_oncpu)
455 cpuctx->exclusive = 0;
458 static void
459 group_sched_out(struct perf_event *group_event,
460 struct perf_cpu_context *cpuctx,
461 struct perf_event_context *ctx)
463 struct perf_event *event;
464 int state = group_event->state;
466 event_sched_out(group_event, cpuctx, ctx);
469 * Schedule out siblings (if any):
471 list_for_each_entry(event, &group_event->sibling_list, group_entry)
472 event_sched_out(event, cpuctx, ctx);
474 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
475 cpuctx->exclusive = 0;
478 static inline struct perf_cpu_context *
479 __get_cpu_context(struct perf_event_context *ctx)
481 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
485 * Cross CPU call to remove a performance event
487 * We disable the event on the hardware level first. After that we
488 * remove it from the context list.
490 static void __perf_event_remove_from_context(void *info)
492 struct perf_event *event = info;
493 struct perf_event_context *ctx = event->ctx;
494 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
497 * If this is a task context, we need to check whether it is
498 * the current task context of this cpu. If not it has been
499 * scheduled out before the smp call arrived.
501 if (ctx->task && cpuctx->task_ctx != ctx)
502 return;
504 raw_spin_lock(&ctx->lock);
506 event_sched_out(event, cpuctx, ctx);
508 list_del_event(event, ctx);
510 raw_spin_unlock(&ctx->lock);
515 * Remove the event from a task's (or a CPU's) list of events.
517 * Must be called with ctx->mutex held.
519 * CPU events are removed with a smp call. For task events we only
520 * call when the task is on a CPU.
522 * If event->ctx is a cloned context, callers must make sure that
523 * every task struct that event->ctx->task could possibly point to
524 * remains valid. This is OK when called from perf_release since
525 * that only calls us on the top-level context, which can't be a clone.
526 * When called from perf_event_exit_task, it's OK because the
527 * context has been detached from its task.
529 static void perf_event_remove_from_context(struct perf_event *event)
531 struct perf_event_context *ctx = event->ctx;
532 struct task_struct *task = ctx->task;
534 if (!task) {
536 * Per cpu events are removed via an smp call and
537 * the removal is always successful.
539 smp_call_function_single(event->cpu,
540 __perf_event_remove_from_context,
541 event, 1);
542 return;
545 retry:
546 task_oncpu_function_call(task, __perf_event_remove_from_context,
547 event);
549 raw_spin_lock_irq(&ctx->lock);
551 * If the context is active we need to retry the smp call.
553 if (ctx->nr_active && !list_empty(&event->group_entry)) {
554 raw_spin_unlock_irq(&ctx->lock);
555 goto retry;
559 * The lock prevents that this context is scheduled in so we
560 * can remove the event safely, if the call above did not
561 * succeed.
563 if (!list_empty(&event->group_entry))
564 list_del_event(event, ctx);
565 raw_spin_unlock_irq(&ctx->lock);
569 * Cross CPU call to disable a performance event
571 static void __perf_event_disable(void *info)
573 struct perf_event *event = info;
574 struct perf_event_context *ctx = event->ctx;
575 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
578 * If this is a per-task event, need to check whether this
579 * event's task is the current task on this cpu.
581 if (ctx->task && cpuctx->task_ctx != ctx)
582 return;
584 raw_spin_lock(&ctx->lock);
587 * If the event is on, turn it off.
588 * If it is in error state, leave it in error state.
590 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
591 update_context_time(ctx);
592 update_group_times(event);
593 if (event == event->group_leader)
594 group_sched_out(event, cpuctx, ctx);
595 else
596 event_sched_out(event, cpuctx, ctx);
597 event->state = PERF_EVENT_STATE_OFF;
600 raw_spin_unlock(&ctx->lock);
604 * Disable a event.
606 * If event->ctx is a cloned context, callers must make sure that
607 * every task struct that event->ctx->task could possibly point to
608 * remains valid. This condition is satisifed when called through
609 * perf_event_for_each_child or perf_event_for_each because they
610 * hold the top-level event's child_mutex, so any descendant that
611 * goes to exit will block in sync_child_event.
612 * When called from perf_pending_event it's OK because event->ctx
613 * is the current context on this CPU and preemption is disabled,
614 * hence we can't get into perf_event_task_sched_out for this context.
616 void perf_event_disable(struct perf_event *event)
618 struct perf_event_context *ctx = event->ctx;
619 struct task_struct *task = ctx->task;
621 if (!task) {
623 * Disable the event on the cpu that it's on
625 smp_call_function_single(event->cpu, __perf_event_disable,
626 event, 1);
627 return;
630 retry:
631 task_oncpu_function_call(task, __perf_event_disable, event);
633 raw_spin_lock_irq(&ctx->lock);
635 * If the event is still active, we need to retry the cross-call.
637 if (event->state == PERF_EVENT_STATE_ACTIVE) {
638 raw_spin_unlock_irq(&ctx->lock);
639 goto retry;
643 * Since we have the lock this context can't be scheduled
644 * in, so we can change the state safely.
646 if (event->state == PERF_EVENT_STATE_INACTIVE) {
647 update_group_times(event);
648 event->state = PERF_EVENT_STATE_OFF;
651 raw_spin_unlock_irq(&ctx->lock);
654 static int
655 event_sched_in(struct perf_event *event,
656 struct perf_cpu_context *cpuctx,
657 struct perf_event_context *ctx)
659 if (event->state <= PERF_EVENT_STATE_OFF)
660 return 0;
662 event->state = PERF_EVENT_STATE_ACTIVE;
663 event->oncpu = smp_processor_id();
665 * The new state must be visible before we turn it on in the hardware:
667 smp_wmb();
669 if (event->pmu->add(event, PERF_EF_START)) {
670 event->state = PERF_EVENT_STATE_INACTIVE;
671 event->oncpu = -1;
672 return -EAGAIN;
675 event->tstamp_running += ctx->time - event->tstamp_stopped;
677 if (!is_software_event(event))
678 cpuctx->active_oncpu++;
679 ctx->nr_active++;
681 if (event->attr.exclusive)
682 cpuctx->exclusive = 1;
684 return 0;
687 static int
688 group_sched_in(struct perf_event *group_event,
689 struct perf_cpu_context *cpuctx,
690 struct perf_event_context *ctx)
692 struct perf_event *event, *partial_group = NULL;
693 struct pmu *pmu = group_event->pmu;
695 if (group_event->state == PERF_EVENT_STATE_OFF)
696 return 0;
698 pmu->start_txn(pmu);
700 if (event_sched_in(group_event, cpuctx, ctx)) {
701 pmu->cancel_txn(pmu);
702 return -EAGAIN;
706 * Schedule in siblings as one group (if any):
708 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
709 if (event_sched_in(event, cpuctx, ctx)) {
710 partial_group = event;
711 goto group_error;
715 if (!pmu->commit_txn(pmu))
716 return 0;
718 group_error:
720 * Groups can be scheduled in as one unit only, so undo any
721 * partial group before returning:
723 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
724 if (event == partial_group)
725 break;
726 event_sched_out(event, cpuctx, ctx);
728 event_sched_out(group_event, cpuctx, ctx);
730 pmu->cancel_txn(pmu);
732 return -EAGAIN;
736 * Work out whether we can put this event group on the CPU now.
738 static int group_can_go_on(struct perf_event *event,
739 struct perf_cpu_context *cpuctx,
740 int can_add_hw)
743 * Groups consisting entirely of software events can always go on.
745 if (event->group_flags & PERF_GROUP_SOFTWARE)
746 return 1;
748 * If an exclusive group is already on, no other hardware
749 * events can go on.
751 if (cpuctx->exclusive)
752 return 0;
754 * If this group is exclusive and there are already
755 * events on the CPU, it can't go on.
757 if (event->attr.exclusive && cpuctx->active_oncpu)
758 return 0;
760 * Otherwise, try to add it if all previous groups were able
761 * to go on.
763 return can_add_hw;
766 static void add_event_to_ctx(struct perf_event *event,
767 struct perf_event_context *ctx)
769 list_add_event(event, ctx);
770 perf_group_attach(event);
771 event->tstamp_enabled = ctx->time;
772 event->tstamp_running = ctx->time;
773 event->tstamp_stopped = ctx->time;
777 * Cross CPU call to install and enable a performance event
779 * Must be called with ctx->mutex held
781 static void __perf_install_in_context(void *info)
783 struct perf_event *event = info;
784 struct perf_event_context *ctx = event->ctx;
785 struct perf_event *leader = event->group_leader;
786 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
787 int err;
790 * If this is a task context, we need to check whether it is
791 * the current task context of this cpu. If not it has been
792 * scheduled out before the smp call arrived.
793 * Or possibly this is the right context but it isn't
794 * on this cpu because it had no events.
796 if (ctx->task && cpuctx->task_ctx != ctx) {
797 if (cpuctx->task_ctx || ctx->task != current)
798 return;
799 cpuctx->task_ctx = ctx;
802 raw_spin_lock(&ctx->lock);
803 ctx->is_active = 1;
804 update_context_time(ctx);
806 add_event_to_ctx(event, ctx);
808 if (event->cpu != -1 && event->cpu != smp_processor_id())
809 goto unlock;
812 * Don't put the event on if it is disabled or if
813 * it is in a group and the group isn't on.
815 if (event->state != PERF_EVENT_STATE_INACTIVE ||
816 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
817 goto unlock;
820 * An exclusive event can't go on if there are already active
821 * hardware events, and no hardware event can go on if there
822 * is already an exclusive event on.
824 if (!group_can_go_on(event, cpuctx, 1))
825 err = -EEXIST;
826 else
827 err = event_sched_in(event, cpuctx, ctx);
829 if (err) {
831 * This event couldn't go on. If it is in a group
832 * then we have to pull the whole group off.
833 * If the event group is pinned then put it in error state.
835 if (leader != event)
836 group_sched_out(leader, cpuctx, ctx);
837 if (leader->attr.pinned) {
838 update_group_times(leader);
839 leader->state = PERF_EVENT_STATE_ERROR;
843 unlock:
844 raw_spin_unlock(&ctx->lock);
848 * Attach a performance event to a context
850 * First we add the event to the list with the hardware enable bit
851 * in event->hw_config cleared.
853 * If the event is attached to a task which is on a CPU we use a smp
854 * call to enable it in the task context. The task might have been
855 * scheduled away, but we check this in the smp call again.
857 * Must be called with ctx->mutex held.
859 static void
860 perf_install_in_context(struct perf_event_context *ctx,
861 struct perf_event *event,
862 int cpu)
864 struct task_struct *task = ctx->task;
866 event->ctx = ctx;
868 if (!task) {
870 * Per cpu events are installed via an smp call and
871 * the install is always successful.
873 smp_call_function_single(cpu, __perf_install_in_context,
874 event, 1);
875 return;
878 retry:
879 task_oncpu_function_call(task, __perf_install_in_context,
880 event);
882 raw_spin_lock_irq(&ctx->lock);
884 * we need to retry the smp call.
886 if (ctx->is_active && list_empty(&event->group_entry)) {
887 raw_spin_unlock_irq(&ctx->lock);
888 goto retry;
892 * The lock prevents that this context is scheduled in so we
893 * can add the event safely, if it the call above did not
894 * succeed.
896 if (list_empty(&event->group_entry))
897 add_event_to_ctx(event, ctx);
898 raw_spin_unlock_irq(&ctx->lock);
902 * Put a event into inactive state and update time fields.
903 * Enabling the leader of a group effectively enables all
904 * the group members that aren't explicitly disabled, so we
905 * have to update their ->tstamp_enabled also.
906 * Note: this works for group members as well as group leaders
907 * since the non-leader members' sibling_lists will be empty.
909 static void __perf_event_mark_enabled(struct perf_event *event,
910 struct perf_event_context *ctx)
912 struct perf_event *sub;
914 event->state = PERF_EVENT_STATE_INACTIVE;
915 event->tstamp_enabled = ctx->time - event->total_time_enabled;
916 list_for_each_entry(sub, &event->sibling_list, group_entry) {
917 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
918 sub->tstamp_enabled =
919 ctx->time - sub->total_time_enabled;
925 * Cross CPU call to enable a performance event
927 static void __perf_event_enable(void *info)
929 struct perf_event *event = info;
930 struct perf_event_context *ctx = event->ctx;
931 struct perf_event *leader = event->group_leader;
932 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
933 int err;
936 * If this is a per-task event, need to check whether this
937 * event's task is the current task on this cpu.
939 if (ctx->task && cpuctx->task_ctx != ctx) {
940 if (cpuctx->task_ctx || ctx->task != current)
941 return;
942 cpuctx->task_ctx = ctx;
945 raw_spin_lock(&ctx->lock);
946 ctx->is_active = 1;
947 update_context_time(ctx);
949 if (event->state >= PERF_EVENT_STATE_INACTIVE)
950 goto unlock;
951 __perf_event_mark_enabled(event, ctx);
953 if (event->cpu != -1 && event->cpu != smp_processor_id())
954 goto unlock;
957 * If the event is in a group and isn't the group leader,
958 * then don't put it on unless the group is on.
960 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
961 goto unlock;
963 if (!group_can_go_on(event, cpuctx, 1)) {
964 err = -EEXIST;
965 } else {
966 if (event == leader)
967 err = group_sched_in(event, cpuctx, ctx);
968 else
969 err = event_sched_in(event, cpuctx, ctx);
972 if (err) {
974 * If this event can't go on and it's part of a
975 * group, then the whole group has to come off.
977 if (leader != event)
978 group_sched_out(leader, cpuctx, ctx);
979 if (leader->attr.pinned) {
980 update_group_times(leader);
981 leader->state = PERF_EVENT_STATE_ERROR;
985 unlock:
986 raw_spin_unlock(&ctx->lock);
990 * Enable a event.
992 * If event->ctx is a cloned context, callers must make sure that
993 * every task struct that event->ctx->task could possibly point to
994 * remains valid. This condition is satisfied when called through
995 * perf_event_for_each_child or perf_event_for_each as described
996 * for perf_event_disable.
998 void perf_event_enable(struct perf_event *event)
1000 struct perf_event_context *ctx = event->ctx;
1001 struct task_struct *task = ctx->task;
1003 if (!task) {
1005 * Enable the event on the cpu that it's on
1007 smp_call_function_single(event->cpu, __perf_event_enable,
1008 event, 1);
1009 return;
1012 raw_spin_lock_irq(&ctx->lock);
1013 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1014 goto out;
1017 * If the event is in error state, clear that first.
1018 * That way, if we see the event in error state below, we
1019 * know that it has gone back into error state, as distinct
1020 * from the task having been scheduled away before the
1021 * cross-call arrived.
1023 if (event->state == PERF_EVENT_STATE_ERROR)
1024 event->state = PERF_EVENT_STATE_OFF;
1026 retry:
1027 raw_spin_unlock_irq(&ctx->lock);
1028 task_oncpu_function_call(task, __perf_event_enable, event);
1030 raw_spin_lock_irq(&ctx->lock);
1033 * If the context is active and the event is still off,
1034 * we need to retry the cross-call.
1036 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1037 goto retry;
1040 * Since we have the lock this context can't be scheduled
1041 * in, so we can change the state safely.
1043 if (event->state == PERF_EVENT_STATE_OFF)
1044 __perf_event_mark_enabled(event, ctx);
1046 out:
1047 raw_spin_unlock_irq(&ctx->lock);
1050 static int perf_event_refresh(struct perf_event *event, int refresh)
1053 * not supported on inherited events
1055 if (event->attr.inherit)
1056 return -EINVAL;
1058 atomic_add(refresh, &event->event_limit);
1059 perf_event_enable(event);
1061 return 0;
1064 enum event_type_t {
1065 EVENT_FLEXIBLE = 0x1,
1066 EVENT_PINNED = 0x2,
1067 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1070 static void ctx_sched_out(struct perf_event_context *ctx,
1071 struct perf_cpu_context *cpuctx,
1072 enum event_type_t event_type)
1074 struct perf_event *event;
1076 raw_spin_lock(&ctx->lock);
1077 perf_pmu_disable(ctx->pmu);
1078 ctx->is_active = 0;
1079 if (likely(!ctx->nr_events))
1080 goto out;
1081 update_context_time(ctx);
1083 if (!ctx->nr_active)
1084 goto out;
1086 if (event_type & EVENT_PINNED) {
1087 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1088 group_sched_out(event, cpuctx, ctx);
1091 if (event_type & EVENT_FLEXIBLE) {
1092 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1093 group_sched_out(event, cpuctx, ctx);
1095 out:
1096 perf_pmu_enable(ctx->pmu);
1097 raw_spin_unlock(&ctx->lock);
1101 * Test whether two contexts are equivalent, i.e. whether they
1102 * have both been cloned from the same version of the same context
1103 * and they both have the same number of enabled events.
1104 * If the number of enabled events is the same, then the set
1105 * of enabled events should be the same, because these are both
1106 * inherited contexts, therefore we can't access individual events
1107 * in them directly with an fd; we can only enable/disable all
1108 * events via prctl, or enable/disable all events in a family
1109 * via ioctl, which will have the same effect on both contexts.
1111 static int context_equiv(struct perf_event_context *ctx1,
1112 struct perf_event_context *ctx2)
1114 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1115 && ctx1->parent_gen == ctx2->parent_gen
1116 && !ctx1->pin_count && !ctx2->pin_count;
1119 static void __perf_event_sync_stat(struct perf_event *event,
1120 struct perf_event *next_event)
1122 u64 value;
1124 if (!event->attr.inherit_stat)
1125 return;
1128 * Update the event value, we cannot use perf_event_read()
1129 * because we're in the middle of a context switch and have IRQs
1130 * disabled, which upsets smp_call_function_single(), however
1131 * we know the event must be on the current CPU, therefore we
1132 * don't need to use it.
1134 switch (event->state) {
1135 case PERF_EVENT_STATE_ACTIVE:
1136 event->pmu->read(event);
1137 /* fall-through */
1139 case PERF_EVENT_STATE_INACTIVE:
1140 update_event_times(event);
1141 break;
1143 default:
1144 break;
1148 * In order to keep per-task stats reliable we need to flip the event
1149 * values when we flip the contexts.
1151 value = local64_read(&next_event->count);
1152 value = local64_xchg(&event->count, value);
1153 local64_set(&next_event->count, value);
1155 swap(event->total_time_enabled, next_event->total_time_enabled);
1156 swap(event->total_time_running, next_event->total_time_running);
1159 * Since we swizzled the values, update the user visible data too.
1161 perf_event_update_userpage(event);
1162 perf_event_update_userpage(next_event);
1165 #define list_next_entry(pos, member) \
1166 list_entry(pos->member.next, typeof(*pos), member)
1168 static void perf_event_sync_stat(struct perf_event_context *ctx,
1169 struct perf_event_context *next_ctx)
1171 struct perf_event *event, *next_event;
1173 if (!ctx->nr_stat)
1174 return;
1176 update_context_time(ctx);
1178 event = list_first_entry(&ctx->event_list,
1179 struct perf_event, event_entry);
1181 next_event = list_first_entry(&next_ctx->event_list,
1182 struct perf_event, event_entry);
1184 while (&event->event_entry != &ctx->event_list &&
1185 &next_event->event_entry != &next_ctx->event_list) {
1187 __perf_event_sync_stat(event, next_event);
1189 event = list_next_entry(event, event_entry);
1190 next_event = list_next_entry(next_event, event_entry);
1194 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1195 struct task_struct *next)
1197 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1198 struct perf_event_context *next_ctx;
1199 struct perf_event_context *parent;
1200 struct perf_cpu_context *cpuctx;
1201 int do_switch = 1;
1203 if (likely(!ctx))
1204 return;
1206 cpuctx = __get_cpu_context(ctx);
1207 if (!cpuctx->task_ctx)
1208 return;
1210 rcu_read_lock();
1211 parent = rcu_dereference(ctx->parent_ctx);
1212 next_ctx = next->perf_event_ctxp[ctxn];
1213 if (parent && next_ctx &&
1214 rcu_dereference(next_ctx->parent_ctx) == parent) {
1216 * Looks like the two contexts are clones, so we might be
1217 * able to optimize the context switch. We lock both
1218 * contexts and check that they are clones under the
1219 * lock (including re-checking that neither has been
1220 * uncloned in the meantime). It doesn't matter which
1221 * order we take the locks because no other cpu could
1222 * be trying to lock both of these tasks.
1224 raw_spin_lock(&ctx->lock);
1225 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1226 if (context_equiv(ctx, next_ctx)) {
1228 * XXX do we need a memory barrier of sorts
1229 * wrt to rcu_dereference() of perf_event_ctxp
1231 task->perf_event_ctxp[ctxn] = next_ctx;
1232 next->perf_event_ctxp[ctxn] = ctx;
1233 ctx->task = next;
1234 next_ctx->task = task;
1235 do_switch = 0;
1237 perf_event_sync_stat(ctx, next_ctx);
1239 raw_spin_unlock(&next_ctx->lock);
1240 raw_spin_unlock(&ctx->lock);
1242 rcu_read_unlock();
1244 if (do_switch) {
1245 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1246 cpuctx->task_ctx = NULL;
1250 #define for_each_task_context_nr(ctxn) \
1251 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1254 * Called from scheduler to remove the events of the current task,
1255 * with interrupts disabled.
1257 * We stop each event and update the event value in event->count.
1259 * This does not protect us against NMI, but disable()
1260 * sets the disabled bit in the control field of event _before_
1261 * accessing the event control register. If a NMI hits, then it will
1262 * not restart the event.
1264 void __perf_event_task_sched_out(struct task_struct *task,
1265 struct task_struct *next)
1267 int ctxn;
1269 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1271 for_each_task_context_nr(ctxn)
1272 perf_event_context_sched_out(task, ctxn, next);
1275 static void task_ctx_sched_out(struct perf_event_context *ctx,
1276 enum event_type_t event_type)
1278 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1280 if (!cpuctx->task_ctx)
1281 return;
1283 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1284 return;
1286 ctx_sched_out(ctx, cpuctx, event_type);
1287 cpuctx->task_ctx = NULL;
1291 * Called with IRQs disabled
1293 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1294 enum event_type_t event_type)
1296 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1299 static void
1300 ctx_pinned_sched_in(struct perf_event_context *ctx,
1301 struct perf_cpu_context *cpuctx)
1303 struct perf_event *event;
1305 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1306 if (event->state <= PERF_EVENT_STATE_OFF)
1307 continue;
1308 if (event->cpu != -1 && event->cpu != smp_processor_id())
1309 continue;
1311 if (group_can_go_on(event, cpuctx, 1))
1312 group_sched_in(event, cpuctx, ctx);
1315 * If this pinned group hasn't been scheduled,
1316 * put it in error state.
1318 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1319 update_group_times(event);
1320 event->state = PERF_EVENT_STATE_ERROR;
1325 static void
1326 ctx_flexible_sched_in(struct perf_event_context *ctx,
1327 struct perf_cpu_context *cpuctx)
1329 struct perf_event *event;
1330 int can_add_hw = 1;
1332 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1333 /* Ignore events in OFF or ERROR state */
1334 if (event->state <= PERF_EVENT_STATE_OFF)
1335 continue;
1337 * Listen to the 'cpu' scheduling filter constraint
1338 * of events:
1340 if (event->cpu != -1 && event->cpu != smp_processor_id())
1341 continue;
1343 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1344 if (group_sched_in(event, cpuctx, ctx))
1345 can_add_hw = 0;
1350 static void
1351 ctx_sched_in(struct perf_event_context *ctx,
1352 struct perf_cpu_context *cpuctx,
1353 enum event_type_t event_type)
1355 raw_spin_lock(&ctx->lock);
1356 ctx->is_active = 1;
1357 if (likely(!ctx->nr_events))
1358 goto out;
1360 ctx->timestamp = perf_clock();
1363 * First go through the list and put on any pinned groups
1364 * in order to give them the best chance of going on.
1366 if (event_type & EVENT_PINNED)
1367 ctx_pinned_sched_in(ctx, cpuctx);
1369 /* Then walk through the lower prio flexible groups */
1370 if (event_type & EVENT_FLEXIBLE)
1371 ctx_flexible_sched_in(ctx, cpuctx);
1373 out:
1374 raw_spin_unlock(&ctx->lock);
1377 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1378 enum event_type_t event_type)
1380 struct perf_event_context *ctx = &cpuctx->ctx;
1382 ctx_sched_in(ctx, cpuctx, event_type);
1385 static void task_ctx_sched_in(struct perf_event_context *ctx,
1386 enum event_type_t event_type)
1388 struct perf_cpu_context *cpuctx;
1390 cpuctx = __get_cpu_context(ctx);
1391 if (cpuctx->task_ctx == ctx)
1392 return;
1394 ctx_sched_in(ctx, cpuctx, event_type);
1395 cpuctx->task_ctx = ctx;
1398 void perf_event_context_sched_in(struct perf_event_context *ctx)
1400 struct perf_cpu_context *cpuctx;
1402 cpuctx = __get_cpu_context(ctx);
1403 if (cpuctx->task_ctx == ctx)
1404 return;
1406 perf_pmu_disable(ctx->pmu);
1408 * We want to keep the following priority order:
1409 * cpu pinned (that don't need to move), task pinned,
1410 * cpu flexible, task flexible.
1412 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1414 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1415 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1416 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1418 cpuctx->task_ctx = ctx;
1421 * Since these rotations are per-cpu, we need to ensure the
1422 * cpu-context we got scheduled on is actually rotating.
1424 perf_pmu_rotate_start(ctx->pmu);
1425 perf_pmu_enable(ctx->pmu);
1429 * Called from scheduler to add the events of the current task
1430 * with interrupts disabled.
1432 * We restore the event value and then enable it.
1434 * This does not protect us against NMI, but enable()
1435 * sets the enabled bit in the control field of event _before_
1436 * accessing the event control register. If a NMI hits, then it will
1437 * keep the event running.
1439 void __perf_event_task_sched_in(struct task_struct *task)
1441 struct perf_event_context *ctx;
1442 int ctxn;
1444 for_each_task_context_nr(ctxn) {
1445 ctx = task->perf_event_ctxp[ctxn];
1446 if (likely(!ctx))
1447 continue;
1449 perf_event_context_sched_in(ctx);
1453 #define MAX_INTERRUPTS (~0ULL)
1455 static void perf_log_throttle(struct perf_event *event, int enable);
1457 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1459 u64 frequency = event->attr.sample_freq;
1460 u64 sec = NSEC_PER_SEC;
1461 u64 divisor, dividend;
1463 int count_fls, nsec_fls, frequency_fls, sec_fls;
1465 count_fls = fls64(count);
1466 nsec_fls = fls64(nsec);
1467 frequency_fls = fls64(frequency);
1468 sec_fls = 30;
1471 * We got @count in @nsec, with a target of sample_freq HZ
1472 * the target period becomes:
1474 * @count * 10^9
1475 * period = -------------------
1476 * @nsec * sample_freq
1481 * Reduce accuracy by one bit such that @a and @b converge
1482 * to a similar magnitude.
1484 #define REDUCE_FLS(a, b) \
1485 do { \
1486 if (a##_fls > b##_fls) { \
1487 a >>= 1; \
1488 a##_fls--; \
1489 } else { \
1490 b >>= 1; \
1491 b##_fls--; \
1493 } while (0)
1496 * Reduce accuracy until either term fits in a u64, then proceed with
1497 * the other, so that finally we can do a u64/u64 division.
1499 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1500 REDUCE_FLS(nsec, frequency);
1501 REDUCE_FLS(sec, count);
1504 if (count_fls + sec_fls > 64) {
1505 divisor = nsec * frequency;
1507 while (count_fls + sec_fls > 64) {
1508 REDUCE_FLS(count, sec);
1509 divisor >>= 1;
1512 dividend = count * sec;
1513 } else {
1514 dividend = count * sec;
1516 while (nsec_fls + frequency_fls > 64) {
1517 REDUCE_FLS(nsec, frequency);
1518 dividend >>= 1;
1521 divisor = nsec * frequency;
1524 if (!divisor)
1525 return dividend;
1527 return div64_u64(dividend, divisor);
1530 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1532 struct hw_perf_event *hwc = &event->hw;
1533 s64 period, sample_period;
1534 s64 delta;
1536 period = perf_calculate_period(event, nsec, count);
1538 delta = (s64)(period - hwc->sample_period);
1539 delta = (delta + 7) / 8; /* low pass filter */
1541 sample_period = hwc->sample_period + delta;
1543 if (!sample_period)
1544 sample_period = 1;
1546 hwc->sample_period = sample_period;
1548 if (local64_read(&hwc->period_left) > 8*sample_period) {
1549 event->pmu->stop(event, PERF_EF_UPDATE);
1550 local64_set(&hwc->period_left, 0);
1551 event->pmu->start(event, PERF_EF_RELOAD);
1555 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1557 struct perf_event *event;
1558 struct hw_perf_event *hwc;
1559 u64 interrupts, now;
1560 s64 delta;
1562 raw_spin_lock(&ctx->lock);
1563 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1564 if (event->state != PERF_EVENT_STATE_ACTIVE)
1565 continue;
1567 if (event->cpu != -1 && event->cpu != smp_processor_id())
1568 continue;
1570 hwc = &event->hw;
1572 interrupts = hwc->interrupts;
1573 hwc->interrupts = 0;
1576 * unthrottle events on the tick
1578 if (interrupts == MAX_INTERRUPTS) {
1579 perf_log_throttle(event, 1);
1580 event->pmu->start(event, 0);
1583 if (!event->attr.freq || !event->attr.sample_freq)
1584 continue;
1586 event->pmu->read(event);
1587 now = local64_read(&event->count);
1588 delta = now - hwc->freq_count_stamp;
1589 hwc->freq_count_stamp = now;
1591 if (delta > 0)
1592 perf_adjust_period(event, period, delta);
1594 raw_spin_unlock(&ctx->lock);
1598 * Round-robin a context's events:
1600 static void rotate_ctx(struct perf_event_context *ctx)
1602 raw_spin_lock(&ctx->lock);
1604 /* Rotate the first entry last of non-pinned groups */
1605 list_rotate_left(&ctx->flexible_groups);
1607 raw_spin_unlock(&ctx->lock);
1611 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1612 * because they're strictly cpu affine and rotate_start is called with IRQs
1613 * disabled, while rotate_context is called from IRQ context.
1615 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1617 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1618 struct perf_event_context *ctx = NULL;
1619 int rotate = 0, remove = 1;
1621 if (cpuctx->ctx.nr_events) {
1622 remove = 0;
1623 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1624 rotate = 1;
1627 ctx = cpuctx->task_ctx;
1628 if (ctx && ctx->nr_events) {
1629 remove = 0;
1630 if (ctx->nr_events != ctx->nr_active)
1631 rotate = 1;
1634 perf_pmu_disable(cpuctx->ctx.pmu);
1635 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1636 if (ctx)
1637 perf_ctx_adjust_freq(ctx, interval);
1639 if (!rotate)
1640 goto done;
1642 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1643 if (ctx)
1644 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1646 rotate_ctx(&cpuctx->ctx);
1647 if (ctx)
1648 rotate_ctx(ctx);
1650 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1651 if (ctx)
1652 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1654 done:
1655 if (remove)
1656 list_del_init(&cpuctx->rotation_list);
1658 perf_pmu_enable(cpuctx->ctx.pmu);
1661 void perf_event_task_tick(void)
1663 struct list_head *head = &__get_cpu_var(rotation_list);
1664 struct perf_cpu_context *cpuctx, *tmp;
1666 WARN_ON(!irqs_disabled());
1668 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1669 if (cpuctx->jiffies_interval == 1 ||
1670 !(jiffies % cpuctx->jiffies_interval))
1671 perf_rotate_context(cpuctx);
1675 static int event_enable_on_exec(struct perf_event *event,
1676 struct perf_event_context *ctx)
1678 if (!event->attr.enable_on_exec)
1679 return 0;
1681 event->attr.enable_on_exec = 0;
1682 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1683 return 0;
1685 __perf_event_mark_enabled(event, ctx);
1687 return 1;
1691 * Enable all of a task's events that have been marked enable-on-exec.
1692 * This expects task == current.
1694 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1696 struct perf_event *event;
1697 unsigned long flags;
1698 int enabled = 0;
1699 int ret;
1701 local_irq_save(flags);
1702 if (!ctx || !ctx->nr_events)
1703 goto out;
1705 task_ctx_sched_out(ctx, EVENT_ALL);
1707 raw_spin_lock(&ctx->lock);
1709 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1710 ret = event_enable_on_exec(event, ctx);
1711 if (ret)
1712 enabled = 1;
1715 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1716 ret = event_enable_on_exec(event, ctx);
1717 if (ret)
1718 enabled = 1;
1722 * Unclone this context if we enabled any event.
1724 if (enabled)
1725 unclone_ctx(ctx);
1727 raw_spin_unlock(&ctx->lock);
1729 perf_event_context_sched_in(ctx);
1730 out:
1731 local_irq_restore(flags);
1735 * Cross CPU call to read the hardware event
1737 static void __perf_event_read(void *info)
1739 struct perf_event *event = info;
1740 struct perf_event_context *ctx = event->ctx;
1741 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1744 * If this is a task context, we need to check whether it is
1745 * the current task context of this cpu. If not it has been
1746 * scheduled out before the smp call arrived. In that case
1747 * event->count would have been updated to a recent sample
1748 * when the event was scheduled out.
1750 if (ctx->task && cpuctx->task_ctx != ctx)
1751 return;
1753 raw_spin_lock(&ctx->lock);
1754 update_context_time(ctx);
1755 update_event_times(event);
1756 raw_spin_unlock(&ctx->lock);
1758 event->pmu->read(event);
1761 static inline u64 perf_event_count(struct perf_event *event)
1763 return local64_read(&event->count) + atomic64_read(&event->child_count);
1766 static u64 perf_event_read(struct perf_event *event)
1769 * If event is enabled and currently active on a CPU, update the
1770 * value in the event structure:
1772 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1773 smp_call_function_single(event->oncpu,
1774 __perf_event_read, event, 1);
1775 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1776 struct perf_event_context *ctx = event->ctx;
1777 unsigned long flags;
1779 raw_spin_lock_irqsave(&ctx->lock, flags);
1781 * may read while context is not active
1782 * (e.g., thread is blocked), in that case
1783 * we cannot update context time
1785 if (ctx->is_active)
1786 update_context_time(ctx);
1787 update_event_times(event);
1788 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1791 return perf_event_count(event);
1795 * Callchain support
1798 struct callchain_cpus_entries {
1799 struct rcu_head rcu_head;
1800 struct perf_callchain_entry *cpu_entries[0];
1803 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1804 static atomic_t nr_callchain_events;
1805 static DEFINE_MUTEX(callchain_mutex);
1806 struct callchain_cpus_entries *callchain_cpus_entries;
1809 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1810 struct pt_regs *regs)
1814 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1815 struct pt_regs *regs)
1819 static void release_callchain_buffers_rcu(struct rcu_head *head)
1821 struct callchain_cpus_entries *entries;
1822 int cpu;
1824 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1826 for_each_possible_cpu(cpu)
1827 kfree(entries->cpu_entries[cpu]);
1829 kfree(entries);
1832 static void release_callchain_buffers(void)
1834 struct callchain_cpus_entries *entries;
1836 entries = callchain_cpus_entries;
1837 rcu_assign_pointer(callchain_cpus_entries, NULL);
1838 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1841 static int alloc_callchain_buffers(void)
1843 int cpu;
1844 int size;
1845 struct callchain_cpus_entries *entries;
1848 * We can't use the percpu allocation API for data that can be
1849 * accessed from NMI. Use a temporary manual per cpu allocation
1850 * until that gets sorted out.
1852 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1853 num_possible_cpus();
1855 entries = kzalloc(size, GFP_KERNEL);
1856 if (!entries)
1857 return -ENOMEM;
1859 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1861 for_each_possible_cpu(cpu) {
1862 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1863 cpu_to_node(cpu));
1864 if (!entries->cpu_entries[cpu])
1865 goto fail;
1868 rcu_assign_pointer(callchain_cpus_entries, entries);
1870 return 0;
1872 fail:
1873 for_each_possible_cpu(cpu)
1874 kfree(entries->cpu_entries[cpu]);
1875 kfree(entries);
1877 return -ENOMEM;
1880 static int get_callchain_buffers(void)
1882 int err = 0;
1883 int count;
1885 mutex_lock(&callchain_mutex);
1887 count = atomic_inc_return(&nr_callchain_events);
1888 if (WARN_ON_ONCE(count < 1)) {
1889 err = -EINVAL;
1890 goto exit;
1893 if (count > 1) {
1894 /* If the allocation failed, give up */
1895 if (!callchain_cpus_entries)
1896 err = -ENOMEM;
1897 goto exit;
1900 err = alloc_callchain_buffers();
1901 if (err)
1902 release_callchain_buffers();
1903 exit:
1904 mutex_unlock(&callchain_mutex);
1906 return err;
1909 static void put_callchain_buffers(void)
1911 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1912 release_callchain_buffers();
1913 mutex_unlock(&callchain_mutex);
1917 static int get_recursion_context(int *recursion)
1919 int rctx;
1921 if (in_nmi())
1922 rctx = 3;
1923 else if (in_irq())
1924 rctx = 2;
1925 else if (in_softirq())
1926 rctx = 1;
1927 else
1928 rctx = 0;
1930 if (recursion[rctx])
1931 return -1;
1933 recursion[rctx]++;
1934 barrier();
1936 return rctx;
1939 static inline void put_recursion_context(int *recursion, int rctx)
1941 barrier();
1942 recursion[rctx]--;
1945 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1947 int cpu;
1948 struct callchain_cpus_entries *entries;
1950 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1951 if (*rctx == -1)
1952 return NULL;
1954 entries = rcu_dereference(callchain_cpus_entries);
1955 if (!entries)
1956 return NULL;
1958 cpu = smp_processor_id();
1960 return &entries->cpu_entries[cpu][*rctx];
1963 static void
1964 put_callchain_entry(int rctx)
1966 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1969 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1971 int rctx;
1972 struct perf_callchain_entry *entry;
1975 entry = get_callchain_entry(&rctx);
1976 if (rctx == -1)
1977 return NULL;
1979 if (!entry)
1980 goto exit_put;
1982 entry->nr = 0;
1984 if (!user_mode(regs)) {
1985 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1986 perf_callchain_kernel(entry, regs);
1987 if (current->mm)
1988 regs = task_pt_regs(current);
1989 else
1990 regs = NULL;
1993 if (regs) {
1994 perf_callchain_store(entry, PERF_CONTEXT_USER);
1995 perf_callchain_user(entry, regs);
1998 exit_put:
1999 put_callchain_entry(rctx);
2001 return entry;
2005 * Initialize the perf_event context in a task_struct:
2007 static void __perf_event_init_context(struct perf_event_context *ctx)
2009 raw_spin_lock_init(&ctx->lock);
2010 mutex_init(&ctx->mutex);
2011 INIT_LIST_HEAD(&ctx->pinned_groups);
2012 INIT_LIST_HEAD(&ctx->flexible_groups);
2013 INIT_LIST_HEAD(&ctx->event_list);
2014 atomic_set(&ctx->refcount, 1);
2017 static struct perf_event_context *
2018 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2020 struct perf_event_context *ctx;
2022 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2023 if (!ctx)
2024 return NULL;
2026 __perf_event_init_context(ctx);
2027 if (task) {
2028 ctx->task = task;
2029 get_task_struct(task);
2031 ctx->pmu = pmu;
2033 return ctx;
2036 static struct task_struct *
2037 find_lively_task_by_vpid(pid_t vpid)
2039 struct task_struct *task;
2040 int err;
2042 rcu_read_lock();
2043 if (!vpid)
2044 task = current;
2045 else
2046 task = find_task_by_vpid(vpid);
2047 if (task)
2048 get_task_struct(task);
2049 rcu_read_unlock();
2051 if (!task)
2052 return ERR_PTR(-ESRCH);
2055 * Can't attach events to a dying task.
2057 err = -ESRCH;
2058 if (task->flags & PF_EXITING)
2059 goto errout;
2061 /* Reuse ptrace permission checks for now. */
2062 err = -EACCES;
2063 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2064 goto errout;
2066 return task;
2067 errout:
2068 put_task_struct(task);
2069 return ERR_PTR(err);
2073 static struct perf_event_context *
2074 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2076 struct perf_event_context *ctx;
2077 struct perf_cpu_context *cpuctx;
2078 unsigned long flags;
2079 int ctxn, err;
2081 if (!task && cpu != -1) {
2082 /* Must be root to operate on a CPU event: */
2083 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2084 return ERR_PTR(-EACCES);
2086 if (cpu < 0 || cpu >= nr_cpumask_bits)
2087 return ERR_PTR(-EINVAL);
2090 * We could be clever and allow to attach a event to an
2091 * offline CPU and activate it when the CPU comes up, but
2092 * that's for later.
2094 if (!cpu_online(cpu))
2095 return ERR_PTR(-ENODEV);
2097 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2098 ctx = &cpuctx->ctx;
2099 get_ctx(ctx);
2101 return ctx;
2104 err = -EINVAL;
2105 ctxn = pmu->task_ctx_nr;
2106 if (ctxn < 0)
2107 goto errout;
2109 retry:
2110 ctx = perf_lock_task_context(task, ctxn, &flags);
2111 if (ctx) {
2112 unclone_ctx(ctx);
2113 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2116 if (!ctx) {
2117 ctx = alloc_perf_context(pmu, task);
2118 err = -ENOMEM;
2119 if (!ctx)
2120 goto errout;
2122 get_ctx(ctx);
2124 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2126 * We raced with some other task; use
2127 * the context they set.
2129 put_task_struct(task);
2130 kfree(ctx);
2131 goto retry;
2135 return ctx;
2137 errout:
2138 return ERR_PTR(err);
2141 static void perf_event_free_filter(struct perf_event *event);
2143 static void free_event_rcu(struct rcu_head *head)
2145 struct perf_event *event;
2147 event = container_of(head, struct perf_event, rcu_head);
2148 if (event->ns)
2149 put_pid_ns(event->ns);
2150 perf_event_free_filter(event);
2151 kfree(event);
2154 static void perf_buffer_put(struct perf_buffer *buffer);
2156 static void free_event(struct perf_event *event)
2158 irq_work_sync(&event->pending);
2160 if (!event->parent) {
2161 if (event->attach_state & PERF_ATTACH_TASK)
2162 jump_label_dec(&perf_task_events);
2163 if (event->attr.mmap || event->attr.mmap_data)
2164 atomic_dec(&nr_mmap_events);
2165 if (event->attr.comm)
2166 atomic_dec(&nr_comm_events);
2167 if (event->attr.task)
2168 atomic_dec(&nr_task_events);
2169 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2170 put_callchain_buffers();
2173 if (event->buffer) {
2174 perf_buffer_put(event->buffer);
2175 event->buffer = NULL;
2178 if (event->destroy)
2179 event->destroy(event);
2181 if (event->ctx)
2182 put_ctx(event->ctx);
2184 call_rcu(&event->rcu_head, free_event_rcu);
2187 int perf_event_release_kernel(struct perf_event *event)
2189 struct perf_event_context *ctx = event->ctx;
2192 * Remove from the PMU, can't get re-enabled since we got
2193 * here because the last ref went.
2195 perf_event_disable(event);
2197 WARN_ON_ONCE(ctx->parent_ctx);
2199 * There are two ways this annotation is useful:
2201 * 1) there is a lock recursion from perf_event_exit_task
2202 * see the comment there.
2204 * 2) there is a lock-inversion with mmap_sem through
2205 * perf_event_read_group(), which takes faults while
2206 * holding ctx->mutex, however this is called after
2207 * the last filedesc died, so there is no possibility
2208 * to trigger the AB-BA case.
2210 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2211 raw_spin_lock_irq(&ctx->lock);
2212 perf_group_detach(event);
2213 list_del_event(event, ctx);
2214 raw_spin_unlock_irq(&ctx->lock);
2215 mutex_unlock(&ctx->mutex);
2217 mutex_lock(&event->owner->perf_event_mutex);
2218 list_del_init(&event->owner_entry);
2219 mutex_unlock(&event->owner->perf_event_mutex);
2220 put_task_struct(event->owner);
2222 free_event(event);
2224 return 0;
2226 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2229 * Called when the last reference to the file is gone.
2231 static int perf_release(struct inode *inode, struct file *file)
2233 struct perf_event *event = file->private_data;
2235 file->private_data = NULL;
2237 return perf_event_release_kernel(event);
2240 static int perf_event_read_size(struct perf_event *event)
2242 int entry = sizeof(u64); /* value */
2243 int size = 0;
2244 int nr = 1;
2246 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2247 size += sizeof(u64);
2249 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2250 size += sizeof(u64);
2252 if (event->attr.read_format & PERF_FORMAT_ID)
2253 entry += sizeof(u64);
2255 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2256 nr += event->group_leader->nr_siblings;
2257 size += sizeof(u64);
2260 size += entry * nr;
2262 return size;
2265 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2267 struct perf_event *child;
2268 u64 total = 0;
2270 *enabled = 0;
2271 *running = 0;
2273 mutex_lock(&event->child_mutex);
2274 total += perf_event_read(event);
2275 *enabled += event->total_time_enabled +
2276 atomic64_read(&event->child_total_time_enabled);
2277 *running += event->total_time_running +
2278 atomic64_read(&event->child_total_time_running);
2280 list_for_each_entry(child, &event->child_list, child_list) {
2281 total += perf_event_read(child);
2282 *enabled += child->total_time_enabled;
2283 *running += child->total_time_running;
2285 mutex_unlock(&event->child_mutex);
2287 return total;
2289 EXPORT_SYMBOL_GPL(perf_event_read_value);
2291 static int perf_event_read_group(struct perf_event *event,
2292 u64 read_format, char __user *buf)
2294 struct perf_event *leader = event->group_leader, *sub;
2295 int n = 0, size = 0, ret = -EFAULT;
2296 struct perf_event_context *ctx = leader->ctx;
2297 u64 values[5];
2298 u64 count, enabled, running;
2300 mutex_lock(&ctx->mutex);
2301 count = perf_event_read_value(leader, &enabled, &running);
2303 values[n++] = 1 + leader->nr_siblings;
2304 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2305 values[n++] = enabled;
2306 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2307 values[n++] = running;
2308 values[n++] = count;
2309 if (read_format & PERF_FORMAT_ID)
2310 values[n++] = primary_event_id(leader);
2312 size = n * sizeof(u64);
2314 if (copy_to_user(buf, values, size))
2315 goto unlock;
2317 ret = size;
2319 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2320 n = 0;
2322 values[n++] = perf_event_read_value(sub, &enabled, &running);
2323 if (read_format & PERF_FORMAT_ID)
2324 values[n++] = primary_event_id(sub);
2326 size = n * sizeof(u64);
2328 if (copy_to_user(buf + ret, values, size)) {
2329 ret = -EFAULT;
2330 goto unlock;
2333 ret += size;
2335 unlock:
2336 mutex_unlock(&ctx->mutex);
2338 return ret;
2341 static int perf_event_read_one(struct perf_event *event,
2342 u64 read_format, char __user *buf)
2344 u64 enabled, running;
2345 u64 values[4];
2346 int n = 0;
2348 values[n++] = perf_event_read_value(event, &enabled, &running);
2349 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2350 values[n++] = enabled;
2351 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2352 values[n++] = running;
2353 if (read_format & PERF_FORMAT_ID)
2354 values[n++] = primary_event_id(event);
2356 if (copy_to_user(buf, values, n * sizeof(u64)))
2357 return -EFAULT;
2359 return n * sizeof(u64);
2363 * Read the performance event - simple non blocking version for now
2365 static ssize_t
2366 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2368 u64 read_format = event->attr.read_format;
2369 int ret;
2372 * Return end-of-file for a read on a event that is in
2373 * error state (i.e. because it was pinned but it couldn't be
2374 * scheduled on to the CPU at some point).
2376 if (event->state == PERF_EVENT_STATE_ERROR)
2377 return 0;
2379 if (count < perf_event_read_size(event))
2380 return -ENOSPC;
2382 WARN_ON_ONCE(event->ctx->parent_ctx);
2383 if (read_format & PERF_FORMAT_GROUP)
2384 ret = perf_event_read_group(event, read_format, buf);
2385 else
2386 ret = perf_event_read_one(event, read_format, buf);
2388 return ret;
2391 static ssize_t
2392 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2394 struct perf_event *event = file->private_data;
2396 return perf_read_hw(event, buf, count);
2399 static unsigned int perf_poll(struct file *file, poll_table *wait)
2401 struct perf_event *event = file->private_data;
2402 struct perf_buffer *buffer;
2403 unsigned int events = POLL_HUP;
2405 rcu_read_lock();
2406 buffer = rcu_dereference(event->buffer);
2407 if (buffer)
2408 events = atomic_xchg(&buffer->poll, 0);
2409 rcu_read_unlock();
2411 poll_wait(file, &event->waitq, wait);
2413 return events;
2416 static void perf_event_reset(struct perf_event *event)
2418 (void)perf_event_read(event);
2419 local64_set(&event->count, 0);
2420 perf_event_update_userpage(event);
2424 * Holding the top-level event's child_mutex means that any
2425 * descendant process that has inherited this event will block
2426 * in sync_child_event if it goes to exit, thus satisfying the
2427 * task existence requirements of perf_event_enable/disable.
2429 static void perf_event_for_each_child(struct perf_event *event,
2430 void (*func)(struct perf_event *))
2432 struct perf_event *child;
2434 WARN_ON_ONCE(event->ctx->parent_ctx);
2435 mutex_lock(&event->child_mutex);
2436 func(event);
2437 list_for_each_entry(child, &event->child_list, child_list)
2438 func(child);
2439 mutex_unlock(&event->child_mutex);
2442 static void perf_event_for_each(struct perf_event *event,
2443 void (*func)(struct perf_event *))
2445 struct perf_event_context *ctx = event->ctx;
2446 struct perf_event *sibling;
2448 WARN_ON_ONCE(ctx->parent_ctx);
2449 mutex_lock(&ctx->mutex);
2450 event = event->group_leader;
2452 perf_event_for_each_child(event, func);
2453 func(event);
2454 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2455 perf_event_for_each_child(event, func);
2456 mutex_unlock(&ctx->mutex);
2459 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2461 struct perf_event_context *ctx = event->ctx;
2462 int ret = 0;
2463 u64 value;
2465 if (!event->attr.sample_period)
2466 return -EINVAL;
2468 if (copy_from_user(&value, arg, sizeof(value)))
2469 return -EFAULT;
2471 if (!value)
2472 return -EINVAL;
2474 raw_spin_lock_irq(&ctx->lock);
2475 if (event->attr.freq) {
2476 if (value > sysctl_perf_event_sample_rate) {
2477 ret = -EINVAL;
2478 goto unlock;
2481 event->attr.sample_freq = value;
2482 } else {
2483 event->attr.sample_period = value;
2484 event->hw.sample_period = value;
2486 unlock:
2487 raw_spin_unlock_irq(&ctx->lock);
2489 return ret;
2492 static const struct file_operations perf_fops;
2494 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2496 struct file *file;
2498 file = fget_light(fd, fput_needed);
2499 if (!file)
2500 return ERR_PTR(-EBADF);
2502 if (file->f_op != &perf_fops) {
2503 fput_light(file, *fput_needed);
2504 *fput_needed = 0;
2505 return ERR_PTR(-EBADF);
2508 return file->private_data;
2511 static int perf_event_set_output(struct perf_event *event,
2512 struct perf_event *output_event);
2513 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2515 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2517 struct perf_event *event = file->private_data;
2518 void (*func)(struct perf_event *);
2519 u32 flags = arg;
2521 switch (cmd) {
2522 case PERF_EVENT_IOC_ENABLE:
2523 func = perf_event_enable;
2524 break;
2525 case PERF_EVENT_IOC_DISABLE:
2526 func = perf_event_disable;
2527 break;
2528 case PERF_EVENT_IOC_RESET:
2529 func = perf_event_reset;
2530 break;
2532 case PERF_EVENT_IOC_REFRESH:
2533 return perf_event_refresh(event, arg);
2535 case PERF_EVENT_IOC_PERIOD:
2536 return perf_event_period(event, (u64 __user *)arg);
2538 case PERF_EVENT_IOC_SET_OUTPUT:
2540 struct perf_event *output_event = NULL;
2541 int fput_needed = 0;
2542 int ret;
2544 if (arg != -1) {
2545 output_event = perf_fget_light(arg, &fput_needed);
2546 if (IS_ERR(output_event))
2547 return PTR_ERR(output_event);
2550 ret = perf_event_set_output(event, output_event);
2551 if (output_event)
2552 fput_light(output_event->filp, fput_needed);
2554 return ret;
2557 case PERF_EVENT_IOC_SET_FILTER:
2558 return perf_event_set_filter(event, (void __user *)arg);
2560 default:
2561 return -ENOTTY;
2564 if (flags & PERF_IOC_FLAG_GROUP)
2565 perf_event_for_each(event, func);
2566 else
2567 perf_event_for_each_child(event, func);
2569 return 0;
2572 int perf_event_task_enable(void)
2574 struct perf_event *event;
2576 mutex_lock(&current->perf_event_mutex);
2577 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2578 perf_event_for_each_child(event, perf_event_enable);
2579 mutex_unlock(&current->perf_event_mutex);
2581 return 0;
2584 int perf_event_task_disable(void)
2586 struct perf_event *event;
2588 mutex_lock(&current->perf_event_mutex);
2589 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2590 perf_event_for_each_child(event, perf_event_disable);
2591 mutex_unlock(&current->perf_event_mutex);
2593 return 0;
2596 #ifndef PERF_EVENT_INDEX_OFFSET
2597 # define PERF_EVENT_INDEX_OFFSET 0
2598 #endif
2600 static int perf_event_index(struct perf_event *event)
2602 if (event->hw.state & PERF_HES_STOPPED)
2603 return 0;
2605 if (event->state != PERF_EVENT_STATE_ACTIVE)
2606 return 0;
2608 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2612 * Callers need to ensure there can be no nesting of this function, otherwise
2613 * the seqlock logic goes bad. We can not serialize this because the arch
2614 * code calls this from NMI context.
2616 void perf_event_update_userpage(struct perf_event *event)
2618 struct perf_event_mmap_page *userpg;
2619 struct perf_buffer *buffer;
2621 rcu_read_lock();
2622 buffer = rcu_dereference(event->buffer);
2623 if (!buffer)
2624 goto unlock;
2626 userpg = buffer->user_page;
2629 * Disable preemption so as to not let the corresponding user-space
2630 * spin too long if we get preempted.
2632 preempt_disable();
2633 ++userpg->lock;
2634 barrier();
2635 userpg->index = perf_event_index(event);
2636 userpg->offset = perf_event_count(event);
2637 if (event->state == PERF_EVENT_STATE_ACTIVE)
2638 userpg->offset -= local64_read(&event->hw.prev_count);
2640 userpg->time_enabled = event->total_time_enabled +
2641 atomic64_read(&event->child_total_time_enabled);
2643 userpg->time_running = event->total_time_running +
2644 atomic64_read(&event->child_total_time_running);
2646 barrier();
2647 ++userpg->lock;
2648 preempt_enable();
2649 unlock:
2650 rcu_read_unlock();
2653 static unsigned long perf_data_size(struct perf_buffer *buffer);
2655 static void
2656 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2658 long max_size = perf_data_size(buffer);
2660 if (watermark)
2661 buffer->watermark = min(max_size, watermark);
2663 if (!buffer->watermark)
2664 buffer->watermark = max_size / 2;
2666 if (flags & PERF_BUFFER_WRITABLE)
2667 buffer->writable = 1;
2669 atomic_set(&buffer->refcount, 1);
2672 #ifndef CONFIG_PERF_USE_VMALLOC
2675 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2678 static struct page *
2679 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2681 if (pgoff > buffer->nr_pages)
2682 return NULL;
2684 if (pgoff == 0)
2685 return virt_to_page(buffer->user_page);
2687 return virt_to_page(buffer->data_pages[pgoff - 1]);
2690 static void *perf_mmap_alloc_page(int cpu)
2692 struct page *page;
2693 int node;
2695 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2696 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2697 if (!page)
2698 return NULL;
2700 return page_address(page);
2703 static struct perf_buffer *
2704 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2706 struct perf_buffer *buffer;
2707 unsigned long size;
2708 int i;
2710 size = sizeof(struct perf_buffer);
2711 size += nr_pages * sizeof(void *);
2713 buffer = kzalloc(size, GFP_KERNEL);
2714 if (!buffer)
2715 goto fail;
2717 buffer->user_page = perf_mmap_alloc_page(cpu);
2718 if (!buffer->user_page)
2719 goto fail_user_page;
2721 for (i = 0; i < nr_pages; i++) {
2722 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2723 if (!buffer->data_pages[i])
2724 goto fail_data_pages;
2727 buffer->nr_pages = nr_pages;
2729 perf_buffer_init(buffer, watermark, flags);
2731 return buffer;
2733 fail_data_pages:
2734 for (i--; i >= 0; i--)
2735 free_page((unsigned long)buffer->data_pages[i]);
2737 free_page((unsigned long)buffer->user_page);
2739 fail_user_page:
2740 kfree(buffer);
2742 fail:
2743 return NULL;
2746 static void perf_mmap_free_page(unsigned long addr)
2748 struct page *page = virt_to_page((void *)addr);
2750 page->mapping = NULL;
2751 __free_page(page);
2754 static void perf_buffer_free(struct perf_buffer *buffer)
2756 int i;
2758 perf_mmap_free_page((unsigned long)buffer->user_page);
2759 for (i = 0; i < buffer->nr_pages; i++)
2760 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2761 kfree(buffer);
2764 static inline int page_order(struct perf_buffer *buffer)
2766 return 0;
2769 #else
2772 * Back perf_mmap() with vmalloc memory.
2774 * Required for architectures that have d-cache aliasing issues.
2777 static inline int page_order(struct perf_buffer *buffer)
2779 return buffer->page_order;
2782 static struct page *
2783 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2785 if (pgoff > (1UL << page_order(buffer)))
2786 return NULL;
2788 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2791 static void perf_mmap_unmark_page(void *addr)
2793 struct page *page = vmalloc_to_page(addr);
2795 page->mapping = NULL;
2798 static void perf_buffer_free_work(struct work_struct *work)
2800 struct perf_buffer *buffer;
2801 void *base;
2802 int i, nr;
2804 buffer = container_of(work, struct perf_buffer, work);
2805 nr = 1 << page_order(buffer);
2807 base = buffer->user_page;
2808 for (i = 0; i < nr + 1; i++)
2809 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2811 vfree(base);
2812 kfree(buffer);
2815 static void perf_buffer_free(struct perf_buffer *buffer)
2817 schedule_work(&buffer->work);
2820 static struct perf_buffer *
2821 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2823 struct perf_buffer *buffer;
2824 unsigned long size;
2825 void *all_buf;
2827 size = sizeof(struct perf_buffer);
2828 size += sizeof(void *);
2830 buffer = kzalloc(size, GFP_KERNEL);
2831 if (!buffer)
2832 goto fail;
2834 INIT_WORK(&buffer->work, perf_buffer_free_work);
2836 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2837 if (!all_buf)
2838 goto fail_all_buf;
2840 buffer->user_page = all_buf;
2841 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2842 buffer->page_order = ilog2(nr_pages);
2843 buffer->nr_pages = 1;
2845 perf_buffer_init(buffer, watermark, flags);
2847 return buffer;
2849 fail_all_buf:
2850 kfree(buffer);
2852 fail:
2853 return NULL;
2856 #endif
2858 static unsigned long perf_data_size(struct perf_buffer *buffer)
2860 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2863 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2865 struct perf_event *event = vma->vm_file->private_data;
2866 struct perf_buffer *buffer;
2867 int ret = VM_FAULT_SIGBUS;
2869 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2870 if (vmf->pgoff == 0)
2871 ret = 0;
2872 return ret;
2875 rcu_read_lock();
2876 buffer = rcu_dereference(event->buffer);
2877 if (!buffer)
2878 goto unlock;
2880 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2881 goto unlock;
2883 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2884 if (!vmf->page)
2885 goto unlock;
2887 get_page(vmf->page);
2888 vmf->page->mapping = vma->vm_file->f_mapping;
2889 vmf->page->index = vmf->pgoff;
2891 ret = 0;
2892 unlock:
2893 rcu_read_unlock();
2895 return ret;
2898 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2900 struct perf_buffer *buffer;
2902 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2903 perf_buffer_free(buffer);
2906 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2908 struct perf_buffer *buffer;
2910 rcu_read_lock();
2911 buffer = rcu_dereference(event->buffer);
2912 if (buffer) {
2913 if (!atomic_inc_not_zero(&buffer->refcount))
2914 buffer = NULL;
2916 rcu_read_unlock();
2918 return buffer;
2921 static void perf_buffer_put(struct perf_buffer *buffer)
2923 if (!atomic_dec_and_test(&buffer->refcount))
2924 return;
2926 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2929 static void perf_mmap_open(struct vm_area_struct *vma)
2931 struct perf_event *event = vma->vm_file->private_data;
2933 atomic_inc(&event->mmap_count);
2936 static void perf_mmap_close(struct vm_area_struct *vma)
2938 struct perf_event *event = vma->vm_file->private_data;
2940 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2941 unsigned long size = perf_data_size(event->buffer);
2942 struct user_struct *user = event->mmap_user;
2943 struct perf_buffer *buffer = event->buffer;
2945 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2946 vma->vm_mm->locked_vm -= event->mmap_locked;
2947 rcu_assign_pointer(event->buffer, NULL);
2948 mutex_unlock(&event->mmap_mutex);
2950 perf_buffer_put(buffer);
2951 free_uid(user);
2955 static const struct vm_operations_struct perf_mmap_vmops = {
2956 .open = perf_mmap_open,
2957 .close = perf_mmap_close,
2958 .fault = perf_mmap_fault,
2959 .page_mkwrite = perf_mmap_fault,
2962 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2964 struct perf_event *event = file->private_data;
2965 unsigned long user_locked, user_lock_limit;
2966 struct user_struct *user = current_user();
2967 unsigned long locked, lock_limit;
2968 struct perf_buffer *buffer;
2969 unsigned long vma_size;
2970 unsigned long nr_pages;
2971 long user_extra, extra;
2972 int ret = 0, flags = 0;
2975 * Don't allow mmap() of inherited per-task counters. This would
2976 * create a performance issue due to all children writing to the
2977 * same buffer.
2979 if (event->cpu == -1 && event->attr.inherit)
2980 return -EINVAL;
2982 if (!(vma->vm_flags & VM_SHARED))
2983 return -EINVAL;
2985 vma_size = vma->vm_end - vma->vm_start;
2986 nr_pages = (vma_size / PAGE_SIZE) - 1;
2989 * If we have buffer pages ensure they're a power-of-two number, so we
2990 * can do bitmasks instead of modulo.
2992 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2993 return -EINVAL;
2995 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2996 return -EINVAL;
2998 if (vma->vm_pgoff != 0)
2999 return -EINVAL;
3001 WARN_ON_ONCE(event->ctx->parent_ctx);
3002 mutex_lock(&event->mmap_mutex);
3003 if (event->buffer) {
3004 if (event->buffer->nr_pages == nr_pages)
3005 atomic_inc(&event->buffer->refcount);
3006 else
3007 ret = -EINVAL;
3008 goto unlock;
3011 user_extra = nr_pages + 1;
3012 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3015 * Increase the limit linearly with more CPUs:
3017 user_lock_limit *= num_online_cpus();
3019 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3021 extra = 0;
3022 if (user_locked > user_lock_limit)
3023 extra = user_locked - user_lock_limit;
3025 lock_limit = rlimit(RLIMIT_MEMLOCK);
3026 lock_limit >>= PAGE_SHIFT;
3027 locked = vma->vm_mm->locked_vm + extra;
3029 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3030 !capable(CAP_IPC_LOCK)) {
3031 ret = -EPERM;
3032 goto unlock;
3035 WARN_ON(event->buffer);
3037 if (vma->vm_flags & VM_WRITE)
3038 flags |= PERF_BUFFER_WRITABLE;
3040 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3041 event->cpu, flags);
3042 if (!buffer) {
3043 ret = -ENOMEM;
3044 goto unlock;
3046 rcu_assign_pointer(event->buffer, buffer);
3048 atomic_long_add(user_extra, &user->locked_vm);
3049 event->mmap_locked = extra;
3050 event->mmap_user = get_current_user();
3051 vma->vm_mm->locked_vm += event->mmap_locked;
3053 unlock:
3054 if (!ret)
3055 atomic_inc(&event->mmap_count);
3056 mutex_unlock(&event->mmap_mutex);
3058 vma->vm_flags |= VM_RESERVED;
3059 vma->vm_ops = &perf_mmap_vmops;
3061 return ret;
3064 static int perf_fasync(int fd, struct file *filp, int on)
3066 struct inode *inode = filp->f_path.dentry->d_inode;
3067 struct perf_event *event = filp->private_data;
3068 int retval;
3070 mutex_lock(&inode->i_mutex);
3071 retval = fasync_helper(fd, filp, on, &event->fasync);
3072 mutex_unlock(&inode->i_mutex);
3074 if (retval < 0)
3075 return retval;
3077 return 0;
3080 static const struct file_operations perf_fops = {
3081 .llseek = no_llseek,
3082 .release = perf_release,
3083 .read = perf_read,
3084 .poll = perf_poll,
3085 .unlocked_ioctl = perf_ioctl,
3086 .compat_ioctl = perf_ioctl,
3087 .mmap = perf_mmap,
3088 .fasync = perf_fasync,
3092 * Perf event wakeup
3094 * If there's data, ensure we set the poll() state and publish everything
3095 * to user-space before waking everybody up.
3098 void perf_event_wakeup(struct perf_event *event)
3100 wake_up_all(&event->waitq);
3102 if (event->pending_kill) {
3103 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3104 event->pending_kill = 0;
3108 static void perf_pending_event(struct irq_work *entry)
3110 struct perf_event *event = container_of(entry,
3111 struct perf_event, pending);
3113 if (event->pending_disable) {
3114 event->pending_disable = 0;
3115 __perf_event_disable(event);
3118 if (event->pending_wakeup) {
3119 event->pending_wakeup = 0;
3120 perf_event_wakeup(event);
3125 * We assume there is only KVM supporting the callbacks.
3126 * Later on, we might change it to a list if there is
3127 * another virtualization implementation supporting the callbacks.
3129 struct perf_guest_info_callbacks *perf_guest_cbs;
3131 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3133 perf_guest_cbs = cbs;
3134 return 0;
3136 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3138 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3140 perf_guest_cbs = NULL;
3141 return 0;
3143 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3146 * Output
3148 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3149 unsigned long offset, unsigned long head)
3151 unsigned long mask;
3153 if (!buffer->writable)
3154 return true;
3156 mask = perf_data_size(buffer) - 1;
3158 offset = (offset - tail) & mask;
3159 head = (head - tail) & mask;
3161 if ((int)(head - offset) < 0)
3162 return false;
3164 return true;
3167 static void perf_output_wakeup(struct perf_output_handle *handle)
3169 atomic_set(&handle->buffer->poll, POLL_IN);
3171 if (handle->nmi) {
3172 handle->event->pending_wakeup = 1;
3173 irq_work_queue(&handle->event->pending);
3174 } else
3175 perf_event_wakeup(handle->event);
3179 * We need to ensure a later event_id doesn't publish a head when a former
3180 * event isn't done writing. However since we need to deal with NMIs we
3181 * cannot fully serialize things.
3183 * We only publish the head (and generate a wakeup) when the outer-most
3184 * event completes.
3186 static void perf_output_get_handle(struct perf_output_handle *handle)
3188 struct perf_buffer *buffer = handle->buffer;
3190 preempt_disable();
3191 local_inc(&buffer->nest);
3192 handle->wakeup = local_read(&buffer->wakeup);
3195 static void perf_output_put_handle(struct perf_output_handle *handle)
3197 struct perf_buffer *buffer = handle->buffer;
3198 unsigned long head;
3200 again:
3201 head = local_read(&buffer->head);
3204 * IRQ/NMI can happen here, which means we can miss a head update.
3207 if (!local_dec_and_test(&buffer->nest))
3208 goto out;
3211 * Publish the known good head. Rely on the full barrier implied
3212 * by atomic_dec_and_test() order the buffer->head read and this
3213 * write.
3215 buffer->user_page->data_head = head;
3218 * Now check if we missed an update, rely on the (compiler)
3219 * barrier in atomic_dec_and_test() to re-read buffer->head.
3221 if (unlikely(head != local_read(&buffer->head))) {
3222 local_inc(&buffer->nest);
3223 goto again;
3226 if (handle->wakeup != local_read(&buffer->wakeup))
3227 perf_output_wakeup(handle);
3229 out:
3230 preempt_enable();
3233 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3234 const void *buf, unsigned int len)
3236 do {
3237 unsigned long size = min_t(unsigned long, handle->size, len);
3239 memcpy(handle->addr, buf, size);
3241 len -= size;
3242 handle->addr += size;
3243 buf += size;
3244 handle->size -= size;
3245 if (!handle->size) {
3246 struct perf_buffer *buffer = handle->buffer;
3248 handle->page++;
3249 handle->page &= buffer->nr_pages - 1;
3250 handle->addr = buffer->data_pages[handle->page];
3251 handle->size = PAGE_SIZE << page_order(buffer);
3253 } while (len);
3256 int perf_output_begin(struct perf_output_handle *handle,
3257 struct perf_event *event, unsigned int size,
3258 int nmi, int sample)
3260 struct perf_buffer *buffer;
3261 unsigned long tail, offset, head;
3262 int have_lost;
3263 struct {
3264 struct perf_event_header header;
3265 u64 id;
3266 u64 lost;
3267 } lost_event;
3269 rcu_read_lock();
3271 * For inherited events we send all the output towards the parent.
3273 if (event->parent)
3274 event = event->parent;
3276 buffer = rcu_dereference(event->buffer);
3277 if (!buffer)
3278 goto out;
3280 handle->buffer = buffer;
3281 handle->event = event;
3282 handle->nmi = nmi;
3283 handle->sample = sample;
3285 if (!buffer->nr_pages)
3286 goto out;
3288 have_lost = local_read(&buffer->lost);
3289 if (have_lost)
3290 size += sizeof(lost_event);
3292 perf_output_get_handle(handle);
3294 do {
3296 * Userspace could choose to issue a mb() before updating the
3297 * tail pointer. So that all reads will be completed before the
3298 * write is issued.
3300 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3301 smp_rmb();
3302 offset = head = local_read(&buffer->head);
3303 head += size;
3304 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3305 goto fail;
3306 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3308 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3309 local_add(buffer->watermark, &buffer->wakeup);
3311 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3312 handle->page &= buffer->nr_pages - 1;
3313 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3314 handle->addr = buffer->data_pages[handle->page];
3315 handle->addr += handle->size;
3316 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3318 if (have_lost) {
3319 lost_event.header.type = PERF_RECORD_LOST;
3320 lost_event.header.misc = 0;
3321 lost_event.header.size = sizeof(lost_event);
3322 lost_event.id = event->id;
3323 lost_event.lost = local_xchg(&buffer->lost, 0);
3325 perf_output_put(handle, lost_event);
3328 return 0;
3330 fail:
3331 local_inc(&buffer->lost);
3332 perf_output_put_handle(handle);
3333 out:
3334 rcu_read_unlock();
3336 return -ENOSPC;
3339 void perf_output_end(struct perf_output_handle *handle)
3341 struct perf_event *event = handle->event;
3342 struct perf_buffer *buffer = handle->buffer;
3344 int wakeup_events = event->attr.wakeup_events;
3346 if (handle->sample && wakeup_events) {
3347 int events = local_inc_return(&buffer->events);
3348 if (events >= wakeup_events) {
3349 local_sub(wakeup_events, &buffer->events);
3350 local_inc(&buffer->wakeup);
3354 perf_output_put_handle(handle);
3355 rcu_read_unlock();
3358 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3361 * only top level events have the pid namespace they were created in
3363 if (event->parent)
3364 event = event->parent;
3366 return task_tgid_nr_ns(p, event->ns);
3369 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3372 * only top level events have the pid namespace they were created in
3374 if (event->parent)
3375 event = event->parent;
3377 return task_pid_nr_ns(p, event->ns);
3380 static void perf_output_read_one(struct perf_output_handle *handle,
3381 struct perf_event *event)
3383 u64 read_format = event->attr.read_format;
3384 u64 values[4];
3385 int n = 0;
3387 values[n++] = perf_event_count(event);
3388 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3389 values[n++] = event->total_time_enabled +
3390 atomic64_read(&event->child_total_time_enabled);
3392 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3393 values[n++] = event->total_time_running +
3394 atomic64_read(&event->child_total_time_running);
3396 if (read_format & PERF_FORMAT_ID)
3397 values[n++] = primary_event_id(event);
3399 perf_output_copy(handle, values, n * sizeof(u64));
3403 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3405 static void perf_output_read_group(struct perf_output_handle *handle,
3406 struct perf_event *event)
3408 struct perf_event *leader = event->group_leader, *sub;
3409 u64 read_format = event->attr.read_format;
3410 u64 values[5];
3411 int n = 0;
3413 values[n++] = 1 + leader->nr_siblings;
3415 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3416 values[n++] = leader->total_time_enabled;
3418 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3419 values[n++] = leader->total_time_running;
3421 if (leader != event)
3422 leader->pmu->read(leader);
3424 values[n++] = perf_event_count(leader);
3425 if (read_format & PERF_FORMAT_ID)
3426 values[n++] = primary_event_id(leader);
3428 perf_output_copy(handle, values, n * sizeof(u64));
3430 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3431 n = 0;
3433 if (sub != event)
3434 sub->pmu->read(sub);
3436 values[n++] = perf_event_count(sub);
3437 if (read_format & PERF_FORMAT_ID)
3438 values[n++] = primary_event_id(sub);
3440 perf_output_copy(handle, values, n * sizeof(u64));
3444 static void perf_output_read(struct perf_output_handle *handle,
3445 struct perf_event *event)
3447 if (event->attr.read_format & PERF_FORMAT_GROUP)
3448 perf_output_read_group(handle, event);
3449 else
3450 perf_output_read_one(handle, event);
3453 void perf_output_sample(struct perf_output_handle *handle,
3454 struct perf_event_header *header,
3455 struct perf_sample_data *data,
3456 struct perf_event *event)
3458 u64 sample_type = data->type;
3460 perf_output_put(handle, *header);
3462 if (sample_type & PERF_SAMPLE_IP)
3463 perf_output_put(handle, data->ip);
3465 if (sample_type & PERF_SAMPLE_TID)
3466 perf_output_put(handle, data->tid_entry);
3468 if (sample_type & PERF_SAMPLE_TIME)
3469 perf_output_put(handle, data->time);
3471 if (sample_type & PERF_SAMPLE_ADDR)
3472 perf_output_put(handle, data->addr);
3474 if (sample_type & PERF_SAMPLE_ID)
3475 perf_output_put(handle, data->id);
3477 if (sample_type & PERF_SAMPLE_STREAM_ID)
3478 perf_output_put(handle, data->stream_id);
3480 if (sample_type & PERF_SAMPLE_CPU)
3481 perf_output_put(handle, data->cpu_entry);
3483 if (sample_type & PERF_SAMPLE_PERIOD)
3484 perf_output_put(handle, data->period);
3486 if (sample_type & PERF_SAMPLE_READ)
3487 perf_output_read(handle, event);
3489 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3490 if (data->callchain) {
3491 int size = 1;
3493 if (data->callchain)
3494 size += data->callchain->nr;
3496 size *= sizeof(u64);
3498 perf_output_copy(handle, data->callchain, size);
3499 } else {
3500 u64 nr = 0;
3501 perf_output_put(handle, nr);
3505 if (sample_type & PERF_SAMPLE_RAW) {
3506 if (data->raw) {
3507 perf_output_put(handle, data->raw->size);
3508 perf_output_copy(handle, data->raw->data,
3509 data->raw->size);
3510 } else {
3511 struct {
3512 u32 size;
3513 u32 data;
3514 } raw = {
3515 .size = sizeof(u32),
3516 .data = 0,
3518 perf_output_put(handle, raw);
3523 void perf_prepare_sample(struct perf_event_header *header,
3524 struct perf_sample_data *data,
3525 struct perf_event *event,
3526 struct pt_regs *regs)
3528 u64 sample_type = event->attr.sample_type;
3530 data->type = sample_type;
3532 header->type = PERF_RECORD_SAMPLE;
3533 header->size = sizeof(*header);
3535 header->misc = 0;
3536 header->misc |= perf_misc_flags(regs);
3538 if (sample_type & PERF_SAMPLE_IP) {
3539 data->ip = perf_instruction_pointer(regs);
3541 header->size += sizeof(data->ip);
3544 if (sample_type & PERF_SAMPLE_TID) {
3545 /* namespace issues */
3546 data->tid_entry.pid = perf_event_pid(event, current);
3547 data->tid_entry.tid = perf_event_tid(event, current);
3549 header->size += sizeof(data->tid_entry);
3552 if (sample_type & PERF_SAMPLE_TIME) {
3553 data->time = perf_clock();
3555 header->size += sizeof(data->time);
3558 if (sample_type & PERF_SAMPLE_ADDR)
3559 header->size += sizeof(data->addr);
3561 if (sample_type & PERF_SAMPLE_ID) {
3562 data->id = primary_event_id(event);
3564 header->size += sizeof(data->id);
3567 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3568 data->stream_id = event->id;
3570 header->size += sizeof(data->stream_id);
3573 if (sample_type & PERF_SAMPLE_CPU) {
3574 data->cpu_entry.cpu = raw_smp_processor_id();
3575 data->cpu_entry.reserved = 0;
3577 header->size += sizeof(data->cpu_entry);
3580 if (sample_type & PERF_SAMPLE_PERIOD)
3581 header->size += sizeof(data->period);
3583 if (sample_type & PERF_SAMPLE_READ)
3584 header->size += perf_event_read_size(event);
3586 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3587 int size = 1;
3589 data->callchain = perf_callchain(regs);
3591 if (data->callchain)
3592 size += data->callchain->nr;
3594 header->size += size * sizeof(u64);
3597 if (sample_type & PERF_SAMPLE_RAW) {
3598 int size = sizeof(u32);
3600 if (data->raw)
3601 size += data->raw->size;
3602 else
3603 size += sizeof(u32);
3605 WARN_ON_ONCE(size & (sizeof(u64)-1));
3606 header->size += size;
3610 static void perf_event_output(struct perf_event *event, int nmi,
3611 struct perf_sample_data *data,
3612 struct pt_regs *regs)
3614 struct perf_output_handle handle;
3615 struct perf_event_header header;
3617 /* protect the callchain buffers */
3618 rcu_read_lock();
3620 perf_prepare_sample(&header, data, event, regs);
3622 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3623 goto exit;
3625 perf_output_sample(&handle, &header, data, event);
3627 perf_output_end(&handle);
3629 exit:
3630 rcu_read_unlock();
3634 * read event_id
3637 struct perf_read_event {
3638 struct perf_event_header header;
3640 u32 pid;
3641 u32 tid;
3644 static void
3645 perf_event_read_event(struct perf_event *event,
3646 struct task_struct *task)
3648 struct perf_output_handle handle;
3649 struct perf_read_event read_event = {
3650 .header = {
3651 .type = PERF_RECORD_READ,
3652 .misc = 0,
3653 .size = sizeof(read_event) + perf_event_read_size(event),
3655 .pid = perf_event_pid(event, task),
3656 .tid = perf_event_tid(event, task),
3658 int ret;
3660 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3661 if (ret)
3662 return;
3664 perf_output_put(&handle, read_event);
3665 perf_output_read(&handle, event);
3667 perf_output_end(&handle);
3671 * task tracking -- fork/exit
3673 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3676 struct perf_task_event {
3677 struct task_struct *task;
3678 struct perf_event_context *task_ctx;
3680 struct {
3681 struct perf_event_header header;
3683 u32 pid;
3684 u32 ppid;
3685 u32 tid;
3686 u32 ptid;
3687 u64 time;
3688 } event_id;
3691 static void perf_event_task_output(struct perf_event *event,
3692 struct perf_task_event *task_event)
3694 struct perf_output_handle handle;
3695 struct task_struct *task = task_event->task;
3696 int size, ret;
3698 size = task_event->event_id.header.size;
3699 ret = perf_output_begin(&handle, event, size, 0, 0);
3701 if (ret)
3702 return;
3704 task_event->event_id.pid = perf_event_pid(event, task);
3705 task_event->event_id.ppid = perf_event_pid(event, current);
3707 task_event->event_id.tid = perf_event_tid(event, task);
3708 task_event->event_id.ptid = perf_event_tid(event, current);
3710 perf_output_put(&handle, task_event->event_id);
3712 perf_output_end(&handle);
3715 static int perf_event_task_match(struct perf_event *event)
3717 if (event->state < PERF_EVENT_STATE_INACTIVE)
3718 return 0;
3720 if (event->cpu != -1 && event->cpu != smp_processor_id())
3721 return 0;
3723 if (event->attr.comm || event->attr.mmap ||
3724 event->attr.mmap_data || event->attr.task)
3725 return 1;
3727 return 0;
3730 static void perf_event_task_ctx(struct perf_event_context *ctx,
3731 struct perf_task_event *task_event)
3733 struct perf_event *event;
3735 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3736 if (perf_event_task_match(event))
3737 perf_event_task_output(event, task_event);
3741 static void perf_event_task_event(struct perf_task_event *task_event)
3743 struct perf_cpu_context *cpuctx;
3744 struct perf_event_context *ctx;
3745 struct pmu *pmu;
3746 int ctxn;
3748 rcu_read_lock();
3749 list_for_each_entry_rcu(pmu, &pmus, entry) {
3750 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3751 perf_event_task_ctx(&cpuctx->ctx, task_event);
3753 ctx = task_event->task_ctx;
3754 if (!ctx) {
3755 ctxn = pmu->task_ctx_nr;
3756 if (ctxn < 0)
3757 goto next;
3758 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3760 if (ctx)
3761 perf_event_task_ctx(ctx, task_event);
3762 next:
3763 put_cpu_ptr(pmu->pmu_cpu_context);
3765 rcu_read_unlock();
3768 static void perf_event_task(struct task_struct *task,
3769 struct perf_event_context *task_ctx,
3770 int new)
3772 struct perf_task_event task_event;
3774 if (!atomic_read(&nr_comm_events) &&
3775 !atomic_read(&nr_mmap_events) &&
3776 !atomic_read(&nr_task_events))
3777 return;
3779 task_event = (struct perf_task_event){
3780 .task = task,
3781 .task_ctx = task_ctx,
3782 .event_id = {
3783 .header = {
3784 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3785 .misc = 0,
3786 .size = sizeof(task_event.event_id),
3788 /* .pid */
3789 /* .ppid */
3790 /* .tid */
3791 /* .ptid */
3792 .time = perf_clock(),
3796 perf_event_task_event(&task_event);
3799 void perf_event_fork(struct task_struct *task)
3801 perf_event_task(task, NULL, 1);
3805 * comm tracking
3808 struct perf_comm_event {
3809 struct task_struct *task;
3810 char *comm;
3811 int comm_size;
3813 struct {
3814 struct perf_event_header header;
3816 u32 pid;
3817 u32 tid;
3818 } event_id;
3821 static void perf_event_comm_output(struct perf_event *event,
3822 struct perf_comm_event *comm_event)
3824 struct perf_output_handle handle;
3825 int size = comm_event->event_id.header.size;
3826 int ret = perf_output_begin(&handle, event, size, 0, 0);
3828 if (ret)
3829 return;
3831 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3832 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3834 perf_output_put(&handle, comm_event->event_id);
3835 perf_output_copy(&handle, comm_event->comm,
3836 comm_event->comm_size);
3837 perf_output_end(&handle);
3840 static int perf_event_comm_match(struct perf_event *event)
3842 if (event->state < PERF_EVENT_STATE_INACTIVE)
3843 return 0;
3845 if (event->cpu != -1 && event->cpu != smp_processor_id())
3846 return 0;
3848 if (event->attr.comm)
3849 return 1;
3851 return 0;
3854 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3855 struct perf_comm_event *comm_event)
3857 struct perf_event *event;
3859 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3860 if (perf_event_comm_match(event))
3861 perf_event_comm_output(event, comm_event);
3865 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3867 struct perf_cpu_context *cpuctx;
3868 struct perf_event_context *ctx;
3869 char comm[TASK_COMM_LEN];
3870 unsigned int size;
3871 struct pmu *pmu;
3872 int ctxn;
3874 memset(comm, 0, sizeof(comm));
3875 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3876 size = ALIGN(strlen(comm)+1, sizeof(u64));
3878 comm_event->comm = comm;
3879 comm_event->comm_size = size;
3881 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3883 rcu_read_lock();
3884 list_for_each_entry_rcu(pmu, &pmus, entry) {
3885 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3886 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3888 ctxn = pmu->task_ctx_nr;
3889 if (ctxn < 0)
3890 goto next;
3892 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3893 if (ctx)
3894 perf_event_comm_ctx(ctx, comm_event);
3895 next:
3896 put_cpu_ptr(pmu->pmu_cpu_context);
3898 rcu_read_unlock();
3901 void perf_event_comm(struct task_struct *task)
3903 struct perf_comm_event comm_event;
3904 struct perf_event_context *ctx;
3905 int ctxn;
3907 for_each_task_context_nr(ctxn) {
3908 ctx = task->perf_event_ctxp[ctxn];
3909 if (!ctx)
3910 continue;
3912 perf_event_enable_on_exec(ctx);
3915 if (!atomic_read(&nr_comm_events))
3916 return;
3918 comm_event = (struct perf_comm_event){
3919 .task = task,
3920 /* .comm */
3921 /* .comm_size */
3922 .event_id = {
3923 .header = {
3924 .type = PERF_RECORD_COMM,
3925 .misc = 0,
3926 /* .size */
3928 /* .pid */
3929 /* .tid */
3933 perf_event_comm_event(&comm_event);
3937 * mmap tracking
3940 struct perf_mmap_event {
3941 struct vm_area_struct *vma;
3943 const char *file_name;
3944 int file_size;
3946 struct {
3947 struct perf_event_header header;
3949 u32 pid;
3950 u32 tid;
3951 u64 start;
3952 u64 len;
3953 u64 pgoff;
3954 } event_id;
3957 static void perf_event_mmap_output(struct perf_event *event,
3958 struct perf_mmap_event *mmap_event)
3960 struct perf_output_handle handle;
3961 int size = mmap_event->event_id.header.size;
3962 int ret = perf_output_begin(&handle, event, size, 0, 0);
3964 if (ret)
3965 return;
3967 mmap_event->event_id.pid = perf_event_pid(event, current);
3968 mmap_event->event_id.tid = perf_event_tid(event, current);
3970 perf_output_put(&handle, mmap_event->event_id);
3971 perf_output_copy(&handle, mmap_event->file_name,
3972 mmap_event->file_size);
3973 perf_output_end(&handle);
3976 static int perf_event_mmap_match(struct perf_event *event,
3977 struct perf_mmap_event *mmap_event,
3978 int executable)
3980 if (event->state < PERF_EVENT_STATE_INACTIVE)
3981 return 0;
3983 if (event->cpu != -1 && event->cpu != smp_processor_id())
3984 return 0;
3986 if ((!executable && event->attr.mmap_data) ||
3987 (executable && event->attr.mmap))
3988 return 1;
3990 return 0;
3993 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3994 struct perf_mmap_event *mmap_event,
3995 int executable)
3997 struct perf_event *event;
3999 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4000 if (perf_event_mmap_match(event, mmap_event, executable))
4001 perf_event_mmap_output(event, mmap_event);
4005 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4007 struct perf_cpu_context *cpuctx;
4008 struct perf_event_context *ctx;
4009 struct vm_area_struct *vma = mmap_event->vma;
4010 struct file *file = vma->vm_file;
4011 unsigned int size;
4012 char tmp[16];
4013 char *buf = NULL;
4014 const char *name;
4015 struct pmu *pmu;
4016 int ctxn;
4018 memset(tmp, 0, sizeof(tmp));
4020 if (file) {
4022 * d_path works from the end of the buffer backwards, so we
4023 * need to add enough zero bytes after the string to handle
4024 * the 64bit alignment we do later.
4026 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4027 if (!buf) {
4028 name = strncpy(tmp, "//enomem", sizeof(tmp));
4029 goto got_name;
4031 name = d_path(&file->f_path, buf, PATH_MAX);
4032 if (IS_ERR(name)) {
4033 name = strncpy(tmp, "//toolong", sizeof(tmp));
4034 goto got_name;
4036 } else {
4037 if (arch_vma_name(mmap_event->vma)) {
4038 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4039 sizeof(tmp));
4040 goto got_name;
4043 if (!vma->vm_mm) {
4044 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4045 goto got_name;
4046 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4047 vma->vm_end >= vma->vm_mm->brk) {
4048 name = strncpy(tmp, "[heap]", sizeof(tmp));
4049 goto got_name;
4050 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4051 vma->vm_end >= vma->vm_mm->start_stack) {
4052 name = strncpy(tmp, "[stack]", sizeof(tmp));
4053 goto got_name;
4056 name = strncpy(tmp, "//anon", sizeof(tmp));
4057 goto got_name;
4060 got_name:
4061 size = ALIGN(strlen(name)+1, sizeof(u64));
4063 mmap_event->file_name = name;
4064 mmap_event->file_size = size;
4066 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4068 rcu_read_lock();
4069 list_for_each_entry_rcu(pmu, &pmus, entry) {
4070 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4071 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4072 vma->vm_flags & VM_EXEC);
4074 ctxn = pmu->task_ctx_nr;
4075 if (ctxn < 0)
4076 goto next;
4078 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4079 if (ctx) {
4080 perf_event_mmap_ctx(ctx, mmap_event,
4081 vma->vm_flags & VM_EXEC);
4083 next:
4084 put_cpu_ptr(pmu->pmu_cpu_context);
4086 rcu_read_unlock();
4088 kfree(buf);
4091 void perf_event_mmap(struct vm_area_struct *vma)
4093 struct perf_mmap_event mmap_event;
4095 if (!atomic_read(&nr_mmap_events))
4096 return;
4098 mmap_event = (struct perf_mmap_event){
4099 .vma = vma,
4100 /* .file_name */
4101 /* .file_size */
4102 .event_id = {
4103 .header = {
4104 .type = PERF_RECORD_MMAP,
4105 .misc = PERF_RECORD_MISC_USER,
4106 /* .size */
4108 /* .pid */
4109 /* .tid */
4110 .start = vma->vm_start,
4111 .len = vma->vm_end - vma->vm_start,
4112 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4116 perf_event_mmap_event(&mmap_event);
4120 * IRQ throttle logging
4123 static void perf_log_throttle(struct perf_event *event, int enable)
4125 struct perf_output_handle handle;
4126 int ret;
4128 struct {
4129 struct perf_event_header header;
4130 u64 time;
4131 u64 id;
4132 u64 stream_id;
4133 } throttle_event = {
4134 .header = {
4135 .type = PERF_RECORD_THROTTLE,
4136 .misc = 0,
4137 .size = sizeof(throttle_event),
4139 .time = perf_clock(),
4140 .id = primary_event_id(event),
4141 .stream_id = event->id,
4144 if (enable)
4145 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4147 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4148 if (ret)
4149 return;
4151 perf_output_put(&handle, throttle_event);
4152 perf_output_end(&handle);
4156 * Generic event overflow handling, sampling.
4159 static int __perf_event_overflow(struct perf_event *event, int nmi,
4160 int throttle, struct perf_sample_data *data,
4161 struct pt_regs *regs)
4163 int events = atomic_read(&event->event_limit);
4164 struct hw_perf_event *hwc = &event->hw;
4165 int ret = 0;
4167 if (!throttle) {
4168 hwc->interrupts++;
4169 } else {
4170 if (hwc->interrupts != MAX_INTERRUPTS) {
4171 hwc->interrupts++;
4172 if (HZ * hwc->interrupts >
4173 (u64)sysctl_perf_event_sample_rate) {
4174 hwc->interrupts = MAX_INTERRUPTS;
4175 perf_log_throttle(event, 0);
4176 ret = 1;
4178 } else {
4180 * Keep re-disabling events even though on the previous
4181 * pass we disabled it - just in case we raced with a
4182 * sched-in and the event got enabled again:
4184 ret = 1;
4188 if (event->attr.freq) {
4189 u64 now = perf_clock();
4190 s64 delta = now - hwc->freq_time_stamp;
4192 hwc->freq_time_stamp = now;
4194 if (delta > 0 && delta < 2*TICK_NSEC)
4195 perf_adjust_period(event, delta, hwc->last_period);
4199 * XXX event_limit might not quite work as expected on inherited
4200 * events
4203 event->pending_kill = POLL_IN;
4204 if (events && atomic_dec_and_test(&event->event_limit)) {
4205 ret = 1;
4206 event->pending_kill = POLL_HUP;
4207 if (nmi) {
4208 event->pending_disable = 1;
4209 irq_work_queue(&event->pending);
4210 } else
4211 perf_event_disable(event);
4214 if (event->overflow_handler)
4215 event->overflow_handler(event, nmi, data, regs);
4216 else
4217 perf_event_output(event, nmi, data, regs);
4219 return ret;
4222 int perf_event_overflow(struct perf_event *event, int nmi,
4223 struct perf_sample_data *data,
4224 struct pt_regs *regs)
4226 return __perf_event_overflow(event, nmi, 1, data, regs);
4230 * Generic software event infrastructure
4233 struct swevent_htable {
4234 struct swevent_hlist *swevent_hlist;
4235 struct mutex hlist_mutex;
4236 int hlist_refcount;
4238 /* Recursion avoidance in each contexts */
4239 int recursion[PERF_NR_CONTEXTS];
4242 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4245 * We directly increment event->count and keep a second value in
4246 * event->hw.period_left to count intervals. This period event
4247 * is kept in the range [-sample_period, 0] so that we can use the
4248 * sign as trigger.
4251 static u64 perf_swevent_set_period(struct perf_event *event)
4253 struct hw_perf_event *hwc = &event->hw;
4254 u64 period = hwc->last_period;
4255 u64 nr, offset;
4256 s64 old, val;
4258 hwc->last_period = hwc->sample_period;
4260 again:
4261 old = val = local64_read(&hwc->period_left);
4262 if (val < 0)
4263 return 0;
4265 nr = div64_u64(period + val, period);
4266 offset = nr * period;
4267 val -= offset;
4268 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4269 goto again;
4271 return nr;
4274 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4275 int nmi, struct perf_sample_data *data,
4276 struct pt_regs *regs)
4278 struct hw_perf_event *hwc = &event->hw;
4279 int throttle = 0;
4281 data->period = event->hw.last_period;
4282 if (!overflow)
4283 overflow = perf_swevent_set_period(event);
4285 if (hwc->interrupts == MAX_INTERRUPTS)
4286 return;
4288 for (; overflow; overflow--) {
4289 if (__perf_event_overflow(event, nmi, throttle,
4290 data, regs)) {
4292 * We inhibit the overflow from happening when
4293 * hwc->interrupts == MAX_INTERRUPTS.
4295 break;
4297 throttle = 1;
4301 static void perf_swevent_event(struct perf_event *event, u64 nr,
4302 int nmi, struct perf_sample_data *data,
4303 struct pt_regs *regs)
4305 struct hw_perf_event *hwc = &event->hw;
4307 local64_add(nr, &event->count);
4309 if (!regs)
4310 return;
4312 if (!hwc->sample_period)
4313 return;
4315 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4316 return perf_swevent_overflow(event, 1, nmi, data, regs);
4318 if (local64_add_negative(nr, &hwc->period_left))
4319 return;
4321 perf_swevent_overflow(event, 0, nmi, data, regs);
4324 static int perf_exclude_event(struct perf_event *event,
4325 struct pt_regs *regs)
4327 if (event->hw.state & PERF_HES_STOPPED)
4328 return 0;
4330 if (regs) {
4331 if (event->attr.exclude_user && user_mode(regs))
4332 return 1;
4334 if (event->attr.exclude_kernel && !user_mode(regs))
4335 return 1;
4338 return 0;
4341 static int perf_swevent_match(struct perf_event *event,
4342 enum perf_type_id type,
4343 u32 event_id,
4344 struct perf_sample_data *data,
4345 struct pt_regs *regs)
4347 if (event->attr.type != type)
4348 return 0;
4350 if (event->attr.config != event_id)
4351 return 0;
4353 if (perf_exclude_event(event, regs))
4354 return 0;
4356 return 1;
4359 static inline u64 swevent_hash(u64 type, u32 event_id)
4361 u64 val = event_id | (type << 32);
4363 return hash_64(val, SWEVENT_HLIST_BITS);
4366 static inline struct hlist_head *
4367 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4369 u64 hash = swevent_hash(type, event_id);
4371 return &hlist->heads[hash];
4374 /* For the read side: events when they trigger */
4375 static inline struct hlist_head *
4376 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4378 struct swevent_hlist *hlist;
4380 hlist = rcu_dereference(swhash->swevent_hlist);
4381 if (!hlist)
4382 return NULL;
4384 return __find_swevent_head(hlist, type, event_id);
4387 /* For the event head insertion and removal in the hlist */
4388 static inline struct hlist_head *
4389 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4391 struct swevent_hlist *hlist;
4392 u32 event_id = event->attr.config;
4393 u64 type = event->attr.type;
4396 * Event scheduling is always serialized against hlist allocation
4397 * and release. Which makes the protected version suitable here.
4398 * The context lock guarantees that.
4400 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4401 lockdep_is_held(&event->ctx->lock));
4402 if (!hlist)
4403 return NULL;
4405 return __find_swevent_head(hlist, type, event_id);
4408 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4409 u64 nr, int nmi,
4410 struct perf_sample_data *data,
4411 struct pt_regs *regs)
4413 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4414 struct perf_event *event;
4415 struct hlist_node *node;
4416 struct hlist_head *head;
4418 rcu_read_lock();
4419 head = find_swevent_head_rcu(swhash, type, event_id);
4420 if (!head)
4421 goto end;
4423 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4424 if (perf_swevent_match(event, type, event_id, data, regs))
4425 perf_swevent_event(event, nr, nmi, data, regs);
4427 end:
4428 rcu_read_unlock();
4431 int perf_swevent_get_recursion_context(void)
4433 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4435 return get_recursion_context(swhash->recursion);
4437 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4439 void inline perf_swevent_put_recursion_context(int rctx)
4441 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4443 put_recursion_context(swhash->recursion, rctx);
4446 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4447 struct pt_regs *regs, u64 addr)
4449 struct perf_sample_data data;
4450 int rctx;
4452 preempt_disable_notrace();
4453 rctx = perf_swevent_get_recursion_context();
4454 if (rctx < 0)
4455 return;
4457 perf_sample_data_init(&data, addr);
4459 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4461 perf_swevent_put_recursion_context(rctx);
4462 preempt_enable_notrace();
4465 static void perf_swevent_read(struct perf_event *event)
4469 static int perf_swevent_add(struct perf_event *event, int flags)
4471 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4472 struct hw_perf_event *hwc = &event->hw;
4473 struct hlist_head *head;
4475 if (hwc->sample_period) {
4476 hwc->last_period = hwc->sample_period;
4477 perf_swevent_set_period(event);
4480 hwc->state = !(flags & PERF_EF_START);
4482 head = find_swevent_head(swhash, event);
4483 if (WARN_ON_ONCE(!head))
4484 return -EINVAL;
4486 hlist_add_head_rcu(&event->hlist_entry, head);
4488 return 0;
4491 static void perf_swevent_del(struct perf_event *event, int flags)
4493 hlist_del_rcu(&event->hlist_entry);
4496 static void perf_swevent_start(struct perf_event *event, int flags)
4498 event->hw.state = 0;
4501 static void perf_swevent_stop(struct perf_event *event, int flags)
4503 event->hw.state = PERF_HES_STOPPED;
4506 /* Deref the hlist from the update side */
4507 static inline struct swevent_hlist *
4508 swevent_hlist_deref(struct swevent_htable *swhash)
4510 return rcu_dereference_protected(swhash->swevent_hlist,
4511 lockdep_is_held(&swhash->hlist_mutex));
4514 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4516 struct swevent_hlist *hlist;
4518 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4519 kfree(hlist);
4522 static void swevent_hlist_release(struct swevent_htable *swhash)
4524 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4526 if (!hlist)
4527 return;
4529 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4530 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4533 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4535 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4537 mutex_lock(&swhash->hlist_mutex);
4539 if (!--swhash->hlist_refcount)
4540 swevent_hlist_release(swhash);
4542 mutex_unlock(&swhash->hlist_mutex);
4545 static void swevent_hlist_put(struct perf_event *event)
4547 int cpu;
4549 if (event->cpu != -1) {
4550 swevent_hlist_put_cpu(event, event->cpu);
4551 return;
4554 for_each_possible_cpu(cpu)
4555 swevent_hlist_put_cpu(event, cpu);
4558 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4560 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4561 int err = 0;
4563 mutex_lock(&swhash->hlist_mutex);
4565 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4566 struct swevent_hlist *hlist;
4568 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4569 if (!hlist) {
4570 err = -ENOMEM;
4571 goto exit;
4573 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4575 swhash->hlist_refcount++;
4576 exit:
4577 mutex_unlock(&swhash->hlist_mutex);
4579 return err;
4582 static int swevent_hlist_get(struct perf_event *event)
4584 int err;
4585 int cpu, failed_cpu;
4587 if (event->cpu != -1)
4588 return swevent_hlist_get_cpu(event, event->cpu);
4590 get_online_cpus();
4591 for_each_possible_cpu(cpu) {
4592 err = swevent_hlist_get_cpu(event, cpu);
4593 if (err) {
4594 failed_cpu = cpu;
4595 goto fail;
4598 put_online_cpus();
4600 return 0;
4601 fail:
4602 for_each_possible_cpu(cpu) {
4603 if (cpu == failed_cpu)
4604 break;
4605 swevent_hlist_put_cpu(event, cpu);
4608 put_online_cpus();
4609 return err;
4612 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4614 static void sw_perf_event_destroy(struct perf_event *event)
4616 u64 event_id = event->attr.config;
4618 WARN_ON(event->parent);
4620 jump_label_dec(&perf_swevent_enabled[event_id]);
4621 swevent_hlist_put(event);
4624 static int perf_swevent_init(struct perf_event *event)
4626 int event_id = event->attr.config;
4628 if (event->attr.type != PERF_TYPE_SOFTWARE)
4629 return -ENOENT;
4631 switch (event_id) {
4632 case PERF_COUNT_SW_CPU_CLOCK:
4633 case PERF_COUNT_SW_TASK_CLOCK:
4634 return -ENOENT;
4636 default:
4637 break;
4640 if (event_id > PERF_COUNT_SW_MAX)
4641 return -ENOENT;
4643 if (!event->parent) {
4644 int err;
4646 err = swevent_hlist_get(event);
4647 if (err)
4648 return err;
4650 jump_label_inc(&perf_swevent_enabled[event_id]);
4651 event->destroy = sw_perf_event_destroy;
4654 return 0;
4657 static struct pmu perf_swevent = {
4658 .task_ctx_nr = perf_sw_context,
4660 .event_init = perf_swevent_init,
4661 .add = perf_swevent_add,
4662 .del = perf_swevent_del,
4663 .start = perf_swevent_start,
4664 .stop = perf_swevent_stop,
4665 .read = perf_swevent_read,
4668 #ifdef CONFIG_EVENT_TRACING
4670 static int perf_tp_filter_match(struct perf_event *event,
4671 struct perf_sample_data *data)
4673 void *record = data->raw->data;
4675 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4676 return 1;
4677 return 0;
4680 static int perf_tp_event_match(struct perf_event *event,
4681 struct perf_sample_data *data,
4682 struct pt_regs *regs)
4685 * All tracepoints are from kernel-space.
4687 if (event->attr.exclude_kernel)
4688 return 0;
4690 if (!perf_tp_filter_match(event, data))
4691 return 0;
4693 return 1;
4696 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4697 struct pt_regs *regs, struct hlist_head *head, int rctx)
4699 struct perf_sample_data data;
4700 struct perf_event *event;
4701 struct hlist_node *node;
4703 struct perf_raw_record raw = {
4704 .size = entry_size,
4705 .data = record,
4708 perf_sample_data_init(&data, addr);
4709 data.raw = &raw;
4711 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4712 if (perf_tp_event_match(event, &data, regs))
4713 perf_swevent_event(event, count, 1, &data, regs);
4716 perf_swevent_put_recursion_context(rctx);
4718 EXPORT_SYMBOL_GPL(perf_tp_event);
4720 static void tp_perf_event_destroy(struct perf_event *event)
4722 perf_trace_destroy(event);
4725 static int perf_tp_event_init(struct perf_event *event)
4727 int err;
4729 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4730 return -ENOENT;
4733 * Raw tracepoint data is a severe data leak, only allow root to
4734 * have these.
4736 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4737 perf_paranoid_tracepoint_raw() &&
4738 !capable(CAP_SYS_ADMIN))
4739 return -EPERM;
4741 err = perf_trace_init(event);
4742 if (err)
4743 return err;
4745 event->destroy = tp_perf_event_destroy;
4747 return 0;
4750 static struct pmu perf_tracepoint = {
4751 .task_ctx_nr = perf_sw_context,
4753 .event_init = perf_tp_event_init,
4754 .add = perf_trace_add,
4755 .del = perf_trace_del,
4756 .start = perf_swevent_start,
4757 .stop = perf_swevent_stop,
4758 .read = perf_swevent_read,
4761 static inline void perf_tp_register(void)
4763 perf_pmu_register(&perf_tracepoint);
4766 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4768 char *filter_str;
4769 int ret;
4771 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4772 return -EINVAL;
4774 filter_str = strndup_user(arg, PAGE_SIZE);
4775 if (IS_ERR(filter_str))
4776 return PTR_ERR(filter_str);
4778 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4780 kfree(filter_str);
4781 return ret;
4784 static void perf_event_free_filter(struct perf_event *event)
4786 ftrace_profile_free_filter(event);
4789 #else
4791 static inline void perf_tp_register(void)
4795 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4797 return -ENOENT;
4800 static void perf_event_free_filter(struct perf_event *event)
4804 #endif /* CONFIG_EVENT_TRACING */
4806 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4807 void perf_bp_event(struct perf_event *bp, void *data)
4809 struct perf_sample_data sample;
4810 struct pt_regs *regs = data;
4812 perf_sample_data_init(&sample, bp->attr.bp_addr);
4814 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4815 perf_swevent_event(bp, 1, 1, &sample, regs);
4817 #endif
4820 * hrtimer based swevent callback
4823 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4825 enum hrtimer_restart ret = HRTIMER_RESTART;
4826 struct perf_sample_data data;
4827 struct pt_regs *regs;
4828 struct perf_event *event;
4829 u64 period;
4831 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4832 event->pmu->read(event);
4834 perf_sample_data_init(&data, 0);
4835 data.period = event->hw.last_period;
4836 regs = get_irq_regs();
4838 if (regs && !perf_exclude_event(event, regs)) {
4839 if (!(event->attr.exclude_idle && current->pid == 0))
4840 if (perf_event_overflow(event, 0, &data, regs))
4841 ret = HRTIMER_NORESTART;
4844 period = max_t(u64, 10000, event->hw.sample_period);
4845 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4847 return ret;
4850 static void perf_swevent_start_hrtimer(struct perf_event *event)
4852 struct hw_perf_event *hwc = &event->hw;
4854 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4855 hwc->hrtimer.function = perf_swevent_hrtimer;
4856 if (hwc->sample_period) {
4857 s64 period = local64_read(&hwc->period_left);
4859 if (period) {
4860 if (period < 0)
4861 period = 10000;
4863 local64_set(&hwc->period_left, 0);
4864 } else {
4865 period = max_t(u64, 10000, hwc->sample_period);
4867 __hrtimer_start_range_ns(&hwc->hrtimer,
4868 ns_to_ktime(period), 0,
4869 HRTIMER_MODE_REL_PINNED, 0);
4873 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4875 struct hw_perf_event *hwc = &event->hw;
4877 if (hwc->sample_period) {
4878 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4879 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4881 hrtimer_cancel(&hwc->hrtimer);
4886 * Software event: cpu wall time clock
4889 static void cpu_clock_event_update(struct perf_event *event)
4891 s64 prev;
4892 u64 now;
4894 now = local_clock();
4895 prev = local64_xchg(&event->hw.prev_count, now);
4896 local64_add(now - prev, &event->count);
4899 static void cpu_clock_event_start(struct perf_event *event, int flags)
4901 local64_set(&event->hw.prev_count, local_clock());
4902 perf_swevent_start_hrtimer(event);
4905 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4907 perf_swevent_cancel_hrtimer(event);
4908 cpu_clock_event_update(event);
4911 static int cpu_clock_event_add(struct perf_event *event, int flags)
4913 if (flags & PERF_EF_START)
4914 cpu_clock_event_start(event, flags);
4916 return 0;
4919 static void cpu_clock_event_del(struct perf_event *event, int flags)
4921 cpu_clock_event_stop(event, flags);
4924 static void cpu_clock_event_read(struct perf_event *event)
4926 cpu_clock_event_update(event);
4929 static int cpu_clock_event_init(struct perf_event *event)
4931 if (event->attr.type != PERF_TYPE_SOFTWARE)
4932 return -ENOENT;
4934 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4935 return -ENOENT;
4937 return 0;
4940 static struct pmu perf_cpu_clock = {
4941 .task_ctx_nr = perf_sw_context,
4943 .event_init = cpu_clock_event_init,
4944 .add = cpu_clock_event_add,
4945 .del = cpu_clock_event_del,
4946 .start = cpu_clock_event_start,
4947 .stop = cpu_clock_event_stop,
4948 .read = cpu_clock_event_read,
4952 * Software event: task time clock
4955 static void task_clock_event_update(struct perf_event *event, u64 now)
4957 u64 prev;
4958 s64 delta;
4960 prev = local64_xchg(&event->hw.prev_count, now);
4961 delta = now - prev;
4962 local64_add(delta, &event->count);
4965 static void task_clock_event_start(struct perf_event *event, int flags)
4967 local64_set(&event->hw.prev_count, event->ctx->time);
4968 perf_swevent_start_hrtimer(event);
4971 static void task_clock_event_stop(struct perf_event *event, int flags)
4973 perf_swevent_cancel_hrtimer(event);
4974 task_clock_event_update(event, event->ctx->time);
4977 static int task_clock_event_add(struct perf_event *event, int flags)
4979 if (flags & PERF_EF_START)
4980 task_clock_event_start(event, flags);
4982 return 0;
4985 static void task_clock_event_del(struct perf_event *event, int flags)
4987 task_clock_event_stop(event, PERF_EF_UPDATE);
4990 static void task_clock_event_read(struct perf_event *event)
4992 u64 time;
4994 if (!in_nmi()) {
4995 update_context_time(event->ctx);
4996 time = event->ctx->time;
4997 } else {
4998 u64 now = perf_clock();
4999 u64 delta = now - event->ctx->timestamp;
5000 time = event->ctx->time + delta;
5003 task_clock_event_update(event, time);
5006 static int task_clock_event_init(struct perf_event *event)
5008 if (event->attr.type != PERF_TYPE_SOFTWARE)
5009 return -ENOENT;
5011 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5012 return -ENOENT;
5014 return 0;
5017 static struct pmu perf_task_clock = {
5018 .task_ctx_nr = perf_sw_context,
5020 .event_init = task_clock_event_init,
5021 .add = task_clock_event_add,
5022 .del = task_clock_event_del,
5023 .start = task_clock_event_start,
5024 .stop = task_clock_event_stop,
5025 .read = task_clock_event_read,
5028 static void perf_pmu_nop_void(struct pmu *pmu)
5032 static int perf_pmu_nop_int(struct pmu *pmu)
5034 return 0;
5037 static void perf_pmu_start_txn(struct pmu *pmu)
5039 perf_pmu_disable(pmu);
5042 static int perf_pmu_commit_txn(struct pmu *pmu)
5044 perf_pmu_enable(pmu);
5045 return 0;
5048 static void perf_pmu_cancel_txn(struct pmu *pmu)
5050 perf_pmu_enable(pmu);
5054 * Ensures all contexts with the same task_ctx_nr have the same
5055 * pmu_cpu_context too.
5057 static void *find_pmu_context(int ctxn)
5059 struct pmu *pmu;
5061 if (ctxn < 0)
5062 return NULL;
5064 list_for_each_entry(pmu, &pmus, entry) {
5065 if (pmu->task_ctx_nr == ctxn)
5066 return pmu->pmu_cpu_context;
5069 return NULL;
5072 static void free_pmu_context(void * __percpu cpu_context)
5074 struct pmu *pmu;
5076 mutex_lock(&pmus_lock);
5078 * Like a real lame refcount.
5080 list_for_each_entry(pmu, &pmus, entry) {
5081 if (pmu->pmu_cpu_context == cpu_context)
5082 goto out;
5085 free_percpu(cpu_context);
5086 out:
5087 mutex_unlock(&pmus_lock);
5090 int perf_pmu_register(struct pmu *pmu)
5092 int cpu, ret;
5094 mutex_lock(&pmus_lock);
5095 ret = -ENOMEM;
5096 pmu->pmu_disable_count = alloc_percpu(int);
5097 if (!pmu->pmu_disable_count)
5098 goto unlock;
5100 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5101 if (pmu->pmu_cpu_context)
5102 goto got_cpu_context;
5104 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5105 if (!pmu->pmu_cpu_context)
5106 goto free_pdc;
5108 for_each_possible_cpu(cpu) {
5109 struct perf_cpu_context *cpuctx;
5111 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5112 __perf_event_init_context(&cpuctx->ctx);
5113 cpuctx->ctx.type = cpu_context;
5114 cpuctx->ctx.pmu = pmu;
5115 cpuctx->jiffies_interval = 1;
5116 INIT_LIST_HEAD(&cpuctx->rotation_list);
5119 got_cpu_context:
5120 if (!pmu->start_txn) {
5121 if (pmu->pmu_enable) {
5123 * If we have pmu_enable/pmu_disable calls, install
5124 * transaction stubs that use that to try and batch
5125 * hardware accesses.
5127 pmu->start_txn = perf_pmu_start_txn;
5128 pmu->commit_txn = perf_pmu_commit_txn;
5129 pmu->cancel_txn = perf_pmu_cancel_txn;
5130 } else {
5131 pmu->start_txn = perf_pmu_nop_void;
5132 pmu->commit_txn = perf_pmu_nop_int;
5133 pmu->cancel_txn = perf_pmu_nop_void;
5137 if (!pmu->pmu_enable) {
5138 pmu->pmu_enable = perf_pmu_nop_void;
5139 pmu->pmu_disable = perf_pmu_nop_void;
5142 list_add_rcu(&pmu->entry, &pmus);
5143 ret = 0;
5144 unlock:
5145 mutex_unlock(&pmus_lock);
5147 return ret;
5149 free_pdc:
5150 free_percpu(pmu->pmu_disable_count);
5151 goto unlock;
5154 void perf_pmu_unregister(struct pmu *pmu)
5156 mutex_lock(&pmus_lock);
5157 list_del_rcu(&pmu->entry);
5158 mutex_unlock(&pmus_lock);
5161 * We dereference the pmu list under both SRCU and regular RCU, so
5162 * synchronize against both of those.
5164 synchronize_srcu(&pmus_srcu);
5165 synchronize_rcu();
5167 free_percpu(pmu->pmu_disable_count);
5168 free_pmu_context(pmu->pmu_cpu_context);
5171 struct pmu *perf_init_event(struct perf_event *event)
5173 struct pmu *pmu = NULL;
5174 int idx;
5176 idx = srcu_read_lock(&pmus_srcu);
5177 list_for_each_entry_rcu(pmu, &pmus, entry) {
5178 int ret = pmu->event_init(event);
5179 if (!ret)
5180 goto unlock;
5182 if (ret != -ENOENT) {
5183 pmu = ERR_PTR(ret);
5184 goto unlock;
5187 pmu = ERR_PTR(-ENOENT);
5188 unlock:
5189 srcu_read_unlock(&pmus_srcu, idx);
5191 return pmu;
5195 * Allocate and initialize a event structure
5197 static struct perf_event *
5198 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5199 struct task_struct *task,
5200 struct perf_event *group_leader,
5201 struct perf_event *parent_event,
5202 perf_overflow_handler_t overflow_handler)
5204 struct pmu *pmu;
5205 struct perf_event *event;
5206 struct hw_perf_event *hwc;
5207 long err;
5209 event = kzalloc(sizeof(*event), GFP_KERNEL);
5210 if (!event)
5211 return ERR_PTR(-ENOMEM);
5214 * Single events are their own group leaders, with an
5215 * empty sibling list:
5217 if (!group_leader)
5218 group_leader = event;
5220 mutex_init(&event->child_mutex);
5221 INIT_LIST_HEAD(&event->child_list);
5223 INIT_LIST_HEAD(&event->group_entry);
5224 INIT_LIST_HEAD(&event->event_entry);
5225 INIT_LIST_HEAD(&event->sibling_list);
5226 init_waitqueue_head(&event->waitq);
5227 init_irq_work(&event->pending, perf_pending_event);
5229 mutex_init(&event->mmap_mutex);
5231 event->cpu = cpu;
5232 event->attr = *attr;
5233 event->group_leader = group_leader;
5234 event->pmu = NULL;
5235 event->oncpu = -1;
5237 event->parent = parent_event;
5239 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5240 event->id = atomic64_inc_return(&perf_event_id);
5242 event->state = PERF_EVENT_STATE_INACTIVE;
5244 if (task) {
5245 event->attach_state = PERF_ATTACH_TASK;
5246 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5248 * hw_breakpoint is a bit difficult here..
5250 if (attr->type == PERF_TYPE_BREAKPOINT)
5251 event->hw.bp_target = task;
5252 #endif
5255 if (!overflow_handler && parent_event)
5256 overflow_handler = parent_event->overflow_handler;
5258 event->overflow_handler = overflow_handler;
5260 if (attr->disabled)
5261 event->state = PERF_EVENT_STATE_OFF;
5263 pmu = NULL;
5265 hwc = &event->hw;
5266 hwc->sample_period = attr->sample_period;
5267 if (attr->freq && attr->sample_freq)
5268 hwc->sample_period = 1;
5269 hwc->last_period = hwc->sample_period;
5271 local64_set(&hwc->period_left, hwc->sample_period);
5274 * we currently do not support PERF_FORMAT_GROUP on inherited events
5276 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5277 goto done;
5279 pmu = perf_init_event(event);
5281 done:
5282 err = 0;
5283 if (!pmu)
5284 err = -EINVAL;
5285 else if (IS_ERR(pmu))
5286 err = PTR_ERR(pmu);
5288 if (err) {
5289 if (event->ns)
5290 put_pid_ns(event->ns);
5291 kfree(event);
5292 return ERR_PTR(err);
5295 event->pmu = pmu;
5297 if (!event->parent) {
5298 if (event->attach_state & PERF_ATTACH_TASK)
5299 jump_label_inc(&perf_task_events);
5300 if (event->attr.mmap || event->attr.mmap_data)
5301 atomic_inc(&nr_mmap_events);
5302 if (event->attr.comm)
5303 atomic_inc(&nr_comm_events);
5304 if (event->attr.task)
5305 atomic_inc(&nr_task_events);
5306 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5307 err = get_callchain_buffers();
5308 if (err) {
5309 free_event(event);
5310 return ERR_PTR(err);
5315 return event;
5318 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5319 struct perf_event_attr *attr)
5321 u32 size;
5322 int ret;
5324 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5325 return -EFAULT;
5328 * zero the full structure, so that a short copy will be nice.
5330 memset(attr, 0, sizeof(*attr));
5332 ret = get_user(size, &uattr->size);
5333 if (ret)
5334 return ret;
5336 if (size > PAGE_SIZE) /* silly large */
5337 goto err_size;
5339 if (!size) /* abi compat */
5340 size = PERF_ATTR_SIZE_VER0;
5342 if (size < PERF_ATTR_SIZE_VER0)
5343 goto err_size;
5346 * If we're handed a bigger struct than we know of,
5347 * ensure all the unknown bits are 0 - i.e. new
5348 * user-space does not rely on any kernel feature
5349 * extensions we dont know about yet.
5351 if (size > sizeof(*attr)) {
5352 unsigned char __user *addr;
5353 unsigned char __user *end;
5354 unsigned char val;
5356 addr = (void __user *)uattr + sizeof(*attr);
5357 end = (void __user *)uattr + size;
5359 for (; addr < end; addr++) {
5360 ret = get_user(val, addr);
5361 if (ret)
5362 return ret;
5363 if (val)
5364 goto err_size;
5366 size = sizeof(*attr);
5369 ret = copy_from_user(attr, uattr, size);
5370 if (ret)
5371 return -EFAULT;
5374 * If the type exists, the corresponding creation will verify
5375 * the attr->config.
5377 if (attr->type >= PERF_TYPE_MAX)
5378 return -EINVAL;
5380 if (attr->__reserved_1)
5381 return -EINVAL;
5383 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5384 return -EINVAL;
5386 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5387 return -EINVAL;
5389 out:
5390 return ret;
5392 err_size:
5393 put_user(sizeof(*attr), &uattr->size);
5394 ret = -E2BIG;
5395 goto out;
5398 static int
5399 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5401 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5402 int ret = -EINVAL;
5404 if (!output_event)
5405 goto set;
5407 /* don't allow circular references */
5408 if (event == output_event)
5409 goto out;
5412 * Don't allow cross-cpu buffers
5414 if (output_event->cpu != event->cpu)
5415 goto out;
5418 * If its not a per-cpu buffer, it must be the same task.
5420 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5421 goto out;
5423 set:
5424 mutex_lock(&event->mmap_mutex);
5425 /* Can't redirect output if we've got an active mmap() */
5426 if (atomic_read(&event->mmap_count))
5427 goto unlock;
5429 if (output_event) {
5430 /* get the buffer we want to redirect to */
5431 buffer = perf_buffer_get(output_event);
5432 if (!buffer)
5433 goto unlock;
5436 old_buffer = event->buffer;
5437 rcu_assign_pointer(event->buffer, buffer);
5438 ret = 0;
5439 unlock:
5440 mutex_unlock(&event->mmap_mutex);
5442 if (old_buffer)
5443 perf_buffer_put(old_buffer);
5444 out:
5445 return ret;
5449 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5451 * @attr_uptr: event_id type attributes for monitoring/sampling
5452 * @pid: target pid
5453 * @cpu: target cpu
5454 * @group_fd: group leader event fd
5456 SYSCALL_DEFINE5(perf_event_open,
5457 struct perf_event_attr __user *, attr_uptr,
5458 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5460 struct perf_event *group_leader = NULL, *output_event = NULL;
5461 struct perf_event *event, *sibling;
5462 struct perf_event_attr attr;
5463 struct perf_event_context *ctx;
5464 struct file *event_file = NULL;
5465 struct file *group_file = NULL;
5466 struct task_struct *task = NULL;
5467 struct pmu *pmu;
5468 int event_fd;
5469 int move_group = 0;
5470 int fput_needed = 0;
5471 int err;
5473 /* for future expandability... */
5474 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5475 return -EINVAL;
5477 err = perf_copy_attr(attr_uptr, &attr);
5478 if (err)
5479 return err;
5481 if (!attr.exclude_kernel) {
5482 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5483 return -EACCES;
5486 if (attr.freq) {
5487 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5488 return -EINVAL;
5491 event_fd = get_unused_fd_flags(O_RDWR);
5492 if (event_fd < 0)
5493 return event_fd;
5495 if (group_fd != -1) {
5496 group_leader = perf_fget_light(group_fd, &fput_needed);
5497 if (IS_ERR(group_leader)) {
5498 err = PTR_ERR(group_leader);
5499 goto err_fd;
5501 group_file = group_leader->filp;
5502 if (flags & PERF_FLAG_FD_OUTPUT)
5503 output_event = group_leader;
5504 if (flags & PERF_FLAG_FD_NO_GROUP)
5505 group_leader = NULL;
5508 if (pid != -1) {
5509 task = find_lively_task_by_vpid(pid);
5510 if (IS_ERR(task)) {
5511 err = PTR_ERR(task);
5512 goto err_group_fd;
5516 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5517 if (IS_ERR(event)) {
5518 err = PTR_ERR(event);
5519 goto err_task;
5523 * Special case software events and allow them to be part of
5524 * any hardware group.
5526 pmu = event->pmu;
5528 if (group_leader &&
5529 (is_software_event(event) != is_software_event(group_leader))) {
5530 if (is_software_event(event)) {
5532 * If event and group_leader are not both a software
5533 * event, and event is, then group leader is not.
5535 * Allow the addition of software events to !software
5536 * groups, this is safe because software events never
5537 * fail to schedule.
5539 pmu = group_leader->pmu;
5540 } else if (is_software_event(group_leader) &&
5541 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5543 * In case the group is a pure software group, and we
5544 * try to add a hardware event, move the whole group to
5545 * the hardware context.
5547 move_group = 1;
5552 * Get the target context (task or percpu):
5554 ctx = find_get_context(pmu, task, cpu);
5555 if (IS_ERR(ctx)) {
5556 err = PTR_ERR(ctx);
5557 goto err_alloc;
5561 * Look up the group leader (we will attach this event to it):
5563 if (group_leader) {
5564 err = -EINVAL;
5567 * Do not allow a recursive hierarchy (this new sibling
5568 * becoming part of another group-sibling):
5570 if (group_leader->group_leader != group_leader)
5571 goto err_context;
5573 * Do not allow to attach to a group in a different
5574 * task or CPU context:
5576 if (move_group) {
5577 if (group_leader->ctx->type != ctx->type)
5578 goto err_context;
5579 } else {
5580 if (group_leader->ctx != ctx)
5581 goto err_context;
5585 * Only a group leader can be exclusive or pinned
5587 if (attr.exclusive || attr.pinned)
5588 goto err_context;
5591 if (output_event) {
5592 err = perf_event_set_output(event, output_event);
5593 if (err)
5594 goto err_context;
5597 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5598 if (IS_ERR(event_file)) {
5599 err = PTR_ERR(event_file);
5600 goto err_context;
5603 if (move_group) {
5604 struct perf_event_context *gctx = group_leader->ctx;
5606 mutex_lock(&gctx->mutex);
5607 perf_event_remove_from_context(group_leader);
5608 list_for_each_entry(sibling, &group_leader->sibling_list,
5609 group_entry) {
5610 perf_event_remove_from_context(sibling);
5611 put_ctx(gctx);
5613 mutex_unlock(&gctx->mutex);
5614 put_ctx(gctx);
5617 event->filp = event_file;
5618 WARN_ON_ONCE(ctx->parent_ctx);
5619 mutex_lock(&ctx->mutex);
5621 if (move_group) {
5622 perf_install_in_context(ctx, group_leader, cpu);
5623 get_ctx(ctx);
5624 list_for_each_entry(sibling, &group_leader->sibling_list,
5625 group_entry) {
5626 perf_install_in_context(ctx, sibling, cpu);
5627 get_ctx(ctx);
5631 perf_install_in_context(ctx, event, cpu);
5632 ++ctx->generation;
5633 mutex_unlock(&ctx->mutex);
5635 event->owner = current;
5636 get_task_struct(current);
5637 mutex_lock(&current->perf_event_mutex);
5638 list_add_tail(&event->owner_entry, &current->perf_event_list);
5639 mutex_unlock(&current->perf_event_mutex);
5642 * Drop the reference on the group_event after placing the
5643 * new event on the sibling_list. This ensures destruction
5644 * of the group leader will find the pointer to itself in
5645 * perf_group_detach().
5647 fput_light(group_file, fput_needed);
5648 fd_install(event_fd, event_file);
5649 return event_fd;
5651 err_context:
5652 put_ctx(ctx);
5653 err_alloc:
5654 free_event(event);
5655 err_task:
5656 if (task)
5657 put_task_struct(task);
5658 err_group_fd:
5659 fput_light(group_file, fput_needed);
5660 err_fd:
5661 put_unused_fd(event_fd);
5662 return err;
5666 * perf_event_create_kernel_counter
5668 * @attr: attributes of the counter to create
5669 * @cpu: cpu in which the counter is bound
5670 * @task: task to profile (NULL for percpu)
5672 struct perf_event *
5673 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5674 struct task_struct *task,
5675 perf_overflow_handler_t overflow_handler)
5677 struct perf_event_context *ctx;
5678 struct perf_event *event;
5679 int err;
5682 * Get the target context (task or percpu):
5685 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5686 if (IS_ERR(event)) {
5687 err = PTR_ERR(event);
5688 goto err;
5691 ctx = find_get_context(event->pmu, task, cpu);
5692 if (IS_ERR(ctx)) {
5693 err = PTR_ERR(ctx);
5694 goto err_free;
5697 event->filp = NULL;
5698 WARN_ON_ONCE(ctx->parent_ctx);
5699 mutex_lock(&ctx->mutex);
5700 perf_install_in_context(ctx, event, cpu);
5701 ++ctx->generation;
5702 mutex_unlock(&ctx->mutex);
5704 event->owner = current;
5705 get_task_struct(current);
5706 mutex_lock(&current->perf_event_mutex);
5707 list_add_tail(&event->owner_entry, &current->perf_event_list);
5708 mutex_unlock(&current->perf_event_mutex);
5710 return event;
5712 err_free:
5713 free_event(event);
5714 err:
5715 return ERR_PTR(err);
5717 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5719 static void sync_child_event(struct perf_event *child_event,
5720 struct task_struct *child)
5722 struct perf_event *parent_event = child_event->parent;
5723 u64 child_val;
5725 if (child_event->attr.inherit_stat)
5726 perf_event_read_event(child_event, child);
5728 child_val = perf_event_count(child_event);
5731 * Add back the child's count to the parent's count:
5733 atomic64_add(child_val, &parent_event->child_count);
5734 atomic64_add(child_event->total_time_enabled,
5735 &parent_event->child_total_time_enabled);
5736 atomic64_add(child_event->total_time_running,
5737 &parent_event->child_total_time_running);
5740 * Remove this event from the parent's list
5742 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5743 mutex_lock(&parent_event->child_mutex);
5744 list_del_init(&child_event->child_list);
5745 mutex_unlock(&parent_event->child_mutex);
5748 * Release the parent event, if this was the last
5749 * reference to it.
5751 fput(parent_event->filp);
5754 static void
5755 __perf_event_exit_task(struct perf_event *child_event,
5756 struct perf_event_context *child_ctx,
5757 struct task_struct *child)
5759 struct perf_event *parent_event;
5761 perf_event_remove_from_context(child_event);
5763 parent_event = child_event->parent;
5765 * It can happen that parent exits first, and has events
5766 * that are still around due to the child reference. These
5767 * events need to be zapped - but otherwise linger.
5769 if (parent_event) {
5770 sync_child_event(child_event, child);
5771 free_event(child_event);
5775 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5777 struct perf_event *child_event, *tmp;
5778 struct perf_event_context *child_ctx;
5779 unsigned long flags;
5781 if (likely(!child->perf_event_ctxp[ctxn])) {
5782 perf_event_task(child, NULL, 0);
5783 return;
5786 local_irq_save(flags);
5788 * We can't reschedule here because interrupts are disabled,
5789 * and either child is current or it is a task that can't be
5790 * scheduled, so we are now safe from rescheduling changing
5791 * our context.
5793 child_ctx = child->perf_event_ctxp[ctxn];
5794 task_ctx_sched_out(child_ctx, EVENT_ALL);
5797 * Take the context lock here so that if find_get_context is
5798 * reading child->perf_event_ctxp, we wait until it has
5799 * incremented the context's refcount before we do put_ctx below.
5801 raw_spin_lock(&child_ctx->lock);
5802 child->perf_event_ctxp[ctxn] = NULL;
5804 * If this context is a clone; unclone it so it can't get
5805 * swapped to another process while we're removing all
5806 * the events from it.
5808 unclone_ctx(child_ctx);
5809 update_context_time(child_ctx);
5810 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5813 * Report the task dead after unscheduling the events so that we
5814 * won't get any samples after PERF_RECORD_EXIT. We can however still
5815 * get a few PERF_RECORD_READ events.
5817 perf_event_task(child, child_ctx, 0);
5820 * We can recurse on the same lock type through:
5822 * __perf_event_exit_task()
5823 * sync_child_event()
5824 * fput(parent_event->filp)
5825 * perf_release()
5826 * mutex_lock(&ctx->mutex)
5828 * But since its the parent context it won't be the same instance.
5830 mutex_lock(&child_ctx->mutex);
5832 again:
5833 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5834 group_entry)
5835 __perf_event_exit_task(child_event, child_ctx, child);
5837 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5838 group_entry)
5839 __perf_event_exit_task(child_event, child_ctx, child);
5842 * If the last event was a group event, it will have appended all
5843 * its siblings to the list, but we obtained 'tmp' before that which
5844 * will still point to the list head terminating the iteration.
5846 if (!list_empty(&child_ctx->pinned_groups) ||
5847 !list_empty(&child_ctx->flexible_groups))
5848 goto again;
5850 mutex_unlock(&child_ctx->mutex);
5852 put_ctx(child_ctx);
5856 * When a child task exits, feed back event values to parent events.
5858 void perf_event_exit_task(struct task_struct *child)
5860 int ctxn;
5862 for_each_task_context_nr(ctxn)
5863 perf_event_exit_task_context(child, ctxn);
5866 static void perf_free_event(struct perf_event *event,
5867 struct perf_event_context *ctx)
5869 struct perf_event *parent = event->parent;
5871 if (WARN_ON_ONCE(!parent))
5872 return;
5874 mutex_lock(&parent->child_mutex);
5875 list_del_init(&event->child_list);
5876 mutex_unlock(&parent->child_mutex);
5878 fput(parent->filp);
5880 perf_group_detach(event);
5881 list_del_event(event, ctx);
5882 free_event(event);
5886 * free an unexposed, unused context as created by inheritance by
5887 * perf_event_init_task below, used by fork() in case of fail.
5889 void perf_event_free_task(struct task_struct *task)
5891 struct perf_event_context *ctx;
5892 struct perf_event *event, *tmp;
5893 int ctxn;
5895 for_each_task_context_nr(ctxn) {
5896 ctx = task->perf_event_ctxp[ctxn];
5897 if (!ctx)
5898 continue;
5900 mutex_lock(&ctx->mutex);
5901 again:
5902 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5903 group_entry)
5904 perf_free_event(event, ctx);
5906 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5907 group_entry)
5908 perf_free_event(event, ctx);
5910 if (!list_empty(&ctx->pinned_groups) ||
5911 !list_empty(&ctx->flexible_groups))
5912 goto again;
5914 mutex_unlock(&ctx->mutex);
5916 put_ctx(ctx);
5920 void perf_event_delayed_put(struct task_struct *task)
5922 int ctxn;
5924 for_each_task_context_nr(ctxn)
5925 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5929 * inherit a event from parent task to child task:
5931 static struct perf_event *
5932 inherit_event(struct perf_event *parent_event,
5933 struct task_struct *parent,
5934 struct perf_event_context *parent_ctx,
5935 struct task_struct *child,
5936 struct perf_event *group_leader,
5937 struct perf_event_context *child_ctx)
5939 struct perf_event *child_event;
5940 unsigned long flags;
5943 * Instead of creating recursive hierarchies of events,
5944 * we link inherited events back to the original parent,
5945 * which has a filp for sure, which we use as the reference
5946 * count:
5948 if (parent_event->parent)
5949 parent_event = parent_event->parent;
5951 child_event = perf_event_alloc(&parent_event->attr,
5952 parent_event->cpu,
5953 child,
5954 group_leader, parent_event,
5955 NULL);
5956 if (IS_ERR(child_event))
5957 return child_event;
5958 get_ctx(child_ctx);
5961 * Make the child state follow the state of the parent event,
5962 * not its attr.disabled bit. We hold the parent's mutex,
5963 * so we won't race with perf_event_{en, dis}able_family.
5965 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5966 child_event->state = PERF_EVENT_STATE_INACTIVE;
5967 else
5968 child_event->state = PERF_EVENT_STATE_OFF;
5970 if (parent_event->attr.freq) {
5971 u64 sample_period = parent_event->hw.sample_period;
5972 struct hw_perf_event *hwc = &child_event->hw;
5974 hwc->sample_period = sample_period;
5975 hwc->last_period = sample_period;
5977 local64_set(&hwc->period_left, sample_period);
5980 child_event->ctx = child_ctx;
5981 child_event->overflow_handler = parent_event->overflow_handler;
5984 * Link it up in the child's context:
5986 raw_spin_lock_irqsave(&child_ctx->lock, flags);
5987 add_event_to_ctx(child_event, child_ctx);
5988 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5991 * Get a reference to the parent filp - we will fput it
5992 * when the child event exits. This is safe to do because
5993 * we are in the parent and we know that the filp still
5994 * exists and has a nonzero count:
5996 atomic_long_inc(&parent_event->filp->f_count);
5999 * Link this into the parent event's child list
6001 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6002 mutex_lock(&parent_event->child_mutex);
6003 list_add_tail(&child_event->child_list, &parent_event->child_list);
6004 mutex_unlock(&parent_event->child_mutex);
6006 return child_event;
6009 static int inherit_group(struct perf_event *parent_event,
6010 struct task_struct *parent,
6011 struct perf_event_context *parent_ctx,
6012 struct task_struct *child,
6013 struct perf_event_context *child_ctx)
6015 struct perf_event *leader;
6016 struct perf_event *sub;
6017 struct perf_event *child_ctr;
6019 leader = inherit_event(parent_event, parent, parent_ctx,
6020 child, NULL, child_ctx);
6021 if (IS_ERR(leader))
6022 return PTR_ERR(leader);
6023 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6024 child_ctr = inherit_event(sub, parent, parent_ctx,
6025 child, leader, child_ctx);
6026 if (IS_ERR(child_ctr))
6027 return PTR_ERR(child_ctr);
6029 return 0;
6032 static int
6033 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6034 struct perf_event_context *parent_ctx,
6035 struct task_struct *child, int ctxn,
6036 int *inherited_all)
6038 int ret;
6039 struct perf_event_context *child_ctx;
6041 if (!event->attr.inherit) {
6042 *inherited_all = 0;
6043 return 0;
6046 child_ctx = child->perf_event_ctxp[ctxn];
6047 if (!child_ctx) {
6049 * This is executed from the parent task context, so
6050 * inherit events that have been marked for cloning.
6051 * First allocate and initialize a context for the
6052 * child.
6055 child_ctx = alloc_perf_context(event->pmu, child);
6056 if (!child_ctx)
6057 return -ENOMEM;
6059 child->perf_event_ctxp[ctxn] = child_ctx;
6062 ret = inherit_group(event, parent, parent_ctx,
6063 child, child_ctx);
6065 if (ret)
6066 *inherited_all = 0;
6068 return ret;
6072 * Initialize the perf_event context in task_struct
6074 int perf_event_init_context(struct task_struct *child, int ctxn)
6076 struct perf_event_context *child_ctx, *parent_ctx;
6077 struct perf_event_context *cloned_ctx;
6078 struct perf_event *event;
6079 struct task_struct *parent = current;
6080 int inherited_all = 1;
6081 int ret = 0;
6083 child->perf_event_ctxp[ctxn] = NULL;
6085 mutex_init(&child->perf_event_mutex);
6086 INIT_LIST_HEAD(&child->perf_event_list);
6088 if (likely(!parent->perf_event_ctxp[ctxn]))
6089 return 0;
6092 * If the parent's context is a clone, pin it so it won't get
6093 * swapped under us.
6095 parent_ctx = perf_pin_task_context(parent, ctxn);
6098 * No need to check if parent_ctx != NULL here; since we saw
6099 * it non-NULL earlier, the only reason for it to become NULL
6100 * is if we exit, and since we're currently in the middle of
6101 * a fork we can't be exiting at the same time.
6105 * Lock the parent list. No need to lock the child - not PID
6106 * hashed yet and not running, so nobody can access it.
6108 mutex_lock(&parent_ctx->mutex);
6111 * We dont have to disable NMIs - we are only looking at
6112 * the list, not manipulating it:
6114 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6115 ret = inherit_task_group(event, parent, parent_ctx,
6116 child, ctxn, &inherited_all);
6117 if (ret)
6118 break;
6121 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6122 ret = inherit_task_group(event, parent, parent_ctx,
6123 child, ctxn, &inherited_all);
6124 if (ret)
6125 break;
6128 child_ctx = child->perf_event_ctxp[ctxn];
6130 if (child_ctx && inherited_all) {
6132 * Mark the child context as a clone of the parent
6133 * context, or of whatever the parent is a clone of.
6134 * Note that if the parent is a clone, it could get
6135 * uncloned at any point, but that doesn't matter
6136 * because the list of events and the generation
6137 * count can't have changed since we took the mutex.
6139 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6140 if (cloned_ctx) {
6141 child_ctx->parent_ctx = cloned_ctx;
6142 child_ctx->parent_gen = parent_ctx->parent_gen;
6143 } else {
6144 child_ctx->parent_ctx = parent_ctx;
6145 child_ctx->parent_gen = parent_ctx->generation;
6147 get_ctx(child_ctx->parent_ctx);
6150 mutex_unlock(&parent_ctx->mutex);
6152 perf_unpin_context(parent_ctx);
6154 return ret;
6158 * Initialize the perf_event context in task_struct
6160 int perf_event_init_task(struct task_struct *child)
6162 int ctxn, ret;
6164 for_each_task_context_nr(ctxn) {
6165 ret = perf_event_init_context(child, ctxn);
6166 if (ret)
6167 return ret;
6170 return 0;
6173 static void __init perf_event_init_all_cpus(void)
6175 struct swevent_htable *swhash;
6176 int cpu;
6178 for_each_possible_cpu(cpu) {
6179 swhash = &per_cpu(swevent_htable, cpu);
6180 mutex_init(&swhash->hlist_mutex);
6181 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6185 static void __cpuinit perf_event_init_cpu(int cpu)
6187 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6189 mutex_lock(&swhash->hlist_mutex);
6190 if (swhash->hlist_refcount > 0) {
6191 struct swevent_hlist *hlist;
6193 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6194 WARN_ON(!hlist);
6195 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6197 mutex_unlock(&swhash->hlist_mutex);
6200 #ifdef CONFIG_HOTPLUG_CPU
6201 static void perf_pmu_rotate_stop(struct pmu *pmu)
6203 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6205 WARN_ON(!irqs_disabled());
6207 list_del_init(&cpuctx->rotation_list);
6210 static void __perf_event_exit_context(void *__info)
6212 struct perf_event_context *ctx = __info;
6213 struct perf_event *event, *tmp;
6215 perf_pmu_rotate_stop(ctx->pmu);
6217 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6218 __perf_event_remove_from_context(event);
6219 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6220 __perf_event_remove_from_context(event);
6223 static void perf_event_exit_cpu_context(int cpu)
6225 struct perf_event_context *ctx;
6226 struct pmu *pmu;
6227 int idx;
6229 idx = srcu_read_lock(&pmus_srcu);
6230 list_for_each_entry_rcu(pmu, &pmus, entry) {
6231 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6233 mutex_lock(&ctx->mutex);
6234 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6235 mutex_unlock(&ctx->mutex);
6237 srcu_read_unlock(&pmus_srcu, idx);
6240 static void perf_event_exit_cpu(int cpu)
6242 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6244 mutex_lock(&swhash->hlist_mutex);
6245 swevent_hlist_release(swhash);
6246 mutex_unlock(&swhash->hlist_mutex);
6248 perf_event_exit_cpu_context(cpu);
6250 #else
6251 static inline void perf_event_exit_cpu(int cpu) { }
6252 #endif
6254 static int __cpuinit
6255 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6257 unsigned int cpu = (long)hcpu;
6259 switch (action & ~CPU_TASKS_FROZEN) {
6261 case CPU_UP_PREPARE:
6262 case CPU_DOWN_FAILED:
6263 perf_event_init_cpu(cpu);
6264 break;
6266 case CPU_UP_CANCELED:
6267 case CPU_DOWN_PREPARE:
6268 perf_event_exit_cpu(cpu);
6269 break;
6271 default:
6272 break;
6275 return NOTIFY_OK;
6278 void __init perf_event_init(void)
6280 perf_event_init_all_cpus();
6281 init_srcu_struct(&pmus_srcu);
6282 perf_pmu_register(&perf_swevent);
6283 perf_pmu_register(&perf_cpu_clock);
6284 perf_pmu_register(&perf_task_clock);
6285 perf_tp_register();
6286 perf_cpu_notifier(perf_cpu_notify);